xref: /openbmc/linux/drivers/spi/spi-s3c64xx.c (revision 4e5e4705)
1 /*
2  * Copyright (C) 2009 Samsung Electronics Ltd.
3  *	Jaswinder Singh <jassi.brar@samsung.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  */
19 
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/workqueue.h>
23 #include <linux/interrupt.h>
24 #include <linux/delay.h>
25 #include <linux/clk.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/dmaengine.h>
28 #include <linux/platform_device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/spi/spi.h>
31 #include <linux/gpio.h>
32 #include <linux/of.h>
33 #include <linux/of_gpio.h>
34 
35 #include <linux/platform_data/spi-s3c64xx.h>
36 
37 #ifdef CONFIG_S3C_DMA
38 #include <mach/dma.h>
39 #endif
40 
41 #define MAX_SPI_PORTS		3
42 #define S3C64XX_SPI_QUIRK_POLL		(1 << 0)
43 
44 /* Registers and bit-fields */
45 
46 #define S3C64XX_SPI_CH_CFG		0x00
47 #define S3C64XX_SPI_CLK_CFG		0x04
48 #define S3C64XX_SPI_MODE_CFG	0x08
49 #define S3C64XX_SPI_SLAVE_SEL	0x0C
50 #define S3C64XX_SPI_INT_EN		0x10
51 #define S3C64XX_SPI_STATUS		0x14
52 #define S3C64XX_SPI_TX_DATA		0x18
53 #define S3C64XX_SPI_RX_DATA		0x1C
54 #define S3C64XX_SPI_PACKET_CNT	0x20
55 #define S3C64XX_SPI_PENDING_CLR	0x24
56 #define S3C64XX_SPI_SWAP_CFG	0x28
57 #define S3C64XX_SPI_FB_CLK		0x2C
58 
59 #define S3C64XX_SPI_CH_HS_EN		(1<<6)	/* High Speed Enable */
60 #define S3C64XX_SPI_CH_SW_RST		(1<<5)
61 #define S3C64XX_SPI_CH_SLAVE		(1<<4)
62 #define S3C64XX_SPI_CPOL_L		(1<<3)
63 #define S3C64XX_SPI_CPHA_B		(1<<2)
64 #define S3C64XX_SPI_CH_RXCH_ON		(1<<1)
65 #define S3C64XX_SPI_CH_TXCH_ON		(1<<0)
66 
67 #define S3C64XX_SPI_CLKSEL_SRCMSK	(3<<9)
68 #define S3C64XX_SPI_CLKSEL_SRCSHFT	9
69 #define S3C64XX_SPI_ENCLK_ENABLE	(1<<8)
70 #define S3C64XX_SPI_PSR_MASK		0xff
71 
72 #define S3C64XX_SPI_MODE_CH_TSZ_BYTE		(0<<29)
73 #define S3C64XX_SPI_MODE_CH_TSZ_HALFWORD	(1<<29)
74 #define S3C64XX_SPI_MODE_CH_TSZ_WORD		(2<<29)
75 #define S3C64XX_SPI_MODE_CH_TSZ_MASK		(3<<29)
76 #define S3C64XX_SPI_MODE_BUS_TSZ_BYTE		(0<<17)
77 #define S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD	(1<<17)
78 #define S3C64XX_SPI_MODE_BUS_TSZ_WORD		(2<<17)
79 #define S3C64XX_SPI_MODE_BUS_TSZ_MASK		(3<<17)
80 #define S3C64XX_SPI_MODE_RXDMA_ON		(1<<2)
81 #define S3C64XX_SPI_MODE_TXDMA_ON		(1<<1)
82 #define S3C64XX_SPI_MODE_4BURST			(1<<0)
83 
84 #define S3C64XX_SPI_SLAVE_AUTO			(1<<1)
85 #define S3C64XX_SPI_SLAVE_SIG_INACT		(1<<0)
86 
87 #define S3C64XX_SPI_INT_TRAILING_EN		(1<<6)
88 #define S3C64XX_SPI_INT_RX_OVERRUN_EN		(1<<5)
89 #define S3C64XX_SPI_INT_RX_UNDERRUN_EN		(1<<4)
90 #define S3C64XX_SPI_INT_TX_OVERRUN_EN		(1<<3)
91 #define S3C64XX_SPI_INT_TX_UNDERRUN_EN		(1<<2)
92 #define S3C64XX_SPI_INT_RX_FIFORDY_EN		(1<<1)
93 #define S3C64XX_SPI_INT_TX_FIFORDY_EN		(1<<0)
94 
95 #define S3C64XX_SPI_ST_RX_OVERRUN_ERR		(1<<5)
96 #define S3C64XX_SPI_ST_RX_UNDERRUN_ERR	(1<<4)
97 #define S3C64XX_SPI_ST_TX_OVERRUN_ERR		(1<<3)
98 #define S3C64XX_SPI_ST_TX_UNDERRUN_ERR	(1<<2)
99 #define S3C64XX_SPI_ST_RX_FIFORDY		(1<<1)
100 #define S3C64XX_SPI_ST_TX_FIFORDY		(1<<0)
101 
102 #define S3C64XX_SPI_PACKET_CNT_EN		(1<<16)
103 
104 #define S3C64XX_SPI_PND_TX_UNDERRUN_CLR		(1<<4)
105 #define S3C64XX_SPI_PND_TX_OVERRUN_CLR		(1<<3)
106 #define S3C64XX_SPI_PND_RX_UNDERRUN_CLR		(1<<2)
107 #define S3C64XX_SPI_PND_RX_OVERRUN_CLR		(1<<1)
108 #define S3C64XX_SPI_PND_TRAILING_CLR		(1<<0)
109 
110 #define S3C64XX_SPI_SWAP_RX_HALF_WORD		(1<<7)
111 #define S3C64XX_SPI_SWAP_RX_BYTE		(1<<6)
112 #define S3C64XX_SPI_SWAP_RX_BIT			(1<<5)
113 #define S3C64XX_SPI_SWAP_RX_EN			(1<<4)
114 #define S3C64XX_SPI_SWAP_TX_HALF_WORD		(1<<3)
115 #define S3C64XX_SPI_SWAP_TX_BYTE		(1<<2)
116 #define S3C64XX_SPI_SWAP_TX_BIT			(1<<1)
117 #define S3C64XX_SPI_SWAP_TX_EN			(1<<0)
118 
119 #define S3C64XX_SPI_FBCLK_MSK		(3<<0)
120 
121 #define FIFO_LVL_MASK(i) ((i)->port_conf->fifo_lvl_mask[i->port_id])
122 #define S3C64XX_SPI_ST_TX_DONE(v, i) (((v) & \
123 				(1 << (i)->port_conf->tx_st_done)) ? 1 : 0)
124 #define TX_FIFO_LVL(v, i) (((v) >> 6) & FIFO_LVL_MASK(i))
125 #define RX_FIFO_LVL(v, i) (((v) >> (i)->port_conf->rx_lvl_offset) & \
126 					FIFO_LVL_MASK(i))
127 
128 #define S3C64XX_SPI_MAX_TRAILCNT	0x3ff
129 #define S3C64XX_SPI_TRAILCNT_OFF	19
130 
131 #define S3C64XX_SPI_TRAILCNT		S3C64XX_SPI_MAX_TRAILCNT
132 
133 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
134 #define is_polling(x)	(x->port_conf->quirks & S3C64XX_SPI_QUIRK_POLL)
135 
136 #define RXBUSY    (1<<2)
137 #define TXBUSY    (1<<3)
138 
139 struct s3c64xx_spi_dma_data {
140 	struct dma_chan *ch;
141 	enum dma_transfer_direction direction;
142 	unsigned int dmach;
143 };
144 
145 /**
146  * struct s3c64xx_spi_info - SPI Controller hardware info
147  * @fifo_lvl_mask: Bit-mask for {TX|RX}_FIFO_LVL bits in SPI_STATUS register.
148  * @rx_lvl_offset: Bit offset of RX_FIFO_LVL bits in SPI_STATUS regiter.
149  * @tx_st_done: Bit offset of TX_DONE bit in SPI_STATUS regiter.
150  * @high_speed: True, if the controller supports HIGH_SPEED_EN bit.
151  * @clk_from_cmu: True, if the controller does not include a clock mux and
152  *	prescaler unit.
153  *
154  * The Samsung s3c64xx SPI controller are used on various Samsung SoC's but
155  * differ in some aspects such as the size of the fifo and spi bus clock
156  * setup. Such differences are specified to the driver using this structure
157  * which is provided as driver data to the driver.
158  */
159 struct s3c64xx_spi_port_config {
160 	int	fifo_lvl_mask[MAX_SPI_PORTS];
161 	int	rx_lvl_offset;
162 	int	tx_st_done;
163 	int	quirks;
164 	bool	high_speed;
165 	bool	clk_from_cmu;
166 };
167 
168 /**
169  * struct s3c64xx_spi_driver_data - Runtime info holder for SPI driver.
170  * @clk: Pointer to the spi clock.
171  * @src_clk: Pointer to the clock used to generate SPI signals.
172  * @master: Pointer to the SPI Protocol master.
173  * @cntrlr_info: Platform specific data for the controller this driver manages.
174  * @tgl_spi: Pointer to the last CS left untoggled by the cs_change hint.
175  * @lock: Controller specific lock.
176  * @state: Set of FLAGS to indicate status.
177  * @rx_dmach: Controller's DMA channel for Rx.
178  * @tx_dmach: Controller's DMA channel for Tx.
179  * @sfr_start: BUS address of SPI controller regs.
180  * @regs: Pointer to ioremap'ed controller registers.
181  * @irq: interrupt
182  * @xfer_completion: To indicate completion of xfer task.
183  * @cur_mode: Stores the active configuration of the controller.
184  * @cur_bpw: Stores the active bits per word settings.
185  * @cur_speed: Stores the active xfer clock speed.
186  */
187 struct s3c64xx_spi_driver_data {
188 	void __iomem                    *regs;
189 	struct clk                      *clk;
190 	struct clk                      *src_clk;
191 	struct platform_device          *pdev;
192 	struct spi_master               *master;
193 	struct s3c64xx_spi_info  *cntrlr_info;
194 	struct spi_device               *tgl_spi;
195 	spinlock_t                      lock;
196 	unsigned long                   sfr_start;
197 	struct completion               xfer_completion;
198 	unsigned                        state;
199 	unsigned                        cur_mode, cur_bpw;
200 	unsigned                        cur_speed;
201 	struct s3c64xx_spi_dma_data	rx_dma;
202 	struct s3c64xx_spi_dma_data	tx_dma;
203 #ifdef CONFIG_S3C_DMA
204 	struct samsung_dma_ops		*ops;
205 #endif
206 	struct s3c64xx_spi_port_config	*port_conf;
207 	unsigned int			port_id;
208 	bool				cs_gpio;
209 };
210 
211 static void flush_fifo(struct s3c64xx_spi_driver_data *sdd)
212 {
213 	void __iomem *regs = sdd->regs;
214 	unsigned long loops;
215 	u32 val;
216 
217 	writel(0, regs + S3C64XX_SPI_PACKET_CNT);
218 
219 	val = readl(regs + S3C64XX_SPI_CH_CFG);
220 	val &= ~(S3C64XX_SPI_CH_RXCH_ON | S3C64XX_SPI_CH_TXCH_ON);
221 	writel(val, regs + S3C64XX_SPI_CH_CFG);
222 
223 	val = readl(regs + S3C64XX_SPI_CH_CFG);
224 	val |= S3C64XX_SPI_CH_SW_RST;
225 	val &= ~S3C64XX_SPI_CH_HS_EN;
226 	writel(val, regs + S3C64XX_SPI_CH_CFG);
227 
228 	/* Flush TxFIFO*/
229 	loops = msecs_to_loops(1);
230 	do {
231 		val = readl(regs + S3C64XX_SPI_STATUS);
232 	} while (TX_FIFO_LVL(val, sdd) && loops--);
233 
234 	if (loops == 0)
235 		dev_warn(&sdd->pdev->dev, "Timed out flushing TX FIFO\n");
236 
237 	/* Flush RxFIFO*/
238 	loops = msecs_to_loops(1);
239 	do {
240 		val = readl(regs + S3C64XX_SPI_STATUS);
241 		if (RX_FIFO_LVL(val, sdd))
242 			readl(regs + S3C64XX_SPI_RX_DATA);
243 		else
244 			break;
245 	} while (loops--);
246 
247 	if (loops == 0)
248 		dev_warn(&sdd->pdev->dev, "Timed out flushing RX FIFO\n");
249 
250 	val = readl(regs + S3C64XX_SPI_CH_CFG);
251 	val &= ~S3C64XX_SPI_CH_SW_RST;
252 	writel(val, regs + S3C64XX_SPI_CH_CFG);
253 
254 	val = readl(regs + S3C64XX_SPI_MODE_CFG);
255 	val &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
256 	writel(val, regs + S3C64XX_SPI_MODE_CFG);
257 }
258 
259 static void s3c64xx_spi_dmacb(void *data)
260 {
261 	struct s3c64xx_spi_driver_data *sdd;
262 	struct s3c64xx_spi_dma_data *dma = data;
263 	unsigned long flags;
264 
265 	if (dma->direction == DMA_DEV_TO_MEM)
266 		sdd = container_of(data,
267 			struct s3c64xx_spi_driver_data, rx_dma);
268 	else
269 		sdd = container_of(data,
270 			struct s3c64xx_spi_driver_data, tx_dma);
271 
272 	spin_lock_irqsave(&sdd->lock, flags);
273 
274 	if (dma->direction == DMA_DEV_TO_MEM) {
275 		sdd->state &= ~RXBUSY;
276 		if (!(sdd->state & TXBUSY))
277 			complete(&sdd->xfer_completion);
278 	} else {
279 		sdd->state &= ~TXBUSY;
280 		if (!(sdd->state & RXBUSY))
281 			complete(&sdd->xfer_completion);
282 	}
283 
284 	spin_unlock_irqrestore(&sdd->lock, flags);
285 }
286 
287 #ifdef CONFIG_S3C_DMA
288 /* FIXME: remove this section once arch/arm/mach-s3c64xx uses dmaengine */
289 
290 static struct s3c2410_dma_client s3c64xx_spi_dma_client = {
291 	.name = "samsung-spi-dma",
292 };
293 
294 static void prepare_dma(struct s3c64xx_spi_dma_data *dma,
295 					unsigned len, dma_addr_t buf)
296 {
297 	struct s3c64xx_spi_driver_data *sdd;
298 	struct samsung_dma_prep info;
299 	struct samsung_dma_config config;
300 
301 	if (dma->direction == DMA_DEV_TO_MEM) {
302 		sdd = container_of((void *)dma,
303 			struct s3c64xx_spi_driver_data, rx_dma);
304 		config.direction = sdd->rx_dma.direction;
305 		config.fifo = sdd->sfr_start + S3C64XX_SPI_RX_DATA;
306 		config.width = sdd->cur_bpw / 8;
307 		sdd->ops->config((enum dma_ch)sdd->rx_dma.ch, &config);
308 	} else {
309 		sdd = container_of((void *)dma,
310 			struct s3c64xx_spi_driver_data, tx_dma);
311 		config.direction =  sdd->tx_dma.direction;
312 		config.fifo = sdd->sfr_start + S3C64XX_SPI_TX_DATA;
313 		config.width = sdd->cur_bpw / 8;
314 		sdd->ops->config((enum dma_ch)sdd->tx_dma.ch, &config);
315 	}
316 
317 	info.cap = DMA_SLAVE;
318 	info.len = len;
319 	info.fp = s3c64xx_spi_dmacb;
320 	info.fp_param = dma;
321 	info.direction = dma->direction;
322 	info.buf = buf;
323 
324 	sdd->ops->prepare((enum dma_ch)dma->ch, &info);
325 	sdd->ops->trigger((enum dma_ch)dma->ch);
326 }
327 
328 static int acquire_dma(struct s3c64xx_spi_driver_data *sdd)
329 {
330 	struct samsung_dma_req req;
331 	struct device *dev = &sdd->pdev->dev;
332 
333 	sdd->ops = samsung_dma_get_ops();
334 
335 	req.cap = DMA_SLAVE;
336 	req.client = &s3c64xx_spi_dma_client;
337 
338 	sdd->rx_dma.ch = (struct dma_chan *)(unsigned long)sdd->ops->request(
339 					sdd->rx_dma.dmach, &req, dev, "rx");
340 	sdd->tx_dma.ch = (struct dma_chan *)(unsigned long)sdd->ops->request(
341 					sdd->tx_dma.dmach, &req, dev, "tx");
342 
343 	return 1;
344 }
345 
346 static int s3c64xx_spi_prepare_transfer(struct spi_master *spi)
347 {
348 	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
349 
350 	/*
351 	 * If DMA resource was not available during
352 	 * probe, no need to continue with dma requests
353 	 * else Acquire DMA channels
354 	 */
355 	while (!is_polling(sdd) && !acquire_dma(sdd))
356 		usleep_range(10000, 11000);
357 
358 	return 0;
359 }
360 
361 static int s3c64xx_spi_unprepare_transfer(struct spi_master *spi)
362 {
363 	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
364 
365 	/* Free DMA channels */
366 	if (!is_polling(sdd)) {
367 		sdd->ops->release((enum dma_ch)sdd->rx_dma.ch,
368 					&s3c64xx_spi_dma_client);
369 		sdd->ops->release((enum dma_ch)sdd->tx_dma.ch,
370 					&s3c64xx_spi_dma_client);
371 	}
372 
373 	return 0;
374 }
375 
376 static void s3c64xx_spi_dma_stop(struct s3c64xx_spi_driver_data *sdd,
377 				 struct s3c64xx_spi_dma_data *dma)
378 {
379 	sdd->ops->stop((enum dma_ch)dma->ch);
380 }
381 #else
382 
383 static void prepare_dma(struct s3c64xx_spi_dma_data *dma,
384 					unsigned len, dma_addr_t buf)
385 {
386 	struct s3c64xx_spi_driver_data *sdd;
387 	struct dma_slave_config config;
388 	struct dma_async_tx_descriptor *desc;
389 
390 	memset(&config, 0, sizeof(config));
391 
392 	if (dma->direction == DMA_DEV_TO_MEM) {
393 		sdd = container_of((void *)dma,
394 			struct s3c64xx_spi_driver_data, rx_dma);
395 		config.direction = dma->direction;
396 		config.src_addr = sdd->sfr_start + S3C64XX_SPI_RX_DATA;
397 		config.src_addr_width = sdd->cur_bpw / 8;
398 		config.src_maxburst = 1;
399 		dmaengine_slave_config(dma->ch, &config);
400 	} else {
401 		sdd = container_of((void *)dma,
402 			struct s3c64xx_spi_driver_data, tx_dma);
403 		config.direction = dma->direction;
404 		config.dst_addr = sdd->sfr_start + S3C64XX_SPI_TX_DATA;
405 		config.dst_addr_width = sdd->cur_bpw / 8;
406 		config.dst_maxburst = 1;
407 		dmaengine_slave_config(dma->ch, &config);
408 	}
409 
410 	desc = dmaengine_prep_slave_single(dma->ch, buf, len,
411 					dma->direction, DMA_PREP_INTERRUPT);
412 
413 	desc->callback = s3c64xx_spi_dmacb;
414 	desc->callback_param = dma;
415 
416 	dmaengine_submit(desc);
417 	dma_async_issue_pending(dma->ch);
418 }
419 
420 static int s3c64xx_spi_prepare_transfer(struct spi_master *spi)
421 {
422 	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
423 	dma_filter_fn filter = sdd->cntrlr_info->filter;
424 	struct device *dev = &sdd->pdev->dev;
425 	dma_cap_mask_t mask;
426 	int ret;
427 
428 	if (!is_polling(sdd)) {
429 		dma_cap_zero(mask);
430 		dma_cap_set(DMA_SLAVE, mask);
431 
432 		/* Acquire DMA channels */
433 		sdd->rx_dma.ch = dma_request_slave_channel_compat(mask, filter,
434 				   (void *)sdd->rx_dma.dmach, dev, "rx");
435 		if (!sdd->rx_dma.ch) {
436 			dev_err(dev, "Failed to get RX DMA channel\n");
437 			ret = -EBUSY;
438 			goto out;
439 		}
440 
441 		sdd->tx_dma.ch = dma_request_slave_channel_compat(mask, filter,
442 				   (void *)sdd->tx_dma.dmach, dev, "tx");
443 		if (!sdd->tx_dma.ch) {
444 			dev_err(dev, "Failed to get TX DMA channel\n");
445 			ret = -EBUSY;
446 			goto out_rx;
447 		}
448 	}
449 
450 	ret = pm_runtime_get_sync(&sdd->pdev->dev);
451 	if (ret < 0) {
452 		dev_err(dev, "Failed to enable device: %d\n", ret);
453 		goto out_tx;
454 	}
455 
456 	return 0;
457 
458 out_tx:
459 	dma_release_channel(sdd->tx_dma.ch);
460 out_rx:
461 	dma_release_channel(sdd->rx_dma.ch);
462 out:
463 	return ret;
464 }
465 
466 static int s3c64xx_spi_unprepare_transfer(struct spi_master *spi)
467 {
468 	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
469 
470 	/* Free DMA channels */
471 	if (!is_polling(sdd)) {
472 		dma_release_channel(sdd->rx_dma.ch);
473 		dma_release_channel(sdd->tx_dma.ch);
474 	}
475 
476 	pm_runtime_put(&sdd->pdev->dev);
477 	return 0;
478 }
479 
480 static void s3c64xx_spi_dma_stop(struct s3c64xx_spi_driver_data *sdd,
481 				 struct s3c64xx_spi_dma_data *dma)
482 {
483 	dmaengine_terminate_all(dma->ch);
484 }
485 #endif
486 
487 static void enable_datapath(struct s3c64xx_spi_driver_data *sdd,
488 				struct spi_device *spi,
489 				struct spi_transfer *xfer, int dma_mode)
490 {
491 	void __iomem *regs = sdd->regs;
492 	u32 modecfg, chcfg;
493 
494 	modecfg = readl(regs + S3C64XX_SPI_MODE_CFG);
495 	modecfg &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
496 
497 	chcfg = readl(regs + S3C64XX_SPI_CH_CFG);
498 	chcfg &= ~S3C64XX_SPI_CH_TXCH_ON;
499 
500 	if (dma_mode) {
501 		chcfg &= ~S3C64XX_SPI_CH_RXCH_ON;
502 	} else {
503 		/* Always shift in data in FIFO, even if xfer is Tx only,
504 		 * this helps setting PCKT_CNT value for generating clocks
505 		 * as exactly needed.
506 		 */
507 		chcfg |= S3C64XX_SPI_CH_RXCH_ON;
508 		writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
509 					| S3C64XX_SPI_PACKET_CNT_EN,
510 					regs + S3C64XX_SPI_PACKET_CNT);
511 	}
512 
513 	if (xfer->tx_buf != NULL) {
514 		sdd->state |= TXBUSY;
515 		chcfg |= S3C64XX_SPI_CH_TXCH_ON;
516 		if (dma_mode) {
517 			modecfg |= S3C64XX_SPI_MODE_TXDMA_ON;
518 			prepare_dma(&sdd->tx_dma, xfer->len, xfer->tx_dma);
519 		} else {
520 			switch (sdd->cur_bpw) {
521 			case 32:
522 				iowrite32_rep(regs + S3C64XX_SPI_TX_DATA,
523 					xfer->tx_buf, xfer->len / 4);
524 				break;
525 			case 16:
526 				iowrite16_rep(regs + S3C64XX_SPI_TX_DATA,
527 					xfer->tx_buf, xfer->len / 2);
528 				break;
529 			default:
530 				iowrite8_rep(regs + S3C64XX_SPI_TX_DATA,
531 					xfer->tx_buf, xfer->len);
532 				break;
533 			}
534 		}
535 	}
536 
537 	if (xfer->rx_buf != NULL) {
538 		sdd->state |= RXBUSY;
539 
540 		if (sdd->port_conf->high_speed && sdd->cur_speed >= 30000000UL
541 					&& !(sdd->cur_mode & SPI_CPHA))
542 			chcfg |= S3C64XX_SPI_CH_HS_EN;
543 
544 		if (dma_mode) {
545 			modecfg |= S3C64XX_SPI_MODE_RXDMA_ON;
546 			chcfg |= S3C64XX_SPI_CH_RXCH_ON;
547 			writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
548 					| S3C64XX_SPI_PACKET_CNT_EN,
549 					regs + S3C64XX_SPI_PACKET_CNT);
550 			prepare_dma(&sdd->rx_dma, xfer->len, xfer->rx_dma);
551 		}
552 	}
553 
554 	writel(modecfg, regs + S3C64XX_SPI_MODE_CFG);
555 	writel(chcfg, regs + S3C64XX_SPI_CH_CFG);
556 }
557 
558 static inline void enable_cs(struct s3c64xx_spi_driver_data *sdd,
559 						struct spi_device *spi)
560 {
561 	if (sdd->tgl_spi != NULL) { /* If last device toggled after mssg */
562 		if (sdd->tgl_spi != spi) { /* if last mssg on diff device */
563 			/* Deselect the last toggled device */
564 			if (spi->cs_gpio >= 0)
565 				gpio_set_value(spi->cs_gpio,
566 					spi->mode & SPI_CS_HIGH ? 0 : 1);
567 		}
568 		sdd->tgl_spi = NULL;
569 	}
570 
571 	if (spi->cs_gpio >= 0)
572 		gpio_set_value(spi->cs_gpio, spi->mode & SPI_CS_HIGH ? 1 : 0);
573 }
574 
575 static u32 s3c64xx_spi_wait_for_timeout(struct s3c64xx_spi_driver_data *sdd,
576 					int timeout_ms)
577 {
578 	void __iomem *regs = sdd->regs;
579 	unsigned long val = 1;
580 	u32 status;
581 
582 	/* max fifo depth available */
583 	u32 max_fifo = (FIFO_LVL_MASK(sdd) >> 1) + 1;
584 
585 	if (timeout_ms)
586 		val = msecs_to_loops(timeout_ms);
587 
588 	do {
589 		status = readl(regs + S3C64XX_SPI_STATUS);
590 	} while (RX_FIFO_LVL(status, sdd) < max_fifo && --val);
591 
592 	/* return the actual received data length */
593 	return RX_FIFO_LVL(status, sdd);
594 }
595 
596 static int wait_for_xfer(struct s3c64xx_spi_driver_data *sdd,
597 				struct spi_transfer *xfer, int dma_mode)
598 {
599 	void __iomem *regs = sdd->regs;
600 	unsigned long val;
601 	int ms;
602 
603 	/* millisecs to xfer 'len' bytes @ 'cur_speed' */
604 	ms = xfer->len * 8 * 1000 / sdd->cur_speed;
605 	ms += 10; /* some tolerance */
606 
607 	if (dma_mode) {
608 		val = msecs_to_jiffies(ms) + 10;
609 		val = wait_for_completion_timeout(&sdd->xfer_completion, val);
610 	} else {
611 		u32 status;
612 		val = msecs_to_loops(ms);
613 		do {
614 			status = readl(regs + S3C64XX_SPI_STATUS);
615 		} while (RX_FIFO_LVL(status, sdd) < xfer->len && --val);
616 	}
617 
618 	if (dma_mode) {
619 		u32 status;
620 
621 		/*
622 		 * If the previous xfer was completed within timeout, then
623 		 * proceed further else return -EIO.
624 		 * DmaTx returns after simply writing data in the FIFO,
625 		 * w/o waiting for real transmission on the bus to finish.
626 		 * DmaRx returns only after Dma read data from FIFO which
627 		 * needs bus transmission to finish, so we don't worry if
628 		 * Xfer involved Rx(with or without Tx).
629 		 */
630 		if (val && !xfer->rx_buf) {
631 			val = msecs_to_loops(10);
632 			status = readl(regs + S3C64XX_SPI_STATUS);
633 			while ((TX_FIFO_LVL(status, sdd)
634 				|| !S3C64XX_SPI_ST_TX_DONE(status, sdd))
635 					&& --val) {
636 				cpu_relax();
637 				status = readl(regs + S3C64XX_SPI_STATUS);
638 			}
639 
640 		}
641 
642 		/* If timed out while checking rx/tx status return error */
643 		if (!val)
644 			return -EIO;
645 	} else {
646 		int loops;
647 		u32 cpy_len;
648 		u8 *buf;
649 
650 		/* If it was only Tx */
651 		if (!xfer->rx_buf) {
652 			sdd->state &= ~TXBUSY;
653 			return 0;
654 		}
655 
656 		/*
657 		 * If the receive length is bigger than the controller fifo
658 		 * size, calculate the loops and read the fifo as many times.
659 		 * loops = length / max fifo size (calculated by using the
660 		 * fifo mask).
661 		 * For any size less than the fifo size the below code is
662 		 * executed atleast once.
663 		 */
664 		loops = xfer->len / ((FIFO_LVL_MASK(sdd) >> 1) + 1);
665 		buf = xfer->rx_buf;
666 		do {
667 			/* wait for data to be received in the fifo */
668 			cpy_len = s3c64xx_spi_wait_for_timeout(sdd,
669 						(loops ? ms : 0));
670 
671 			switch (sdd->cur_bpw) {
672 			case 32:
673 				ioread32_rep(regs + S3C64XX_SPI_RX_DATA,
674 					buf, cpy_len / 4);
675 				break;
676 			case 16:
677 				ioread16_rep(regs + S3C64XX_SPI_RX_DATA,
678 					buf, cpy_len / 2);
679 				break;
680 			default:
681 				ioread8_rep(regs + S3C64XX_SPI_RX_DATA,
682 					buf, cpy_len);
683 				break;
684 			}
685 
686 			buf = buf + cpy_len;
687 		} while (loops--);
688 		sdd->state &= ~RXBUSY;
689 	}
690 
691 	return 0;
692 }
693 
694 static inline void disable_cs(struct s3c64xx_spi_driver_data *sdd,
695 						struct spi_device *spi)
696 {
697 	if (sdd->tgl_spi == spi)
698 		sdd->tgl_spi = NULL;
699 
700 	if (spi->cs_gpio >= 0)
701 		gpio_set_value(spi->cs_gpio, spi->mode & SPI_CS_HIGH ? 0 : 1);
702 }
703 
704 static void s3c64xx_spi_config(struct s3c64xx_spi_driver_data *sdd)
705 {
706 	void __iomem *regs = sdd->regs;
707 	u32 val;
708 
709 	/* Disable Clock */
710 	if (sdd->port_conf->clk_from_cmu) {
711 		clk_disable_unprepare(sdd->src_clk);
712 	} else {
713 		val = readl(regs + S3C64XX_SPI_CLK_CFG);
714 		val &= ~S3C64XX_SPI_ENCLK_ENABLE;
715 		writel(val, regs + S3C64XX_SPI_CLK_CFG);
716 	}
717 
718 	/* Set Polarity and Phase */
719 	val = readl(regs + S3C64XX_SPI_CH_CFG);
720 	val &= ~(S3C64XX_SPI_CH_SLAVE |
721 			S3C64XX_SPI_CPOL_L |
722 			S3C64XX_SPI_CPHA_B);
723 
724 	if (sdd->cur_mode & SPI_CPOL)
725 		val |= S3C64XX_SPI_CPOL_L;
726 
727 	if (sdd->cur_mode & SPI_CPHA)
728 		val |= S3C64XX_SPI_CPHA_B;
729 
730 	writel(val, regs + S3C64XX_SPI_CH_CFG);
731 
732 	/* Set Channel & DMA Mode */
733 	val = readl(regs + S3C64XX_SPI_MODE_CFG);
734 	val &= ~(S3C64XX_SPI_MODE_BUS_TSZ_MASK
735 			| S3C64XX_SPI_MODE_CH_TSZ_MASK);
736 
737 	switch (sdd->cur_bpw) {
738 	case 32:
739 		val |= S3C64XX_SPI_MODE_BUS_TSZ_WORD;
740 		val |= S3C64XX_SPI_MODE_CH_TSZ_WORD;
741 		break;
742 	case 16:
743 		val |= S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD;
744 		val |= S3C64XX_SPI_MODE_CH_TSZ_HALFWORD;
745 		break;
746 	default:
747 		val |= S3C64XX_SPI_MODE_BUS_TSZ_BYTE;
748 		val |= S3C64XX_SPI_MODE_CH_TSZ_BYTE;
749 		break;
750 	}
751 
752 	writel(val, regs + S3C64XX_SPI_MODE_CFG);
753 
754 	if (sdd->port_conf->clk_from_cmu) {
755 		/* Configure Clock */
756 		/* There is half-multiplier before the SPI */
757 		clk_set_rate(sdd->src_clk, sdd->cur_speed * 2);
758 		/* Enable Clock */
759 		clk_prepare_enable(sdd->src_clk);
760 	} else {
761 		/* Configure Clock */
762 		val = readl(regs + S3C64XX_SPI_CLK_CFG);
763 		val &= ~S3C64XX_SPI_PSR_MASK;
764 		val |= ((clk_get_rate(sdd->src_clk) / sdd->cur_speed / 2 - 1)
765 				& S3C64XX_SPI_PSR_MASK);
766 		writel(val, regs + S3C64XX_SPI_CLK_CFG);
767 
768 		/* Enable Clock */
769 		val = readl(regs + S3C64XX_SPI_CLK_CFG);
770 		val |= S3C64XX_SPI_ENCLK_ENABLE;
771 		writel(val, regs + S3C64XX_SPI_CLK_CFG);
772 	}
773 }
774 
775 #define XFER_DMAADDR_INVALID DMA_BIT_MASK(32)
776 
777 static int s3c64xx_spi_map_mssg(struct s3c64xx_spi_driver_data *sdd,
778 						struct spi_message *msg)
779 {
780 	struct device *dev = &sdd->pdev->dev;
781 	struct spi_transfer *xfer;
782 
783 	if (is_polling(sdd) || msg->is_dma_mapped)
784 		return 0;
785 
786 	/* First mark all xfer unmapped */
787 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
788 		xfer->rx_dma = XFER_DMAADDR_INVALID;
789 		xfer->tx_dma = XFER_DMAADDR_INVALID;
790 	}
791 
792 	/* Map until end or first fail */
793 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
794 
795 		if (xfer->len <= ((FIFO_LVL_MASK(sdd) >> 1) + 1))
796 			continue;
797 
798 		if (xfer->tx_buf != NULL) {
799 			xfer->tx_dma = dma_map_single(dev,
800 					(void *)xfer->tx_buf, xfer->len,
801 					DMA_TO_DEVICE);
802 			if (dma_mapping_error(dev, xfer->tx_dma)) {
803 				dev_err(dev, "dma_map_single Tx failed\n");
804 				xfer->tx_dma = XFER_DMAADDR_INVALID;
805 				return -ENOMEM;
806 			}
807 		}
808 
809 		if (xfer->rx_buf != NULL) {
810 			xfer->rx_dma = dma_map_single(dev, xfer->rx_buf,
811 						xfer->len, DMA_FROM_DEVICE);
812 			if (dma_mapping_error(dev, xfer->rx_dma)) {
813 				dev_err(dev, "dma_map_single Rx failed\n");
814 				dma_unmap_single(dev, xfer->tx_dma,
815 						xfer->len, DMA_TO_DEVICE);
816 				xfer->tx_dma = XFER_DMAADDR_INVALID;
817 				xfer->rx_dma = XFER_DMAADDR_INVALID;
818 				return -ENOMEM;
819 			}
820 		}
821 	}
822 
823 	return 0;
824 }
825 
826 static void s3c64xx_spi_unmap_mssg(struct s3c64xx_spi_driver_data *sdd,
827 						struct spi_message *msg)
828 {
829 	struct device *dev = &sdd->pdev->dev;
830 	struct spi_transfer *xfer;
831 
832 	if (is_polling(sdd) || msg->is_dma_mapped)
833 		return;
834 
835 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
836 
837 		if (xfer->len <= ((FIFO_LVL_MASK(sdd) >> 1) + 1))
838 			continue;
839 
840 		if (xfer->rx_buf != NULL
841 				&& xfer->rx_dma != XFER_DMAADDR_INVALID)
842 			dma_unmap_single(dev, xfer->rx_dma,
843 						xfer->len, DMA_FROM_DEVICE);
844 
845 		if (xfer->tx_buf != NULL
846 				&& xfer->tx_dma != XFER_DMAADDR_INVALID)
847 			dma_unmap_single(dev, xfer->tx_dma,
848 						xfer->len, DMA_TO_DEVICE);
849 	}
850 }
851 
852 static int s3c64xx_spi_prepare_message(struct spi_master *master,
853 				       struct spi_message *msg)
854 {
855 	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
856 	struct spi_device *spi = msg->spi;
857 	struct s3c64xx_spi_csinfo *cs = spi->controller_data;
858 
859 	/* If Master's(controller) state differs from that needed by Slave */
860 	if (sdd->cur_speed != spi->max_speed_hz
861 			|| sdd->cur_mode != spi->mode
862 			|| sdd->cur_bpw != spi->bits_per_word) {
863 		sdd->cur_bpw = spi->bits_per_word;
864 		sdd->cur_speed = spi->max_speed_hz;
865 		sdd->cur_mode = spi->mode;
866 		s3c64xx_spi_config(sdd);
867 	}
868 
869 	/* Map all the transfers if needed */
870 	if (s3c64xx_spi_map_mssg(sdd, msg)) {
871 		dev_err(&spi->dev,
872 			"Xfer: Unable to map message buffers!\n");
873 		return -ENOMEM;
874 	}
875 
876 	/* Configure feedback delay */
877 	writel(cs->fb_delay & 0x3, sdd->regs + S3C64XX_SPI_FB_CLK);
878 
879 	return 0;
880 }
881 
882 static int s3c64xx_spi_transfer_one(struct spi_master *master,
883 				    struct spi_device *spi,
884 				    struct spi_transfer *xfer)
885 {
886 	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
887 	int status;
888 	u32 speed;
889 	u8 bpw;
890 	unsigned long flags;
891 	int use_dma;
892 
893 		reinit_completion(&sdd->xfer_completion);
894 
895 	/* Only BPW and Speed may change across transfers */
896 	bpw = xfer->bits_per_word;
897 	speed = xfer->speed_hz ? : spi->max_speed_hz;
898 
899 	if (xfer->len % (bpw / 8)) {
900 		dev_err(&spi->dev,
901 			"Xfer length(%u) not a multiple of word size(%u)\n",
902 			xfer->len, bpw / 8);
903 		return -EIO;
904 	}
905 
906 	if (bpw != sdd->cur_bpw || speed != sdd->cur_speed) {
907 		sdd->cur_bpw = bpw;
908 		sdd->cur_speed = speed;
909 		s3c64xx_spi_config(sdd);
910 	}
911 
912 	/* Polling method for xfers not bigger than FIFO capacity */
913 	use_dma = 0;
914 	if (!is_polling(sdd) &&
915 	    (sdd->rx_dma.ch && sdd->tx_dma.ch &&
916 	     (xfer->len > ((FIFO_LVL_MASK(sdd) >> 1) + 1))))
917 		use_dma = 1;
918 
919 	spin_lock_irqsave(&sdd->lock, flags);
920 
921 	/* Pending only which is to be done */
922 	sdd->state &= ~RXBUSY;
923 	sdd->state &= ~TXBUSY;
924 
925 	enable_datapath(sdd, spi, xfer, use_dma);
926 
927 	/* Start the signals */
928 	writel(0, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
929 
930 	/* Start the signals */
931 	writel(0, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
932 
933 	spin_unlock_irqrestore(&sdd->lock, flags);
934 
935 	status = wait_for_xfer(sdd, xfer, use_dma);
936 
937 	if (status) {
938 		dev_err(&spi->dev, "I/O Error: rx-%d tx-%d res:rx-%c tx-%c len-%d\n",
939 			xfer->rx_buf ? 1 : 0, xfer->tx_buf ? 1 : 0,
940 			(sdd->state & RXBUSY) ? 'f' : 'p',
941 			(sdd->state & TXBUSY) ? 'f' : 'p',
942 			xfer->len);
943 
944 		if (use_dma) {
945 			if (xfer->tx_buf != NULL
946 			    && (sdd->state & TXBUSY))
947 				s3c64xx_spi_dma_stop(sdd, &sdd->tx_dma);
948 			if (xfer->rx_buf != NULL
949 			    && (sdd->state & RXBUSY))
950 				s3c64xx_spi_dma_stop(sdd, &sdd->rx_dma);
951 		}
952 	} else {
953 		flush_fifo(sdd);
954 	}
955 
956 	return status;
957 }
958 
959 static int s3c64xx_spi_unprepare_message(struct spi_master *master,
960 					    struct spi_message *msg)
961 {
962 	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
963 
964 	s3c64xx_spi_unmap_mssg(sdd, msg);
965 
966 	return 0;
967 }
968 
969 static struct s3c64xx_spi_csinfo *s3c64xx_get_slave_ctrldata(
970 				struct spi_device *spi)
971 {
972 	struct s3c64xx_spi_csinfo *cs;
973 	struct device_node *slave_np, *data_np = NULL;
974 	struct s3c64xx_spi_driver_data *sdd;
975 	u32 fb_delay = 0;
976 
977 	sdd = spi_master_get_devdata(spi->master);
978 	slave_np = spi->dev.of_node;
979 	if (!slave_np) {
980 		dev_err(&spi->dev, "device node not found\n");
981 		return ERR_PTR(-EINVAL);
982 	}
983 
984 	data_np = of_get_child_by_name(slave_np, "controller-data");
985 	if (!data_np) {
986 		dev_err(&spi->dev, "child node 'controller-data' not found\n");
987 		return ERR_PTR(-EINVAL);
988 	}
989 
990 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
991 	if (!cs) {
992 		dev_err(&spi->dev, "could not allocate memory for controller data\n");
993 		of_node_put(data_np);
994 		return ERR_PTR(-ENOMEM);
995 	}
996 
997 	/* The CS line is asserted/deasserted by the gpio pin */
998 	if (sdd->cs_gpio)
999 		cs->line = of_get_named_gpio(data_np, "cs-gpio", 0);
1000 
1001 	if (!gpio_is_valid(cs->line)) {
1002 		dev_err(&spi->dev, "chip select gpio is not specified or invalid\n");
1003 		kfree(cs);
1004 		of_node_put(data_np);
1005 		return ERR_PTR(-EINVAL);
1006 	}
1007 
1008 	of_property_read_u32(data_np, "samsung,spi-feedback-delay", &fb_delay);
1009 	cs->fb_delay = fb_delay;
1010 	of_node_put(data_np);
1011 	return cs;
1012 }
1013 
1014 /*
1015  * Here we only check the validity of requested configuration
1016  * and save the configuration in a local data-structure.
1017  * The controller is actually configured only just before we
1018  * get a message to transfer.
1019  */
1020 static int s3c64xx_spi_setup(struct spi_device *spi)
1021 {
1022 	struct s3c64xx_spi_csinfo *cs = spi->controller_data;
1023 	struct s3c64xx_spi_driver_data *sdd;
1024 	struct s3c64xx_spi_info *sci;
1025 	int err;
1026 
1027 	sdd = spi_master_get_devdata(spi->master);
1028 	if (!cs && spi->dev.of_node) {
1029 		cs = s3c64xx_get_slave_ctrldata(spi);
1030 		spi->controller_data = cs;
1031 	}
1032 
1033 	if (IS_ERR_OR_NULL(cs)) {
1034 		dev_err(&spi->dev, "No CS for SPI(%d)\n", spi->chip_select);
1035 		return -ENODEV;
1036 	}
1037 
1038 	if (!spi_get_ctldata(spi)) {
1039 		/* Request gpio only if cs line is asserted by gpio pins */
1040 		if (sdd->cs_gpio) {
1041 			err = gpio_request_one(cs->line, GPIOF_OUT_INIT_HIGH,
1042 					dev_name(&spi->dev));
1043 			if (err) {
1044 				dev_err(&spi->dev,
1045 					"Failed to get /CS gpio [%d]: %d\n",
1046 					cs->line, err);
1047 				goto err_gpio_req;
1048 			}
1049 
1050 			spi->cs_gpio = cs->line;
1051 		}
1052 
1053 		spi_set_ctldata(spi, cs);
1054 	}
1055 
1056 	sci = sdd->cntrlr_info;
1057 
1058 	pm_runtime_get_sync(&sdd->pdev->dev);
1059 
1060 	/* Check if we can provide the requested rate */
1061 	if (!sdd->port_conf->clk_from_cmu) {
1062 		u32 psr, speed;
1063 
1064 		/* Max possible */
1065 		speed = clk_get_rate(sdd->src_clk) / 2 / (0 + 1);
1066 
1067 		if (spi->max_speed_hz > speed)
1068 			spi->max_speed_hz = speed;
1069 
1070 		psr = clk_get_rate(sdd->src_clk) / 2 / spi->max_speed_hz - 1;
1071 		psr &= S3C64XX_SPI_PSR_MASK;
1072 		if (psr == S3C64XX_SPI_PSR_MASK)
1073 			psr--;
1074 
1075 		speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
1076 		if (spi->max_speed_hz < speed) {
1077 			if (psr+1 < S3C64XX_SPI_PSR_MASK) {
1078 				psr++;
1079 			} else {
1080 				err = -EINVAL;
1081 				goto setup_exit;
1082 			}
1083 		}
1084 
1085 		speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
1086 		if (spi->max_speed_hz >= speed) {
1087 			spi->max_speed_hz = speed;
1088 		} else {
1089 			dev_err(&spi->dev, "Can't set %dHz transfer speed\n",
1090 				spi->max_speed_hz);
1091 			err = -EINVAL;
1092 			goto setup_exit;
1093 		}
1094 	}
1095 
1096 	pm_runtime_put(&sdd->pdev->dev);
1097 	writel(S3C64XX_SPI_SLAVE_SIG_INACT, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
1098 	disable_cs(sdd, spi);
1099 	return 0;
1100 
1101 setup_exit:
1102 	pm_runtime_put(&sdd->pdev->dev);
1103 	/* setup() returns with device de-selected */
1104 	writel(S3C64XX_SPI_SLAVE_SIG_INACT, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
1105 	disable_cs(sdd, spi);
1106 
1107 	gpio_free(cs->line);
1108 	spi_set_ctldata(spi, NULL);
1109 
1110 err_gpio_req:
1111 	if (spi->dev.of_node)
1112 		kfree(cs);
1113 
1114 	return err;
1115 }
1116 
1117 static void s3c64xx_spi_cleanup(struct spi_device *spi)
1118 {
1119 	struct s3c64xx_spi_csinfo *cs = spi_get_ctldata(spi);
1120 	struct s3c64xx_spi_driver_data *sdd;
1121 
1122 	sdd = spi_master_get_devdata(spi->master);
1123 	if (spi->cs_gpio) {
1124 		gpio_free(spi->cs_gpio);
1125 		if (spi->dev.of_node)
1126 			kfree(cs);
1127 	}
1128 	spi_set_ctldata(spi, NULL);
1129 }
1130 
1131 static irqreturn_t s3c64xx_spi_irq(int irq, void *data)
1132 {
1133 	struct s3c64xx_spi_driver_data *sdd = data;
1134 	struct spi_master *spi = sdd->master;
1135 	unsigned int val, clr = 0;
1136 
1137 	val = readl(sdd->regs + S3C64XX_SPI_STATUS);
1138 
1139 	if (val & S3C64XX_SPI_ST_RX_OVERRUN_ERR) {
1140 		clr = S3C64XX_SPI_PND_RX_OVERRUN_CLR;
1141 		dev_err(&spi->dev, "RX overrun\n");
1142 	}
1143 	if (val & S3C64XX_SPI_ST_RX_UNDERRUN_ERR) {
1144 		clr |= S3C64XX_SPI_PND_RX_UNDERRUN_CLR;
1145 		dev_err(&spi->dev, "RX underrun\n");
1146 	}
1147 	if (val & S3C64XX_SPI_ST_TX_OVERRUN_ERR) {
1148 		clr |= S3C64XX_SPI_PND_TX_OVERRUN_CLR;
1149 		dev_err(&spi->dev, "TX overrun\n");
1150 	}
1151 	if (val & S3C64XX_SPI_ST_TX_UNDERRUN_ERR) {
1152 		clr |= S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
1153 		dev_err(&spi->dev, "TX underrun\n");
1154 	}
1155 
1156 	/* Clear the pending irq by setting and then clearing it */
1157 	writel(clr, sdd->regs + S3C64XX_SPI_PENDING_CLR);
1158 	writel(0, sdd->regs + S3C64XX_SPI_PENDING_CLR);
1159 
1160 	return IRQ_HANDLED;
1161 }
1162 
1163 static void s3c64xx_spi_hwinit(struct s3c64xx_spi_driver_data *sdd, int channel)
1164 {
1165 	struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
1166 	void __iomem *regs = sdd->regs;
1167 	unsigned int val;
1168 
1169 	sdd->cur_speed = 0;
1170 
1171 	writel(S3C64XX_SPI_SLAVE_SIG_INACT, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
1172 
1173 	/* Disable Interrupts - we use Polling if not DMA mode */
1174 	writel(0, regs + S3C64XX_SPI_INT_EN);
1175 
1176 	if (!sdd->port_conf->clk_from_cmu)
1177 		writel(sci->src_clk_nr << S3C64XX_SPI_CLKSEL_SRCSHFT,
1178 				regs + S3C64XX_SPI_CLK_CFG);
1179 	writel(0, regs + S3C64XX_SPI_MODE_CFG);
1180 	writel(0, regs + S3C64XX_SPI_PACKET_CNT);
1181 
1182 	/* Clear any irq pending bits, should set and clear the bits */
1183 	val = S3C64XX_SPI_PND_RX_OVERRUN_CLR |
1184 		S3C64XX_SPI_PND_RX_UNDERRUN_CLR |
1185 		S3C64XX_SPI_PND_TX_OVERRUN_CLR |
1186 		S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
1187 	writel(val, regs + S3C64XX_SPI_PENDING_CLR);
1188 	writel(0, regs + S3C64XX_SPI_PENDING_CLR);
1189 
1190 	writel(0, regs + S3C64XX_SPI_SWAP_CFG);
1191 
1192 	val = readl(regs + S3C64XX_SPI_MODE_CFG);
1193 	val &= ~S3C64XX_SPI_MODE_4BURST;
1194 	val &= ~(S3C64XX_SPI_MAX_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
1195 	val |= (S3C64XX_SPI_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
1196 	writel(val, regs + S3C64XX_SPI_MODE_CFG);
1197 
1198 	flush_fifo(sdd);
1199 }
1200 
1201 #ifdef CONFIG_OF
1202 static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
1203 {
1204 	struct s3c64xx_spi_info *sci;
1205 	u32 temp;
1206 
1207 	sci = devm_kzalloc(dev, sizeof(*sci), GFP_KERNEL);
1208 	if (!sci) {
1209 		dev_err(dev, "memory allocation for spi_info failed\n");
1210 		return ERR_PTR(-ENOMEM);
1211 	}
1212 
1213 	if (of_property_read_u32(dev->of_node, "samsung,spi-src-clk", &temp)) {
1214 		dev_warn(dev, "spi bus clock parent not specified, using clock at index 0 as parent\n");
1215 		sci->src_clk_nr = 0;
1216 	} else {
1217 		sci->src_clk_nr = temp;
1218 	}
1219 
1220 	if (of_property_read_u32(dev->of_node, "num-cs", &temp)) {
1221 		dev_warn(dev, "number of chip select lines not specified, assuming 1 chip select line\n");
1222 		sci->num_cs = 1;
1223 	} else {
1224 		sci->num_cs = temp;
1225 	}
1226 
1227 	return sci;
1228 }
1229 #else
1230 static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
1231 {
1232 	return dev_get_platdata(dev);
1233 }
1234 #endif
1235 
1236 static const struct of_device_id s3c64xx_spi_dt_match[];
1237 
1238 static inline struct s3c64xx_spi_port_config *s3c64xx_spi_get_port_config(
1239 						struct platform_device *pdev)
1240 {
1241 #ifdef CONFIG_OF
1242 	if (pdev->dev.of_node) {
1243 		const struct of_device_id *match;
1244 		match = of_match_node(s3c64xx_spi_dt_match, pdev->dev.of_node);
1245 		return (struct s3c64xx_spi_port_config *)match->data;
1246 	}
1247 #endif
1248 	return (struct s3c64xx_spi_port_config *)
1249 			 platform_get_device_id(pdev)->driver_data;
1250 }
1251 
1252 static int s3c64xx_spi_probe(struct platform_device *pdev)
1253 {
1254 	struct resource	*mem_res;
1255 	struct resource	*res;
1256 	struct s3c64xx_spi_driver_data *sdd;
1257 	struct s3c64xx_spi_info *sci = dev_get_platdata(&pdev->dev);
1258 	struct spi_master *master;
1259 	int ret, irq;
1260 	char clk_name[16];
1261 
1262 	if (!sci && pdev->dev.of_node) {
1263 		sci = s3c64xx_spi_parse_dt(&pdev->dev);
1264 		if (IS_ERR(sci))
1265 			return PTR_ERR(sci);
1266 	}
1267 
1268 	if (!sci) {
1269 		dev_err(&pdev->dev, "platform_data missing!\n");
1270 		return -ENODEV;
1271 	}
1272 
1273 	mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1274 	if (mem_res == NULL) {
1275 		dev_err(&pdev->dev, "Unable to get SPI MEM resource\n");
1276 		return -ENXIO;
1277 	}
1278 
1279 	irq = platform_get_irq(pdev, 0);
1280 	if (irq < 0) {
1281 		dev_warn(&pdev->dev, "Failed to get IRQ: %d\n", irq);
1282 		return irq;
1283 	}
1284 
1285 	master = spi_alloc_master(&pdev->dev,
1286 				sizeof(struct s3c64xx_spi_driver_data));
1287 	if (master == NULL) {
1288 		dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
1289 		return -ENOMEM;
1290 	}
1291 
1292 	platform_set_drvdata(pdev, master);
1293 
1294 	sdd = spi_master_get_devdata(master);
1295 	sdd->port_conf = s3c64xx_spi_get_port_config(pdev);
1296 	sdd->master = master;
1297 	sdd->cntrlr_info = sci;
1298 	sdd->pdev = pdev;
1299 	sdd->sfr_start = mem_res->start;
1300 	sdd->cs_gpio = true;
1301 	if (pdev->dev.of_node) {
1302 		if (!of_find_property(pdev->dev.of_node, "cs-gpio", NULL))
1303 			sdd->cs_gpio = false;
1304 
1305 		ret = of_alias_get_id(pdev->dev.of_node, "spi");
1306 		if (ret < 0) {
1307 			dev_err(&pdev->dev, "failed to get alias id, errno %d\n",
1308 				ret);
1309 			goto err0;
1310 		}
1311 		sdd->port_id = ret;
1312 	} else {
1313 		sdd->port_id = pdev->id;
1314 	}
1315 
1316 	sdd->cur_bpw = 8;
1317 
1318 	if (!sdd->pdev->dev.of_node) {
1319 		res = platform_get_resource(pdev, IORESOURCE_DMA,  0);
1320 		if (!res) {
1321 			dev_warn(&pdev->dev, "Unable to get SPI tx dma resource. Switching to poll mode\n");
1322 			sdd->port_conf->quirks = S3C64XX_SPI_QUIRK_POLL;
1323 		} else
1324 			sdd->tx_dma.dmach = res->start;
1325 
1326 		res = platform_get_resource(pdev, IORESOURCE_DMA,  1);
1327 		if (!res) {
1328 			dev_warn(&pdev->dev, "Unable to get SPI rx dma resource. Switching to poll mode\n");
1329 			sdd->port_conf->quirks = S3C64XX_SPI_QUIRK_POLL;
1330 		} else
1331 			sdd->rx_dma.dmach = res->start;
1332 	}
1333 
1334 	sdd->tx_dma.direction = DMA_MEM_TO_DEV;
1335 	sdd->rx_dma.direction = DMA_DEV_TO_MEM;
1336 
1337 	master->dev.of_node = pdev->dev.of_node;
1338 	master->bus_num = sdd->port_id;
1339 	master->setup = s3c64xx_spi_setup;
1340 	master->cleanup = s3c64xx_spi_cleanup;
1341 	master->prepare_transfer_hardware = s3c64xx_spi_prepare_transfer;
1342 	master->prepare_message = s3c64xx_spi_prepare_message;
1343 	master->transfer_one = s3c64xx_spi_transfer_one;
1344 	master->unprepare_message = s3c64xx_spi_unprepare_message;
1345 	master->unprepare_transfer_hardware = s3c64xx_spi_unprepare_transfer;
1346 	master->num_chipselect = sci->num_cs;
1347 	master->dma_alignment = 8;
1348 	master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) |
1349 					SPI_BPW_MASK(8);
1350 	/* the spi->mode bits understood by this driver: */
1351 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1352 	master->auto_runtime_pm = true;
1353 
1354 	sdd->regs = devm_ioremap_resource(&pdev->dev, mem_res);
1355 	if (IS_ERR(sdd->regs)) {
1356 		ret = PTR_ERR(sdd->regs);
1357 		goto err0;
1358 	}
1359 
1360 	if (sci->cfg_gpio && sci->cfg_gpio()) {
1361 		dev_err(&pdev->dev, "Unable to config gpio\n");
1362 		ret = -EBUSY;
1363 		goto err0;
1364 	}
1365 
1366 	/* Setup clocks */
1367 	sdd->clk = devm_clk_get(&pdev->dev, "spi");
1368 	if (IS_ERR(sdd->clk)) {
1369 		dev_err(&pdev->dev, "Unable to acquire clock 'spi'\n");
1370 		ret = PTR_ERR(sdd->clk);
1371 		goto err0;
1372 	}
1373 
1374 	if (clk_prepare_enable(sdd->clk)) {
1375 		dev_err(&pdev->dev, "Couldn't enable clock 'spi'\n");
1376 		ret = -EBUSY;
1377 		goto err0;
1378 	}
1379 
1380 	sprintf(clk_name, "spi_busclk%d", sci->src_clk_nr);
1381 	sdd->src_clk = devm_clk_get(&pdev->dev, clk_name);
1382 	if (IS_ERR(sdd->src_clk)) {
1383 		dev_err(&pdev->dev,
1384 			"Unable to acquire clock '%s'\n", clk_name);
1385 		ret = PTR_ERR(sdd->src_clk);
1386 		goto err2;
1387 	}
1388 
1389 	if (clk_prepare_enable(sdd->src_clk)) {
1390 		dev_err(&pdev->dev, "Couldn't enable clock '%s'\n", clk_name);
1391 		ret = -EBUSY;
1392 		goto err2;
1393 	}
1394 
1395 	/* Setup Deufult Mode */
1396 	s3c64xx_spi_hwinit(sdd, sdd->port_id);
1397 
1398 	spin_lock_init(&sdd->lock);
1399 	init_completion(&sdd->xfer_completion);
1400 
1401 	ret = devm_request_irq(&pdev->dev, irq, s3c64xx_spi_irq, 0,
1402 				"spi-s3c64xx", sdd);
1403 	if (ret != 0) {
1404 		dev_err(&pdev->dev, "Failed to request IRQ %d: %d\n",
1405 			irq, ret);
1406 		goto err3;
1407 	}
1408 
1409 	writel(S3C64XX_SPI_INT_RX_OVERRUN_EN | S3C64XX_SPI_INT_RX_UNDERRUN_EN |
1410 	       S3C64XX_SPI_INT_TX_OVERRUN_EN | S3C64XX_SPI_INT_TX_UNDERRUN_EN,
1411 	       sdd->regs + S3C64XX_SPI_INT_EN);
1412 
1413 	pm_runtime_set_active(&pdev->dev);
1414 	pm_runtime_enable(&pdev->dev);
1415 
1416 	ret = devm_spi_register_master(&pdev->dev, master);
1417 	if (ret != 0) {
1418 		dev_err(&pdev->dev, "cannot register SPI master: %d\n", ret);
1419 		goto err3;
1420 	}
1421 
1422 	dev_dbg(&pdev->dev, "Samsung SoC SPI Driver loaded for Bus SPI-%d with %d Slaves attached\n",
1423 					sdd->port_id, master->num_chipselect);
1424 	dev_dbg(&pdev->dev, "\tIOmem=[%pR]\tDMA=[Rx-%d, Tx-%d]\n",
1425 					mem_res,
1426 					sdd->rx_dma.dmach, sdd->tx_dma.dmach);
1427 
1428 	return 0;
1429 
1430 err3:
1431 	clk_disable_unprepare(sdd->src_clk);
1432 err2:
1433 	clk_disable_unprepare(sdd->clk);
1434 err0:
1435 	spi_master_put(master);
1436 
1437 	return ret;
1438 }
1439 
1440 static int s3c64xx_spi_remove(struct platform_device *pdev)
1441 {
1442 	struct spi_master *master = spi_master_get(platform_get_drvdata(pdev));
1443 	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1444 
1445 	pm_runtime_disable(&pdev->dev);
1446 
1447 	writel(0, sdd->regs + S3C64XX_SPI_INT_EN);
1448 
1449 	clk_disable_unprepare(sdd->src_clk);
1450 
1451 	clk_disable_unprepare(sdd->clk);
1452 
1453 	return 0;
1454 }
1455 
1456 #ifdef CONFIG_PM_SLEEP
1457 static int s3c64xx_spi_suspend(struct device *dev)
1458 {
1459 	struct spi_master *master = dev_get_drvdata(dev);
1460 	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1461 
1462 	int ret = spi_master_suspend(master);
1463 	if (ret)
1464 		return ret;
1465 
1466 	if (!pm_runtime_suspended(dev)) {
1467 		clk_disable_unprepare(sdd->clk);
1468 		clk_disable_unprepare(sdd->src_clk);
1469 	}
1470 
1471 	sdd->cur_speed = 0; /* Output Clock is stopped */
1472 
1473 	return 0;
1474 }
1475 
1476 static int s3c64xx_spi_resume(struct device *dev)
1477 {
1478 	struct spi_master *master = dev_get_drvdata(dev);
1479 	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1480 	struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
1481 
1482 	if (sci->cfg_gpio)
1483 		sci->cfg_gpio();
1484 
1485 	if (!pm_runtime_suspended(dev)) {
1486 		clk_prepare_enable(sdd->src_clk);
1487 		clk_prepare_enable(sdd->clk);
1488 	}
1489 
1490 	s3c64xx_spi_hwinit(sdd, sdd->port_id);
1491 
1492 	return spi_master_resume(master);
1493 }
1494 #endif /* CONFIG_PM_SLEEP */
1495 
1496 #ifdef CONFIG_PM_RUNTIME
1497 static int s3c64xx_spi_runtime_suspend(struct device *dev)
1498 {
1499 	struct spi_master *master = dev_get_drvdata(dev);
1500 	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1501 
1502 	clk_disable_unprepare(sdd->clk);
1503 	clk_disable_unprepare(sdd->src_clk);
1504 
1505 	return 0;
1506 }
1507 
1508 static int s3c64xx_spi_runtime_resume(struct device *dev)
1509 {
1510 	struct spi_master *master = dev_get_drvdata(dev);
1511 	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1512 	int ret;
1513 
1514 	ret = clk_prepare_enable(sdd->src_clk);
1515 	if (ret != 0)
1516 		return ret;
1517 
1518 	ret = clk_prepare_enable(sdd->clk);
1519 	if (ret != 0) {
1520 		clk_disable_unprepare(sdd->src_clk);
1521 		return ret;
1522 	}
1523 
1524 	return 0;
1525 }
1526 #endif /* CONFIG_PM_RUNTIME */
1527 
1528 static const struct dev_pm_ops s3c64xx_spi_pm = {
1529 	SET_SYSTEM_SLEEP_PM_OPS(s3c64xx_spi_suspend, s3c64xx_spi_resume)
1530 	SET_RUNTIME_PM_OPS(s3c64xx_spi_runtime_suspend,
1531 			   s3c64xx_spi_runtime_resume, NULL)
1532 };
1533 
1534 static struct s3c64xx_spi_port_config s3c2443_spi_port_config = {
1535 	.fifo_lvl_mask	= { 0x7f },
1536 	.rx_lvl_offset	= 13,
1537 	.tx_st_done	= 21,
1538 	.high_speed	= true,
1539 };
1540 
1541 static struct s3c64xx_spi_port_config s3c6410_spi_port_config = {
1542 	.fifo_lvl_mask	= { 0x7f, 0x7F },
1543 	.rx_lvl_offset	= 13,
1544 	.tx_st_done	= 21,
1545 };
1546 
1547 static struct s3c64xx_spi_port_config s5p64x0_spi_port_config = {
1548 	.fifo_lvl_mask	= { 0x1ff, 0x7F },
1549 	.rx_lvl_offset	= 15,
1550 	.tx_st_done	= 25,
1551 };
1552 
1553 static struct s3c64xx_spi_port_config s5pc100_spi_port_config = {
1554 	.fifo_lvl_mask	= { 0x7f, 0x7F },
1555 	.rx_lvl_offset	= 13,
1556 	.tx_st_done	= 21,
1557 	.high_speed	= true,
1558 };
1559 
1560 static struct s3c64xx_spi_port_config s5pv210_spi_port_config = {
1561 	.fifo_lvl_mask	= { 0x1ff, 0x7F },
1562 	.rx_lvl_offset	= 15,
1563 	.tx_st_done	= 25,
1564 	.high_speed	= true,
1565 };
1566 
1567 static struct s3c64xx_spi_port_config exynos4_spi_port_config = {
1568 	.fifo_lvl_mask	= { 0x1ff, 0x7F, 0x7F },
1569 	.rx_lvl_offset	= 15,
1570 	.tx_st_done	= 25,
1571 	.high_speed	= true,
1572 	.clk_from_cmu	= true,
1573 };
1574 
1575 static struct s3c64xx_spi_port_config exynos5440_spi_port_config = {
1576 	.fifo_lvl_mask	= { 0x1ff },
1577 	.rx_lvl_offset	= 15,
1578 	.tx_st_done	= 25,
1579 	.high_speed	= true,
1580 	.clk_from_cmu	= true,
1581 	.quirks		= S3C64XX_SPI_QUIRK_POLL,
1582 };
1583 
1584 static struct platform_device_id s3c64xx_spi_driver_ids[] = {
1585 	{
1586 		.name		= "s3c2443-spi",
1587 		.driver_data	= (kernel_ulong_t)&s3c2443_spi_port_config,
1588 	}, {
1589 		.name		= "s3c6410-spi",
1590 		.driver_data	= (kernel_ulong_t)&s3c6410_spi_port_config,
1591 	}, {
1592 		.name		= "s5p64x0-spi",
1593 		.driver_data	= (kernel_ulong_t)&s5p64x0_spi_port_config,
1594 	}, {
1595 		.name		= "s5pc100-spi",
1596 		.driver_data	= (kernel_ulong_t)&s5pc100_spi_port_config,
1597 	}, {
1598 		.name		= "s5pv210-spi",
1599 		.driver_data	= (kernel_ulong_t)&s5pv210_spi_port_config,
1600 	}, {
1601 		.name		= "exynos4210-spi",
1602 		.driver_data	= (kernel_ulong_t)&exynos4_spi_port_config,
1603 	},
1604 	{ },
1605 };
1606 
1607 static const struct of_device_id s3c64xx_spi_dt_match[] = {
1608 	{ .compatible = "samsung,s3c2443-spi",
1609 			.data = (void *)&s3c2443_spi_port_config,
1610 	},
1611 	{ .compatible = "samsung,s3c6410-spi",
1612 			.data = (void *)&s3c6410_spi_port_config,
1613 	},
1614 	{ .compatible = "samsung,s5pc100-spi",
1615 			.data = (void *)&s5pc100_spi_port_config,
1616 	},
1617 	{ .compatible = "samsung,s5pv210-spi",
1618 			.data = (void *)&s5pv210_spi_port_config,
1619 	},
1620 	{ .compatible = "samsung,exynos4210-spi",
1621 			.data = (void *)&exynos4_spi_port_config,
1622 	},
1623 	{ .compatible = "samsung,exynos5440-spi",
1624 			.data = (void *)&exynos5440_spi_port_config,
1625 	},
1626 	{ },
1627 };
1628 MODULE_DEVICE_TABLE(of, s3c64xx_spi_dt_match);
1629 
1630 static struct platform_driver s3c64xx_spi_driver = {
1631 	.driver = {
1632 		.name	= "s3c64xx-spi",
1633 		.owner = THIS_MODULE,
1634 		.pm = &s3c64xx_spi_pm,
1635 		.of_match_table = of_match_ptr(s3c64xx_spi_dt_match),
1636 	},
1637 	.probe = s3c64xx_spi_probe,
1638 	.remove = s3c64xx_spi_remove,
1639 	.id_table = s3c64xx_spi_driver_ids,
1640 };
1641 MODULE_ALIAS("platform:s3c64xx-spi");
1642 
1643 module_platform_driver(s3c64xx_spi_driver);
1644 
1645 MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>");
1646 MODULE_DESCRIPTION("S3C64XX SPI Controller Driver");
1647 MODULE_LICENSE("GPL");
1648