xref: /openbmc/linux/drivers/spi/spi-s3c64xx.c (revision b34e08d5)
1 /*
2  * Copyright (C) 2009 Samsung Electronics Ltd.
3  *	Jaswinder Singh <jassi.brar@samsung.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  */
19 
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/workqueue.h>
23 #include <linux/interrupt.h>
24 #include <linux/delay.h>
25 #include <linux/clk.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/dmaengine.h>
28 #include <linux/platform_device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/spi/spi.h>
31 #include <linux/gpio.h>
32 #include <linux/of.h>
33 #include <linux/of_gpio.h>
34 
35 #include <linux/platform_data/spi-s3c64xx.h>
36 
37 #define MAX_SPI_PORTS		3
38 #define S3C64XX_SPI_QUIRK_POLL		(1 << 0)
39 
40 /* Registers and bit-fields */
41 
42 #define S3C64XX_SPI_CH_CFG		0x00
43 #define S3C64XX_SPI_CLK_CFG		0x04
44 #define S3C64XX_SPI_MODE_CFG	0x08
45 #define S3C64XX_SPI_SLAVE_SEL	0x0C
46 #define S3C64XX_SPI_INT_EN		0x10
47 #define S3C64XX_SPI_STATUS		0x14
48 #define S3C64XX_SPI_TX_DATA		0x18
49 #define S3C64XX_SPI_RX_DATA		0x1C
50 #define S3C64XX_SPI_PACKET_CNT	0x20
51 #define S3C64XX_SPI_PENDING_CLR	0x24
52 #define S3C64XX_SPI_SWAP_CFG	0x28
53 #define S3C64XX_SPI_FB_CLK		0x2C
54 
55 #define S3C64XX_SPI_CH_HS_EN		(1<<6)	/* High Speed Enable */
56 #define S3C64XX_SPI_CH_SW_RST		(1<<5)
57 #define S3C64XX_SPI_CH_SLAVE		(1<<4)
58 #define S3C64XX_SPI_CPOL_L		(1<<3)
59 #define S3C64XX_SPI_CPHA_B		(1<<2)
60 #define S3C64XX_SPI_CH_RXCH_ON		(1<<1)
61 #define S3C64XX_SPI_CH_TXCH_ON		(1<<0)
62 
63 #define S3C64XX_SPI_CLKSEL_SRCMSK	(3<<9)
64 #define S3C64XX_SPI_CLKSEL_SRCSHFT	9
65 #define S3C64XX_SPI_ENCLK_ENABLE	(1<<8)
66 #define S3C64XX_SPI_PSR_MASK		0xff
67 
68 #define S3C64XX_SPI_MODE_CH_TSZ_BYTE		(0<<29)
69 #define S3C64XX_SPI_MODE_CH_TSZ_HALFWORD	(1<<29)
70 #define S3C64XX_SPI_MODE_CH_TSZ_WORD		(2<<29)
71 #define S3C64XX_SPI_MODE_CH_TSZ_MASK		(3<<29)
72 #define S3C64XX_SPI_MODE_BUS_TSZ_BYTE		(0<<17)
73 #define S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD	(1<<17)
74 #define S3C64XX_SPI_MODE_BUS_TSZ_WORD		(2<<17)
75 #define S3C64XX_SPI_MODE_BUS_TSZ_MASK		(3<<17)
76 #define S3C64XX_SPI_MODE_RXDMA_ON		(1<<2)
77 #define S3C64XX_SPI_MODE_TXDMA_ON		(1<<1)
78 #define S3C64XX_SPI_MODE_4BURST			(1<<0)
79 
80 #define S3C64XX_SPI_SLAVE_AUTO			(1<<1)
81 #define S3C64XX_SPI_SLAVE_SIG_INACT		(1<<0)
82 
83 #define S3C64XX_SPI_INT_TRAILING_EN		(1<<6)
84 #define S3C64XX_SPI_INT_RX_OVERRUN_EN		(1<<5)
85 #define S3C64XX_SPI_INT_RX_UNDERRUN_EN		(1<<4)
86 #define S3C64XX_SPI_INT_TX_OVERRUN_EN		(1<<3)
87 #define S3C64XX_SPI_INT_TX_UNDERRUN_EN		(1<<2)
88 #define S3C64XX_SPI_INT_RX_FIFORDY_EN		(1<<1)
89 #define S3C64XX_SPI_INT_TX_FIFORDY_EN		(1<<0)
90 
91 #define S3C64XX_SPI_ST_RX_OVERRUN_ERR		(1<<5)
92 #define S3C64XX_SPI_ST_RX_UNDERRUN_ERR	(1<<4)
93 #define S3C64XX_SPI_ST_TX_OVERRUN_ERR		(1<<3)
94 #define S3C64XX_SPI_ST_TX_UNDERRUN_ERR	(1<<2)
95 #define S3C64XX_SPI_ST_RX_FIFORDY		(1<<1)
96 #define S3C64XX_SPI_ST_TX_FIFORDY		(1<<0)
97 
98 #define S3C64XX_SPI_PACKET_CNT_EN		(1<<16)
99 
100 #define S3C64XX_SPI_PND_TX_UNDERRUN_CLR		(1<<4)
101 #define S3C64XX_SPI_PND_TX_OVERRUN_CLR		(1<<3)
102 #define S3C64XX_SPI_PND_RX_UNDERRUN_CLR		(1<<2)
103 #define S3C64XX_SPI_PND_RX_OVERRUN_CLR		(1<<1)
104 #define S3C64XX_SPI_PND_TRAILING_CLR		(1<<0)
105 
106 #define S3C64XX_SPI_SWAP_RX_HALF_WORD		(1<<7)
107 #define S3C64XX_SPI_SWAP_RX_BYTE		(1<<6)
108 #define S3C64XX_SPI_SWAP_RX_BIT			(1<<5)
109 #define S3C64XX_SPI_SWAP_RX_EN			(1<<4)
110 #define S3C64XX_SPI_SWAP_TX_HALF_WORD		(1<<3)
111 #define S3C64XX_SPI_SWAP_TX_BYTE		(1<<2)
112 #define S3C64XX_SPI_SWAP_TX_BIT			(1<<1)
113 #define S3C64XX_SPI_SWAP_TX_EN			(1<<0)
114 
115 #define S3C64XX_SPI_FBCLK_MSK		(3<<0)
116 
117 #define FIFO_LVL_MASK(i) ((i)->port_conf->fifo_lvl_mask[i->port_id])
118 #define S3C64XX_SPI_ST_TX_DONE(v, i) (((v) & \
119 				(1 << (i)->port_conf->tx_st_done)) ? 1 : 0)
120 #define TX_FIFO_LVL(v, i) (((v) >> 6) & FIFO_LVL_MASK(i))
121 #define RX_FIFO_LVL(v, i) (((v) >> (i)->port_conf->rx_lvl_offset) & \
122 					FIFO_LVL_MASK(i))
123 
124 #define S3C64XX_SPI_MAX_TRAILCNT	0x3ff
125 #define S3C64XX_SPI_TRAILCNT_OFF	19
126 
127 #define S3C64XX_SPI_TRAILCNT		S3C64XX_SPI_MAX_TRAILCNT
128 
129 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
130 #define is_polling(x)	(x->port_conf->quirks & S3C64XX_SPI_QUIRK_POLL)
131 
132 #define RXBUSY    (1<<2)
133 #define TXBUSY    (1<<3)
134 
135 struct s3c64xx_spi_dma_data {
136 	struct dma_chan *ch;
137 	enum dma_transfer_direction direction;
138 	unsigned int dmach;
139 };
140 
141 /**
142  * struct s3c64xx_spi_info - SPI Controller hardware info
143  * @fifo_lvl_mask: Bit-mask for {TX|RX}_FIFO_LVL bits in SPI_STATUS register.
144  * @rx_lvl_offset: Bit offset of RX_FIFO_LVL bits in SPI_STATUS regiter.
145  * @tx_st_done: Bit offset of TX_DONE bit in SPI_STATUS regiter.
146  * @high_speed: True, if the controller supports HIGH_SPEED_EN bit.
147  * @clk_from_cmu: True, if the controller does not include a clock mux and
148  *	prescaler unit.
149  *
150  * The Samsung s3c64xx SPI controller are used on various Samsung SoC's but
151  * differ in some aspects such as the size of the fifo and spi bus clock
152  * setup. Such differences are specified to the driver using this structure
153  * which is provided as driver data to the driver.
154  */
155 struct s3c64xx_spi_port_config {
156 	int	fifo_lvl_mask[MAX_SPI_PORTS];
157 	int	rx_lvl_offset;
158 	int	tx_st_done;
159 	int	quirks;
160 	bool	high_speed;
161 	bool	clk_from_cmu;
162 };
163 
164 /**
165  * struct s3c64xx_spi_driver_data - Runtime info holder for SPI driver.
166  * @clk: Pointer to the spi clock.
167  * @src_clk: Pointer to the clock used to generate SPI signals.
168  * @master: Pointer to the SPI Protocol master.
169  * @cntrlr_info: Platform specific data for the controller this driver manages.
170  * @tgl_spi: Pointer to the last CS left untoggled by the cs_change hint.
171  * @lock: Controller specific lock.
172  * @state: Set of FLAGS to indicate status.
173  * @rx_dmach: Controller's DMA channel for Rx.
174  * @tx_dmach: Controller's DMA channel for Tx.
175  * @sfr_start: BUS address of SPI controller regs.
176  * @regs: Pointer to ioremap'ed controller registers.
177  * @irq: interrupt
178  * @xfer_completion: To indicate completion of xfer task.
179  * @cur_mode: Stores the active configuration of the controller.
180  * @cur_bpw: Stores the active bits per word settings.
181  * @cur_speed: Stores the active xfer clock speed.
182  */
183 struct s3c64xx_spi_driver_data {
184 	void __iomem                    *regs;
185 	struct clk                      *clk;
186 	struct clk                      *src_clk;
187 	struct platform_device          *pdev;
188 	struct spi_master               *master;
189 	struct s3c64xx_spi_info  *cntrlr_info;
190 	struct spi_device               *tgl_spi;
191 	spinlock_t                      lock;
192 	unsigned long                   sfr_start;
193 	struct completion               xfer_completion;
194 	unsigned                        state;
195 	unsigned                        cur_mode, cur_bpw;
196 	unsigned                        cur_speed;
197 	struct s3c64xx_spi_dma_data	rx_dma;
198 	struct s3c64xx_spi_dma_data	tx_dma;
199 	struct s3c64xx_spi_port_config	*port_conf;
200 	unsigned int			port_id;
201 	bool				cs_gpio;
202 };
203 
204 static void flush_fifo(struct s3c64xx_spi_driver_data *sdd)
205 {
206 	void __iomem *regs = sdd->regs;
207 	unsigned long loops;
208 	u32 val;
209 
210 	writel(0, regs + S3C64XX_SPI_PACKET_CNT);
211 
212 	val = readl(regs + S3C64XX_SPI_CH_CFG);
213 	val &= ~(S3C64XX_SPI_CH_RXCH_ON | S3C64XX_SPI_CH_TXCH_ON);
214 	writel(val, regs + S3C64XX_SPI_CH_CFG);
215 
216 	val = readl(regs + S3C64XX_SPI_CH_CFG);
217 	val |= S3C64XX_SPI_CH_SW_RST;
218 	val &= ~S3C64XX_SPI_CH_HS_EN;
219 	writel(val, regs + S3C64XX_SPI_CH_CFG);
220 
221 	/* Flush TxFIFO*/
222 	loops = msecs_to_loops(1);
223 	do {
224 		val = readl(regs + S3C64XX_SPI_STATUS);
225 	} while (TX_FIFO_LVL(val, sdd) && loops--);
226 
227 	if (loops == 0)
228 		dev_warn(&sdd->pdev->dev, "Timed out flushing TX FIFO\n");
229 
230 	/* Flush RxFIFO*/
231 	loops = msecs_to_loops(1);
232 	do {
233 		val = readl(regs + S3C64XX_SPI_STATUS);
234 		if (RX_FIFO_LVL(val, sdd))
235 			readl(regs + S3C64XX_SPI_RX_DATA);
236 		else
237 			break;
238 	} while (loops--);
239 
240 	if (loops == 0)
241 		dev_warn(&sdd->pdev->dev, "Timed out flushing RX FIFO\n");
242 
243 	val = readl(regs + S3C64XX_SPI_CH_CFG);
244 	val &= ~S3C64XX_SPI_CH_SW_RST;
245 	writel(val, regs + S3C64XX_SPI_CH_CFG);
246 
247 	val = readl(regs + S3C64XX_SPI_MODE_CFG);
248 	val &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
249 	writel(val, regs + S3C64XX_SPI_MODE_CFG);
250 }
251 
252 static void s3c64xx_spi_dmacb(void *data)
253 {
254 	struct s3c64xx_spi_driver_data *sdd;
255 	struct s3c64xx_spi_dma_data *dma = data;
256 	unsigned long flags;
257 
258 	if (dma->direction == DMA_DEV_TO_MEM)
259 		sdd = container_of(data,
260 			struct s3c64xx_spi_driver_data, rx_dma);
261 	else
262 		sdd = container_of(data,
263 			struct s3c64xx_spi_driver_data, tx_dma);
264 
265 	spin_lock_irqsave(&sdd->lock, flags);
266 
267 	if (dma->direction == DMA_DEV_TO_MEM) {
268 		sdd->state &= ~RXBUSY;
269 		if (!(sdd->state & TXBUSY))
270 			complete(&sdd->xfer_completion);
271 	} else {
272 		sdd->state &= ~TXBUSY;
273 		if (!(sdd->state & RXBUSY))
274 			complete(&sdd->xfer_completion);
275 	}
276 
277 	spin_unlock_irqrestore(&sdd->lock, flags);
278 }
279 
280 static void prepare_dma(struct s3c64xx_spi_dma_data *dma,
281 			struct sg_table *sgt)
282 {
283 	struct s3c64xx_spi_driver_data *sdd;
284 	struct dma_slave_config config;
285 	struct dma_async_tx_descriptor *desc;
286 
287 	memset(&config, 0, sizeof(config));
288 
289 	if (dma->direction == DMA_DEV_TO_MEM) {
290 		sdd = container_of((void *)dma,
291 			struct s3c64xx_spi_driver_data, rx_dma);
292 		config.direction = dma->direction;
293 		config.src_addr = sdd->sfr_start + S3C64XX_SPI_RX_DATA;
294 		config.src_addr_width = sdd->cur_bpw / 8;
295 		config.src_maxburst = 1;
296 		dmaengine_slave_config(dma->ch, &config);
297 	} else {
298 		sdd = container_of((void *)dma,
299 			struct s3c64xx_spi_driver_data, tx_dma);
300 		config.direction = dma->direction;
301 		config.dst_addr = sdd->sfr_start + S3C64XX_SPI_TX_DATA;
302 		config.dst_addr_width = sdd->cur_bpw / 8;
303 		config.dst_maxburst = 1;
304 		dmaengine_slave_config(dma->ch, &config);
305 	}
306 
307 	desc = dmaengine_prep_slave_sg(dma->ch, sgt->sgl, sgt->nents,
308 				       dma->direction, DMA_PREP_INTERRUPT);
309 
310 	desc->callback = s3c64xx_spi_dmacb;
311 	desc->callback_param = dma;
312 
313 	dmaengine_submit(desc);
314 	dma_async_issue_pending(dma->ch);
315 }
316 
317 static int s3c64xx_spi_prepare_transfer(struct spi_master *spi)
318 {
319 	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
320 	dma_filter_fn filter = sdd->cntrlr_info->filter;
321 	struct device *dev = &sdd->pdev->dev;
322 	dma_cap_mask_t mask;
323 	int ret;
324 
325 	if (!is_polling(sdd)) {
326 		dma_cap_zero(mask);
327 		dma_cap_set(DMA_SLAVE, mask);
328 
329 		/* Acquire DMA channels */
330 		sdd->rx_dma.ch = dma_request_slave_channel_compat(mask, filter,
331 				   (void *)sdd->rx_dma.dmach, dev, "rx");
332 		if (!sdd->rx_dma.ch) {
333 			dev_err(dev, "Failed to get RX DMA channel\n");
334 			ret = -EBUSY;
335 			goto out;
336 		}
337 		spi->dma_rx = sdd->rx_dma.ch;
338 
339 		sdd->tx_dma.ch = dma_request_slave_channel_compat(mask, filter,
340 				   (void *)sdd->tx_dma.dmach, dev, "tx");
341 		if (!sdd->tx_dma.ch) {
342 			dev_err(dev, "Failed to get TX DMA channel\n");
343 			ret = -EBUSY;
344 			goto out_rx;
345 		}
346 		spi->dma_tx = sdd->tx_dma.ch;
347 	}
348 
349 	ret = pm_runtime_get_sync(&sdd->pdev->dev);
350 	if (ret < 0) {
351 		dev_err(dev, "Failed to enable device: %d\n", ret);
352 		goto out_tx;
353 	}
354 
355 	return 0;
356 
357 out_tx:
358 	dma_release_channel(sdd->tx_dma.ch);
359 out_rx:
360 	dma_release_channel(sdd->rx_dma.ch);
361 out:
362 	return ret;
363 }
364 
365 static int s3c64xx_spi_unprepare_transfer(struct spi_master *spi)
366 {
367 	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
368 
369 	/* Free DMA channels */
370 	if (!is_polling(sdd)) {
371 		dma_release_channel(sdd->rx_dma.ch);
372 		dma_release_channel(sdd->tx_dma.ch);
373 	}
374 
375 	pm_runtime_put(&sdd->pdev->dev);
376 	return 0;
377 }
378 
379 static bool s3c64xx_spi_can_dma(struct spi_master *master,
380 				struct spi_device *spi,
381 				struct spi_transfer *xfer)
382 {
383 	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
384 
385 	return xfer->len > (FIFO_LVL_MASK(sdd) >> 1) + 1;
386 }
387 
388 static void enable_datapath(struct s3c64xx_spi_driver_data *sdd,
389 				struct spi_device *spi,
390 				struct spi_transfer *xfer, int dma_mode)
391 {
392 	void __iomem *regs = sdd->regs;
393 	u32 modecfg, chcfg;
394 
395 	modecfg = readl(regs + S3C64XX_SPI_MODE_CFG);
396 	modecfg &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
397 
398 	chcfg = readl(regs + S3C64XX_SPI_CH_CFG);
399 	chcfg &= ~S3C64XX_SPI_CH_TXCH_ON;
400 
401 	if (dma_mode) {
402 		chcfg &= ~S3C64XX_SPI_CH_RXCH_ON;
403 	} else {
404 		/* Always shift in data in FIFO, even if xfer is Tx only,
405 		 * this helps setting PCKT_CNT value for generating clocks
406 		 * as exactly needed.
407 		 */
408 		chcfg |= S3C64XX_SPI_CH_RXCH_ON;
409 		writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
410 					| S3C64XX_SPI_PACKET_CNT_EN,
411 					regs + S3C64XX_SPI_PACKET_CNT);
412 	}
413 
414 	if (xfer->tx_buf != NULL) {
415 		sdd->state |= TXBUSY;
416 		chcfg |= S3C64XX_SPI_CH_TXCH_ON;
417 		if (dma_mode) {
418 			modecfg |= S3C64XX_SPI_MODE_TXDMA_ON;
419 			prepare_dma(&sdd->tx_dma, &xfer->tx_sg);
420 		} else {
421 			switch (sdd->cur_bpw) {
422 			case 32:
423 				iowrite32_rep(regs + S3C64XX_SPI_TX_DATA,
424 					xfer->tx_buf, xfer->len / 4);
425 				break;
426 			case 16:
427 				iowrite16_rep(regs + S3C64XX_SPI_TX_DATA,
428 					xfer->tx_buf, xfer->len / 2);
429 				break;
430 			default:
431 				iowrite8_rep(regs + S3C64XX_SPI_TX_DATA,
432 					xfer->tx_buf, xfer->len);
433 				break;
434 			}
435 		}
436 	}
437 
438 	if (xfer->rx_buf != NULL) {
439 		sdd->state |= RXBUSY;
440 
441 		if (sdd->port_conf->high_speed && sdd->cur_speed >= 30000000UL
442 					&& !(sdd->cur_mode & SPI_CPHA))
443 			chcfg |= S3C64XX_SPI_CH_HS_EN;
444 
445 		if (dma_mode) {
446 			modecfg |= S3C64XX_SPI_MODE_RXDMA_ON;
447 			chcfg |= S3C64XX_SPI_CH_RXCH_ON;
448 			writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
449 					| S3C64XX_SPI_PACKET_CNT_EN,
450 					regs + S3C64XX_SPI_PACKET_CNT);
451 			prepare_dma(&sdd->rx_dma, &xfer->rx_sg);
452 		}
453 	}
454 
455 	writel(modecfg, regs + S3C64XX_SPI_MODE_CFG);
456 	writel(chcfg, regs + S3C64XX_SPI_CH_CFG);
457 }
458 
459 static u32 s3c64xx_spi_wait_for_timeout(struct s3c64xx_spi_driver_data *sdd,
460 					int timeout_ms)
461 {
462 	void __iomem *regs = sdd->regs;
463 	unsigned long val = 1;
464 	u32 status;
465 
466 	/* max fifo depth available */
467 	u32 max_fifo = (FIFO_LVL_MASK(sdd) >> 1) + 1;
468 
469 	if (timeout_ms)
470 		val = msecs_to_loops(timeout_ms);
471 
472 	do {
473 		status = readl(regs + S3C64XX_SPI_STATUS);
474 	} while (RX_FIFO_LVL(status, sdd) < max_fifo && --val);
475 
476 	/* return the actual received data length */
477 	return RX_FIFO_LVL(status, sdd);
478 }
479 
480 static int wait_for_dma(struct s3c64xx_spi_driver_data *sdd,
481 			struct spi_transfer *xfer)
482 {
483 	void __iomem *regs = sdd->regs;
484 	unsigned long val;
485 	u32 status;
486 	int ms;
487 
488 	/* millisecs to xfer 'len' bytes @ 'cur_speed' */
489 	ms = xfer->len * 8 * 1000 / sdd->cur_speed;
490 	ms += 10; /* some tolerance */
491 
492 	val = msecs_to_jiffies(ms) + 10;
493 	val = wait_for_completion_timeout(&sdd->xfer_completion, val);
494 
495 	/*
496 	 * If the previous xfer was completed within timeout, then
497 	 * proceed further else return -EIO.
498 	 * DmaTx returns after simply writing data in the FIFO,
499 	 * w/o waiting for real transmission on the bus to finish.
500 	 * DmaRx returns only after Dma read data from FIFO which
501 	 * needs bus transmission to finish, so we don't worry if
502 	 * Xfer involved Rx(with or without Tx).
503 	 */
504 	if (val && !xfer->rx_buf) {
505 		val = msecs_to_loops(10);
506 		status = readl(regs + S3C64XX_SPI_STATUS);
507 		while ((TX_FIFO_LVL(status, sdd)
508 			|| !S3C64XX_SPI_ST_TX_DONE(status, sdd))
509 		       && --val) {
510 			cpu_relax();
511 			status = readl(regs + S3C64XX_SPI_STATUS);
512 		}
513 
514 	}
515 
516 	/* If timed out while checking rx/tx status return error */
517 	if (!val)
518 		return -EIO;
519 
520 	return 0;
521 }
522 
523 static int wait_for_pio(struct s3c64xx_spi_driver_data *sdd,
524 			struct spi_transfer *xfer)
525 {
526 	void __iomem *regs = sdd->regs;
527 	unsigned long val;
528 	u32 status;
529 	int loops;
530 	u32 cpy_len;
531 	u8 *buf;
532 	int ms;
533 
534 	/* millisecs to xfer 'len' bytes @ 'cur_speed' */
535 	ms = xfer->len * 8 * 1000 / sdd->cur_speed;
536 	ms += 10; /* some tolerance */
537 
538 	val = msecs_to_loops(ms);
539 	do {
540 		status = readl(regs + S3C64XX_SPI_STATUS);
541 	} while (RX_FIFO_LVL(status, sdd) < xfer->len && --val);
542 
543 
544 	/* If it was only Tx */
545 	if (!xfer->rx_buf) {
546 		sdd->state &= ~TXBUSY;
547 		return 0;
548 	}
549 
550 	/*
551 	 * If the receive length is bigger than the controller fifo
552 	 * size, calculate the loops and read the fifo as many times.
553 	 * loops = length / max fifo size (calculated by using the
554 	 * fifo mask).
555 	 * For any size less than the fifo size the below code is
556 	 * executed atleast once.
557 	 */
558 	loops = xfer->len / ((FIFO_LVL_MASK(sdd) >> 1) + 1);
559 	buf = xfer->rx_buf;
560 	do {
561 		/* wait for data to be received in the fifo */
562 		cpy_len = s3c64xx_spi_wait_for_timeout(sdd,
563 						       (loops ? ms : 0));
564 
565 		switch (sdd->cur_bpw) {
566 		case 32:
567 			ioread32_rep(regs + S3C64XX_SPI_RX_DATA,
568 				     buf, cpy_len / 4);
569 			break;
570 		case 16:
571 			ioread16_rep(regs + S3C64XX_SPI_RX_DATA,
572 				     buf, cpy_len / 2);
573 			break;
574 		default:
575 			ioread8_rep(regs + S3C64XX_SPI_RX_DATA,
576 				    buf, cpy_len);
577 			break;
578 		}
579 
580 		buf = buf + cpy_len;
581 	} while (loops--);
582 	sdd->state &= ~RXBUSY;
583 
584 	return 0;
585 }
586 
587 static void s3c64xx_spi_config(struct s3c64xx_spi_driver_data *sdd)
588 {
589 	void __iomem *regs = sdd->regs;
590 	u32 val;
591 
592 	/* Disable Clock */
593 	if (sdd->port_conf->clk_from_cmu) {
594 		clk_disable_unprepare(sdd->src_clk);
595 	} else {
596 		val = readl(regs + S3C64XX_SPI_CLK_CFG);
597 		val &= ~S3C64XX_SPI_ENCLK_ENABLE;
598 		writel(val, regs + S3C64XX_SPI_CLK_CFG);
599 	}
600 
601 	/* Set Polarity and Phase */
602 	val = readl(regs + S3C64XX_SPI_CH_CFG);
603 	val &= ~(S3C64XX_SPI_CH_SLAVE |
604 			S3C64XX_SPI_CPOL_L |
605 			S3C64XX_SPI_CPHA_B);
606 
607 	if (sdd->cur_mode & SPI_CPOL)
608 		val |= S3C64XX_SPI_CPOL_L;
609 
610 	if (sdd->cur_mode & SPI_CPHA)
611 		val |= S3C64XX_SPI_CPHA_B;
612 
613 	writel(val, regs + S3C64XX_SPI_CH_CFG);
614 
615 	/* Set Channel & DMA Mode */
616 	val = readl(regs + S3C64XX_SPI_MODE_CFG);
617 	val &= ~(S3C64XX_SPI_MODE_BUS_TSZ_MASK
618 			| S3C64XX_SPI_MODE_CH_TSZ_MASK);
619 
620 	switch (sdd->cur_bpw) {
621 	case 32:
622 		val |= S3C64XX_SPI_MODE_BUS_TSZ_WORD;
623 		val |= S3C64XX_SPI_MODE_CH_TSZ_WORD;
624 		break;
625 	case 16:
626 		val |= S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD;
627 		val |= S3C64XX_SPI_MODE_CH_TSZ_HALFWORD;
628 		break;
629 	default:
630 		val |= S3C64XX_SPI_MODE_BUS_TSZ_BYTE;
631 		val |= S3C64XX_SPI_MODE_CH_TSZ_BYTE;
632 		break;
633 	}
634 
635 	writel(val, regs + S3C64XX_SPI_MODE_CFG);
636 
637 	if (sdd->port_conf->clk_from_cmu) {
638 		/* Configure Clock */
639 		/* There is half-multiplier before the SPI */
640 		clk_set_rate(sdd->src_clk, sdd->cur_speed * 2);
641 		/* Enable Clock */
642 		clk_prepare_enable(sdd->src_clk);
643 	} else {
644 		/* Configure Clock */
645 		val = readl(regs + S3C64XX_SPI_CLK_CFG);
646 		val &= ~S3C64XX_SPI_PSR_MASK;
647 		val |= ((clk_get_rate(sdd->src_clk) / sdd->cur_speed / 2 - 1)
648 				& S3C64XX_SPI_PSR_MASK);
649 		writel(val, regs + S3C64XX_SPI_CLK_CFG);
650 
651 		/* Enable Clock */
652 		val = readl(regs + S3C64XX_SPI_CLK_CFG);
653 		val |= S3C64XX_SPI_ENCLK_ENABLE;
654 		writel(val, regs + S3C64XX_SPI_CLK_CFG);
655 	}
656 }
657 
658 #define XFER_DMAADDR_INVALID DMA_BIT_MASK(32)
659 
660 static int s3c64xx_spi_prepare_message(struct spi_master *master,
661 				       struct spi_message *msg)
662 {
663 	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
664 	struct spi_device *spi = msg->spi;
665 	struct s3c64xx_spi_csinfo *cs = spi->controller_data;
666 
667 	/* If Master's(controller) state differs from that needed by Slave */
668 	if (sdd->cur_speed != spi->max_speed_hz
669 			|| sdd->cur_mode != spi->mode
670 			|| sdd->cur_bpw != spi->bits_per_word) {
671 		sdd->cur_bpw = spi->bits_per_word;
672 		sdd->cur_speed = spi->max_speed_hz;
673 		sdd->cur_mode = spi->mode;
674 		s3c64xx_spi_config(sdd);
675 	}
676 
677 	/* Configure feedback delay */
678 	writel(cs->fb_delay & 0x3, sdd->regs + S3C64XX_SPI_FB_CLK);
679 
680 	return 0;
681 }
682 
683 static int s3c64xx_spi_transfer_one(struct spi_master *master,
684 				    struct spi_device *spi,
685 				    struct spi_transfer *xfer)
686 {
687 	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
688 	int status;
689 	u32 speed;
690 	u8 bpw;
691 	unsigned long flags;
692 	int use_dma;
693 
694 	reinit_completion(&sdd->xfer_completion);
695 
696 	/* Only BPW and Speed may change across transfers */
697 	bpw = xfer->bits_per_word;
698 	speed = xfer->speed_hz ? : spi->max_speed_hz;
699 
700 	if (bpw != sdd->cur_bpw || speed != sdd->cur_speed) {
701 		sdd->cur_bpw = bpw;
702 		sdd->cur_speed = speed;
703 		s3c64xx_spi_config(sdd);
704 	}
705 
706 	/* Polling method for xfers not bigger than FIFO capacity */
707 	use_dma = 0;
708 	if (!is_polling(sdd) &&
709 	    (sdd->rx_dma.ch && sdd->tx_dma.ch &&
710 	     (xfer->len > ((FIFO_LVL_MASK(sdd) >> 1) + 1))))
711 		use_dma = 1;
712 
713 	spin_lock_irqsave(&sdd->lock, flags);
714 
715 	/* Pending only which is to be done */
716 	sdd->state &= ~RXBUSY;
717 	sdd->state &= ~TXBUSY;
718 
719 	enable_datapath(sdd, spi, xfer, use_dma);
720 
721 	/* Start the signals */
722 	writel(0, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
723 
724 	spin_unlock_irqrestore(&sdd->lock, flags);
725 
726 	if (use_dma)
727 		status = wait_for_dma(sdd, xfer);
728 	else
729 		status = wait_for_pio(sdd, xfer);
730 
731 	if (status) {
732 		dev_err(&spi->dev, "I/O Error: rx-%d tx-%d res:rx-%c tx-%c len-%d\n",
733 			xfer->rx_buf ? 1 : 0, xfer->tx_buf ? 1 : 0,
734 			(sdd->state & RXBUSY) ? 'f' : 'p',
735 			(sdd->state & TXBUSY) ? 'f' : 'p',
736 			xfer->len);
737 
738 		if (use_dma) {
739 			if (xfer->tx_buf != NULL
740 			    && (sdd->state & TXBUSY))
741 				dmaengine_terminate_all(sdd->tx_dma.ch);
742 			if (xfer->rx_buf != NULL
743 			    && (sdd->state & RXBUSY))
744 				dmaengine_terminate_all(sdd->rx_dma.ch);
745 		}
746 	} else {
747 		flush_fifo(sdd);
748 	}
749 
750 	return status;
751 }
752 
753 static struct s3c64xx_spi_csinfo *s3c64xx_get_slave_ctrldata(
754 				struct spi_device *spi)
755 {
756 	struct s3c64xx_spi_csinfo *cs;
757 	struct device_node *slave_np, *data_np = NULL;
758 	struct s3c64xx_spi_driver_data *sdd;
759 	u32 fb_delay = 0;
760 
761 	sdd = spi_master_get_devdata(spi->master);
762 	slave_np = spi->dev.of_node;
763 	if (!slave_np) {
764 		dev_err(&spi->dev, "device node not found\n");
765 		return ERR_PTR(-EINVAL);
766 	}
767 
768 	data_np = of_get_child_by_name(slave_np, "controller-data");
769 	if (!data_np) {
770 		dev_err(&spi->dev, "child node 'controller-data' not found\n");
771 		return ERR_PTR(-EINVAL);
772 	}
773 
774 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
775 	if (!cs) {
776 		dev_err(&spi->dev, "could not allocate memory for controller data\n");
777 		of_node_put(data_np);
778 		return ERR_PTR(-ENOMEM);
779 	}
780 
781 	/* The CS line is asserted/deasserted by the gpio pin */
782 	if (sdd->cs_gpio)
783 		cs->line = of_get_named_gpio(data_np, "cs-gpio", 0);
784 
785 	if (!gpio_is_valid(cs->line)) {
786 		dev_err(&spi->dev, "chip select gpio is not specified or invalid\n");
787 		kfree(cs);
788 		of_node_put(data_np);
789 		return ERR_PTR(-EINVAL);
790 	}
791 
792 	of_property_read_u32(data_np, "samsung,spi-feedback-delay", &fb_delay);
793 	cs->fb_delay = fb_delay;
794 	of_node_put(data_np);
795 	return cs;
796 }
797 
798 /*
799  * Here we only check the validity of requested configuration
800  * and save the configuration in a local data-structure.
801  * The controller is actually configured only just before we
802  * get a message to transfer.
803  */
804 static int s3c64xx_spi_setup(struct spi_device *spi)
805 {
806 	struct s3c64xx_spi_csinfo *cs = spi->controller_data;
807 	struct s3c64xx_spi_driver_data *sdd;
808 	struct s3c64xx_spi_info *sci;
809 	int err;
810 
811 	sdd = spi_master_get_devdata(spi->master);
812 	if (!cs && spi->dev.of_node) {
813 		cs = s3c64xx_get_slave_ctrldata(spi);
814 		spi->controller_data = cs;
815 	}
816 
817 	if (IS_ERR_OR_NULL(cs)) {
818 		dev_err(&spi->dev, "No CS for SPI(%d)\n", spi->chip_select);
819 		return -ENODEV;
820 	}
821 
822 	if (!spi_get_ctldata(spi)) {
823 		/* Request gpio only if cs line is asserted by gpio pins */
824 		if (sdd->cs_gpio) {
825 			err = gpio_request_one(cs->line, GPIOF_OUT_INIT_HIGH,
826 					dev_name(&spi->dev));
827 			if (err) {
828 				dev_err(&spi->dev,
829 					"Failed to get /CS gpio [%d]: %d\n",
830 					cs->line, err);
831 				goto err_gpio_req;
832 			}
833 
834 			spi->cs_gpio = cs->line;
835 		}
836 
837 		spi_set_ctldata(spi, cs);
838 	}
839 
840 	sci = sdd->cntrlr_info;
841 
842 	pm_runtime_get_sync(&sdd->pdev->dev);
843 
844 	/* Check if we can provide the requested rate */
845 	if (!sdd->port_conf->clk_from_cmu) {
846 		u32 psr, speed;
847 
848 		/* Max possible */
849 		speed = clk_get_rate(sdd->src_clk) / 2 / (0 + 1);
850 
851 		if (spi->max_speed_hz > speed)
852 			spi->max_speed_hz = speed;
853 
854 		psr = clk_get_rate(sdd->src_clk) / 2 / spi->max_speed_hz - 1;
855 		psr &= S3C64XX_SPI_PSR_MASK;
856 		if (psr == S3C64XX_SPI_PSR_MASK)
857 			psr--;
858 
859 		speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
860 		if (spi->max_speed_hz < speed) {
861 			if (psr+1 < S3C64XX_SPI_PSR_MASK) {
862 				psr++;
863 			} else {
864 				err = -EINVAL;
865 				goto setup_exit;
866 			}
867 		}
868 
869 		speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
870 		if (spi->max_speed_hz >= speed) {
871 			spi->max_speed_hz = speed;
872 		} else {
873 			dev_err(&spi->dev, "Can't set %dHz transfer speed\n",
874 				spi->max_speed_hz);
875 			err = -EINVAL;
876 			goto setup_exit;
877 		}
878 	}
879 
880 	pm_runtime_put(&sdd->pdev->dev);
881 	writel(S3C64XX_SPI_SLAVE_SIG_INACT, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
882 	return 0;
883 
884 setup_exit:
885 	pm_runtime_put(&sdd->pdev->dev);
886 	/* setup() returns with device de-selected */
887 	writel(S3C64XX_SPI_SLAVE_SIG_INACT, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
888 
889 	gpio_free(cs->line);
890 	spi_set_ctldata(spi, NULL);
891 
892 err_gpio_req:
893 	if (spi->dev.of_node)
894 		kfree(cs);
895 
896 	return err;
897 }
898 
899 static void s3c64xx_spi_cleanup(struct spi_device *spi)
900 {
901 	struct s3c64xx_spi_csinfo *cs = spi_get_ctldata(spi);
902 	struct s3c64xx_spi_driver_data *sdd;
903 
904 	sdd = spi_master_get_devdata(spi->master);
905 	if (spi->cs_gpio) {
906 		gpio_free(spi->cs_gpio);
907 		if (spi->dev.of_node)
908 			kfree(cs);
909 	}
910 	spi_set_ctldata(spi, NULL);
911 }
912 
913 static irqreturn_t s3c64xx_spi_irq(int irq, void *data)
914 {
915 	struct s3c64xx_spi_driver_data *sdd = data;
916 	struct spi_master *spi = sdd->master;
917 	unsigned int val, clr = 0;
918 
919 	val = readl(sdd->regs + S3C64XX_SPI_STATUS);
920 
921 	if (val & S3C64XX_SPI_ST_RX_OVERRUN_ERR) {
922 		clr = S3C64XX_SPI_PND_RX_OVERRUN_CLR;
923 		dev_err(&spi->dev, "RX overrun\n");
924 	}
925 	if (val & S3C64XX_SPI_ST_RX_UNDERRUN_ERR) {
926 		clr |= S3C64XX_SPI_PND_RX_UNDERRUN_CLR;
927 		dev_err(&spi->dev, "RX underrun\n");
928 	}
929 	if (val & S3C64XX_SPI_ST_TX_OVERRUN_ERR) {
930 		clr |= S3C64XX_SPI_PND_TX_OVERRUN_CLR;
931 		dev_err(&spi->dev, "TX overrun\n");
932 	}
933 	if (val & S3C64XX_SPI_ST_TX_UNDERRUN_ERR) {
934 		clr |= S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
935 		dev_err(&spi->dev, "TX underrun\n");
936 	}
937 
938 	/* Clear the pending irq by setting and then clearing it */
939 	writel(clr, sdd->regs + S3C64XX_SPI_PENDING_CLR);
940 	writel(0, sdd->regs + S3C64XX_SPI_PENDING_CLR);
941 
942 	return IRQ_HANDLED;
943 }
944 
945 static void s3c64xx_spi_hwinit(struct s3c64xx_spi_driver_data *sdd, int channel)
946 {
947 	struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
948 	void __iomem *regs = sdd->regs;
949 	unsigned int val;
950 
951 	sdd->cur_speed = 0;
952 
953 	writel(S3C64XX_SPI_SLAVE_SIG_INACT, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
954 
955 	/* Disable Interrupts - we use Polling if not DMA mode */
956 	writel(0, regs + S3C64XX_SPI_INT_EN);
957 
958 	if (!sdd->port_conf->clk_from_cmu)
959 		writel(sci->src_clk_nr << S3C64XX_SPI_CLKSEL_SRCSHFT,
960 				regs + S3C64XX_SPI_CLK_CFG);
961 	writel(0, regs + S3C64XX_SPI_MODE_CFG);
962 	writel(0, regs + S3C64XX_SPI_PACKET_CNT);
963 
964 	/* Clear any irq pending bits, should set and clear the bits */
965 	val = S3C64XX_SPI_PND_RX_OVERRUN_CLR |
966 		S3C64XX_SPI_PND_RX_UNDERRUN_CLR |
967 		S3C64XX_SPI_PND_TX_OVERRUN_CLR |
968 		S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
969 	writel(val, regs + S3C64XX_SPI_PENDING_CLR);
970 	writel(0, regs + S3C64XX_SPI_PENDING_CLR);
971 
972 	writel(0, regs + S3C64XX_SPI_SWAP_CFG);
973 
974 	val = readl(regs + S3C64XX_SPI_MODE_CFG);
975 	val &= ~S3C64XX_SPI_MODE_4BURST;
976 	val &= ~(S3C64XX_SPI_MAX_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
977 	val |= (S3C64XX_SPI_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
978 	writel(val, regs + S3C64XX_SPI_MODE_CFG);
979 
980 	flush_fifo(sdd);
981 }
982 
983 #ifdef CONFIG_OF
984 static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
985 {
986 	struct s3c64xx_spi_info *sci;
987 	u32 temp;
988 
989 	sci = devm_kzalloc(dev, sizeof(*sci), GFP_KERNEL);
990 	if (!sci) {
991 		dev_err(dev, "memory allocation for spi_info failed\n");
992 		return ERR_PTR(-ENOMEM);
993 	}
994 
995 	if (of_property_read_u32(dev->of_node, "samsung,spi-src-clk", &temp)) {
996 		dev_warn(dev, "spi bus clock parent not specified, using clock at index 0 as parent\n");
997 		sci->src_clk_nr = 0;
998 	} else {
999 		sci->src_clk_nr = temp;
1000 	}
1001 
1002 	if (of_property_read_u32(dev->of_node, "num-cs", &temp)) {
1003 		dev_warn(dev, "number of chip select lines not specified, assuming 1 chip select line\n");
1004 		sci->num_cs = 1;
1005 	} else {
1006 		sci->num_cs = temp;
1007 	}
1008 
1009 	return sci;
1010 }
1011 #else
1012 static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
1013 {
1014 	return dev_get_platdata(dev);
1015 }
1016 #endif
1017 
1018 static const struct of_device_id s3c64xx_spi_dt_match[];
1019 
1020 static inline struct s3c64xx_spi_port_config *s3c64xx_spi_get_port_config(
1021 						struct platform_device *pdev)
1022 {
1023 #ifdef CONFIG_OF
1024 	if (pdev->dev.of_node) {
1025 		const struct of_device_id *match;
1026 		match = of_match_node(s3c64xx_spi_dt_match, pdev->dev.of_node);
1027 		return (struct s3c64xx_spi_port_config *)match->data;
1028 	}
1029 #endif
1030 	return (struct s3c64xx_spi_port_config *)
1031 			 platform_get_device_id(pdev)->driver_data;
1032 }
1033 
1034 static int s3c64xx_spi_probe(struct platform_device *pdev)
1035 {
1036 	struct resource	*mem_res;
1037 	struct resource	*res;
1038 	struct s3c64xx_spi_driver_data *sdd;
1039 	struct s3c64xx_spi_info *sci = dev_get_platdata(&pdev->dev);
1040 	struct spi_master *master;
1041 	int ret, irq;
1042 	char clk_name[16];
1043 
1044 	if (!sci && pdev->dev.of_node) {
1045 		sci = s3c64xx_spi_parse_dt(&pdev->dev);
1046 		if (IS_ERR(sci))
1047 			return PTR_ERR(sci);
1048 	}
1049 
1050 	if (!sci) {
1051 		dev_err(&pdev->dev, "platform_data missing!\n");
1052 		return -ENODEV;
1053 	}
1054 
1055 	mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1056 	if (mem_res == NULL) {
1057 		dev_err(&pdev->dev, "Unable to get SPI MEM resource\n");
1058 		return -ENXIO;
1059 	}
1060 
1061 	irq = platform_get_irq(pdev, 0);
1062 	if (irq < 0) {
1063 		dev_warn(&pdev->dev, "Failed to get IRQ: %d\n", irq);
1064 		return irq;
1065 	}
1066 
1067 	master = spi_alloc_master(&pdev->dev,
1068 				sizeof(struct s3c64xx_spi_driver_data));
1069 	if (master == NULL) {
1070 		dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
1071 		return -ENOMEM;
1072 	}
1073 
1074 	platform_set_drvdata(pdev, master);
1075 
1076 	sdd = spi_master_get_devdata(master);
1077 	sdd->port_conf = s3c64xx_spi_get_port_config(pdev);
1078 	sdd->master = master;
1079 	sdd->cntrlr_info = sci;
1080 	sdd->pdev = pdev;
1081 	sdd->sfr_start = mem_res->start;
1082 	sdd->cs_gpio = true;
1083 	if (pdev->dev.of_node) {
1084 		if (!of_find_property(pdev->dev.of_node, "cs-gpio", NULL))
1085 			sdd->cs_gpio = false;
1086 
1087 		ret = of_alias_get_id(pdev->dev.of_node, "spi");
1088 		if (ret < 0) {
1089 			dev_err(&pdev->dev, "failed to get alias id, errno %d\n",
1090 				ret);
1091 			goto err0;
1092 		}
1093 		sdd->port_id = ret;
1094 	} else {
1095 		sdd->port_id = pdev->id;
1096 	}
1097 
1098 	sdd->cur_bpw = 8;
1099 
1100 	if (!sdd->pdev->dev.of_node) {
1101 		res = platform_get_resource(pdev, IORESOURCE_DMA,  0);
1102 		if (!res) {
1103 			dev_warn(&pdev->dev, "Unable to get SPI tx dma resource. Switching to poll mode\n");
1104 			sdd->port_conf->quirks = S3C64XX_SPI_QUIRK_POLL;
1105 		} else
1106 			sdd->tx_dma.dmach = res->start;
1107 
1108 		res = platform_get_resource(pdev, IORESOURCE_DMA,  1);
1109 		if (!res) {
1110 			dev_warn(&pdev->dev, "Unable to get SPI rx dma resource. Switching to poll mode\n");
1111 			sdd->port_conf->quirks = S3C64XX_SPI_QUIRK_POLL;
1112 		} else
1113 			sdd->rx_dma.dmach = res->start;
1114 	}
1115 
1116 	sdd->tx_dma.direction = DMA_MEM_TO_DEV;
1117 	sdd->rx_dma.direction = DMA_DEV_TO_MEM;
1118 
1119 	master->dev.of_node = pdev->dev.of_node;
1120 	master->bus_num = sdd->port_id;
1121 	master->setup = s3c64xx_spi_setup;
1122 	master->cleanup = s3c64xx_spi_cleanup;
1123 	master->prepare_transfer_hardware = s3c64xx_spi_prepare_transfer;
1124 	master->prepare_message = s3c64xx_spi_prepare_message;
1125 	master->transfer_one = s3c64xx_spi_transfer_one;
1126 	master->unprepare_transfer_hardware = s3c64xx_spi_unprepare_transfer;
1127 	master->num_chipselect = sci->num_cs;
1128 	master->dma_alignment = 8;
1129 	master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) |
1130 					SPI_BPW_MASK(8);
1131 	/* the spi->mode bits understood by this driver: */
1132 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1133 	master->auto_runtime_pm = true;
1134 	if (!is_polling(sdd))
1135 		master->can_dma = s3c64xx_spi_can_dma;
1136 
1137 	sdd->regs = devm_ioremap_resource(&pdev->dev, mem_res);
1138 	if (IS_ERR(sdd->regs)) {
1139 		ret = PTR_ERR(sdd->regs);
1140 		goto err0;
1141 	}
1142 
1143 	if (sci->cfg_gpio && sci->cfg_gpio()) {
1144 		dev_err(&pdev->dev, "Unable to config gpio\n");
1145 		ret = -EBUSY;
1146 		goto err0;
1147 	}
1148 
1149 	/* Setup clocks */
1150 	sdd->clk = devm_clk_get(&pdev->dev, "spi");
1151 	if (IS_ERR(sdd->clk)) {
1152 		dev_err(&pdev->dev, "Unable to acquire clock 'spi'\n");
1153 		ret = PTR_ERR(sdd->clk);
1154 		goto err0;
1155 	}
1156 
1157 	if (clk_prepare_enable(sdd->clk)) {
1158 		dev_err(&pdev->dev, "Couldn't enable clock 'spi'\n");
1159 		ret = -EBUSY;
1160 		goto err0;
1161 	}
1162 
1163 	sprintf(clk_name, "spi_busclk%d", sci->src_clk_nr);
1164 	sdd->src_clk = devm_clk_get(&pdev->dev, clk_name);
1165 	if (IS_ERR(sdd->src_clk)) {
1166 		dev_err(&pdev->dev,
1167 			"Unable to acquire clock '%s'\n", clk_name);
1168 		ret = PTR_ERR(sdd->src_clk);
1169 		goto err2;
1170 	}
1171 
1172 	if (clk_prepare_enable(sdd->src_clk)) {
1173 		dev_err(&pdev->dev, "Couldn't enable clock '%s'\n", clk_name);
1174 		ret = -EBUSY;
1175 		goto err2;
1176 	}
1177 
1178 	/* Setup Deufult Mode */
1179 	s3c64xx_spi_hwinit(sdd, sdd->port_id);
1180 
1181 	spin_lock_init(&sdd->lock);
1182 	init_completion(&sdd->xfer_completion);
1183 
1184 	ret = devm_request_irq(&pdev->dev, irq, s3c64xx_spi_irq, 0,
1185 				"spi-s3c64xx", sdd);
1186 	if (ret != 0) {
1187 		dev_err(&pdev->dev, "Failed to request IRQ %d: %d\n",
1188 			irq, ret);
1189 		goto err3;
1190 	}
1191 
1192 	writel(S3C64XX_SPI_INT_RX_OVERRUN_EN | S3C64XX_SPI_INT_RX_UNDERRUN_EN |
1193 	       S3C64XX_SPI_INT_TX_OVERRUN_EN | S3C64XX_SPI_INT_TX_UNDERRUN_EN,
1194 	       sdd->regs + S3C64XX_SPI_INT_EN);
1195 
1196 	pm_runtime_set_active(&pdev->dev);
1197 	pm_runtime_enable(&pdev->dev);
1198 
1199 	ret = devm_spi_register_master(&pdev->dev, master);
1200 	if (ret != 0) {
1201 		dev_err(&pdev->dev, "cannot register SPI master: %d\n", ret);
1202 		goto err3;
1203 	}
1204 
1205 	dev_dbg(&pdev->dev, "Samsung SoC SPI Driver loaded for Bus SPI-%d with %d Slaves attached\n",
1206 					sdd->port_id, master->num_chipselect);
1207 	dev_dbg(&pdev->dev, "\tIOmem=[%pR]\tDMA=[Rx-%d, Tx-%d]\n",
1208 					mem_res,
1209 					sdd->rx_dma.dmach, sdd->tx_dma.dmach);
1210 
1211 	return 0;
1212 
1213 err3:
1214 	clk_disable_unprepare(sdd->src_clk);
1215 err2:
1216 	clk_disable_unprepare(sdd->clk);
1217 err0:
1218 	spi_master_put(master);
1219 
1220 	return ret;
1221 }
1222 
1223 static int s3c64xx_spi_remove(struct platform_device *pdev)
1224 {
1225 	struct spi_master *master = spi_master_get(platform_get_drvdata(pdev));
1226 	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1227 
1228 	pm_runtime_disable(&pdev->dev);
1229 
1230 	writel(0, sdd->regs + S3C64XX_SPI_INT_EN);
1231 
1232 	clk_disable_unprepare(sdd->src_clk);
1233 
1234 	clk_disable_unprepare(sdd->clk);
1235 
1236 	return 0;
1237 }
1238 
1239 #ifdef CONFIG_PM_SLEEP
1240 static int s3c64xx_spi_suspend(struct device *dev)
1241 {
1242 	struct spi_master *master = dev_get_drvdata(dev);
1243 	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1244 
1245 	int ret = spi_master_suspend(master);
1246 	if (ret)
1247 		return ret;
1248 
1249 	if (!pm_runtime_suspended(dev)) {
1250 		clk_disable_unprepare(sdd->clk);
1251 		clk_disable_unprepare(sdd->src_clk);
1252 	}
1253 
1254 	sdd->cur_speed = 0; /* Output Clock is stopped */
1255 
1256 	return 0;
1257 }
1258 
1259 static int s3c64xx_spi_resume(struct device *dev)
1260 {
1261 	struct spi_master *master = dev_get_drvdata(dev);
1262 	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1263 	struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
1264 
1265 	if (sci->cfg_gpio)
1266 		sci->cfg_gpio();
1267 
1268 	if (!pm_runtime_suspended(dev)) {
1269 		clk_prepare_enable(sdd->src_clk);
1270 		clk_prepare_enable(sdd->clk);
1271 	}
1272 
1273 	s3c64xx_spi_hwinit(sdd, sdd->port_id);
1274 
1275 	return spi_master_resume(master);
1276 }
1277 #endif /* CONFIG_PM_SLEEP */
1278 
1279 #ifdef CONFIG_PM_RUNTIME
1280 static int s3c64xx_spi_runtime_suspend(struct device *dev)
1281 {
1282 	struct spi_master *master = dev_get_drvdata(dev);
1283 	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1284 
1285 	clk_disable_unprepare(sdd->clk);
1286 	clk_disable_unprepare(sdd->src_clk);
1287 
1288 	return 0;
1289 }
1290 
1291 static int s3c64xx_spi_runtime_resume(struct device *dev)
1292 {
1293 	struct spi_master *master = dev_get_drvdata(dev);
1294 	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1295 	int ret;
1296 
1297 	ret = clk_prepare_enable(sdd->src_clk);
1298 	if (ret != 0)
1299 		return ret;
1300 
1301 	ret = clk_prepare_enable(sdd->clk);
1302 	if (ret != 0) {
1303 		clk_disable_unprepare(sdd->src_clk);
1304 		return ret;
1305 	}
1306 
1307 	return 0;
1308 }
1309 #endif /* CONFIG_PM_RUNTIME */
1310 
1311 static const struct dev_pm_ops s3c64xx_spi_pm = {
1312 	SET_SYSTEM_SLEEP_PM_OPS(s3c64xx_spi_suspend, s3c64xx_spi_resume)
1313 	SET_RUNTIME_PM_OPS(s3c64xx_spi_runtime_suspend,
1314 			   s3c64xx_spi_runtime_resume, NULL)
1315 };
1316 
1317 static struct s3c64xx_spi_port_config s3c2443_spi_port_config = {
1318 	.fifo_lvl_mask	= { 0x7f },
1319 	.rx_lvl_offset	= 13,
1320 	.tx_st_done	= 21,
1321 	.high_speed	= true,
1322 };
1323 
1324 static struct s3c64xx_spi_port_config s3c6410_spi_port_config = {
1325 	.fifo_lvl_mask	= { 0x7f, 0x7F },
1326 	.rx_lvl_offset	= 13,
1327 	.tx_st_done	= 21,
1328 };
1329 
1330 static struct s3c64xx_spi_port_config s5p64x0_spi_port_config = {
1331 	.fifo_lvl_mask	= { 0x1ff, 0x7F },
1332 	.rx_lvl_offset	= 15,
1333 	.tx_st_done	= 25,
1334 };
1335 
1336 static struct s3c64xx_spi_port_config s5pc100_spi_port_config = {
1337 	.fifo_lvl_mask	= { 0x7f, 0x7F },
1338 	.rx_lvl_offset	= 13,
1339 	.tx_st_done	= 21,
1340 	.high_speed	= true,
1341 };
1342 
1343 static struct s3c64xx_spi_port_config s5pv210_spi_port_config = {
1344 	.fifo_lvl_mask	= { 0x1ff, 0x7F },
1345 	.rx_lvl_offset	= 15,
1346 	.tx_st_done	= 25,
1347 	.high_speed	= true,
1348 };
1349 
1350 static struct s3c64xx_spi_port_config exynos4_spi_port_config = {
1351 	.fifo_lvl_mask	= { 0x1ff, 0x7F, 0x7F },
1352 	.rx_lvl_offset	= 15,
1353 	.tx_st_done	= 25,
1354 	.high_speed	= true,
1355 	.clk_from_cmu	= true,
1356 };
1357 
1358 static struct s3c64xx_spi_port_config exynos5440_spi_port_config = {
1359 	.fifo_lvl_mask	= { 0x1ff },
1360 	.rx_lvl_offset	= 15,
1361 	.tx_st_done	= 25,
1362 	.high_speed	= true,
1363 	.clk_from_cmu	= true,
1364 	.quirks		= S3C64XX_SPI_QUIRK_POLL,
1365 };
1366 
1367 static struct platform_device_id s3c64xx_spi_driver_ids[] = {
1368 	{
1369 		.name		= "s3c2443-spi",
1370 		.driver_data	= (kernel_ulong_t)&s3c2443_spi_port_config,
1371 	}, {
1372 		.name		= "s3c6410-spi",
1373 		.driver_data	= (kernel_ulong_t)&s3c6410_spi_port_config,
1374 	}, {
1375 		.name		= "s5p64x0-spi",
1376 		.driver_data	= (kernel_ulong_t)&s5p64x0_spi_port_config,
1377 	}, {
1378 		.name		= "s5pc100-spi",
1379 		.driver_data	= (kernel_ulong_t)&s5pc100_spi_port_config,
1380 	}, {
1381 		.name		= "s5pv210-spi",
1382 		.driver_data	= (kernel_ulong_t)&s5pv210_spi_port_config,
1383 	}, {
1384 		.name		= "exynos4210-spi",
1385 		.driver_data	= (kernel_ulong_t)&exynos4_spi_port_config,
1386 	},
1387 	{ },
1388 };
1389 
1390 static const struct of_device_id s3c64xx_spi_dt_match[] = {
1391 	{ .compatible = "samsung,s3c2443-spi",
1392 			.data = (void *)&s3c2443_spi_port_config,
1393 	},
1394 	{ .compatible = "samsung,s3c6410-spi",
1395 			.data = (void *)&s3c6410_spi_port_config,
1396 	},
1397 	{ .compatible = "samsung,s5pc100-spi",
1398 			.data = (void *)&s5pc100_spi_port_config,
1399 	},
1400 	{ .compatible = "samsung,s5pv210-spi",
1401 			.data = (void *)&s5pv210_spi_port_config,
1402 	},
1403 	{ .compatible = "samsung,exynos4210-spi",
1404 			.data = (void *)&exynos4_spi_port_config,
1405 	},
1406 	{ .compatible = "samsung,exynos5440-spi",
1407 			.data = (void *)&exynos5440_spi_port_config,
1408 	},
1409 	{ },
1410 };
1411 MODULE_DEVICE_TABLE(of, s3c64xx_spi_dt_match);
1412 
1413 static struct platform_driver s3c64xx_spi_driver = {
1414 	.driver = {
1415 		.name	= "s3c64xx-spi",
1416 		.owner = THIS_MODULE,
1417 		.pm = &s3c64xx_spi_pm,
1418 		.of_match_table = of_match_ptr(s3c64xx_spi_dt_match),
1419 	},
1420 	.probe = s3c64xx_spi_probe,
1421 	.remove = s3c64xx_spi_remove,
1422 	.id_table = s3c64xx_spi_driver_ids,
1423 };
1424 MODULE_ALIAS("platform:s3c64xx-spi");
1425 
1426 module_platform_driver(s3c64xx_spi_driver);
1427 
1428 MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>");
1429 MODULE_DESCRIPTION("S3C64XX SPI Controller Driver");
1430 MODULE_LICENSE("GPL");
1431