xref: /openbmc/linux/drivers/spi/spi-s3c64xx.c (revision 4c004ed9)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Copyright (c) 2009 Samsung Electronics Co., Ltd.
4 //      Jaswinder Singh <jassi.brar@samsung.com>
5 
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/delay.h>
10 #include <linux/clk.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/platform_device.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/spi/spi.h>
16 #include <linux/of.h>
17 
18 #include <linux/platform_data/spi-s3c64xx.h>
19 
20 #define MAX_SPI_PORTS		12
21 #define S3C64XX_SPI_QUIRK_CS_AUTO	(1 << 1)
22 #define AUTOSUSPEND_TIMEOUT	2000
23 
24 /* Registers and bit-fields */
25 
26 #define S3C64XX_SPI_CH_CFG		0x00
27 #define S3C64XX_SPI_CLK_CFG		0x04
28 #define S3C64XX_SPI_MODE_CFG		0x08
29 #define S3C64XX_SPI_CS_REG		0x0C
30 #define S3C64XX_SPI_INT_EN		0x10
31 #define S3C64XX_SPI_STATUS		0x14
32 #define S3C64XX_SPI_TX_DATA		0x18
33 #define S3C64XX_SPI_RX_DATA		0x1C
34 #define S3C64XX_SPI_PACKET_CNT		0x20
35 #define S3C64XX_SPI_PENDING_CLR		0x24
36 #define S3C64XX_SPI_SWAP_CFG		0x28
37 #define S3C64XX_SPI_FB_CLK		0x2C
38 
39 #define S3C64XX_SPI_CH_HS_EN		(1<<6)	/* High Speed Enable */
40 #define S3C64XX_SPI_CH_SW_RST		(1<<5)
41 #define S3C64XX_SPI_CH_SLAVE		(1<<4)
42 #define S3C64XX_SPI_CPOL_L		(1<<3)
43 #define S3C64XX_SPI_CPHA_B		(1<<2)
44 #define S3C64XX_SPI_CH_RXCH_ON		(1<<1)
45 #define S3C64XX_SPI_CH_TXCH_ON		(1<<0)
46 
47 #define S3C64XX_SPI_CLKSEL_SRCMSK	(3<<9)
48 #define S3C64XX_SPI_CLKSEL_SRCSHFT	9
49 #define S3C64XX_SPI_ENCLK_ENABLE	(1<<8)
50 #define S3C64XX_SPI_PSR_MASK		0xff
51 
52 #define S3C64XX_SPI_MODE_CH_TSZ_BYTE		(0<<29)
53 #define S3C64XX_SPI_MODE_CH_TSZ_HALFWORD	(1<<29)
54 #define S3C64XX_SPI_MODE_CH_TSZ_WORD		(2<<29)
55 #define S3C64XX_SPI_MODE_CH_TSZ_MASK		(3<<29)
56 #define S3C64XX_SPI_MODE_BUS_TSZ_BYTE		(0<<17)
57 #define S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD	(1<<17)
58 #define S3C64XX_SPI_MODE_BUS_TSZ_WORD		(2<<17)
59 #define S3C64XX_SPI_MODE_BUS_TSZ_MASK		(3<<17)
60 #define S3C64XX_SPI_MODE_RX_RDY_LVL		GENMASK(16, 11)
61 #define S3C64XX_SPI_MODE_RX_RDY_LVL_SHIFT	11
62 #define S3C64XX_SPI_MODE_SELF_LOOPBACK		(1<<3)
63 #define S3C64XX_SPI_MODE_RXDMA_ON		(1<<2)
64 #define S3C64XX_SPI_MODE_TXDMA_ON		(1<<1)
65 #define S3C64XX_SPI_MODE_4BURST			(1<<0)
66 
67 #define S3C64XX_SPI_CS_NSC_CNT_2		(2<<4)
68 #define S3C64XX_SPI_CS_AUTO			(1<<1)
69 #define S3C64XX_SPI_CS_SIG_INACT		(1<<0)
70 
71 #define S3C64XX_SPI_INT_TRAILING_EN		(1<<6)
72 #define S3C64XX_SPI_INT_RX_OVERRUN_EN		(1<<5)
73 #define S3C64XX_SPI_INT_RX_UNDERRUN_EN		(1<<4)
74 #define S3C64XX_SPI_INT_TX_OVERRUN_EN		(1<<3)
75 #define S3C64XX_SPI_INT_TX_UNDERRUN_EN		(1<<2)
76 #define S3C64XX_SPI_INT_RX_FIFORDY_EN		(1<<1)
77 #define S3C64XX_SPI_INT_TX_FIFORDY_EN		(1<<0)
78 
79 #define S3C64XX_SPI_ST_RX_OVERRUN_ERR		(1<<5)
80 #define S3C64XX_SPI_ST_RX_UNDERRUN_ERR		(1<<4)
81 #define S3C64XX_SPI_ST_TX_OVERRUN_ERR		(1<<3)
82 #define S3C64XX_SPI_ST_TX_UNDERRUN_ERR		(1<<2)
83 #define S3C64XX_SPI_ST_RX_FIFORDY		(1<<1)
84 #define S3C64XX_SPI_ST_TX_FIFORDY		(1<<0)
85 
86 #define S3C64XX_SPI_PACKET_CNT_EN		(1<<16)
87 #define S3C64XX_SPI_PACKET_CNT_MASK		GENMASK(15, 0)
88 
89 #define S3C64XX_SPI_PND_TX_UNDERRUN_CLR		(1<<4)
90 #define S3C64XX_SPI_PND_TX_OVERRUN_CLR		(1<<3)
91 #define S3C64XX_SPI_PND_RX_UNDERRUN_CLR		(1<<2)
92 #define S3C64XX_SPI_PND_RX_OVERRUN_CLR		(1<<1)
93 #define S3C64XX_SPI_PND_TRAILING_CLR		(1<<0)
94 
95 #define S3C64XX_SPI_SWAP_RX_HALF_WORD		(1<<7)
96 #define S3C64XX_SPI_SWAP_RX_BYTE		(1<<6)
97 #define S3C64XX_SPI_SWAP_RX_BIT			(1<<5)
98 #define S3C64XX_SPI_SWAP_RX_EN			(1<<4)
99 #define S3C64XX_SPI_SWAP_TX_HALF_WORD		(1<<3)
100 #define S3C64XX_SPI_SWAP_TX_BYTE		(1<<2)
101 #define S3C64XX_SPI_SWAP_TX_BIT			(1<<1)
102 #define S3C64XX_SPI_SWAP_TX_EN			(1<<0)
103 
104 #define S3C64XX_SPI_FBCLK_MSK			(3<<0)
105 
106 #define FIFO_LVL_MASK(i) ((i)->port_conf->fifo_lvl_mask[i->port_id])
107 #define S3C64XX_SPI_ST_TX_DONE(v, i) (((v) & \
108 				(1 << (i)->port_conf->tx_st_done)) ? 1 : 0)
109 #define TX_FIFO_LVL(v, i) (((v) >> 6) & FIFO_LVL_MASK(i))
110 #define RX_FIFO_LVL(v, i) (((v) >> (i)->port_conf->rx_lvl_offset) & \
111 					FIFO_LVL_MASK(i))
112 
113 #define S3C64XX_SPI_MAX_TRAILCNT	0x3ff
114 #define S3C64XX_SPI_TRAILCNT_OFF	19
115 
116 #define S3C64XX_SPI_TRAILCNT		S3C64XX_SPI_MAX_TRAILCNT
117 
118 #define S3C64XX_SPI_POLLING_SIZE	32
119 
120 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
121 #define is_polling(x)	(x->cntrlr_info->polling)
122 
123 #define RXBUSY    (1<<2)
124 #define TXBUSY    (1<<3)
125 
126 struct s3c64xx_spi_dma_data {
127 	struct dma_chan *ch;
128 	dma_cookie_t cookie;
129 	enum dma_transfer_direction direction;
130 };
131 
132 /**
133  * struct s3c64xx_spi_port_config - SPI Controller hardware info
134  * @fifo_lvl_mask: Bit-mask for {TX|RX}_FIFO_LVL bits in SPI_STATUS register.
135  * @rx_lvl_offset: Bit offset of RX_FIFO_LVL bits in SPI_STATUS regiter.
136  * @tx_st_done: Bit offset of TX_DONE bit in SPI_STATUS regiter.
137  * @clk_div: Internal clock divider
138  * @quirks: Bitmask of known quirks
139  * @high_speed: True, if the controller supports HIGH_SPEED_EN bit.
140  * @clk_from_cmu: True, if the controller does not include a clock mux and
141  *	prescaler unit.
142  * @clk_ioclk: True if clock is present on this device
143  * @has_loopback: True if loopback mode can be supported
144  *
145  * The Samsung s3c64xx SPI controller are used on various Samsung SoC's but
146  * differ in some aspects such as the size of the fifo and spi bus clock
147  * setup. Such differences are specified to the driver using this structure
148  * which is provided as driver data to the driver.
149  */
150 struct s3c64xx_spi_port_config {
151 	int	fifo_lvl_mask[MAX_SPI_PORTS];
152 	int	rx_lvl_offset;
153 	int	tx_st_done;
154 	int	quirks;
155 	int	clk_div;
156 	bool	high_speed;
157 	bool	clk_from_cmu;
158 	bool	clk_ioclk;
159 	bool	has_loopback;
160 };
161 
162 /**
163  * struct s3c64xx_spi_driver_data - Runtime info holder for SPI driver.
164  * @clk: Pointer to the spi clock.
165  * @src_clk: Pointer to the clock used to generate SPI signals.
166  * @ioclk: Pointer to the i/o clock between host and target
167  * @pdev: Pointer to device's platform device data
168  * @host: Pointer to the SPI Protocol host.
169  * @cntrlr_info: Platform specific data for the controller this driver manages.
170  * @lock: Controller specific lock.
171  * @state: Set of FLAGS to indicate status.
172  * @sfr_start: BUS address of SPI controller regs.
173  * @regs: Pointer to ioremap'ed controller registers.
174  * @xfer_completion: To indicate completion of xfer task.
175  * @cur_mode: Stores the active configuration of the controller.
176  * @cur_bpw: Stores the active bits per word settings.
177  * @cur_speed: Current clock speed
178  * @rx_dma: Local receive DMA data (e.g. chan and direction)
179  * @tx_dma: Local transmit DMA data (e.g. chan and direction)
180  * @port_conf: Local SPI port configuartion data
181  * @port_id: Port identification number
182  */
183 struct s3c64xx_spi_driver_data {
184 	void __iomem                    *regs;
185 	struct clk                      *clk;
186 	struct clk                      *src_clk;
187 	struct clk                      *ioclk;
188 	struct platform_device          *pdev;
189 	struct spi_controller           *host;
190 	struct s3c64xx_spi_info         *cntrlr_info;
191 	spinlock_t                      lock;
192 	unsigned long                   sfr_start;
193 	struct completion               xfer_completion;
194 	unsigned                        state;
195 	unsigned                        cur_mode, cur_bpw;
196 	unsigned                        cur_speed;
197 	struct s3c64xx_spi_dma_data	rx_dma;
198 	struct s3c64xx_spi_dma_data	tx_dma;
199 	const struct s3c64xx_spi_port_config	*port_conf;
200 	unsigned int			port_id;
201 };
202 
203 static void s3c64xx_flush_fifo(struct s3c64xx_spi_driver_data *sdd)
204 {
205 	void __iomem *regs = sdd->regs;
206 	unsigned long loops;
207 	u32 val;
208 
209 	writel(0, regs + S3C64XX_SPI_PACKET_CNT);
210 
211 	val = readl(regs + S3C64XX_SPI_CH_CFG);
212 	val &= ~(S3C64XX_SPI_CH_RXCH_ON | S3C64XX_SPI_CH_TXCH_ON);
213 	writel(val, regs + S3C64XX_SPI_CH_CFG);
214 
215 	val = readl(regs + S3C64XX_SPI_CH_CFG);
216 	val |= S3C64XX_SPI_CH_SW_RST;
217 	val &= ~S3C64XX_SPI_CH_HS_EN;
218 	writel(val, regs + S3C64XX_SPI_CH_CFG);
219 
220 	/* Flush TxFIFO*/
221 	loops = msecs_to_loops(1);
222 	do {
223 		val = readl(regs + S3C64XX_SPI_STATUS);
224 	} while (TX_FIFO_LVL(val, sdd) && loops--);
225 
226 	if (loops == 0)
227 		dev_warn(&sdd->pdev->dev, "Timed out flushing TX FIFO\n");
228 
229 	/* Flush RxFIFO*/
230 	loops = msecs_to_loops(1);
231 	do {
232 		val = readl(regs + S3C64XX_SPI_STATUS);
233 		if (RX_FIFO_LVL(val, sdd))
234 			readl(regs + S3C64XX_SPI_RX_DATA);
235 		else
236 			break;
237 	} while (loops--);
238 
239 	if (loops == 0)
240 		dev_warn(&sdd->pdev->dev, "Timed out flushing RX FIFO\n");
241 
242 	val = readl(regs + S3C64XX_SPI_CH_CFG);
243 	val &= ~S3C64XX_SPI_CH_SW_RST;
244 	writel(val, regs + S3C64XX_SPI_CH_CFG);
245 
246 	val = readl(regs + S3C64XX_SPI_MODE_CFG);
247 	val &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
248 	writel(val, regs + S3C64XX_SPI_MODE_CFG);
249 }
250 
251 static void s3c64xx_spi_dmacb(void *data)
252 {
253 	struct s3c64xx_spi_driver_data *sdd;
254 	struct s3c64xx_spi_dma_data *dma = data;
255 	unsigned long flags;
256 
257 	if (dma->direction == DMA_DEV_TO_MEM)
258 		sdd = container_of(data,
259 			struct s3c64xx_spi_driver_data, rx_dma);
260 	else
261 		sdd = container_of(data,
262 			struct s3c64xx_spi_driver_data, tx_dma);
263 
264 	spin_lock_irqsave(&sdd->lock, flags);
265 
266 	if (dma->direction == DMA_DEV_TO_MEM) {
267 		sdd->state &= ~RXBUSY;
268 		if (!(sdd->state & TXBUSY))
269 			complete(&sdd->xfer_completion);
270 	} else {
271 		sdd->state &= ~TXBUSY;
272 		if (!(sdd->state & RXBUSY))
273 			complete(&sdd->xfer_completion);
274 	}
275 
276 	spin_unlock_irqrestore(&sdd->lock, flags);
277 }
278 
279 static int prepare_dma(struct s3c64xx_spi_dma_data *dma,
280 			struct sg_table *sgt)
281 {
282 	struct s3c64xx_spi_driver_data *sdd;
283 	struct dma_slave_config config;
284 	struct dma_async_tx_descriptor *desc;
285 	int ret;
286 
287 	memset(&config, 0, sizeof(config));
288 
289 	if (dma->direction == DMA_DEV_TO_MEM) {
290 		sdd = container_of((void *)dma,
291 			struct s3c64xx_spi_driver_data, rx_dma);
292 		config.direction = dma->direction;
293 		config.src_addr = sdd->sfr_start + S3C64XX_SPI_RX_DATA;
294 		config.src_addr_width = sdd->cur_bpw / 8;
295 		config.src_maxburst = 1;
296 		dmaengine_slave_config(dma->ch, &config);
297 	} else {
298 		sdd = container_of((void *)dma,
299 			struct s3c64xx_spi_driver_data, tx_dma);
300 		config.direction = dma->direction;
301 		config.dst_addr = sdd->sfr_start + S3C64XX_SPI_TX_DATA;
302 		config.dst_addr_width = sdd->cur_bpw / 8;
303 		config.dst_maxburst = 1;
304 		dmaengine_slave_config(dma->ch, &config);
305 	}
306 
307 	desc = dmaengine_prep_slave_sg(dma->ch, sgt->sgl, sgt->nents,
308 				       dma->direction, DMA_PREP_INTERRUPT);
309 	if (!desc) {
310 		dev_err(&sdd->pdev->dev, "unable to prepare %s scatterlist",
311 			dma->direction == DMA_DEV_TO_MEM ? "rx" : "tx");
312 		return -ENOMEM;
313 	}
314 
315 	desc->callback = s3c64xx_spi_dmacb;
316 	desc->callback_param = dma;
317 
318 	dma->cookie = dmaengine_submit(desc);
319 	ret = dma_submit_error(dma->cookie);
320 	if (ret) {
321 		dev_err(&sdd->pdev->dev, "DMA submission failed");
322 		return -EIO;
323 	}
324 
325 	dma_async_issue_pending(dma->ch);
326 	return 0;
327 }
328 
329 static void s3c64xx_spi_set_cs(struct spi_device *spi, bool enable)
330 {
331 	struct s3c64xx_spi_driver_data *sdd =
332 					spi_controller_get_devdata(spi->controller);
333 
334 	if (sdd->cntrlr_info->no_cs)
335 		return;
336 
337 	if (enable) {
338 		if (!(sdd->port_conf->quirks & S3C64XX_SPI_QUIRK_CS_AUTO)) {
339 			writel(0, sdd->regs + S3C64XX_SPI_CS_REG);
340 		} else {
341 			u32 ssel = readl(sdd->regs + S3C64XX_SPI_CS_REG);
342 
343 			ssel |= (S3C64XX_SPI_CS_AUTO |
344 						S3C64XX_SPI_CS_NSC_CNT_2);
345 			writel(ssel, sdd->regs + S3C64XX_SPI_CS_REG);
346 		}
347 	} else {
348 		if (!(sdd->port_conf->quirks & S3C64XX_SPI_QUIRK_CS_AUTO))
349 			writel(S3C64XX_SPI_CS_SIG_INACT,
350 			       sdd->regs + S3C64XX_SPI_CS_REG);
351 	}
352 }
353 
354 static int s3c64xx_spi_prepare_transfer(struct spi_controller *spi)
355 {
356 	struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(spi);
357 
358 	if (is_polling(sdd))
359 		return 0;
360 
361 	/* Requests DMA channels */
362 	sdd->rx_dma.ch = dma_request_chan(&sdd->pdev->dev, "rx");
363 	if (IS_ERR(sdd->rx_dma.ch)) {
364 		dev_err(&sdd->pdev->dev, "Failed to get RX DMA channel\n");
365 		sdd->rx_dma.ch = NULL;
366 		return 0;
367 	}
368 
369 	sdd->tx_dma.ch = dma_request_chan(&sdd->pdev->dev, "tx");
370 	if (IS_ERR(sdd->tx_dma.ch)) {
371 		dev_err(&sdd->pdev->dev, "Failed to get TX DMA channel\n");
372 		dma_release_channel(sdd->rx_dma.ch);
373 		sdd->tx_dma.ch = NULL;
374 		sdd->rx_dma.ch = NULL;
375 		return 0;
376 	}
377 
378 	spi->dma_rx = sdd->rx_dma.ch;
379 	spi->dma_tx = sdd->tx_dma.ch;
380 
381 	return 0;
382 }
383 
384 static int s3c64xx_spi_unprepare_transfer(struct spi_controller *spi)
385 {
386 	struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(spi);
387 
388 	if (is_polling(sdd))
389 		return 0;
390 
391 	/* Releases DMA channels if they are allocated */
392 	if (sdd->rx_dma.ch && sdd->tx_dma.ch) {
393 		dma_release_channel(sdd->rx_dma.ch);
394 		dma_release_channel(sdd->tx_dma.ch);
395 		sdd->rx_dma.ch = NULL;
396 		sdd->tx_dma.ch = NULL;
397 	}
398 
399 	return 0;
400 }
401 
402 static bool s3c64xx_spi_can_dma(struct spi_controller *host,
403 				struct spi_device *spi,
404 				struct spi_transfer *xfer)
405 {
406 	struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(host);
407 
408 	if (sdd->rx_dma.ch && sdd->tx_dma.ch) {
409 		return xfer->len > (FIFO_LVL_MASK(sdd) >> 1) + 1;
410 	} else {
411 		return false;
412 	}
413 
414 }
415 
416 static int s3c64xx_enable_datapath(struct s3c64xx_spi_driver_data *sdd,
417 				    struct spi_transfer *xfer, int dma_mode)
418 {
419 	void __iomem *regs = sdd->regs;
420 	u32 modecfg, chcfg;
421 	int ret = 0;
422 
423 	modecfg = readl(regs + S3C64XX_SPI_MODE_CFG);
424 	modecfg &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
425 
426 	chcfg = readl(regs + S3C64XX_SPI_CH_CFG);
427 	chcfg &= ~S3C64XX_SPI_CH_TXCH_ON;
428 
429 	if (dma_mode) {
430 		chcfg &= ~S3C64XX_SPI_CH_RXCH_ON;
431 	} else {
432 		/* Always shift in data in FIFO, even if xfer is Tx only,
433 		 * this helps setting PCKT_CNT value for generating clocks
434 		 * as exactly needed.
435 		 */
436 		chcfg |= S3C64XX_SPI_CH_RXCH_ON;
437 		writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
438 					| S3C64XX_SPI_PACKET_CNT_EN,
439 					regs + S3C64XX_SPI_PACKET_CNT);
440 	}
441 
442 	if (xfer->tx_buf != NULL) {
443 		sdd->state |= TXBUSY;
444 		chcfg |= S3C64XX_SPI_CH_TXCH_ON;
445 		if (dma_mode) {
446 			modecfg |= S3C64XX_SPI_MODE_TXDMA_ON;
447 			ret = prepare_dma(&sdd->tx_dma, &xfer->tx_sg);
448 		} else {
449 			switch (sdd->cur_bpw) {
450 			case 32:
451 				iowrite32_rep(regs + S3C64XX_SPI_TX_DATA,
452 					xfer->tx_buf, xfer->len / 4);
453 				break;
454 			case 16:
455 				iowrite16_rep(regs + S3C64XX_SPI_TX_DATA,
456 					xfer->tx_buf, xfer->len / 2);
457 				break;
458 			default:
459 				iowrite8_rep(regs + S3C64XX_SPI_TX_DATA,
460 					xfer->tx_buf, xfer->len);
461 				break;
462 			}
463 		}
464 	}
465 
466 	if (xfer->rx_buf != NULL) {
467 		sdd->state |= RXBUSY;
468 
469 		if (sdd->port_conf->high_speed && sdd->cur_speed >= 30000000UL
470 					&& !(sdd->cur_mode & SPI_CPHA))
471 			chcfg |= S3C64XX_SPI_CH_HS_EN;
472 
473 		if (dma_mode) {
474 			modecfg |= S3C64XX_SPI_MODE_RXDMA_ON;
475 			chcfg |= S3C64XX_SPI_CH_RXCH_ON;
476 			writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
477 					| S3C64XX_SPI_PACKET_CNT_EN,
478 					regs + S3C64XX_SPI_PACKET_CNT);
479 			ret = prepare_dma(&sdd->rx_dma, &xfer->rx_sg);
480 		}
481 	}
482 
483 	if (ret)
484 		return ret;
485 
486 	writel(modecfg, regs + S3C64XX_SPI_MODE_CFG);
487 	writel(chcfg, regs + S3C64XX_SPI_CH_CFG);
488 
489 	return 0;
490 }
491 
492 static u32 s3c64xx_spi_wait_for_timeout(struct s3c64xx_spi_driver_data *sdd,
493 					int timeout_ms)
494 {
495 	void __iomem *regs = sdd->regs;
496 	unsigned long val = 1;
497 	u32 status;
498 
499 	/* max fifo depth available */
500 	u32 max_fifo = (FIFO_LVL_MASK(sdd) >> 1) + 1;
501 
502 	if (timeout_ms)
503 		val = msecs_to_loops(timeout_ms);
504 
505 	do {
506 		status = readl(regs + S3C64XX_SPI_STATUS);
507 	} while (RX_FIFO_LVL(status, sdd) < max_fifo && --val);
508 
509 	/* return the actual received data length */
510 	return RX_FIFO_LVL(status, sdd);
511 }
512 
513 static int s3c64xx_wait_for_dma(struct s3c64xx_spi_driver_data *sdd,
514 				struct spi_transfer *xfer)
515 {
516 	void __iomem *regs = sdd->regs;
517 	unsigned long val;
518 	u32 status;
519 	int ms;
520 
521 	/* millisecs to xfer 'len' bytes @ 'cur_speed' */
522 	ms = xfer->len * 8 * 1000 / sdd->cur_speed;
523 	ms += 30;               /* some tolerance */
524 	ms = max(ms, 100);      /* minimum timeout */
525 
526 	val = msecs_to_jiffies(ms) + 10;
527 	val = wait_for_completion_timeout(&sdd->xfer_completion, val);
528 
529 	/*
530 	 * If the previous xfer was completed within timeout, then
531 	 * proceed further else return -EIO.
532 	 * DmaTx returns after simply writing data in the FIFO,
533 	 * w/o waiting for real transmission on the bus to finish.
534 	 * DmaRx returns only after Dma read data from FIFO which
535 	 * needs bus transmission to finish, so we don't worry if
536 	 * Xfer involved Rx(with or without Tx).
537 	 */
538 	if (val && !xfer->rx_buf) {
539 		val = msecs_to_loops(10);
540 		status = readl(regs + S3C64XX_SPI_STATUS);
541 		while ((TX_FIFO_LVL(status, sdd)
542 			|| !S3C64XX_SPI_ST_TX_DONE(status, sdd))
543 		       && --val) {
544 			cpu_relax();
545 			status = readl(regs + S3C64XX_SPI_STATUS);
546 		}
547 
548 	}
549 
550 	/* If timed out while checking rx/tx status return error */
551 	if (!val)
552 		return -EIO;
553 
554 	return 0;
555 }
556 
557 static int s3c64xx_wait_for_pio(struct s3c64xx_spi_driver_data *sdd,
558 				struct spi_transfer *xfer, bool use_irq)
559 {
560 	void __iomem *regs = sdd->regs;
561 	unsigned long val;
562 	u32 status;
563 	int loops;
564 	u32 cpy_len;
565 	u8 *buf;
566 	int ms;
567 	unsigned long time_us;
568 
569 	/* microsecs to xfer 'len' bytes @ 'cur_speed' */
570 	time_us = (xfer->len * 8 * 1000 * 1000) / sdd->cur_speed;
571 	ms = (time_us / 1000);
572 	ms += 10; /* some tolerance */
573 
574 	/* sleep during signal transfer time */
575 	status = readl(regs + S3C64XX_SPI_STATUS);
576 	if (RX_FIFO_LVL(status, sdd) < xfer->len)
577 		usleep_range(time_us / 2, time_us);
578 
579 	if (use_irq) {
580 		val = msecs_to_jiffies(ms);
581 		if (!wait_for_completion_timeout(&sdd->xfer_completion, val))
582 			return -EIO;
583 	}
584 
585 	val = msecs_to_loops(ms);
586 	do {
587 		status = readl(regs + S3C64XX_SPI_STATUS);
588 	} while (RX_FIFO_LVL(status, sdd) < xfer->len && --val);
589 
590 	if (!val)
591 		return -EIO;
592 
593 	/* If it was only Tx */
594 	if (!xfer->rx_buf) {
595 		sdd->state &= ~TXBUSY;
596 		return 0;
597 	}
598 
599 	/*
600 	 * If the receive length is bigger than the controller fifo
601 	 * size, calculate the loops and read the fifo as many times.
602 	 * loops = length / max fifo size (calculated by using the
603 	 * fifo mask).
604 	 * For any size less than the fifo size the below code is
605 	 * executed atleast once.
606 	 */
607 	loops = xfer->len / ((FIFO_LVL_MASK(sdd) >> 1) + 1);
608 	buf = xfer->rx_buf;
609 	do {
610 		/* wait for data to be received in the fifo */
611 		cpy_len = s3c64xx_spi_wait_for_timeout(sdd,
612 						       (loops ? ms : 0));
613 
614 		switch (sdd->cur_bpw) {
615 		case 32:
616 			ioread32_rep(regs + S3C64XX_SPI_RX_DATA,
617 				     buf, cpy_len / 4);
618 			break;
619 		case 16:
620 			ioread16_rep(regs + S3C64XX_SPI_RX_DATA,
621 				     buf, cpy_len / 2);
622 			break;
623 		default:
624 			ioread8_rep(regs + S3C64XX_SPI_RX_DATA,
625 				    buf, cpy_len);
626 			break;
627 		}
628 
629 		buf = buf + cpy_len;
630 	} while (loops--);
631 	sdd->state &= ~RXBUSY;
632 
633 	return 0;
634 }
635 
636 static int s3c64xx_spi_config(struct s3c64xx_spi_driver_data *sdd)
637 {
638 	void __iomem *regs = sdd->regs;
639 	int ret;
640 	u32 val;
641 	int div = sdd->port_conf->clk_div;
642 
643 	/* Disable Clock */
644 	if (!sdd->port_conf->clk_from_cmu) {
645 		val = readl(regs + S3C64XX_SPI_CLK_CFG);
646 		val &= ~S3C64XX_SPI_ENCLK_ENABLE;
647 		writel(val, regs + S3C64XX_SPI_CLK_CFG);
648 	}
649 
650 	/* Set Polarity and Phase */
651 	val = readl(regs + S3C64XX_SPI_CH_CFG);
652 	val &= ~(S3C64XX_SPI_CH_SLAVE |
653 			S3C64XX_SPI_CPOL_L |
654 			S3C64XX_SPI_CPHA_B);
655 
656 	if (sdd->cur_mode & SPI_CPOL)
657 		val |= S3C64XX_SPI_CPOL_L;
658 
659 	if (sdd->cur_mode & SPI_CPHA)
660 		val |= S3C64XX_SPI_CPHA_B;
661 
662 	writel(val, regs + S3C64XX_SPI_CH_CFG);
663 
664 	/* Set Channel & DMA Mode */
665 	val = readl(regs + S3C64XX_SPI_MODE_CFG);
666 	val &= ~(S3C64XX_SPI_MODE_BUS_TSZ_MASK
667 			| S3C64XX_SPI_MODE_CH_TSZ_MASK);
668 
669 	switch (sdd->cur_bpw) {
670 	case 32:
671 		val |= S3C64XX_SPI_MODE_BUS_TSZ_WORD;
672 		val |= S3C64XX_SPI_MODE_CH_TSZ_WORD;
673 		break;
674 	case 16:
675 		val |= S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD;
676 		val |= S3C64XX_SPI_MODE_CH_TSZ_HALFWORD;
677 		break;
678 	default:
679 		val |= S3C64XX_SPI_MODE_BUS_TSZ_BYTE;
680 		val |= S3C64XX_SPI_MODE_CH_TSZ_BYTE;
681 		break;
682 	}
683 
684 	if ((sdd->cur_mode & SPI_LOOP) && sdd->port_conf->has_loopback)
685 		val |= S3C64XX_SPI_MODE_SELF_LOOPBACK;
686 	else
687 		val &= ~S3C64XX_SPI_MODE_SELF_LOOPBACK;
688 
689 	writel(val, regs + S3C64XX_SPI_MODE_CFG);
690 
691 	if (sdd->port_conf->clk_from_cmu) {
692 		ret = clk_set_rate(sdd->src_clk, sdd->cur_speed * div);
693 		if (ret)
694 			return ret;
695 		sdd->cur_speed = clk_get_rate(sdd->src_clk) / div;
696 	} else {
697 		/* Configure Clock */
698 		val = readl(regs + S3C64XX_SPI_CLK_CFG);
699 		val &= ~S3C64XX_SPI_PSR_MASK;
700 		val |= ((clk_get_rate(sdd->src_clk) / sdd->cur_speed / div - 1)
701 				& S3C64XX_SPI_PSR_MASK);
702 		writel(val, regs + S3C64XX_SPI_CLK_CFG);
703 
704 		/* Enable Clock */
705 		val = readl(regs + S3C64XX_SPI_CLK_CFG);
706 		val |= S3C64XX_SPI_ENCLK_ENABLE;
707 		writel(val, regs + S3C64XX_SPI_CLK_CFG);
708 	}
709 
710 	return 0;
711 }
712 
713 #define XFER_DMAADDR_INVALID DMA_BIT_MASK(32)
714 
715 static int s3c64xx_spi_prepare_message(struct spi_controller *host,
716 				       struct spi_message *msg)
717 {
718 	struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(host);
719 	struct spi_device *spi = msg->spi;
720 	struct s3c64xx_spi_csinfo *cs = spi->controller_data;
721 
722 	/* Configure feedback delay */
723 	if (!cs)
724 		/* No delay if not defined */
725 		writel(0, sdd->regs + S3C64XX_SPI_FB_CLK);
726 	else
727 		writel(cs->fb_delay & 0x3, sdd->regs + S3C64XX_SPI_FB_CLK);
728 
729 	return 0;
730 }
731 
732 static size_t s3c64xx_spi_max_transfer_size(struct spi_device *spi)
733 {
734 	struct spi_controller *ctlr = spi->controller;
735 
736 	return ctlr->can_dma ? S3C64XX_SPI_PACKET_CNT_MASK : SIZE_MAX;
737 }
738 
739 static int s3c64xx_spi_transfer_one(struct spi_controller *host,
740 				    struct spi_device *spi,
741 				    struct spi_transfer *xfer)
742 {
743 	struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(host);
744 	const unsigned int fifo_len = (FIFO_LVL_MASK(sdd) >> 1) + 1;
745 	const void *tx_buf = NULL;
746 	void *rx_buf = NULL;
747 	int target_len = 0, origin_len = 0;
748 	int use_dma = 0;
749 	bool use_irq = false;
750 	int status;
751 	u32 speed;
752 	u8 bpw;
753 	unsigned long flags;
754 	u32 rdy_lv;
755 	u32 val;
756 
757 	reinit_completion(&sdd->xfer_completion);
758 
759 	/* Only BPW and Speed may change across transfers */
760 	bpw = xfer->bits_per_word;
761 	speed = xfer->speed_hz;
762 
763 	if (bpw != sdd->cur_bpw || speed != sdd->cur_speed) {
764 		sdd->cur_bpw = bpw;
765 		sdd->cur_speed = speed;
766 		sdd->cur_mode = spi->mode;
767 		status = s3c64xx_spi_config(sdd);
768 		if (status)
769 			return status;
770 	}
771 
772 	if (!is_polling(sdd) && (xfer->len > fifo_len) &&
773 	    sdd->rx_dma.ch && sdd->tx_dma.ch) {
774 		use_dma = 1;
775 
776 	} else if (xfer->len >= fifo_len) {
777 		tx_buf = xfer->tx_buf;
778 		rx_buf = xfer->rx_buf;
779 		origin_len = xfer->len;
780 		target_len = xfer->len;
781 		xfer->len = fifo_len - 1;
782 	}
783 
784 	do {
785 		/* transfer size is greater than 32, change to IRQ mode */
786 		if (!use_dma && xfer->len > S3C64XX_SPI_POLLING_SIZE)
787 			use_irq = true;
788 
789 		if (use_irq) {
790 			reinit_completion(&sdd->xfer_completion);
791 
792 			rdy_lv = xfer->len;
793 			/* Setup RDY_FIFO trigger Level
794 			 * RDY_LVL =
795 			 * fifo_lvl up to 64 byte -> N bytes
796 			 *               128 byte -> RDY_LVL * 2 bytes
797 			 *               256 byte -> RDY_LVL * 4 bytes
798 			 */
799 			if (fifo_len == 128)
800 				rdy_lv /= 2;
801 			else if (fifo_len == 256)
802 				rdy_lv /= 4;
803 
804 			val = readl(sdd->regs + S3C64XX_SPI_MODE_CFG);
805 			val &= ~S3C64XX_SPI_MODE_RX_RDY_LVL;
806 			val |= (rdy_lv << S3C64XX_SPI_MODE_RX_RDY_LVL_SHIFT);
807 			writel(val, sdd->regs + S3C64XX_SPI_MODE_CFG);
808 
809 			/* Enable FIFO_RDY_EN IRQ */
810 			val = readl(sdd->regs + S3C64XX_SPI_INT_EN);
811 			writel((val | S3C64XX_SPI_INT_RX_FIFORDY_EN),
812 					sdd->regs + S3C64XX_SPI_INT_EN);
813 
814 		}
815 
816 		spin_lock_irqsave(&sdd->lock, flags);
817 
818 		/* Pending only which is to be done */
819 		sdd->state &= ~RXBUSY;
820 		sdd->state &= ~TXBUSY;
821 
822 		/* Start the signals */
823 		s3c64xx_spi_set_cs(spi, true);
824 
825 		status = s3c64xx_enable_datapath(sdd, xfer, use_dma);
826 
827 		spin_unlock_irqrestore(&sdd->lock, flags);
828 
829 		if (status) {
830 			dev_err(&spi->dev, "failed to enable data path for transfer: %d\n", status);
831 			break;
832 		}
833 
834 		if (use_dma)
835 			status = s3c64xx_wait_for_dma(sdd, xfer);
836 		else
837 			status = s3c64xx_wait_for_pio(sdd, xfer, use_irq);
838 
839 		if (status) {
840 			dev_err(&spi->dev,
841 				"I/O Error: rx-%d tx-%d rx-%c tx-%c len-%d dma-%d res-(%d)\n",
842 				xfer->rx_buf ? 1 : 0, xfer->tx_buf ? 1 : 0,
843 				(sdd->state & RXBUSY) ? 'f' : 'p',
844 				(sdd->state & TXBUSY) ? 'f' : 'p',
845 				xfer->len, use_dma ? 1 : 0, status);
846 
847 			if (use_dma) {
848 				struct dma_tx_state s;
849 
850 				if (xfer->tx_buf && (sdd->state & TXBUSY)) {
851 					dmaengine_pause(sdd->tx_dma.ch);
852 					dmaengine_tx_status(sdd->tx_dma.ch, sdd->tx_dma.cookie, &s);
853 					dmaengine_terminate_all(sdd->tx_dma.ch);
854 					dev_err(&spi->dev, "TX residue: %d\n", s.residue);
855 
856 				}
857 				if (xfer->rx_buf && (sdd->state & RXBUSY)) {
858 					dmaengine_pause(sdd->rx_dma.ch);
859 					dmaengine_tx_status(sdd->rx_dma.ch, sdd->rx_dma.cookie, &s);
860 					dmaengine_terminate_all(sdd->rx_dma.ch);
861 					dev_err(&spi->dev, "RX residue: %d\n", s.residue);
862 				}
863 			}
864 		} else {
865 			s3c64xx_flush_fifo(sdd);
866 		}
867 		if (target_len > 0) {
868 			target_len -= xfer->len;
869 
870 			if (xfer->tx_buf)
871 				xfer->tx_buf += xfer->len;
872 
873 			if (xfer->rx_buf)
874 				xfer->rx_buf += xfer->len;
875 
876 			if (target_len >= fifo_len)
877 				xfer->len = fifo_len - 1;
878 			else
879 				xfer->len = target_len;
880 		}
881 	} while (target_len > 0);
882 
883 	if (origin_len) {
884 		/* Restore original xfer buffers and length */
885 		xfer->tx_buf = tx_buf;
886 		xfer->rx_buf = rx_buf;
887 		xfer->len = origin_len;
888 	}
889 
890 	return status;
891 }
892 
893 static struct s3c64xx_spi_csinfo *s3c64xx_get_target_ctrldata(
894 				struct spi_device *spi)
895 {
896 	struct s3c64xx_spi_csinfo *cs;
897 	struct device_node *target_np, *data_np = NULL;
898 	u32 fb_delay = 0;
899 
900 	target_np = spi->dev.of_node;
901 	if (!target_np) {
902 		dev_err(&spi->dev, "device node not found\n");
903 		return ERR_PTR(-EINVAL);
904 	}
905 
906 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
907 	if (!cs)
908 		return ERR_PTR(-ENOMEM);
909 
910 	data_np = of_get_child_by_name(target_np, "controller-data");
911 	if (!data_np) {
912 		dev_info(&spi->dev, "feedback delay set to default (0)\n");
913 		return cs;
914 	}
915 
916 	of_property_read_u32(data_np, "samsung,spi-feedback-delay", &fb_delay);
917 	cs->fb_delay = fb_delay;
918 	of_node_put(data_np);
919 	return cs;
920 }
921 
922 /*
923  * Here we only check the validity of requested configuration
924  * and save the configuration in a local data-structure.
925  * The controller is actually configured only just before we
926  * get a message to transfer.
927  */
928 static int s3c64xx_spi_setup(struct spi_device *spi)
929 {
930 	struct s3c64xx_spi_csinfo *cs = spi->controller_data;
931 	struct s3c64xx_spi_driver_data *sdd;
932 	int err;
933 	int div;
934 
935 	sdd = spi_controller_get_devdata(spi->controller);
936 	if (spi->dev.of_node) {
937 		cs = s3c64xx_get_target_ctrldata(spi);
938 		spi->controller_data = cs;
939 	}
940 
941 	/* NULL is fine, we just avoid using the FB delay (=0) */
942 	if (IS_ERR(cs)) {
943 		dev_err(&spi->dev, "No CS for SPI(%d)\n", spi_get_chipselect(spi, 0));
944 		return -ENODEV;
945 	}
946 
947 	if (!spi_get_ctldata(spi))
948 		spi_set_ctldata(spi, cs);
949 
950 	pm_runtime_get_sync(&sdd->pdev->dev);
951 
952 	div = sdd->port_conf->clk_div;
953 
954 	/* Check if we can provide the requested rate */
955 	if (!sdd->port_conf->clk_from_cmu) {
956 		u32 psr, speed;
957 
958 		/* Max possible */
959 		speed = clk_get_rate(sdd->src_clk) / div / (0 + 1);
960 
961 		if (spi->max_speed_hz > speed)
962 			spi->max_speed_hz = speed;
963 
964 		psr = clk_get_rate(sdd->src_clk) / div / spi->max_speed_hz - 1;
965 		psr &= S3C64XX_SPI_PSR_MASK;
966 		if (psr == S3C64XX_SPI_PSR_MASK)
967 			psr--;
968 
969 		speed = clk_get_rate(sdd->src_clk) / div / (psr + 1);
970 		if (spi->max_speed_hz < speed) {
971 			if (psr+1 < S3C64XX_SPI_PSR_MASK) {
972 				psr++;
973 			} else {
974 				err = -EINVAL;
975 				goto setup_exit;
976 			}
977 		}
978 
979 		speed = clk_get_rate(sdd->src_clk) / div / (psr + 1);
980 		if (spi->max_speed_hz >= speed) {
981 			spi->max_speed_hz = speed;
982 		} else {
983 			dev_err(&spi->dev, "Can't set %dHz transfer speed\n",
984 				spi->max_speed_hz);
985 			err = -EINVAL;
986 			goto setup_exit;
987 		}
988 	}
989 
990 	pm_runtime_mark_last_busy(&sdd->pdev->dev);
991 	pm_runtime_put_autosuspend(&sdd->pdev->dev);
992 	s3c64xx_spi_set_cs(spi, false);
993 
994 	return 0;
995 
996 setup_exit:
997 	pm_runtime_mark_last_busy(&sdd->pdev->dev);
998 	pm_runtime_put_autosuspend(&sdd->pdev->dev);
999 	/* setup() returns with device de-selected */
1000 	s3c64xx_spi_set_cs(spi, false);
1001 
1002 	spi_set_ctldata(spi, NULL);
1003 
1004 	/* This was dynamically allocated on the DT path */
1005 	if (spi->dev.of_node)
1006 		kfree(cs);
1007 
1008 	return err;
1009 }
1010 
1011 static void s3c64xx_spi_cleanup(struct spi_device *spi)
1012 {
1013 	struct s3c64xx_spi_csinfo *cs = spi_get_ctldata(spi);
1014 
1015 	/* This was dynamically allocated on the DT path */
1016 	if (spi->dev.of_node)
1017 		kfree(cs);
1018 
1019 	spi_set_ctldata(spi, NULL);
1020 }
1021 
1022 static irqreturn_t s3c64xx_spi_irq(int irq, void *data)
1023 {
1024 	struct s3c64xx_spi_driver_data *sdd = data;
1025 	struct spi_controller *spi = sdd->host;
1026 	unsigned int val, clr = 0;
1027 
1028 	val = readl(sdd->regs + S3C64XX_SPI_STATUS);
1029 
1030 	if (val & S3C64XX_SPI_ST_RX_OVERRUN_ERR) {
1031 		clr = S3C64XX_SPI_PND_RX_OVERRUN_CLR;
1032 		dev_err(&spi->dev, "RX overrun\n");
1033 	}
1034 	if (val & S3C64XX_SPI_ST_RX_UNDERRUN_ERR) {
1035 		clr |= S3C64XX_SPI_PND_RX_UNDERRUN_CLR;
1036 		dev_err(&spi->dev, "RX underrun\n");
1037 	}
1038 	if (val & S3C64XX_SPI_ST_TX_OVERRUN_ERR) {
1039 		clr |= S3C64XX_SPI_PND_TX_OVERRUN_CLR;
1040 		dev_err(&spi->dev, "TX overrun\n");
1041 	}
1042 	if (val & S3C64XX_SPI_ST_TX_UNDERRUN_ERR) {
1043 		clr |= S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
1044 		dev_err(&spi->dev, "TX underrun\n");
1045 	}
1046 
1047 	if (val & S3C64XX_SPI_ST_RX_FIFORDY) {
1048 		complete(&sdd->xfer_completion);
1049 		/* No pending clear irq, turn-off INT_EN_RX_FIFO_RDY */
1050 		val = readl(sdd->regs + S3C64XX_SPI_INT_EN);
1051 		writel((val & ~S3C64XX_SPI_INT_RX_FIFORDY_EN),
1052 				sdd->regs + S3C64XX_SPI_INT_EN);
1053 	}
1054 
1055 	/* Clear the pending irq by setting and then clearing it */
1056 	writel(clr, sdd->regs + S3C64XX_SPI_PENDING_CLR);
1057 	writel(0, sdd->regs + S3C64XX_SPI_PENDING_CLR);
1058 
1059 	return IRQ_HANDLED;
1060 }
1061 
1062 static void s3c64xx_spi_hwinit(struct s3c64xx_spi_driver_data *sdd)
1063 {
1064 	struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
1065 	void __iomem *regs = sdd->regs;
1066 	unsigned int val;
1067 
1068 	sdd->cur_speed = 0;
1069 
1070 	if (sci->no_cs)
1071 		writel(0, sdd->regs + S3C64XX_SPI_CS_REG);
1072 	else if (!(sdd->port_conf->quirks & S3C64XX_SPI_QUIRK_CS_AUTO))
1073 		writel(S3C64XX_SPI_CS_SIG_INACT, sdd->regs + S3C64XX_SPI_CS_REG);
1074 
1075 	/* Disable Interrupts - we use Polling if not DMA mode */
1076 	writel(0, regs + S3C64XX_SPI_INT_EN);
1077 
1078 	if (!sdd->port_conf->clk_from_cmu)
1079 		writel(sci->src_clk_nr << S3C64XX_SPI_CLKSEL_SRCSHFT,
1080 				regs + S3C64XX_SPI_CLK_CFG);
1081 	writel(0, regs + S3C64XX_SPI_MODE_CFG);
1082 	writel(0, regs + S3C64XX_SPI_PACKET_CNT);
1083 
1084 	/* Clear any irq pending bits, should set and clear the bits */
1085 	val = S3C64XX_SPI_PND_RX_OVERRUN_CLR |
1086 		S3C64XX_SPI_PND_RX_UNDERRUN_CLR |
1087 		S3C64XX_SPI_PND_TX_OVERRUN_CLR |
1088 		S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
1089 	writel(val, regs + S3C64XX_SPI_PENDING_CLR);
1090 	writel(0, regs + S3C64XX_SPI_PENDING_CLR);
1091 
1092 	writel(0, regs + S3C64XX_SPI_SWAP_CFG);
1093 
1094 	val = readl(regs + S3C64XX_SPI_MODE_CFG);
1095 	val &= ~S3C64XX_SPI_MODE_4BURST;
1096 	val &= ~(S3C64XX_SPI_MAX_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
1097 	val |= (S3C64XX_SPI_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
1098 	writel(val, regs + S3C64XX_SPI_MODE_CFG);
1099 
1100 	s3c64xx_flush_fifo(sdd);
1101 }
1102 
1103 #ifdef CONFIG_OF
1104 static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
1105 {
1106 	struct s3c64xx_spi_info *sci;
1107 	u32 temp;
1108 
1109 	sci = devm_kzalloc(dev, sizeof(*sci), GFP_KERNEL);
1110 	if (!sci)
1111 		return ERR_PTR(-ENOMEM);
1112 
1113 	if (of_property_read_u32(dev->of_node, "samsung,spi-src-clk", &temp)) {
1114 		dev_warn(dev, "spi bus clock parent not specified, using clock at index 0 as parent\n");
1115 		sci->src_clk_nr = 0;
1116 	} else {
1117 		sci->src_clk_nr = temp;
1118 	}
1119 
1120 	if (of_property_read_u32(dev->of_node, "num-cs", &temp)) {
1121 		dev_warn(dev, "number of chip select lines not specified, assuming 1 chip select line\n");
1122 		sci->num_cs = 1;
1123 	} else {
1124 		sci->num_cs = temp;
1125 	}
1126 
1127 	sci->no_cs = of_property_read_bool(dev->of_node, "no-cs-readback");
1128 	sci->polling = !of_property_present(dev->of_node, "dmas");
1129 
1130 	return sci;
1131 }
1132 #else
1133 static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
1134 {
1135 	return dev_get_platdata(dev);
1136 }
1137 #endif
1138 
1139 static inline const struct s3c64xx_spi_port_config *s3c64xx_spi_get_port_config(
1140 						struct platform_device *pdev)
1141 {
1142 #ifdef CONFIG_OF
1143 	if (pdev->dev.of_node)
1144 		return of_device_get_match_data(&pdev->dev);
1145 #endif
1146 	return (const struct s3c64xx_spi_port_config *)platform_get_device_id(pdev)->driver_data;
1147 }
1148 
1149 static int s3c64xx_spi_probe(struct platform_device *pdev)
1150 {
1151 	struct resource	*mem_res;
1152 	struct s3c64xx_spi_driver_data *sdd;
1153 	struct s3c64xx_spi_info *sci = dev_get_platdata(&pdev->dev);
1154 	struct spi_controller *host;
1155 	int ret, irq;
1156 	char clk_name[16];
1157 
1158 	if (!sci && pdev->dev.of_node) {
1159 		sci = s3c64xx_spi_parse_dt(&pdev->dev);
1160 		if (IS_ERR(sci))
1161 			return PTR_ERR(sci);
1162 	}
1163 
1164 	if (!sci)
1165 		return dev_err_probe(&pdev->dev, -ENODEV,
1166 				     "Platform_data missing!\n");
1167 
1168 	irq = platform_get_irq(pdev, 0);
1169 	if (irq < 0)
1170 		return irq;
1171 
1172 	host = devm_spi_alloc_host(&pdev->dev, sizeof(*sdd));
1173 	if (!host)
1174 		return dev_err_probe(&pdev->dev, -ENOMEM,
1175 				     "Unable to allocate SPI Host\n");
1176 
1177 	platform_set_drvdata(pdev, host);
1178 
1179 	sdd = spi_controller_get_devdata(host);
1180 	sdd->port_conf = s3c64xx_spi_get_port_config(pdev);
1181 	sdd->host = host;
1182 	sdd->cntrlr_info = sci;
1183 	sdd->pdev = pdev;
1184 	if (pdev->dev.of_node) {
1185 		ret = of_alias_get_id(pdev->dev.of_node, "spi");
1186 		if (ret < 0)
1187 			return dev_err_probe(&pdev->dev, ret,
1188 					     "Failed to get alias id\n");
1189 		sdd->port_id = ret;
1190 	} else {
1191 		sdd->port_id = pdev->id;
1192 	}
1193 
1194 	sdd->cur_bpw = 8;
1195 
1196 	sdd->tx_dma.direction = DMA_MEM_TO_DEV;
1197 	sdd->rx_dma.direction = DMA_DEV_TO_MEM;
1198 
1199 	host->dev.of_node = pdev->dev.of_node;
1200 	host->bus_num = sdd->port_id;
1201 	host->setup = s3c64xx_spi_setup;
1202 	host->cleanup = s3c64xx_spi_cleanup;
1203 	host->prepare_transfer_hardware = s3c64xx_spi_prepare_transfer;
1204 	host->unprepare_transfer_hardware = s3c64xx_spi_unprepare_transfer;
1205 	host->prepare_message = s3c64xx_spi_prepare_message;
1206 	host->transfer_one = s3c64xx_spi_transfer_one;
1207 	host->max_transfer_size = s3c64xx_spi_max_transfer_size;
1208 	host->num_chipselect = sci->num_cs;
1209 	host->use_gpio_descriptors = true;
1210 	host->dma_alignment = 8;
1211 	host->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) |
1212 				   SPI_BPW_MASK(8);
1213 	/* the spi->mode bits understood by this driver: */
1214 	host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1215 	if (sdd->port_conf->has_loopback)
1216 		host->mode_bits |= SPI_LOOP;
1217 	host->auto_runtime_pm = true;
1218 	if (!is_polling(sdd))
1219 		host->can_dma = s3c64xx_spi_can_dma;
1220 
1221 	sdd->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &mem_res);
1222 	if (IS_ERR(sdd->regs))
1223 		return PTR_ERR(sdd->regs);
1224 	sdd->sfr_start = mem_res->start;
1225 
1226 	if (sci->cfg_gpio && sci->cfg_gpio())
1227 		return dev_err_probe(&pdev->dev, -EBUSY,
1228 				     "Unable to config gpio\n");
1229 
1230 	/* Setup clocks */
1231 	sdd->clk = devm_clk_get_enabled(&pdev->dev, "spi");
1232 	if (IS_ERR(sdd->clk))
1233 		return dev_err_probe(&pdev->dev, PTR_ERR(sdd->clk),
1234 				     "Unable to acquire clock 'spi'\n");
1235 
1236 	sprintf(clk_name, "spi_busclk%d", sci->src_clk_nr);
1237 	sdd->src_clk = devm_clk_get_enabled(&pdev->dev, clk_name);
1238 	if (IS_ERR(sdd->src_clk))
1239 		return dev_err_probe(&pdev->dev, PTR_ERR(sdd->src_clk),
1240 				     "Unable to acquire clock '%s'\n",
1241 				     clk_name);
1242 
1243 	if (sdd->port_conf->clk_ioclk) {
1244 		sdd->ioclk = devm_clk_get_enabled(&pdev->dev, "spi_ioclk");
1245 		if (IS_ERR(sdd->ioclk))
1246 			return dev_err_probe(&pdev->dev, PTR_ERR(sdd->ioclk),
1247 					     "Unable to acquire 'ioclk'\n");
1248 	}
1249 
1250 	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1251 	pm_runtime_use_autosuspend(&pdev->dev);
1252 	pm_runtime_set_active(&pdev->dev);
1253 	pm_runtime_enable(&pdev->dev);
1254 	pm_runtime_get_sync(&pdev->dev);
1255 
1256 	/* Setup Deufult Mode */
1257 	s3c64xx_spi_hwinit(sdd);
1258 
1259 	spin_lock_init(&sdd->lock);
1260 	init_completion(&sdd->xfer_completion);
1261 
1262 	ret = devm_request_irq(&pdev->dev, irq, s3c64xx_spi_irq, 0,
1263 				"spi-s3c64xx", sdd);
1264 	if (ret != 0) {
1265 		dev_err(&pdev->dev, "Failed to request IRQ %d: %d\n",
1266 			irq, ret);
1267 		goto err_pm_put;
1268 	}
1269 
1270 	writel(S3C64XX_SPI_INT_RX_OVERRUN_EN | S3C64XX_SPI_INT_RX_UNDERRUN_EN |
1271 	       S3C64XX_SPI_INT_TX_OVERRUN_EN | S3C64XX_SPI_INT_TX_UNDERRUN_EN,
1272 	       sdd->regs + S3C64XX_SPI_INT_EN);
1273 
1274 	ret = devm_spi_register_controller(&pdev->dev, host);
1275 	if (ret != 0) {
1276 		dev_err(&pdev->dev, "cannot register SPI host: %d\n", ret);
1277 		goto err_pm_put;
1278 	}
1279 
1280 	dev_dbg(&pdev->dev, "Samsung SoC SPI Driver loaded for Bus SPI-%d with %d Targets attached\n",
1281 					sdd->port_id, host->num_chipselect);
1282 	dev_dbg(&pdev->dev, "\tIOmem=[%pR]\tFIFO %dbytes\n",
1283 					mem_res, (FIFO_LVL_MASK(sdd) >> 1) + 1);
1284 
1285 	pm_runtime_mark_last_busy(&pdev->dev);
1286 	pm_runtime_put_autosuspend(&pdev->dev);
1287 
1288 	return 0;
1289 
1290 err_pm_put:
1291 	pm_runtime_put_noidle(&pdev->dev);
1292 	pm_runtime_disable(&pdev->dev);
1293 	pm_runtime_set_suspended(&pdev->dev);
1294 
1295 	return ret;
1296 }
1297 
1298 static void s3c64xx_spi_remove(struct platform_device *pdev)
1299 {
1300 	struct spi_controller *host = platform_get_drvdata(pdev);
1301 	struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(host);
1302 
1303 	pm_runtime_get_sync(&pdev->dev);
1304 
1305 	writel(0, sdd->regs + S3C64XX_SPI_INT_EN);
1306 
1307 	if (!is_polling(sdd)) {
1308 		dma_release_channel(sdd->rx_dma.ch);
1309 		dma_release_channel(sdd->tx_dma.ch);
1310 	}
1311 
1312 	pm_runtime_put_noidle(&pdev->dev);
1313 	pm_runtime_disable(&pdev->dev);
1314 	pm_runtime_set_suspended(&pdev->dev);
1315 }
1316 
1317 #ifdef CONFIG_PM_SLEEP
1318 static int s3c64xx_spi_suspend(struct device *dev)
1319 {
1320 	struct spi_controller *host = dev_get_drvdata(dev);
1321 	struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(host);
1322 
1323 	int ret = spi_controller_suspend(host);
1324 	if (ret)
1325 		return ret;
1326 
1327 	ret = pm_runtime_force_suspend(dev);
1328 	if (ret < 0)
1329 		return ret;
1330 
1331 	sdd->cur_speed = 0; /* Output Clock is stopped */
1332 
1333 	return 0;
1334 }
1335 
1336 static int s3c64xx_spi_resume(struct device *dev)
1337 {
1338 	struct spi_controller *host = dev_get_drvdata(dev);
1339 	struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(host);
1340 	struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
1341 	int ret;
1342 
1343 	if (sci->cfg_gpio)
1344 		sci->cfg_gpio();
1345 
1346 	ret = pm_runtime_force_resume(dev);
1347 	if (ret < 0)
1348 		return ret;
1349 
1350 	return spi_controller_resume(host);
1351 }
1352 #endif /* CONFIG_PM_SLEEP */
1353 
1354 #ifdef CONFIG_PM
1355 static int s3c64xx_spi_runtime_suspend(struct device *dev)
1356 {
1357 	struct spi_controller *host = dev_get_drvdata(dev);
1358 	struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(host);
1359 
1360 	clk_disable_unprepare(sdd->clk);
1361 	clk_disable_unprepare(sdd->src_clk);
1362 	clk_disable_unprepare(sdd->ioclk);
1363 
1364 	return 0;
1365 }
1366 
1367 static int s3c64xx_spi_runtime_resume(struct device *dev)
1368 {
1369 	struct spi_controller *host = dev_get_drvdata(dev);
1370 	struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(host);
1371 	int ret;
1372 
1373 	if (sdd->port_conf->clk_ioclk) {
1374 		ret = clk_prepare_enable(sdd->ioclk);
1375 		if (ret != 0)
1376 			return ret;
1377 	}
1378 
1379 	ret = clk_prepare_enable(sdd->src_clk);
1380 	if (ret != 0)
1381 		goto err_disable_ioclk;
1382 
1383 	ret = clk_prepare_enable(sdd->clk);
1384 	if (ret != 0)
1385 		goto err_disable_src_clk;
1386 
1387 	s3c64xx_spi_hwinit(sdd);
1388 
1389 	writel(S3C64XX_SPI_INT_RX_OVERRUN_EN | S3C64XX_SPI_INT_RX_UNDERRUN_EN |
1390 	       S3C64XX_SPI_INT_TX_OVERRUN_EN | S3C64XX_SPI_INT_TX_UNDERRUN_EN,
1391 	       sdd->regs + S3C64XX_SPI_INT_EN);
1392 
1393 	return 0;
1394 
1395 err_disable_src_clk:
1396 	clk_disable_unprepare(sdd->src_clk);
1397 err_disable_ioclk:
1398 	clk_disable_unprepare(sdd->ioclk);
1399 
1400 	return ret;
1401 }
1402 #endif /* CONFIG_PM */
1403 
1404 static const struct dev_pm_ops s3c64xx_spi_pm = {
1405 	SET_SYSTEM_SLEEP_PM_OPS(s3c64xx_spi_suspend, s3c64xx_spi_resume)
1406 	SET_RUNTIME_PM_OPS(s3c64xx_spi_runtime_suspend,
1407 			   s3c64xx_spi_runtime_resume, NULL)
1408 };
1409 
1410 static const struct s3c64xx_spi_port_config s3c2443_spi_port_config = {
1411 	.fifo_lvl_mask	= { 0x7f },
1412 	.rx_lvl_offset	= 13,
1413 	.tx_st_done	= 21,
1414 	.clk_div	= 2,
1415 	.high_speed	= true,
1416 };
1417 
1418 static const struct s3c64xx_spi_port_config s3c6410_spi_port_config = {
1419 	.fifo_lvl_mask	= { 0x7f, 0x7F },
1420 	.rx_lvl_offset	= 13,
1421 	.tx_st_done	= 21,
1422 	.clk_div	= 2,
1423 };
1424 
1425 static const struct s3c64xx_spi_port_config s5pv210_spi_port_config = {
1426 	.fifo_lvl_mask	= { 0x1ff, 0x7F },
1427 	.rx_lvl_offset	= 15,
1428 	.tx_st_done	= 25,
1429 	.clk_div	= 2,
1430 	.high_speed	= true,
1431 };
1432 
1433 static const struct s3c64xx_spi_port_config exynos4_spi_port_config = {
1434 	.fifo_lvl_mask	= { 0x1ff, 0x7F, 0x7F },
1435 	.rx_lvl_offset	= 15,
1436 	.tx_st_done	= 25,
1437 	.clk_div	= 2,
1438 	.high_speed	= true,
1439 	.clk_from_cmu	= true,
1440 	.quirks		= S3C64XX_SPI_QUIRK_CS_AUTO,
1441 };
1442 
1443 static const struct s3c64xx_spi_port_config exynos7_spi_port_config = {
1444 	.fifo_lvl_mask	= { 0x1ff, 0x7F, 0x7F, 0x7F, 0x7F, 0x1ff},
1445 	.rx_lvl_offset	= 15,
1446 	.tx_st_done	= 25,
1447 	.clk_div	= 2,
1448 	.high_speed	= true,
1449 	.clk_from_cmu	= true,
1450 	.quirks		= S3C64XX_SPI_QUIRK_CS_AUTO,
1451 };
1452 
1453 static const struct s3c64xx_spi_port_config exynos5433_spi_port_config = {
1454 	.fifo_lvl_mask	= { 0x1ff, 0x7f, 0x7f, 0x7f, 0x7f, 0x1ff},
1455 	.rx_lvl_offset	= 15,
1456 	.tx_st_done	= 25,
1457 	.clk_div	= 2,
1458 	.high_speed	= true,
1459 	.clk_from_cmu	= true,
1460 	.clk_ioclk	= true,
1461 	.quirks		= S3C64XX_SPI_QUIRK_CS_AUTO,
1462 };
1463 
1464 static const struct s3c64xx_spi_port_config exynosautov9_spi_port_config = {
1465 	.fifo_lvl_mask	= { 0x1ff, 0x1ff, 0x7f, 0x7f, 0x7f, 0x7f, 0x1ff, 0x7f,
1466 			    0x7f, 0x7f, 0x7f, 0x7f},
1467 	.rx_lvl_offset	= 15,
1468 	.tx_st_done	= 25,
1469 	.clk_div	= 4,
1470 	.high_speed	= true,
1471 	.clk_from_cmu	= true,
1472 	.clk_ioclk	= true,
1473 	.has_loopback	= true,
1474 	.quirks		= S3C64XX_SPI_QUIRK_CS_AUTO,
1475 };
1476 
1477 static const struct s3c64xx_spi_port_config fsd_spi_port_config = {
1478 	.fifo_lvl_mask	= { 0x7f, 0x7f, 0x7f, 0x7f, 0x7f},
1479 	.rx_lvl_offset	= 15,
1480 	.tx_st_done	= 25,
1481 	.clk_div	= 2,
1482 	.high_speed	= true,
1483 	.clk_from_cmu	= true,
1484 	.clk_ioclk	= false,
1485 	.quirks		= S3C64XX_SPI_QUIRK_CS_AUTO,
1486 };
1487 
1488 static const struct platform_device_id s3c64xx_spi_driver_ids[] = {
1489 	{
1490 		.name		= "s3c2443-spi",
1491 		.driver_data	= (kernel_ulong_t)&s3c2443_spi_port_config,
1492 	}, {
1493 		.name		= "s3c6410-spi",
1494 		.driver_data	= (kernel_ulong_t)&s3c6410_spi_port_config,
1495 	},
1496 	{ },
1497 };
1498 
1499 static const struct of_device_id s3c64xx_spi_dt_match[] = {
1500 	{ .compatible = "samsung,s3c2443-spi",
1501 			.data = (void *)&s3c2443_spi_port_config,
1502 	},
1503 	{ .compatible = "samsung,s3c6410-spi",
1504 			.data = (void *)&s3c6410_spi_port_config,
1505 	},
1506 	{ .compatible = "samsung,s5pv210-spi",
1507 			.data = (void *)&s5pv210_spi_port_config,
1508 	},
1509 	{ .compatible = "samsung,exynos4210-spi",
1510 			.data = (void *)&exynos4_spi_port_config,
1511 	},
1512 	{ .compatible = "samsung,exynos7-spi",
1513 			.data = (void *)&exynos7_spi_port_config,
1514 	},
1515 	{ .compatible = "samsung,exynos5433-spi",
1516 			.data = (void *)&exynos5433_spi_port_config,
1517 	},
1518 	{ .compatible = "samsung,exynosautov9-spi",
1519 			.data = (void *)&exynosautov9_spi_port_config,
1520 	},
1521 	{ .compatible = "tesla,fsd-spi",
1522 			.data = (void *)&fsd_spi_port_config,
1523 	},
1524 	{ },
1525 };
1526 MODULE_DEVICE_TABLE(of, s3c64xx_spi_dt_match);
1527 
1528 static struct platform_driver s3c64xx_spi_driver = {
1529 	.driver = {
1530 		.name	= "s3c64xx-spi",
1531 		.pm = &s3c64xx_spi_pm,
1532 		.of_match_table = of_match_ptr(s3c64xx_spi_dt_match),
1533 	},
1534 	.probe = s3c64xx_spi_probe,
1535 	.remove_new = s3c64xx_spi_remove,
1536 	.id_table = s3c64xx_spi_driver_ids,
1537 };
1538 MODULE_ALIAS("platform:s3c64xx-spi");
1539 
1540 module_platform_driver(s3c64xx_spi_driver);
1541 
1542 MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>");
1543 MODULE_DESCRIPTION("S3C64XX SPI Controller Driver");
1544 MODULE_LICENSE("GPL");
1545