1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SuperH MSIOF SPI Master Interface 4 * 5 * Copyright (c) 2009 Magnus Damm 6 * Copyright (C) 2014 Renesas Electronics Corporation 7 * Copyright (C) 2014-2017 Glider bvba 8 */ 9 10 #include <linux/bitmap.h> 11 #include <linux/clk.h> 12 #include <linux/completion.h> 13 #include <linux/delay.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/dmaengine.h> 16 #include <linux/err.h> 17 #include <linux/gpio.h> 18 #include <linux/gpio/consumer.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/module.h> 23 #include <linux/of.h> 24 #include <linux/of_device.h> 25 #include <linux/platform_device.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/sh_dma.h> 28 29 #include <linux/spi/sh_msiof.h> 30 #include <linux/spi/spi.h> 31 32 #include <asm/unaligned.h> 33 34 struct sh_msiof_chipdata { 35 u16 tx_fifo_size; 36 u16 rx_fifo_size; 37 u16 master_flags; 38 u16 min_div_pow; 39 }; 40 41 struct sh_msiof_spi_priv { 42 struct spi_master *master; 43 void __iomem *mapbase; 44 struct clk *clk; 45 struct platform_device *pdev; 46 struct sh_msiof_spi_info *info; 47 struct completion done; 48 struct completion done_txdma; 49 unsigned int tx_fifo_size; 50 unsigned int rx_fifo_size; 51 unsigned int min_div_pow; 52 void *tx_dma_page; 53 void *rx_dma_page; 54 dma_addr_t tx_dma_addr; 55 dma_addr_t rx_dma_addr; 56 unsigned short unused_ss; 57 bool native_cs_inited; 58 bool native_cs_high; 59 bool slave_aborted; 60 }; 61 62 #define MAX_SS 3 /* Maximum number of native chip selects */ 63 64 #define TMDR1 0x00 /* Transmit Mode Register 1 */ 65 #define TMDR2 0x04 /* Transmit Mode Register 2 */ 66 #define TMDR3 0x08 /* Transmit Mode Register 3 */ 67 #define RMDR1 0x10 /* Receive Mode Register 1 */ 68 #define RMDR2 0x14 /* Receive Mode Register 2 */ 69 #define RMDR3 0x18 /* Receive Mode Register 3 */ 70 #define TSCR 0x20 /* Transmit Clock Select Register */ 71 #define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */ 72 #define CTR 0x28 /* Control Register */ 73 #define FCTR 0x30 /* FIFO Control Register */ 74 #define STR 0x40 /* Status Register */ 75 #define IER 0x44 /* Interrupt Enable Register */ 76 #define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */ 77 #define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */ 78 #define TFDR 0x50 /* Transmit FIFO Data Register */ 79 #define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */ 80 #define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */ 81 #define RFDR 0x60 /* Receive FIFO Data Register */ 82 83 /* TMDR1 and RMDR1 */ 84 #define MDR1_TRMD 0x80000000 /* Transfer Mode (1 = Master mode) */ 85 #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */ 86 #define MDR1_SYNCMD_SPI 0x20000000 /* Level mode/SPI */ 87 #define MDR1_SYNCMD_LR 0x30000000 /* L/R mode */ 88 #define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */ 89 #define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */ 90 #define MDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */ 91 #define MDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */ 92 #define MDR1_FLD_MASK 0x0000000c /* Frame Sync Signal Interval (0-3) */ 93 #define MDR1_FLD_SHIFT 2 94 #define MDR1_XXSTP 0x00000001 /* Transmission/Reception Stop on FIFO */ 95 /* TMDR1 */ 96 #define TMDR1_PCON 0x40000000 /* Transfer Signal Connection */ 97 #define TMDR1_SYNCCH_MASK 0xc000000 /* Synchronization Signal Channel Select */ 98 #define TMDR1_SYNCCH_SHIFT 26 /* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */ 99 100 /* TMDR2 and RMDR2 */ 101 #define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */ 102 #define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */ 103 #define MDR2_GRPMASK1 0x00000001 /* Group Output Mask 1 (SH, A1) */ 104 105 /* TSCR and RSCR */ 106 #define SCR_BRPS_MASK 0x1f00 /* Prescaler Setting (1-32) */ 107 #define SCR_BRPS(i) (((i) - 1) << 8) 108 #define SCR_BRDV_MASK 0x0007 /* Baud Rate Generator's Division Ratio */ 109 #define SCR_BRDV_DIV_2 0x0000 110 #define SCR_BRDV_DIV_4 0x0001 111 #define SCR_BRDV_DIV_8 0x0002 112 #define SCR_BRDV_DIV_16 0x0003 113 #define SCR_BRDV_DIV_32 0x0004 114 #define SCR_BRDV_DIV_1 0x0007 115 116 /* CTR */ 117 #define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */ 118 #define CTR_TSCKIZ_SCK 0x80000000 /* Disable SCK when TX disabled */ 119 #define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */ 120 #define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */ 121 #define CTR_RSCKIZ_SCK 0x20000000 /* Must match CTR_TSCKIZ_SCK */ 122 #define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */ 123 #define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */ 124 #define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */ 125 #define CTR_TXDIZ_MASK 0x00c00000 /* Pin Output When TX is Disabled */ 126 #define CTR_TXDIZ_LOW 0x00000000 /* 0 */ 127 #define CTR_TXDIZ_HIGH 0x00400000 /* 1 */ 128 #define CTR_TXDIZ_HIZ 0x00800000 /* High-impedance */ 129 #define CTR_TSCKE 0x00008000 /* Transmit Serial Clock Output Enable */ 130 #define CTR_TFSE 0x00004000 /* Transmit Frame Sync Signal Output Enable */ 131 #define CTR_TXE 0x00000200 /* Transmit Enable */ 132 #define CTR_RXE 0x00000100 /* Receive Enable */ 133 134 /* FCTR */ 135 #define FCTR_TFWM_MASK 0xe0000000 /* Transmit FIFO Watermark */ 136 #define FCTR_TFWM_64 0x00000000 /* Transfer Request when 64 empty stages */ 137 #define FCTR_TFWM_32 0x20000000 /* Transfer Request when 32 empty stages */ 138 #define FCTR_TFWM_24 0x40000000 /* Transfer Request when 24 empty stages */ 139 #define FCTR_TFWM_16 0x60000000 /* Transfer Request when 16 empty stages */ 140 #define FCTR_TFWM_12 0x80000000 /* Transfer Request when 12 empty stages */ 141 #define FCTR_TFWM_8 0xa0000000 /* Transfer Request when 8 empty stages */ 142 #define FCTR_TFWM_4 0xc0000000 /* Transfer Request when 4 empty stages */ 143 #define FCTR_TFWM_1 0xe0000000 /* Transfer Request when 1 empty stage */ 144 #define FCTR_TFUA_MASK 0x07f00000 /* Transmit FIFO Usable Area */ 145 #define FCTR_TFUA_SHIFT 20 146 #define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT) 147 #define FCTR_RFWM_MASK 0x0000e000 /* Receive FIFO Watermark */ 148 #define FCTR_RFWM_1 0x00000000 /* Transfer Request when 1 valid stages */ 149 #define FCTR_RFWM_4 0x00002000 /* Transfer Request when 4 valid stages */ 150 #define FCTR_RFWM_8 0x00004000 /* Transfer Request when 8 valid stages */ 151 #define FCTR_RFWM_16 0x00006000 /* Transfer Request when 16 valid stages */ 152 #define FCTR_RFWM_32 0x00008000 /* Transfer Request when 32 valid stages */ 153 #define FCTR_RFWM_64 0x0000a000 /* Transfer Request when 64 valid stages */ 154 #define FCTR_RFWM_128 0x0000c000 /* Transfer Request when 128 valid stages */ 155 #define FCTR_RFWM_256 0x0000e000 /* Transfer Request when 256 valid stages */ 156 #define FCTR_RFUA_MASK 0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */ 157 #define FCTR_RFUA_SHIFT 4 158 #define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT) 159 160 /* STR */ 161 #define STR_TFEMP 0x20000000 /* Transmit FIFO Empty */ 162 #define STR_TDREQ 0x10000000 /* Transmit Data Transfer Request */ 163 #define STR_TEOF 0x00800000 /* Frame Transmission End */ 164 #define STR_TFSERR 0x00200000 /* Transmit Frame Synchronization Error */ 165 #define STR_TFOVF 0x00100000 /* Transmit FIFO Overflow */ 166 #define STR_TFUDF 0x00080000 /* Transmit FIFO Underflow */ 167 #define STR_RFFUL 0x00002000 /* Receive FIFO Full */ 168 #define STR_RDREQ 0x00001000 /* Receive Data Transfer Request */ 169 #define STR_REOF 0x00000080 /* Frame Reception End */ 170 #define STR_RFSERR 0x00000020 /* Receive Frame Synchronization Error */ 171 #define STR_RFUDF 0x00000010 /* Receive FIFO Underflow */ 172 #define STR_RFOVF 0x00000008 /* Receive FIFO Overflow */ 173 174 /* IER */ 175 #define IER_TDMAE 0x80000000 /* Transmit Data DMA Transfer Req. Enable */ 176 #define IER_TFEMPE 0x20000000 /* Transmit FIFO Empty Enable */ 177 #define IER_TDREQE 0x10000000 /* Transmit Data Transfer Request Enable */ 178 #define IER_TEOFE 0x00800000 /* Frame Transmission End Enable */ 179 #define IER_TFSERRE 0x00200000 /* Transmit Frame Sync Error Enable */ 180 #define IER_TFOVFE 0x00100000 /* Transmit FIFO Overflow Enable */ 181 #define IER_TFUDFE 0x00080000 /* Transmit FIFO Underflow Enable */ 182 #define IER_RDMAE 0x00008000 /* Receive Data DMA Transfer Req. Enable */ 183 #define IER_RFFULE 0x00002000 /* Receive FIFO Full Enable */ 184 #define IER_RDREQE 0x00001000 /* Receive Data Transfer Request Enable */ 185 #define IER_REOFE 0x00000080 /* Frame Reception End Enable */ 186 #define IER_RFSERRE 0x00000020 /* Receive Frame Sync Error Enable */ 187 #define IER_RFUDFE 0x00000010 /* Receive FIFO Underflow Enable */ 188 #define IER_RFOVFE 0x00000008 /* Receive FIFO Overflow Enable */ 189 190 191 static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs) 192 { 193 switch (reg_offs) { 194 case TSCR: 195 case RSCR: 196 return ioread16(p->mapbase + reg_offs); 197 default: 198 return ioread32(p->mapbase + reg_offs); 199 } 200 } 201 202 static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs, 203 u32 value) 204 { 205 switch (reg_offs) { 206 case TSCR: 207 case RSCR: 208 iowrite16(value, p->mapbase + reg_offs); 209 break; 210 default: 211 iowrite32(value, p->mapbase + reg_offs); 212 break; 213 } 214 } 215 216 static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p, 217 u32 clr, u32 set) 218 { 219 u32 mask = clr | set; 220 u32 data; 221 int k; 222 223 data = sh_msiof_read(p, CTR); 224 data &= ~clr; 225 data |= set; 226 sh_msiof_write(p, CTR, data); 227 228 for (k = 100; k > 0; k--) { 229 if ((sh_msiof_read(p, CTR) & mask) == set) 230 break; 231 232 udelay(10); 233 } 234 235 return k > 0 ? 0 : -ETIMEDOUT; 236 } 237 238 static irqreturn_t sh_msiof_spi_irq(int irq, void *data) 239 { 240 struct sh_msiof_spi_priv *p = data; 241 242 /* just disable the interrupt and wake up */ 243 sh_msiof_write(p, IER, 0); 244 complete(&p->done); 245 246 return IRQ_HANDLED; 247 } 248 249 static const u32 sh_msiof_spi_div_array[] = { 250 SCR_BRDV_DIV_1, SCR_BRDV_DIV_2, SCR_BRDV_DIV_4, 251 SCR_BRDV_DIV_8, SCR_BRDV_DIV_16, SCR_BRDV_DIV_32, 252 }; 253 254 static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p, 255 unsigned long parent_rate, u32 spi_hz) 256 { 257 unsigned long div; 258 u32 brps, scr; 259 unsigned int div_pow = p->min_div_pow; 260 261 if (!spi_hz || !parent_rate) { 262 WARN(1, "Invalid clock rate parameters %lu and %u\n", 263 parent_rate, spi_hz); 264 return; 265 } 266 267 div = DIV_ROUND_UP(parent_rate, spi_hz); 268 if (div <= 1024) { 269 /* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */ 270 if (!div_pow && div <= 32 && div > 2) 271 div_pow = 1; 272 273 if (div_pow) 274 brps = (div + 1) >> div_pow; 275 else 276 brps = div; 277 278 for (; brps > 32; div_pow++) 279 brps = (brps + 1) >> 1; 280 } else { 281 /* Set transfer rate composite divisor to 2^5 * 32 = 1024 */ 282 dev_err(&p->pdev->dev, 283 "Requested SPI transfer rate %d is too low\n", spi_hz); 284 div_pow = 5; 285 brps = 32; 286 } 287 288 scr = sh_msiof_spi_div_array[div_pow] | SCR_BRPS(brps); 289 sh_msiof_write(p, TSCR, scr); 290 if (!(p->master->flags & SPI_MASTER_MUST_TX)) 291 sh_msiof_write(p, RSCR, scr); 292 } 293 294 static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl) 295 { 296 /* 297 * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl 298 * b'000 : 0 299 * b'001 : 100 300 * b'010 : 200 301 * b'011 (SYNCDL only) : 300 302 * b'101 : 50 303 * b'110 : 150 304 */ 305 if (dtdl_or_syncdl % 100) 306 return dtdl_or_syncdl / 100 + 5; 307 else 308 return dtdl_or_syncdl / 100; 309 } 310 311 static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p) 312 { 313 u32 val; 314 315 if (!p->info) 316 return 0; 317 318 /* check if DTDL and SYNCDL is allowed value */ 319 if (p->info->dtdl > 200 || p->info->syncdl > 300) { 320 dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n"); 321 return 0; 322 } 323 324 /* check if the sum of DTDL and SYNCDL becomes an integer value */ 325 if ((p->info->dtdl + p->info->syncdl) % 100) { 326 dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n"); 327 return 0; 328 } 329 330 val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT; 331 val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT; 332 333 return val; 334 } 335 336 static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss, 337 u32 cpol, u32 cpha, 338 u32 tx_hi_z, u32 lsb_first, u32 cs_high) 339 { 340 u32 tmp; 341 int edge; 342 343 /* 344 * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG 345 * 0 0 10 10 1 1 346 * 0 1 10 10 0 0 347 * 1 0 11 11 0 0 348 * 1 1 11 11 1 1 349 */ 350 tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP; 351 tmp |= !cs_high << MDR1_SYNCAC_SHIFT; 352 tmp |= lsb_first << MDR1_BITLSB_SHIFT; 353 tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p); 354 if (spi_controller_is_slave(p->master)) { 355 sh_msiof_write(p, TMDR1, tmp | TMDR1_PCON); 356 } else { 357 sh_msiof_write(p, TMDR1, 358 tmp | MDR1_TRMD | TMDR1_PCON | 359 (ss < MAX_SS ? ss : 0) << TMDR1_SYNCCH_SHIFT); 360 } 361 if (p->master->flags & SPI_MASTER_MUST_TX) { 362 /* These bits are reserved if RX needs TX */ 363 tmp &= ~0x0000ffff; 364 } 365 sh_msiof_write(p, RMDR1, tmp); 366 367 tmp = 0; 368 tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT; 369 tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT; 370 371 edge = cpol ^ !cpha; 372 373 tmp |= edge << CTR_TEDG_SHIFT; 374 tmp |= edge << CTR_REDG_SHIFT; 375 tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW; 376 sh_msiof_write(p, CTR, tmp); 377 } 378 379 static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p, 380 const void *tx_buf, void *rx_buf, 381 u32 bits, u32 words) 382 { 383 u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words); 384 385 if (tx_buf || (p->master->flags & SPI_MASTER_MUST_TX)) 386 sh_msiof_write(p, TMDR2, dr2); 387 else 388 sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1); 389 390 if (rx_buf) 391 sh_msiof_write(p, RMDR2, dr2); 392 } 393 394 static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p) 395 { 396 sh_msiof_write(p, STR, 397 sh_msiof_read(p, STR) & ~(STR_TDREQ | STR_RDREQ)); 398 } 399 400 static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p, 401 const void *tx_buf, int words, int fs) 402 { 403 const u8 *buf_8 = tx_buf; 404 int k; 405 406 for (k = 0; k < words; k++) 407 sh_msiof_write(p, TFDR, buf_8[k] << fs); 408 } 409 410 static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p, 411 const void *tx_buf, int words, int fs) 412 { 413 const u16 *buf_16 = tx_buf; 414 int k; 415 416 for (k = 0; k < words; k++) 417 sh_msiof_write(p, TFDR, buf_16[k] << fs); 418 } 419 420 static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p, 421 const void *tx_buf, int words, int fs) 422 { 423 const u16 *buf_16 = tx_buf; 424 int k; 425 426 for (k = 0; k < words; k++) 427 sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs); 428 } 429 430 static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p, 431 const void *tx_buf, int words, int fs) 432 { 433 const u32 *buf_32 = tx_buf; 434 int k; 435 436 for (k = 0; k < words; k++) 437 sh_msiof_write(p, TFDR, buf_32[k] << fs); 438 } 439 440 static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p, 441 const void *tx_buf, int words, int fs) 442 { 443 const u32 *buf_32 = tx_buf; 444 int k; 445 446 for (k = 0; k < words; k++) 447 sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs); 448 } 449 450 static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p, 451 const void *tx_buf, int words, int fs) 452 { 453 const u32 *buf_32 = tx_buf; 454 int k; 455 456 for (k = 0; k < words; k++) 457 sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs)); 458 } 459 460 static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p, 461 const void *tx_buf, int words, int fs) 462 { 463 const u32 *buf_32 = tx_buf; 464 int k; 465 466 for (k = 0; k < words; k++) 467 sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs)); 468 } 469 470 static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p, 471 void *rx_buf, int words, int fs) 472 { 473 u8 *buf_8 = rx_buf; 474 int k; 475 476 for (k = 0; k < words; k++) 477 buf_8[k] = sh_msiof_read(p, RFDR) >> fs; 478 } 479 480 static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p, 481 void *rx_buf, int words, int fs) 482 { 483 u16 *buf_16 = rx_buf; 484 int k; 485 486 for (k = 0; k < words; k++) 487 buf_16[k] = sh_msiof_read(p, RFDR) >> fs; 488 } 489 490 static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p, 491 void *rx_buf, int words, int fs) 492 { 493 u16 *buf_16 = rx_buf; 494 int k; 495 496 for (k = 0; k < words; k++) 497 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]); 498 } 499 500 static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p, 501 void *rx_buf, int words, int fs) 502 { 503 u32 *buf_32 = rx_buf; 504 int k; 505 506 for (k = 0; k < words; k++) 507 buf_32[k] = sh_msiof_read(p, RFDR) >> fs; 508 } 509 510 static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p, 511 void *rx_buf, int words, int fs) 512 { 513 u32 *buf_32 = rx_buf; 514 int k; 515 516 for (k = 0; k < words; k++) 517 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]); 518 } 519 520 static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p, 521 void *rx_buf, int words, int fs) 522 { 523 u32 *buf_32 = rx_buf; 524 int k; 525 526 for (k = 0; k < words; k++) 527 buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs); 528 } 529 530 static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p, 531 void *rx_buf, int words, int fs) 532 { 533 u32 *buf_32 = rx_buf; 534 int k; 535 536 for (k = 0; k < words; k++) 537 put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]); 538 } 539 540 static int sh_msiof_spi_setup(struct spi_device *spi) 541 { 542 struct device_node *np = spi->master->dev.of_node; 543 struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master); 544 u32 clr, set, tmp; 545 546 if (!np) { 547 /* 548 * Use spi->controller_data for CS (same strategy as spi_gpio), 549 * if any. otherwise let HW control CS 550 */ 551 spi->cs_gpio = (uintptr_t)spi->controller_data; 552 } 553 554 if (gpio_is_valid(spi->cs_gpio)) { 555 gpio_direction_output(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH)); 556 return 0; 557 } 558 559 if (spi_controller_is_slave(p->master)) 560 return 0; 561 562 if (p->native_cs_inited && 563 (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH))) 564 return 0; 565 566 /* Configure native chip select mode/polarity early */ 567 clr = MDR1_SYNCMD_MASK; 568 set = MDR1_SYNCMD_SPI; 569 if (spi->mode & SPI_CS_HIGH) 570 clr |= BIT(MDR1_SYNCAC_SHIFT); 571 else 572 set |= BIT(MDR1_SYNCAC_SHIFT); 573 pm_runtime_get_sync(&p->pdev->dev); 574 tmp = sh_msiof_read(p, TMDR1) & ~clr; 575 sh_msiof_write(p, TMDR1, tmp | set | MDR1_TRMD | TMDR1_PCON); 576 tmp = sh_msiof_read(p, RMDR1) & ~clr; 577 sh_msiof_write(p, RMDR1, tmp | set); 578 pm_runtime_put(&p->pdev->dev); 579 p->native_cs_high = spi->mode & SPI_CS_HIGH; 580 p->native_cs_inited = true; 581 return 0; 582 } 583 584 static int sh_msiof_prepare_message(struct spi_master *master, 585 struct spi_message *msg) 586 { 587 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master); 588 const struct spi_device *spi = msg->spi; 589 u32 ss, cs_high; 590 591 /* Configure pins before asserting CS */ 592 if (gpio_is_valid(spi->cs_gpio)) { 593 ss = p->unused_ss; 594 cs_high = p->native_cs_high; 595 } else { 596 ss = spi->chip_select; 597 cs_high = !!(spi->mode & SPI_CS_HIGH); 598 } 599 sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL), 600 !!(spi->mode & SPI_CPHA), 601 !!(spi->mode & SPI_3WIRE), 602 !!(spi->mode & SPI_LSB_FIRST), cs_high); 603 return 0; 604 } 605 606 static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf) 607 { 608 bool slave = spi_controller_is_slave(p->master); 609 int ret = 0; 610 611 /* setup clock and rx/tx signals */ 612 if (!slave) 613 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE); 614 if (rx_buf && !ret) 615 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE); 616 if (!ret) 617 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE); 618 619 /* start by setting frame bit */ 620 if (!ret && !slave) 621 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE); 622 623 return ret; 624 } 625 626 static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf) 627 { 628 bool slave = spi_controller_is_slave(p->master); 629 int ret = 0; 630 631 /* shut down frame, rx/tx and clock signals */ 632 if (!slave) 633 ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0); 634 if (!ret) 635 ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0); 636 if (rx_buf && !ret) 637 ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0); 638 if (!ret && !slave) 639 ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0); 640 641 return ret; 642 } 643 644 static int sh_msiof_slave_abort(struct spi_master *master) 645 { 646 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master); 647 648 p->slave_aborted = true; 649 complete(&p->done); 650 complete(&p->done_txdma); 651 return 0; 652 } 653 654 static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p, 655 struct completion *x) 656 { 657 if (spi_controller_is_slave(p->master)) { 658 if (wait_for_completion_interruptible(x) || 659 p->slave_aborted) { 660 dev_dbg(&p->pdev->dev, "interrupted\n"); 661 return -EINTR; 662 } 663 } else { 664 if (!wait_for_completion_timeout(x, HZ)) { 665 dev_err(&p->pdev->dev, "timeout\n"); 666 return -ETIMEDOUT; 667 } 668 } 669 670 return 0; 671 } 672 673 static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p, 674 void (*tx_fifo)(struct sh_msiof_spi_priv *, 675 const void *, int, int), 676 void (*rx_fifo)(struct sh_msiof_spi_priv *, 677 void *, int, int), 678 const void *tx_buf, void *rx_buf, 679 int words, int bits) 680 { 681 int fifo_shift; 682 int ret; 683 684 /* limit maximum word transfer to rx/tx fifo size */ 685 if (tx_buf) 686 words = min_t(int, words, p->tx_fifo_size); 687 if (rx_buf) 688 words = min_t(int, words, p->rx_fifo_size); 689 690 /* the fifo contents need shifting */ 691 fifo_shift = 32 - bits; 692 693 /* default FIFO watermarks for PIO */ 694 sh_msiof_write(p, FCTR, 0); 695 696 /* setup msiof transfer mode registers */ 697 sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words); 698 sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE); 699 700 /* write tx fifo */ 701 if (tx_buf) 702 tx_fifo(p, tx_buf, words, fifo_shift); 703 704 reinit_completion(&p->done); 705 p->slave_aborted = false; 706 707 ret = sh_msiof_spi_start(p, rx_buf); 708 if (ret) { 709 dev_err(&p->pdev->dev, "failed to start hardware\n"); 710 goto stop_ier; 711 } 712 713 /* wait for tx fifo to be emptied / rx fifo to be filled */ 714 ret = sh_msiof_wait_for_completion(p, &p->done); 715 if (ret) 716 goto stop_reset; 717 718 /* read rx fifo */ 719 if (rx_buf) 720 rx_fifo(p, rx_buf, words, fifo_shift); 721 722 /* clear status bits */ 723 sh_msiof_reset_str(p); 724 725 ret = sh_msiof_spi_stop(p, rx_buf); 726 if (ret) { 727 dev_err(&p->pdev->dev, "failed to shut down hardware\n"); 728 return ret; 729 } 730 731 return words; 732 733 stop_reset: 734 sh_msiof_reset_str(p); 735 sh_msiof_spi_stop(p, rx_buf); 736 stop_ier: 737 sh_msiof_write(p, IER, 0); 738 return ret; 739 } 740 741 static void sh_msiof_dma_complete(void *arg) 742 { 743 complete(arg); 744 } 745 746 static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx, 747 void *rx, unsigned int len) 748 { 749 u32 ier_bits = 0; 750 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL; 751 dma_cookie_t cookie; 752 int ret; 753 754 /* First prepare and submit the DMA request(s), as this may fail */ 755 if (rx) { 756 ier_bits |= IER_RDREQE | IER_RDMAE; 757 desc_rx = dmaengine_prep_slave_single(p->master->dma_rx, 758 p->rx_dma_addr, len, DMA_DEV_TO_MEM, 759 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 760 if (!desc_rx) 761 return -EAGAIN; 762 763 desc_rx->callback = sh_msiof_dma_complete; 764 desc_rx->callback_param = &p->done; 765 cookie = dmaengine_submit(desc_rx); 766 if (dma_submit_error(cookie)) 767 return cookie; 768 } 769 770 if (tx) { 771 ier_bits |= IER_TDREQE | IER_TDMAE; 772 dma_sync_single_for_device(p->master->dma_tx->device->dev, 773 p->tx_dma_addr, len, DMA_TO_DEVICE); 774 desc_tx = dmaengine_prep_slave_single(p->master->dma_tx, 775 p->tx_dma_addr, len, DMA_MEM_TO_DEV, 776 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 777 if (!desc_tx) { 778 ret = -EAGAIN; 779 goto no_dma_tx; 780 } 781 782 desc_tx->callback = sh_msiof_dma_complete; 783 desc_tx->callback_param = &p->done_txdma; 784 cookie = dmaengine_submit(desc_tx); 785 if (dma_submit_error(cookie)) { 786 ret = cookie; 787 goto no_dma_tx; 788 } 789 } 790 791 /* 1 stage FIFO watermarks for DMA */ 792 sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1); 793 794 /* setup msiof transfer mode registers (32-bit words) */ 795 sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4); 796 797 sh_msiof_write(p, IER, ier_bits); 798 799 reinit_completion(&p->done); 800 if (tx) 801 reinit_completion(&p->done_txdma); 802 p->slave_aborted = false; 803 804 /* Now start DMA */ 805 if (rx) 806 dma_async_issue_pending(p->master->dma_rx); 807 if (tx) 808 dma_async_issue_pending(p->master->dma_tx); 809 810 ret = sh_msiof_spi_start(p, rx); 811 if (ret) { 812 dev_err(&p->pdev->dev, "failed to start hardware\n"); 813 goto stop_dma; 814 } 815 816 if (tx) { 817 /* wait for tx DMA completion */ 818 ret = sh_msiof_wait_for_completion(p, &p->done_txdma); 819 if (ret) 820 goto stop_reset; 821 } 822 823 if (rx) { 824 /* wait for rx DMA completion */ 825 ret = sh_msiof_wait_for_completion(p, &p->done); 826 if (ret) 827 goto stop_reset; 828 829 sh_msiof_write(p, IER, 0); 830 } else { 831 /* wait for tx fifo to be emptied */ 832 sh_msiof_write(p, IER, IER_TEOFE); 833 ret = sh_msiof_wait_for_completion(p, &p->done); 834 if (ret) 835 goto stop_reset; 836 } 837 838 /* clear status bits */ 839 sh_msiof_reset_str(p); 840 841 ret = sh_msiof_spi_stop(p, rx); 842 if (ret) { 843 dev_err(&p->pdev->dev, "failed to shut down hardware\n"); 844 return ret; 845 } 846 847 if (rx) 848 dma_sync_single_for_cpu(p->master->dma_rx->device->dev, 849 p->rx_dma_addr, len, 850 DMA_FROM_DEVICE); 851 852 return 0; 853 854 stop_reset: 855 sh_msiof_reset_str(p); 856 sh_msiof_spi_stop(p, rx); 857 stop_dma: 858 if (tx) 859 dmaengine_terminate_all(p->master->dma_tx); 860 no_dma_tx: 861 if (rx) 862 dmaengine_terminate_all(p->master->dma_rx); 863 sh_msiof_write(p, IER, 0); 864 return ret; 865 } 866 867 static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words) 868 { 869 /* src or dst can be unaligned, but not both */ 870 if ((unsigned long)src & 3) { 871 while (words--) { 872 *dst++ = swab32(get_unaligned(src)); 873 src++; 874 } 875 } else if ((unsigned long)dst & 3) { 876 while (words--) { 877 put_unaligned(swab32(*src++), dst); 878 dst++; 879 } 880 } else { 881 while (words--) 882 *dst++ = swab32(*src++); 883 } 884 } 885 886 static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words) 887 { 888 /* src or dst can be unaligned, but not both */ 889 if ((unsigned long)src & 3) { 890 while (words--) { 891 *dst++ = swahw32(get_unaligned(src)); 892 src++; 893 } 894 } else if ((unsigned long)dst & 3) { 895 while (words--) { 896 put_unaligned(swahw32(*src++), dst); 897 dst++; 898 } 899 } else { 900 while (words--) 901 *dst++ = swahw32(*src++); 902 } 903 } 904 905 static void copy_plain32(u32 *dst, const u32 *src, unsigned int words) 906 { 907 memcpy(dst, src, words * 4); 908 } 909 910 static int sh_msiof_transfer_one(struct spi_master *master, 911 struct spi_device *spi, 912 struct spi_transfer *t) 913 { 914 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master); 915 void (*copy32)(u32 *, const u32 *, unsigned int); 916 void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int); 917 void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int); 918 const void *tx_buf = t->tx_buf; 919 void *rx_buf = t->rx_buf; 920 unsigned int len = t->len; 921 unsigned int bits = t->bits_per_word; 922 unsigned int bytes_per_word; 923 unsigned int words; 924 int n; 925 bool swab; 926 int ret; 927 928 /* setup clocks (clock already enabled in chipselect()) */ 929 if (!spi_controller_is_slave(p->master)) 930 sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz); 931 932 while (master->dma_tx && len > 15) { 933 /* 934 * DMA supports 32-bit words only, hence pack 8-bit and 16-bit 935 * words, with byte resp. word swapping. 936 */ 937 unsigned int l = 0; 938 939 if (tx_buf) 940 l = min(len, p->tx_fifo_size * 4); 941 if (rx_buf) 942 l = min(len, p->rx_fifo_size * 4); 943 944 if (bits <= 8) { 945 if (l & 3) 946 break; 947 copy32 = copy_bswap32; 948 } else if (bits <= 16) { 949 if (l & 3) 950 break; 951 copy32 = copy_wswap32; 952 } else { 953 copy32 = copy_plain32; 954 } 955 956 if (tx_buf) 957 copy32(p->tx_dma_page, tx_buf, l / 4); 958 959 ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l); 960 if (ret == -EAGAIN) { 961 dev_warn_once(&p->pdev->dev, 962 "DMA not available, falling back to PIO\n"); 963 break; 964 } 965 if (ret) 966 return ret; 967 968 if (rx_buf) { 969 copy32(rx_buf, p->rx_dma_page, l / 4); 970 rx_buf += l; 971 } 972 if (tx_buf) 973 tx_buf += l; 974 975 len -= l; 976 if (!len) 977 return 0; 978 } 979 980 if (bits <= 8 && len > 15) { 981 bits = 32; 982 swab = true; 983 } else { 984 swab = false; 985 } 986 987 /* setup bytes per word and fifo read/write functions */ 988 if (bits <= 8) { 989 bytes_per_word = 1; 990 tx_fifo = sh_msiof_spi_write_fifo_8; 991 rx_fifo = sh_msiof_spi_read_fifo_8; 992 } else if (bits <= 16) { 993 bytes_per_word = 2; 994 if ((unsigned long)tx_buf & 0x01) 995 tx_fifo = sh_msiof_spi_write_fifo_16u; 996 else 997 tx_fifo = sh_msiof_spi_write_fifo_16; 998 999 if ((unsigned long)rx_buf & 0x01) 1000 rx_fifo = sh_msiof_spi_read_fifo_16u; 1001 else 1002 rx_fifo = sh_msiof_spi_read_fifo_16; 1003 } else if (swab) { 1004 bytes_per_word = 4; 1005 if ((unsigned long)tx_buf & 0x03) 1006 tx_fifo = sh_msiof_spi_write_fifo_s32u; 1007 else 1008 tx_fifo = sh_msiof_spi_write_fifo_s32; 1009 1010 if ((unsigned long)rx_buf & 0x03) 1011 rx_fifo = sh_msiof_spi_read_fifo_s32u; 1012 else 1013 rx_fifo = sh_msiof_spi_read_fifo_s32; 1014 } else { 1015 bytes_per_word = 4; 1016 if ((unsigned long)tx_buf & 0x03) 1017 tx_fifo = sh_msiof_spi_write_fifo_32u; 1018 else 1019 tx_fifo = sh_msiof_spi_write_fifo_32; 1020 1021 if ((unsigned long)rx_buf & 0x03) 1022 rx_fifo = sh_msiof_spi_read_fifo_32u; 1023 else 1024 rx_fifo = sh_msiof_spi_read_fifo_32; 1025 } 1026 1027 /* transfer in fifo sized chunks */ 1028 words = len / bytes_per_word; 1029 1030 while (words > 0) { 1031 n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf, 1032 words, bits); 1033 if (n < 0) 1034 return n; 1035 1036 if (tx_buf) 1037 tx_buf += n * bytes_per_word; 1038 if (rx_buf) 1039 rx_buf += n * bytes_per_word; 1040 words -= n; 1041 1042 if (words == 0 && (len % bytes_per_word)) { 1043 words = len % bytes_per_word; 1044 bits = t->bits_per_word; 1045 bytes_per_word = 1; 1046 tx_fifo = sh_msiof_spi_write_fifo_8; 1047 rx_fifo = sh_msiof_spi_read_fifo_8; 1048 } 1049 } 1050 1051 return 0; 1052 } 1053 1054 static const struct sh_msiof_chipdata sh_data = { 1055 .tx_fifo_size = 64, 1056 .rx_fifo_size = 64, 1057 .master_flags = 0, 1058 .min_div_pow = 0, 1059 }; 1060 1061 static const struct sh_msiof_chipdata rcar_gen2_data = { 1062 .tx_fifo_size = 64, 1063 .rx_fifo_size = 64, 1064 .master_flags = SPI_MASTER_MUST_TX, 1065 .min_div_pow = 0, 1066 }; 1067 1068 static const struct sh_msiof_chipdata rcar_gen3_data = { 1069 .tx_fifo_size = 64, 1070 .rx_fifo_size = 64, 1071 .master_flags = SPI_MASTER_MUST_TX, 1072 .min_div_pow = 1, 1073 }; 1074 1075 static const struct of_device_id sh_msiof_match[] = { 1076 { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data }, 1077 { .compatible = "renesas,msiof-r8a7743", .data = &rcar_gen2_data }, 1078 { .compatible = "renesas,msiof-r8a7745", .data = &rcar_gen2_data }, 1079 { .compatible = "renesas,msiof-r8a7790", .data = &rcar_gen2_data }, 1080 { .compatible = "renesas,msiof-r8a7791", .data = &rcar_gen2_data }, 1081 { .compatible = "renesas,msiof-r8a7792", .data = &rcar_gen2_data }, 1082 { .compatible = "renesas,msiof-r8a7793", .data = &rcar_gen2_data }, 1083 { .compatible = "renesas,msiof-r8a7794", .data = &rcar_gen2_data }, 1084 { .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data }, 1085 { .compatible = "renesas,msiof-r8a7796", .data = &rcar_gen3_data }, 1086 { .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data }, 1087 { .compatible = "renesas,sh-msiof", .data = &sh_data }, /* Deprecated */ 1088 {}, 1089 }; 1090 MODULE_DEVICE_TABLE(of, sh_msiof_match); 1091 1092 #ifdef CONFIG_OF 1093 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev) 1094 { 1095 struct sh_msiof_spi_info *info; 1096 struct device_node *np = dev->of_node; 1097 u32 num_cs = 1; 1098 1099 info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL); 1100 if (!info) 1101 return NULL; 1102 1103 info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE 1104 : MSIOF_SPI_MASTER; 1105 1106 /* Parse the MSIOF properties */ 1107 if (info->mode == MSIOF_SPI_MASTER) 1108 of_property_read_u32(np, "num-cs", &num_cs); 1109 of_property_read_u32(np, "renesas,tx-fifo-size", 1110 &info->tx_fifo_override); 1111 of_property_read_u32(np, "renesas,rx-fifo-size", 1112 &info->rx_fifo_override); 1113 of_property_read_u32(np, "renesas,dtdl", &info->dtdl); 1114 of_property_read_u32(np, "renesas,syncdl", &info->syncdl); 1115 1116 info->num_chipselect = num_cs; 1117 1118 return info; 1119 } 1120 #else 1121 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev) 1122 { 1123 return NULL; 1124 } 1125 #endif 1126 1127 static int sh_msiof_get_cs_gpios(struct sh_msiof_spi_priv *p) 1128 { 1129 struct device *dev = &p->pdev->dev; 1130 unsigned int used_ss_mask = 0; 1131 unsigned int cs_gpios = 0; 1132 unsigned int num_cs, i; 1133 int ret; 1134 1135 ret = gpiod_count(dev, "cs"); 1136 if (ret <= 0) 1137 return 0; 1138 1139 num_cs = max_t(unsigned int, ret, p->master->num_chipselect); 1140 for (i = 0; i < num_cs; i++) { 1141 struct gpio_desc *gpiod; 1142 1143 gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS); 1144 if (!IS_ERR(gpiod)) { 1145 cs_gpios++; 1146 continue; 1147 } 1148 1149 if (PTR_ERR(gpiod) != -ENOENT) 1150 return PTR_ERR(gpiod); 1151 1152 if (i >= MAX_SS) { 1153 dev_err(dev, "Invalid native chip select %d\n", i); 1154 return -EINVAL; 1155 } 1156 used_ss_mask |= BIT(i); 1157 } 1158 p->unused_ss = ffz(used_ss_mask); 1159 if (cs_gpios && p->unused_ss >= MAX_SS) { 1160 dev_err(dev, "No unused native chip select available\n"); 1161 return -EINVAL; 1162 } 1163 return 0; 1164 } 1165 1166 static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev, 1167 enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr) 1168 { 1169 dma_cap_mask_t mask; 1170 struct dma_chan *chan; 1171 struct dma_slave_config cfg; 1172 int ret; 1173 1174 dma_cap_zero(mask); 1175 dma_cap_set(DMA_SLAVE, mask); 1176 1177 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter, 1178 (void *)(unsigned long)id, dev, 1179 dir == DMA_MEM_TO_DEV ? "tx" : "rx"); 1180 if (!chan) { 1181 dev_warn(dev, "dma_request_slave_channel_compat failed\n"); 1182 return NULL; 1183 } 1184 1185 memset(&cfg, 0, sizeof(cfg)); 1186 cfg.direction = dir; 1187 if (dir == DMA_MEM_TO_DEV) { 1188 cfg.dst_addr = port_addr; 1189 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 1190 } else { 1191 cfg.src_addr = port_addr; 1192 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 1193 } 1194 1195 ret = dmaengine_slave_config(chan, &cfg); 1196 if (ret) { 1197 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret); 1198 dma_release_channel(chan); 1199 return NULL; 1200 } 1201 1202 return chan; 1203 } 1204 1205 static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p) 1206 { 1207 struct platform_device *pdev = p->pdev; 1208 struct device *dev = &pdev->dev; 1209 const struct sh_msiof_spi_info *info = dev_get_platdata(dev); 1210 unsigned int dma_tx_id, dma_rx_id; 1211 const struct resource *res; 1212 struct spi_master *master; 1213 struct device *tx_dev, *rx_dev; 1214 1215 if (dev->of_node) { 1216 /* In the OF case we will get the slave IDs from the DT */ 1217 dma_tx_id = 0; 1218 dma_rx_id = 0; 1219 } else if (info && info->dma_tx_id && info->dma_rx_id) { 1220 dma_tx_id = info->dma_tx_id; 1221 dma_rx_id = info->dma_rx_id; 1222 } else { 1223 /* The driver assumes no error */ 1224 return 0; 1225 } 1226 1227 /* The DMA engine uses the second register set, if present */ 1228 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1229 if (!res) 1230 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1231 1232 master = p->master; 1233 master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV, 1234 dma_tx_id, 1235 res->start + TFDR); 1236 if (!master->dma_tx) 1237 return -ENODEV; 1238 1239 master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM, 1240 dma_rx_id, 1241 res->start + RFDR); 1242 if (!master->dma_rx) 1243 goto free_tx_chan; 1244 1245 p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA); 1246 if (!p->tx_dma_page) 1247 goto free_rx_chan; 1248 1249 p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA); 1250 if (!p->rx_dma_page) 1251 goto free_tx_page; 1252 1253 tx_dev = master->dma_tx->device->dev; 1254 p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE, 1255 DMA_TO_DEVICE); 1256 if (dma_mapping_error(tx_dev, p->tx_dma_addr)) 1257 goto free_rx_page; 1258 1259 rx_dev = master->dma_rx->device->dev; 1260 p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE, 1261 DMA_FROM_DEVICE); 1262 if (dma_mapping_error(rx_dev, p->rx_dma_addr)) 1263 goto unmap_tx_page; 1264 1265 dev_info(dev, "DMA available"); 1266 return 0; 1267 1268 unmap_tx_page: 1269 dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE); 1270 free_rx_page: 1271 free_page((unsigned long)p->rx_dma_page); 1272 free_tx_page: 1273 free_page((unsigned long)p->tx_dma_page); 1274 free_rx_chan: 1275 dma_release_channel(master->dma_rx); 1276 free_tx_chan: 1277 dma_release_channel(master->dma_tx); 1278 master->dma_tx = NULL; 1279 return -ENODEV; 1280 } 1281 1282 static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p) 1283 { 1284 struct spi_master *master = p->master; 1285 1286 if (!master->dma_tx) 1287 return; 1288 1289 dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr, 1290 PAGE_SIZE, DMA_FROM_DEVICE); 1291 dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr, 1292 PAGE_SIZE, DMA_TO_DEVICE); 1293 free_page((unsigned long)p->rx_dma_page); 1294 free_page((unsigned long)p->tx_dma_page); 1295 dma_release_channel(master->dma_rx); 1296 dma_release_channel(master->dma_tx); 1297 } 1298 1299 static int sh_msiof_spi_probe(struct platform_device *pdev) 1300 { 1301 struct resource *r; 1302 struct spi_master *master; 1303 const struct sh_msiof_chipdata *chipdata; 1304 struct sh_msiof_spi_info *info; 1305 struct sh_msiof_spi_priv *p; 1306 int i; 1307 int ret; 1308 1309 chipdata = of_device_get_match_data(&pdev->dev); 1310 if (chipdata) { 1311 info = sh_msiof_spi_parse_dt(&pdev->dev); 1312 } else { 1313 chipdata = (const void *)pdev->id_entry->driver_data; 1314 info = dev_get_platdata(&pdev->dev); 1315 } 1316 1317 if (!info) { 1318 dev_err(&pdev->dev, "failed to obtain device info\n"); 1319 return -ENXIO; 1320 } 1321 1322 if (info->mode == MSIOF_SPI_SLAVE) 1323 master = spi_alloc_slave(&pdev->dev, 1324 sizeof(struct sh_msiof_spi_priv)); 1325 else 1326 master = spi_alloc_master(&pdev->dev, 1327 sizeof(struct sh_msiof_spi_priv)); 1328 if (master == NULL) 1329 return -ENOMEM; 1330 1331 p = spi_master_get_devdata(master); 1332 1333 platform_set_drvdata(pdev, p); 1334 p->master = master; 1335 p->info = info; 1336 p->min_div_pow = chipdata->min_div_pow; 1337 1338 init_completion(&p->done); 1339 init_completion(&p->done_txdma); 1340 1341 p->clk = devm_clk_get(&pdev->dev, NULL); 1342 if (IS_ERR(p->clk)) { 1343 dev_err(&pdev->dev, "cannot get clock\n"); 1344 ret = PTR_ERR(p->clk); 1345 goto err1; 1346 } 1347 1348 i = platform_get_irq(pdev, 0); 1349 if (i < 0) { 1350 dev_err(&pdev->dev, "cannot get IRQ\n"); 1351 ret = i; 1352 goto err1; 1353 } 1354 1355 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1356 p->mapbase = devm_ioremap_resource(&pdev->dev, r); 1357 if (IS_ERR(p->mapbase)) { 1358 ret = PTR_ERR(p->mapbase); 1359 goto err1; 1360 } 1361 1362 ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0, 1363 dev_name(&pdev->dev), p); 1364 if (ret) { 1365 dev_err(&pdev->dev, "unable to request irq\n"); 1366 goto err1; 1367 } 1368 1369 p->pdev = pdev; 1370 pm_runtime_enable(&pdev->dev); 1371 1372 /* Platform data may override FIFO sizes */ 1373 p->tx_fifo_size = chipdata->tx_fifo_size; 1374 p->rx_fifo_size = chipdata->rx_fifo_size; 1375 if (p->info->tx_fifo_override) 1376 p->tx_fifo_size = p->info->tx_fifo_override; 1377 if (p->info->rx_fifo_override) 1378 p->rx_fifo_size = p->info->rx_fifo_override; 1379 1380 /* Setup GPIO chip selects */ 1381 master->num_chipselect = p->info->num_chipselect; 1382 ret = sh_msiof_get_cs_gpios(p); 1383 if (ret) 1384 goto err1; 1385 1386 /* init master code */ 1387 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; 1388 master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE; 1389 master->flags = chipdata->master_flags; 1390 master->bus_num = pdev->id; 1391 master->dev.of_node = pdev->dev.of_node; 1392 master->setup = sh_msiof_spi_setup; 1393 master->prepare_message = sh_msiof_prepare_message; 1394 master->slave_abort = sh_msiof_slave_abort; 1395 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32); 1396 master->auto_runtime_pm = true; 1397 master->transfer_one = sh_msiof_transfer_one; 1398 1399 ret = sh_msiof_request_dma(p); 1400 if (ret < 0) 1401 dev_warn(&pdev->dev, "DMA not available, using PIO\n"); 1402 1403 ret = devm_spi_register_master(&pdev->dev, master); 1404 if (ret < 0) { 1405 dev_err(&pdev->dev, "spi_register_master error.\n"); 1406 goto err2; 1407 } 1408 1409 return 0; 1410 1411 err2: 1412 sh_msiof_release_dma(p); 1413 pm_runtime_disable(&pdev->dev); 1414 err1: 1415 spi_master_put(master); 1416 return ret; 1417 } 1418 1419 static int sh_msiof_spi_remove(struct platform_device *pdev) 1420 { 1421 struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev); 1422 1423 sh_msiof_release_dma(p); 1424 pm_runtime_disable(&pdev->dev); 1425 return 0; 1426 } 1427 1428 static const struct platform_device_id spi_driver_ids[] = { 1429 { "spi_sh_msiof", (kernel_ulong_t)&sh_data }, 1430 {}, 1431 }; 1432 MODULE_DEVICE_TABLE(platform, spi_driver_ids); 1433 1434 #ifdef CONFIG_PM_SLEEP 1435 static int sh_msiof_spi_suspend(struct device *dev) 1436 { 1437 struct sh_msiof_spi_priv *p = dev_get_drvdata(dev); 1438 1439 return spi_master_suspend(p->master); 1440 } 1441 1442 static int sh_msiof_spi_resume(struct device *dev) 1443 { 1444 struct sh_msiof_spi_priv *p = dev_get_drvdata(dev); 1445 1446 return spi_master_resume(p->master); 1447 } 1448 1449 static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops, sh_msiof_spi_suspend, 1450 sh_msiof_spi_resume); 1451 #define DEV_PM_OPS &sh_msiof_spi_pm_ops 1452 #else 1453 #define DEV_PM_OPS NULL 1454 #endif /* CONFIG_PM_SLEEP */ 1455 1456 static struct platform_driver sh_msiof_spi_drv = { 1457 .probe = sh_msiof_spi_probe, 1458 .remove = sh_msiof_spi_remove, 1459 .id_table = spi_driver_ids, 1460 .driver = { 1461 .name = "spi_sh_msiof", 1462 .pm = DEV_PM_OPS, 1463 .of_match_table = of_match_ptr(sh_msiof_match), 1464 }, 1465 }; 1466 module_platform_driver(sh_msiof_spi_drv); 1467 1468 MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver"); 1469 MODULE_AUTHOR("Magnus Damm"); 1470 MODULE_LICENSE("GPL v2"); 1471 MODULE_ALIAS("platform:spi_sh_msiof"); 1472