xref: /openbmc/linux/drivers/spi/spi-rspi.c (revision e1f7c9ee)
1 /*
2  * SH RSPI driver
3  *
4  * Copyright (C) 2012, 2013  Renesas Solutions Corp.
5  * Copyright (C) 2014 Glider bvba
6  *
7  * Based on spi-sh.c:
8  * Copyright (C) 2011 Renesas Solutions Corp.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; version 2 of the License.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/sched.h>
28 #include <linux/errno.h>
29 #include <linux/interrupt.h>
30 #include <linux/platform_device.h>
31 #include <linux/io.h>
32 #include <linux/clk.h>
33 #include <linux/dmaengine.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/of_device.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/sh_dma.h>
38 #include <linux/spi/spi.h>
39 #include <linux/spi/rspi.h>
40 
41 #define RSPI_SPCR		0x00	/* Control Register */
42 #define RSPI_SSLP		0x01	/* Slave Select Polarity Register */
43 #define RSPI_SPPCR		0x02	/* Pin Control Register */
44 #define RSPI_SPSR		0x03	/* Status Register */
45 #define RSPI_SPDR		0x04	/* Data Register */
46 #define RSPI_SPSCR		0x08	/* Sequence Control Register */
47 #define RSPI_SPSSR		0x09	/* Sequence Status Register */
48 #define RSPI_SPBR		0x0a	/* Bit Rate Register */
49 #define RSPI_SPDCR		0x0b	/* Data Control Register */
50 #define RSPI_SPCKD		0x0c	/* Clock Delay Register */
51 #define RSPI_SSLND		0x0d	/* Slave Select Negation Delay Register */
52 #define RSPI_SPND		0x0e	/* Next-Access Delay Register */
53 #define RSPI_SPCR2		0x0f	/* Control Register 2 (SH only) */
54 #define RSPI_SPCMD0		0x10	/* Command Register 0 */
55 #define RSPI_SPCMD1		0x12	/* Command Register 1 */
56 #define RSPI_SPCMD2		0x14	/* Command Register 2 */
57 #define RSPI_SPCMD3		0x16	/* Command Register 3 */
58 #define RSPI_SPCMD4		0x18	/* Command Register 4 */
59 #define RSPI_SPCMD5		0x1a	/* Command Register 5 */
60 #define RSPI_SPCMD6		0x1c	/* Command Register 6 */
61 #define RSPI_SPCMD7		0x1e	/* Command Register 7 */
62 #define RSPI_SPCMD(i)		(RSPI_SPCMD0 + (i) * 2)
63 #define RSPI_NUM_SPCMD		8
64 #define RSPI_RZ_NUM_SPCMD	4
65 #define QSPI_NUM_SPCMD		4
66 
67 /* RSPI on RZ only */
68 #define RSPI_SPBFCR		0x20	/* Buffer Control Register */
69 #define RSPI_SPBFDR		0x22	/* Buffer Data Count Setting Register */
70 
71 /* QSPI only */
72 #define QSPI_SPBFCR		0x18	/* Buffer Control Register */
73 #define QSPI_SPBDCR		0x1a	/* Buffer Data Count Register */
74 #define QSPI_SPBMUL0		0x1c	/* Transfer Data Length Multiplier Setting Register 0 */
75 #define QSPI_SPBMUL1		0x20	/* Transfer Data Length Multiplier Setting Register 1 */
76 #define QSPI_SPBMUL2		0x24	/* Transfer Data Length Multiplier Setting Register 2 */
77 #define QSPI_SPBMUL3		0x28	/* Transfer Data Length Multiplier Setting Register 3 */
78 #define QSPI_SPBMUL(i)		(QSPI_SPBMUL0 + (i) * 4)
79 
80 /* SPCR - Control Register */
81 #define SPCR_SPRIE		0x80	/* Receive Interrupt Enable */
82 #define SPCR_SPE		0x40	/* Function Enable */
83 #define SPCR_SPTIE		0x20	/* Transmit Interrupt Enable */
84 #define SPCR_SPEIE		0x10	/* Error Interrupt Enable */
85 #define SPCR_MSTR		0x08	/* Master/Slave Mode Select */
86 #define SPCR_MODFEN		0x04	/* Mode Fault Error Detection Enable */
87 /* RSPI on SH only */
88 #define SPCR_TXMD		0x02	/* TX Only Mode (vs. Full Duplex) */
89 #define SPCR_SPMS		0x01	/* 3-wire Mode (vs. 4-wire) */
90 /* QSPI on R-Car Gen2 only */
91 #define SPCR_WSWAP		0x02	/* Word Swap of read-data for DMAC */
92 #define SPCR_BSWAP		0x01	/* Byte Swap of read-data for DMAC */
93 
94 /* SSLP - Slave Select Polarity Register */
95 #define SSLP_SSL1P		0x02	/* SSL1 Signal Polarity Setting */
96 #define SSLP_SSL0P		0x01	/* SSL0 Signal Polarity Setting */
97 
98 /* SPPCR - Pin Control Register */
99 #define SPPCR_MOIFE		0x20	/* MOSI Idle Value Fixing Enable */
100 #define SPPCR_MOIFV		0x10	/* MOSI Idle Fixed Value */
101 #define SPPCR_SPOM		0x04
102 #define SPPCR_SPLP2		0x02	/* Loopback Mode 2 (non-inverting) */
103 #define SPPCR_SPLP		0x01	/* Loopback Mode (inverting) */
104 
105 #define SPPCR_IO3FV		0x04	/* Single-/Dual-SPI Mode IO3 Output Fixed Value */
106 #define SPPCR_IO2FV		0x04	/* Single-/Dual-SPI Mode IO2 Output Fixed Value */
107 
108 /* SPSR - Status Register */
109 #define SPSR_SPRF		0x80	/* Receive Buffer Full Flag */
110 #define SPSR_TEND		0x40	/* Transmit End */
111 #define SPSR_SPTEF		0x20	/* Transmit Buffer Empty Flag */
112 #define SPSR_PERF		0x08	/* Parity Error Flag */
113 #define SPSR_MODF		0x04	/* Mode Fault Error Flag */
114 #define SPSR_IDLNF		0x02	/* RSPI Idle Flag */
115 #define SPSR_OVRF		0x01	/* Overrun Error Flag (RSPI only) */
116 
117 /* SPSCR - Sequence Control Register */
118 #define SPSCR_SPSLN_MASK	0x07	/* Sequence Length Specification */
119 
120 /* SPSSR - Sequence Status Register */
121 #define SPSSR_SPECM_MASK	0x70	/* Command Error Mask */
122 #define SPSSR_SPCP_MASK		0x07	/* Command Pointer Mask */
123 
124 /* SPDCR - Data Control Register */
125 #define SPDCR_TXDMY		0x80	/* Dummy Data Transmission Enable */
126 #define SPDCR_SPLW1		0x40	/* Access Width Specification (RZ) */
127 #define SPDCR_SPLW0		0x20	/* Access Width Specification (RZ) */
128 #define SPDCR_SPLLWORD		(SPDCR_SPLW1 | SPDCR_SPLW0)
129 #define SPDCR_SPLWORD		SPDCR_SPLW1
130 #define SPDCR_SPLBYTE		SPDCR_SPLW0
131 #define SPDCR_SPLW		0x20	/* Access Width Specification (SH) */
132 #define SPDCR_SPRDTD		0x10	/* Receive Transmit Data Select (SH) */
133 #define SPDCR_SLSEL1		0x08
134 #define SPDCR_SLSEL0		0x04
135 #define SPDCR_SLSEL_MASK	0x0c	/* SSL1 Output Select (SH) */
136 #define SPDCR_SPFC1		0x02
137 #define SPDCR_SPFC0		0x01
138 #define SPDCR_SPFC_MASK		0x03	/* Frame Count Setting (1-4) (SH) */
139 
140 /* SPCKD - Clock Delay Register */
141 #define SPCKD_SCKDL_MASK	0x07	/* Clock Delay Setting (1-8) */
142 
143 /* SSLND - Slave Select Negation Delay Register */
144 #define SSLND_SLNDL_MASK	0x07	/* SSL Negation Delay Setting (1-8) */
145 
146 /* SPND - Next-Access Delay Register */
147 #define SPND_SPNDL_MASK		0x07	/* Next-Access Delay Setting (1-8) */
148 
149 /* SPCR2 - Control Register 2 */
150 #define SPCR2_PTE		0x08	/* Parity Self-Test Enable */
151 #define SPCR2_SPIE		0x04	/* Idle Interrupt Enable */
152 #define SPCR2_SPOE		0x02	/* Odd Parity Enable (vs. Even) */
153 #define SPCR2_SPPE		0x01	/* Parity Enable */
154 
155 /* SPCMDn - Command Registers */
156 #define SPCMD_SCKDEN		0x8000	/* Clock Delay Setting Enable */
157 #define SPCMD_SLNDEN		0x4000	/* SSL Negation Delay Setting Enable */
158 #define SPCMD_SPNDEN		0x2000	/* Next-Access Delay Enable */
159 #define SPCMD_LSBF		0x1000	/* LSB First */
160 #define SPCMD_SPB_MASK		0x0f00	/* Data Length Setting */
161 #define SPCMD_SPB_8_TO_16(bit)	(((bit - 1) << 8) & SPCMD_SPB_MASK)
162 #define SPCMD_SPB_8BIT		0x0000	/* QSPI only */
163 #define SPCMD_SPB_16BIT		0x0100
164 #define SPCMD_SPB_20BIT		0x0000
165 #define SPCMD_SPB_24BIT		0x0100
166 #define SPCMD_SPB_32BIT		0x0200
167 #define SPCMD_SSLKP		0x0080	/* SSL Signal Level Keeping */
168 #define SPCMD_SPIMOD_MASK	0x0060	/* SPI Operating Mode (QSPI only) */
169 #define SPCMD_SPIMOD1		0x0040
170 #define SPCMD_SPIMOD0		0x0020
171 #define SPCMD_SPIMOD_SINGLE	0
172 #define SPCMD_SPIMOD_DUAL	SPCMD_SPIMOD0
173 #define SPCMD_SPIMOD_QUAD	SPCMD_SPIMOD1
174 #define SPCMD_SPRW		0x0010	/* SPI Read/Write Access (Dual/Quad) */
175 #define SPCMD_SSLA_MASK		0x0030	/* SSL Assert Signal Setting (RSPI) */
176 #define SPCMD_BRDV_MASK		0x000c	/* Bit Rate Division Setting */
177 #define SPCMD_CPOL		0x0002	/* Clock Polarity Setting */
178 #define SPCMD_CPHA		0x0001	/* Clock Phase Setting */
179 
180 /* SPBFCR - Buffer Control Register */
181 #define SPBFCR_TXRST		0x80	/* Transmit Buffer Data Reset */
182 #define SPBFCR_RXRST		0x40	/* Receive Buffer Data Reset */
183 #define SPBFCR_TXTRG_MASK	0x30	/* Transmit Buffer Data Triggering Number */
184 #define SPBFCR_RXTRG_MASK	0x07	/* Receive Buffer Data Triggering Number */
185 
186 struct rspi_data {
187 	void __iomem *addr;
188 	u32 max_speed_hz;
189 	struct spi_master *master;
190 	wait_queue_head_t wait;
191 	struct clk *clk;
192 	u16 spcmd;
193 	u8 spsr;
194 	u8 sppcr;
195 	int rx_irq, tx_irq;
196 	const struct spi_ops *ops;
197 
198 	unsigned dma_callbacked:1;
199 	unsigned byte_access:1;
200 };
201 
202 static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
203 {
204 	iowrite8(data, rspi->addr + offset);
205 }
206 
207 static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
208 {
209 	iowrite16(data, rspi->addr + offset);
210 }
211 
212 static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
213 {
214 	iowrite32(data, rspi->addr + offset);
215 }
216 
217 static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
218 {
219 	return ioread8(rspi->addr + offset);
220 }
221 
222 static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
223 {
224 	return ioread16(rspi->addr + offset);
225 }
226 
227 static void rspi_write_data(const struct rspi_data *rspi, u16 data)
228 {
229 	if (rspi->byte_access)
230 		rspi_write8(rspi, data, RSPI_SPDR);
231 	else /* 16 bit */
232 		rspi_write16(rspi, data, RSPI_SPDR);
233 }
234 
235 static u16 rspi_read_data(const struct rspi_data *rspi)
236 {
237 	if (rspi->byte_access)
238 		return rspi_read8(rspi, RSPI_SPDR);
239 	else /* 16 bit */
240 		return rspi_read16(rspi, RSPI_SPDR);
241 }
242 
243 /* optional functions */
244 struct spi_ops {
245 	int (*set_config_register)(struct rspi_data *rspi, int access_size);
246 	int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
247 			    struct spi_transfer *xfer);
248 	u16 mode_bits;
249 	u16 flags;
250 	u16 fifo_size;
251 };
252 
253 /*
254  * functions for RSPI on legacy SH
255  */
256 static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
257 {
258 	int spbr;
259 
260 	/* Sets output mode, MOSI signal, and (optionally) loopback */
261 	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
262 
263 	/* Sets transfer bit rate */
264 	spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
265 			    2 * rspi->max_speed_hz) - 1;
266 	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
267 
268 	/* Disable dummy transmission, set 16-bit word access, 1 frame */
269 	rspi_write8(rspi, 0, RSPI_SPDCR);
270 	rspi->byte_access = 0;
271 
272 	/* Sets RSPCK, SSL, next-access delay value */
273 	rspi_write8(rspi, 0x00, RSPI_SPCKD);
274 	rspi_write8(rspi, 0x00, RSPI_SSLND);
275 	rspi_write8(rspi, 0x00, RSPI_SPND);
276 
277 	/* Sets parity, interrupt mask */
278 	rspi_write8(rspi, 0x00, RSPI_SPCR2);
279 
280 	/* Sets SPCMD */
281 	rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
282 	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
283 
284 	/* Sets RSPI mode */
285 	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
286 
287 	return 0;
288 }
289 
290 /*
291  * functions for RSPI on RZ
292  */
293 static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
294 {
295 	int spbr;
296 
297 	/* Sets output mode, MOSI signal, and (optionally) loopback */
298 	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
299 
300 	/* Sets transfer bit rate */
301 	spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
302 			    2 * rspi->max_speed_hz) - 1;
303 	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
304 
305 	/* Disable dummy transmission, set byte access */
306 	rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
307 	rspi->byte_access = 1;
308 
309 	/* Sets RSPCK, SSL, next-access delay value */
310 	rspi_write8(rspi, 0x00, RSPI_SPCKD);
311 	rspi_write8(rspi, 0x00, RSPI_SSLND);
312 	rspi_write8(rspi, 0x00, RSPI_SPND);
313 
314 	/* Sets SPCMD */
315 	rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
316 	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
317 
318 	/* Sets RSPI mode */
319 	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
320 
321 	return 0;
322 }
323 
324 /*
325  * functions for QSPI
326  */
327 static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
328 {
329 	int spbr;
330 
331 	/* Sets output mode, MOSI signal, and (optionally) loopback */
332 	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
333 
334 	/* Sets transfer bit rate */
335 	spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz);
336 	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
337 
338 	/* Disable dummy transmission, set byte access */
339 	rspi_write8(rspi, 0, RSPI_SPDCR);
340 	rspi->byte_access = 1;
341 
342 	/* Sets RSPCK, SSL, next-access delay value */
343 	rspi_write8(rspi, 0x00, RSPI_SPCKD);
344 	rspi_write8(rspi, 0x00, RSPI_SSLND);
345 	rspi_write8(rspi, 0x00, RSPI_SPND);
346 
347 	/* Data Length Setting */
348 	if (access_size == 8)
349 		rspi->spcmd |= SPCMD_SPB_8BIT;
350 	else if (access_size == 16)
351 		rspi->spcmd |= SPCMD_SPB_16BIT;
352 	else
353 		rspi->spcmd |= SPCMD_SPB_32BIT;
354 
355 	rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
356 
357 	/* Resets transfer data length */
358 	rspi_write32(rspi, 0, QSPI_SPBMUL0);
359 
360 	/* Resets transmit and receive buffer */
361 	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
362 	/* Sets buffer to allow normal operation */
363 	rspi_write8(rspi, 0x00, QSPI_SPBFCR);
364 
365 	/* Sets SPCMD */
366 	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
367 
368 	/* Enables SPI function in master mode */
369 	rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR);
370 
371 	return 0;
372 }
373 
374 #define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
375 
376 static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
377 {
378 	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
379 }
380 
381 static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
382 {
383 	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
384 }
385 
386 static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
387 				   u8 enable_bit)
388 {
389 	int ret;
390 
391 	rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
392 	if (rspi->spsr & wait_mask)
393 		return 0;
394 
395 	rspi_enable_irq(rspi, enable_bit);
396 	ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
397 	if (ret == 0 && !(rspi->spsr & wait_mask))
398 		return -ETIMEDOUT;
399 
400 	return 0;
401 }
402 
403 static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
404 {
405 	return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
406 }
407 
408 static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
409 {
410 	return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
411 }
412 
413 static int rspi_data_out(struct rspi_data *rspi, u8 data)
414 {
415 	int error = rspi_wait_for_tx_empty(rspi);
416 	if (error < 0) {
417 		dev_err(&rspi->master->dev, "transmit timeout\n");
418 		return error;
419 	}
420 	rspi_write_data(rspi, data);
421 	return 0;
422 }
423 
424 static int rspi_data_in(struct rspi_data *rspi)
425 {
426 	int error;
427 	u8 data;
428 
429 	error = rspi_wait_for_rx_full(rspi);
430 	if (error < 0) {
431 		dev_err(&rspi->master->dev, "receive timeout\n");
432 		return error;
433 	}
434 	data = rspi_read_data(rspi);
435 	return data;
436 }
437 
438 static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
439 			     unsigned int n)
440 {
441 	while (n-- > 0) {
442 		if (tx) {
443 			int ret = rspi_data_out(rspi, *tx++);
444 			if (ret < 0)
445 				return ret;
446 		}
447 		if (rx) {
448 			int ret = rspi_data_in(rspi);
449 			if (ret < 0)
450 				return ret;
451 			*rx++ = ret;
452 		}
453 	}
454 
455 	return 0;
456 }
457 
458 static void rspi_dma_complete(void *arg)
459 {
460 	struct rspi_data *rspi = arg;
461 
462 	rspi->dma_callbacked = 1;
463 	wake_up_interruptible(&rspi->wait);
464 }
465 
466 static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
467 			     struct sg_table *rx)
468 {
469 	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
470 	u8 irq_mask = 0;
471 	unsigned int other_irq = 0;
472 	dma_cookie_t cookie;
473 	int ret;
474 
475 	/* First prepare and submit the DMA request(s), as this may fail */
476 	if (rx) {
477 		desc_rx = dmaengine_prep_slave_sg(rspi->master->dma_rx,
478 					rx->sgl, rx->nents, DMA_FROM_DEVICE,
479 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
480 		if (!desc_rx) {
481 			ret = -EAGAIN;
482 			goto no_dma_rx;
483 		}
484 
485 		desc_rx->callback = rspi_dma_complete;
486 		desc_rx->callback_param = rspi;
487 		cookie = dmaengine_submit(desc_rx);
488 		if (dma_submit_error(cookie)) {
489 			ret = cookie;
490 			goto no_dma_rx;
491 		}
492 
493 		irq_mask |= SPCR_SPRIE;
494 	}
495 
496 	if (tx) {
497 		desc_tx = dmaengine_prep_slave_sg(rspi->master->dma_tx,
498 					tx->sgl, tx->nents, DMA_TO_DEVICE,
499 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
500 		if (!desc_tx) {
501 			ret = -EAGAIN;
502 			goto no_dma_tx;
503 		}
504 
505 		if (rx) {
506 			/* No callback */
507 			desc_tx->callback = NULL;
508 		} else {
509 			desc_tx->callback = rspi_dma_complete;
510 			desc_tx->callback_param = rspi;
511 		}
512 		cookie = dmaengine_submit(desc_tx);
513 		if (dma_submit_error(cookie)) {
514 			ret = cookie;
515 			goto no_dma_tx;
516 		}
517 
518 		irq_mask |= SPCR_SPTIE;
519 	}
520 
521 	/*
522 	 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
523 	 * called. So, this driver disables the IRQ while DMA transfer.
524 	 */
525 	if (tx)
526 		disable_irq(other_irq = rspi->tx_irq);
527 	if (rx && rspi->rx_irq != other_irq)
528 		disable_irq(rspi->rx_irq);
529 
530 	rspi_enable_irq(rspi, irq_mask);
531 	rspi->dma_callbacked = 0;
532 
533 	/* Now start DMA */
534 	if (rx)
535 		dma_async_issue_pending(rspi->master->dma_rx);
536 	if (tx)
537 		dma_async_issue_pending(rspi->master->dma_tx);
538 
539 	ret = wait_event_interruptible_timeout(rspi->wait,
540 					       rspi->dma_callbacked, HZ);
541 	if (ret > 0 && rspi->dma_callbacked)
542 		ret = 0;
543 	else if (!ret) {
544 		dev_err(&rspi->master->dev, "DMA timeout\n");
545 		ret = -ETIMEDOUT;
546 		if (tx)
547 			dmaengine_terminate_all(rspi->master->dma_tx);
548 		if (rx)
549 			dmaengine_terminate_all(rspi->master->dma_rx);
550 	}
551 
552 	rspi_disable_irq(rspi, irq_mask);
553 
554 	if (tx)
555 		enable_irq(rspi->tx_irq);
556 	if (rx && rspi->rx_irq != other_irq)
557 		enable_irq(rspi->rx_irq);
558 
559 	return ret;
560 
561 no_dma_tx:
562 	if (rx)
563 		dmaengine_terminate_all(rspi->master->dma_rx);
564 no_dma_rx:
565 	if (ret == -EAGAIN) {
566 		pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
567 			     dev_driver_string(&rspi->master->dev),
568 			     dev_name(&rspi->master->dev));
569 	}
570 	return ret;
571 }
572 
573 static void rspi_receive_init(const struct rspi_data *rspi)
574 {
575 	u8 spsr;
576 
577 	spsr = rspi_read8(rspi, RSPI_SPSR);
578 	if (spsr & SPSR_SPRF)
579 		rspi_read_data(rspi);	/* dummy read */
580 	if (spsr & SPSR_OVRF)
581 		rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
582 			    RSPI_SPSR);
583 }
584 
585 static void rspi_rz_receive_init(const struct rspi_data *rspi)
586 {
587 	rspi_receive_init(rspi);
588 	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
589 	rspi_write8(rspi, 0, RSPI_SPBFCR);
590 }
591 
592 static void qspi_receive_init(const struct rspi_data *rspi)
593 {
594 	u8 spsr;
595 
596 	spsr = rspi_read8(rspi, RSPI_SPSR);
597 	if (spsr & SPSR_SPRF)
598 		rspi_read_data(rspi);   /* dummy read */
599 	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
600 	rspi_write8(rspi, 0, QSPI_SPBFCR);
601 }
602 
603 static bool __rspi_can_dma(const struct rspi_data *rspi,
604 			   const struct spi_transfer *xfer)
605 {
606 	return xfer->len > rspi->ops->fifo_size;
607 }
608 
609 static bool rspi_can_dma(struct spi_master *master, struct spi_device *spi,
610 			 struct spi_transfer *xfer)
611 {
612 	struct rspi_data *rspi = spi_master_get_devdata(master);
613 
614 	return __rspi_can_dma(rspi, xfer);
615 }
616 
617 static int rspi_common_transfer(struct rspi_data *rspi,
618 				struct spi_transfer *xfer)
619 {
620 	int ret;
621 
622 	if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
623 		/* rx_buf can be NULL on RSPI on SH in TX-only Mode */
624 		ret = rspi_dma_transfer(rspi, &xfer->tx_sg,
625 					xfer->rx_buf ? &xfer->rx_sg : NULL);
626 		if (ret != -EAGAIN)
627 			return ret;
628 	}
629 
630 	ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
631 	if (ret < 0)
632 		return ret;
633 
634 	/* Wait for the last transmission */
635 	rspi_wait_for_tx_empty(rspi);
636 
637 	return 0;
638 }
639 
640 static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi,
641 			     struct spi_transfer *xfer)
642 {
643 	struct rspi_data *rspi = spi_master_get_devdata(master);
644 	u8 spcr;
645 
646 	spcr = rspi_read8(rspi, RSPI_SPCR);
647 	if (xfer->rx_buf) {
648 		rspi_receive_init(rspi);
649 		spcr &= ~SPCR_TXMD;
650 	} else {
651 		spcr |= SPCR_TXMD;
652 	}
653 	rspi_write8(rspi, spcr, RSPI_SPCR);
654 
655 	return rspi_common_transfer(rspi, xfer);
656 }
657 
658 static int rspi_rz_transfer_one(struct spi_master *master,
659 				struct spi_device *spi,
660 				struct spi_transfer *xfer)
661 {
662 	struct rspi_data *rspi = spi_master_get_devdata(master);
663 
664 	rspi_rz_receive_init(rspi);
665 
666 	return rspi_common_transfer(rspi, xfer);
667 }
668 
669 static int qspi_transfer_out_in(struct rspi_data *rspi,
670 				struct spi_transfer *xfer)
671 {
672 	qspi_receive_init(rspi);
673 
674 	return rspi_common_transfer(rspi, xfer);
675 }
676 
677 static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
678 {
679 	int ret;
680 
681 	if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
682 		ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
683 		if (ret != -EAGAIN)
684 			return ret;
685 	}
686 
687 	ret = rspi_pio_transfer(rspi, xfer->tx_buf, NULL, xfer->len);
688 	if (ret < 0)
689 		return ret;
690 
691 	/* Wait for the last transmission */
692 	rspi_wait_for_tx_empty(rspi);
693 
694 	return 0;
695 }
696 
697 static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
698 {
699 	if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
700 		int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
701 		if (ret != -EAGAIN)
702 			return ret;
703 	}
704 
705 	return rspi_pio_transfer(rspi, NULL, xfer->rx_buf, xfer->len);
706 }
707 
708 static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi,
709 			     struct spi_transfer *xfer)
710 {
711 	struct rspi_data *rspi = spi_master_get_devdata(master);
712 
713 	if (spi->mode & SPI_LOOP) {
714 		return qspi_transfer_out_in(rspi, xfer);
715 	} else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
716 		/* Quad or Dual SPI Write */
717 		return qspi_transfer_out(rspi, xfer);
718 	} else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
719 		/* Quad or Dual SPI Read */
720 		return qspi_transfer_in(rspi, xfer);
721 	} else {
722 		/* Single SPI Transfer */
723 		return qspi_transfer_out_in(rspi, xfer);
724 	}
725 }
726 
727 static int rspi_setup(struct spi_device *spi)
728 {
729 	struct rspi_data *rspi = spi_master_get_devdata(spi->master);
730 
731 	rspi->max_speed_hz = spi->max_speed_hz;
732 
733 	rspi->spcmd = SPCMD_SSLKP;
734 	if (spi->mode & SPI_CPOL)
735 		rspi->spcmd |= SPCMD_CPOL;
736 	if (spi->mode & SPI_CPHA)
737 		rspi->spcmd |= SPCMD_CPHA;
738 
739 	/* CMOS output mode and MOSI signal from previous transfer */
740 	rspi->sppcr = 0;
741 	if (spi->mode & SPI_LOOP)
742 		rspi->sppcr |= SPPCR_SPLP;
743 
744 	set_config_register(rspi, 8);
745 
746 	return 0;
747 }
748 
749 static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
750 {
751 	if (xfer->tx_buf)
752 		switch (xfer->tx_nbits) {
753 		case SPI_NBITS_QUAD:
754 			return SPCMD_SPIMOD_QUAD;
755 		case SPI_NBITS_DUAL:
756 			return SPCMD_SPIMOD_DUAL;
757 		default:
758 			return 0;
759 		}
760 	if (xfer->rx_buf)
761 		switch (xfer->rx_nbits) {
762 		case SPI_NBITS_QUAD:
763 			return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
764 		case SPI_NBITS_DUAL:
765 			return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
766 		default:
767 			return 0;
768 		}
769 
770 	return 0;
771 }
772 
773 static int qspi_setup_sequencer(struct rspi_data *rspi,
774 				const struct spi_message *msg)
775 {
776 	const struct spi_transfer *xfer;
777 	unsigned int i = 0, len = 0;
778 	u16 current_mode = 0xffff, mode;
779 
780 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
781 		mode = qspi_transfer_mode(xfer);
782 		if (mode == current_mode) {
783 			len += xfer->len;
784 			continue;
785 		}
786 
787 		/* Transfer mode change */
788 		if (i) {
789 			/* Set transfer data length of previous transfer */
790 			rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
791 		}
792 
793 		if (i >= QSPI_NUM_SPCMD) {
794 			dev_err(&msg->spi->dev,
795 				"Too many different transfer modes");
796 			return -EINVAL;
797 		}
798 
799 		/* Program transfer mode for this transfer */
800 		rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
801 		current_mode = mode;
802 		len = xfer->len;
803 		i++;
804 	}
805 	if (i) {
806 		/* Set final transfer data length and sequence length */
807 		rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
808 		rspi_write8(rspi, i - 1, RSPI_SPSCR);
809 	}
810 
811 	return 0;
812 }
813 
814 static int rspi_prepare_message(struct spi_master *master,
815 				struct spi_message *msg)
816 {
817 	struct rspi_data *rspi = spi_master_get_devdata(master);
818 	int ret;
819 
820 	if (msg->spi->mode &
821 	    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
822 		/* Setup sequencer for messages with multiple transfer modes */
823 		ret = qspi_setup_sequencer(rspi, msg);
824 		if (ret < 0)
825 			return ret;
826 	}
827 
828 	/* Enable SPI function in master mode */
829 	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
830 	return 0;
831 }
832 
833 static int rspi_unprepare_message(struct spi_master *master,
834 				  struct spi_message *msg)
835 {
836 	struct rspi_data *rspi = spi_master_get_devdata(master);
837 
838 	/* Disable SPI function */
839 	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
840 
841 	/* Reset sequencer for Single SPI Transfers */
842 	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
843 	rspi_write8(rspi, 0, RSPI_SPSCR);
844 	return 0;
845 }
846 
847 static irqreturn_t rspi_irq_mux(int irq, void *_sr)
848 {
849 	struct rspi_data *rspi = _sr;
850 	u8 spsr;
851 	irqreturn_t ret = IRQ_NONE;
852 	u8 disable_irq = 0;
853 
854 	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
855 	if (spsr & SPSR_SPRF)
856 		disable_irq |= SPCR_SPRIE;
857 	if (spsr & SPSR_SPTEF)
858 		disable_irq |= SPCR_SPTIE;
859 
860 	if (disable_irq) {
861 		ret = IRQ_HANDLED;
862 		rspi_disable_irq(rspi, disable_irq);
863 		wake_up(&rspi->wait);
864 	}
865 
866 	return ret;
867 }
868 
869 static irqreturn_t rspi_irq_rx(int irq, void *_sr)
870 {
871 	struct rspi_data *rspi = _sr;
872 	u8 spsr;
873 
874 	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
875 	if (spsr & SPSR_SPRF) {
876 		rspi_disable_irq(rspi, SPCR_SPRIE);
877 		wake_up(&rspi->wait);
878 		return IRQ_HANDLED;
879 	}
880 
881 	return 0;
882 }
883 
884 static irqreturn_t rspi_irq_tx(int irq, void *_sr)
885 {
886 	struct rspi_data *rspi = _sr;
887 	u8 spsr;
888 
889 	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
890 	if (spsr & SPSR_SPTEF) {
891 		rspi_disable_irq(rspi, SPCR_SPTIE);
892 		wake_up(&rspi->wait);
893 		return IRQ_HANDLED;
894 	}
895 
896 	return 0;
897 }
898 
899 static struct dma_chan *rspi_request_dma_chan(struct device *dev,
900 					      enum dma_transfer_direction dir,
901 					      unsigned int id,
902 					      dma_addr_t port_addr)
903 {
904 	dma_cap_mask_t mask;
905 	struct dma_chan *chan;
906 	struct dma_slave_config cfg;
907 	int ret;
908 
909 	dma_cap_zero(mask);
910 	dma_cap_set(DMA_SLAVE, mask);
911 
912 	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
913 				(void *)(unsigned long)id, dev,
914 				dir == DMA_MEM_TO_DEV ? "tx" : "rx");
915 	if (!chan) {
916 		dev_warn(dev, "dma_request_slave_channel_compat failed\n");
917 		return NULL;
918 	}
919 
920 	memset(&cfg, 0, sizeof(cfg));
921 	cfg.slave_id = id;
922 	cfg.direction = dir;
923 	if (dir == DMA_MEM_TO_DEV) {
924 		cfg.dst_addr = port_addr;
925 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
926 	} else {
927 		cfg.src_addr = port_addr;
928 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
929 	}
930 
931 	ret = dmaengine_slave_config(chan, &cfg);
932 	if (ret) {
933 		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
934 		dma_release_channel(chan);
935 		return NULL;
936 	}
937 
938 	return chan;
939 }
940 
941 static int rspi_request_dma(struct device *dev, struct spi_master *master,
942 			    const struct resource *res)
943 {
944 	const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
945 	unsigned int dma_tx_id, dma_rx_id;
946 
947 	if (dev->of_node) {
948 		/* In the OF case we will get the slave IDs from the DT */
949 		dma_tx_id = 0;
950 		dma_rx_id = 0;
951 	} else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
952 		dma_tx_id = rspi_pd->dma_tx_id;
953 		dma_rx_id = rspi_pd->dma_rx_id;
954 	} else {
955 		/* The driver assumes no error. */
956 		return 0;
957 	}
958 
959 	master->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
960 					       res->start + RSPI_SPDR);
961 	if (!master->dma_tx)
962 		return -ENODEV;
963 
964 	master->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
965 					       res->start + RSPI_SPDR);
966 	if (!master->dma_rx) {
967 		dma_release_channel(master->dma_tx);
968 		master->dma_tx = NULL;
969 		return -ENODEV;
970 	}
971 
972 	master->can_dma = rspi_can_dma;
973 	dev_info(dev, "DMA available");
974 	return 0;
975 }
976 
977 static void rspi_release_dma(struct spi_master *master)
978 {
979 	if (master->dma_tx)
980 		dma_release_channel(master->dma_tx);
981 	if (master->dma_rx)
982 		dma_release_channel(master->dma_rx);
983 }
984 
985 static int rspi_remove(struct platform_device *pdev)
986 {
987 	struct rspi_data *rspi = platform_get_drvdata(pdev);
988 
989 	rspi_release_dma(rspi->master);
990 	pm_runtime_disable(&pdev->dev);
991 
992 	return 0;
993 }
994 
995 static const struct spi_ops rspi_ops = {
996 	.set_config_register =	rspi_set_config_register,
997 	.transfer_one =		rspi_transfer_one,
998 	.mode_bits =		SPI_CPHA | SPI_CPOL | SPI_LOOP,
999 	.flags =		SPI_MASTER_MUST_TX,
1000 	.fifo_size =		8,
1001 };
1002 
1003 static const struct spi_ops rspi_rz_ops = {
1004 	.set_config_register =	rspi_rz_set_config_register,
1005 	.transfer_one =		rspi_rz_transfer_one,
1006 	.mode_bits =		SPI_CPHA | SPI_CPOL | SPI_LOOP,
1007 	.flags =		SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
1008 	.fifo_size =		8,	/* 8 for TX, 32 for RX */
1009 };
1010 
1011 static const struct spi_ops qspi_ops = {
1012 	.set_config_register =	qspi_set_config_register,
1013 	.transfer_one =		qspi_transfer_one,
1014 	.mode_bits =		SPI_CPHA | SPI_CPOL | SPI_LOOP |
1015 				SPI_TX_DUAL | SPI_TX_QUAD |
1016 				SPI_RX_DUAL | SPI_RX_QUAD,
1017 	.flags =		SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
1018 	.fifo_size =		32,
1019 };
1020 
1021 #ifdef CONFIG_OF
1022 static const struct of_device_id rspi_of_match[] = {
1023 	/* RSPI on legacy SH */
1024 	{ .compatible = "renesas,rspi", .data = &rspi_ops },
1025 	/* RSPI on RZ/A1H */
1026 	{ .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1027 	/* QSPI on R-Car Gen2 */
1028 	{ .compatible = "renesas,qspi", .data = &qspi_ops },
1029 	{ /* sentinel */ }
1030 };
1031 
1032 MODULE_DEVICE_TABLE(of, rspi_of_match);
1033 
1034 static int rspi_parse_dt(struct device *dev, struct spi_master *master)
1035 {
1036 	u32 num_cs;
1037 	int error;
1038 
1039 	/* Parse DT properties */
1040 	error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1041 	if (error) {
1042 		dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1043 		return error;
1044 	}
1045 
1046 	master->num_chipselect = num_cs;
1047 	return 0;
1048 }
1049 #else
1050 #define rspi_of_match	NULL
1051 static inline int rspi_parse_dt(struct device *dev, struct spi_master *master)
1052 {
1053 	return -EINVAL;
1054 }
1055 #endif /* CONFIG_OF */
1056 
1057 static int rspi_request_irq(struct device *dev, unsigned int irq,
1058 			    irq_handler_t handler, const char *suffix,
1059 			    void *dev_id)
1060 {
1061 	const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1062 					  dev_name(dev), suffix);
1063 	if (!name)
1064 		return -ENOMEM;
1065 
1066 	return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1067 }
1068 
1069 static int rspi_probe(struct platform_device *pdev)
1070 {
1071 	struct resource *res;
1072 	struct spi_master *master;
1073 	struct rspi_data *rspi;
1074 	int ret;
1075 	const struct of_device_id *of_id;
1076 	const struct rspi_plat_data *rspi_pd;
1077 	const struct spi_ops *ops;
1078 
1079 	master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1080 	if (master == NULL) {
1081 		dev_err(&pdev->dev, "spi_alloc_master error.\n");
1082 		return -ENOMEM;
1083 	}
1084 
1085 	of_id = of_match_device(rspi_of_match, &pdev->dev);
1086 	if (of_id) {
1087 		ops = of_id->data;
1088 		ret = rspi_parse_dt(&pdev->dev, master);
1089 		if (ret)
1090 			goto error1;
1091 	} else {
1092 		ops = (struct spi_ops *)pdev->id_entry->driver_data;
1093 		rspi_pd = dev_get_platdata(&pdev->dev);
1094 		if (rspi_pd && rspi_pd->num_chipselect)
1095 			master->num_chipselect = rspi_pd->num_chipselect;
1096 		else
1097 			master->num_chipselect = 2; /* default */
1098 	}
1099 
1100 	/* ops parameter check */
1101 	if (!ops->set_config_register) {
1102 		dev_err(&pdev->dev, "there is no set_config_register\n");
1103 		ret = -ENODEV;
1104 		goto error1;
1105 	}
1106 
1107 	rspi = spi_master_get_devdata(master);
1108 	platform_set_drvdata(pdev, rspi);
1109 	rspi->ops = ops;
1110 	rspi->master = master;
1111 
1112 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1113 	rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1114 	if (IS_ERR(rspi->addr)) {
1115 		ret = PTR_ERR(rspi->addr);
1116 		goto error1;
1117 	}
1118 
1119 	rspi->clk = devm_clk_get(&pdev->dev, NULL);
1120 	if (IS_ERR(rspi->clk)) {
1121 		dev_err(&pdev->dev, "cannot get clock\n");
1122 		ret = PTR_ERR(rspi->clk);
1123 		goto error1;
1124 	}
1125 
1126 	pm_runtime_enable(&pdev->dev);
1127 
1128 	init_waitqueue_head(&rspi->wait);
1129 
1130 	master->bus_num = pdev->id;
1131 	master->setup = rspi_setup;
1132 	master->auto_runtime_pm = true;
1133 	master->transfer_one = ops->transfer_one;
1134 	master->prepare_message = rspi_prepare_message;
1135 	master->unprepare_message = rspi_unprepare_message;
1136 	master->mode_bits = ops->mode_bits;
1137 	master->flags = ops->flags;
1138 	master->dev.of_node = pdev->dev.of_node;
1139 
1140 	ret = platform_get_irq_byname(pdev, "rx");
1141 	if (ret < 0) {
1142 		ret = platform_get_irq_byname(pdev, "mux");
1143 		if (ret < 0)
1144 			ret = platform_get_irq(pdev, 0);
1145 		if (ret >= 0)
1146 			rspi->rx_irq = rspi->tx_irq = ret;
1147 	} else {
1148 		rspi->rx_irq = ret;
1149 		ret = platform_get_irq_byname(pdev, "tx");
1150 		if (ret >= 0)
1151 			rspi->tx_irq = ret;
1152 	}
1153 	if (ret < 0) {
1154 		dev_err(&pdev->dev, "platform_get_irq error\n");
1155 		goto error2;
1156 	}
1157 
1158 	if (rspi->rx_irq == rspi->tx_irq) {
1159 		/* Single multiplexed interrupt */
1160 		ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1161 				       "mux", rspi);
1162 	} else {
1163 		/* Multi-interrupt mode, only SPRI and SPTI are used */
1164 		ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1165 				       "rx", rspi);
1166 		if (!ret)
1167 			ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1168 					       rspi_irq_tx, "tx", rspi);
1169 	}
1170 	if (ret < 0) {
1171 		dev_err(&pdev->dev, "request_irq error\n");
1172 		goto error2;
1173 	}
1174 
1175 	ret = rspi_request_dma(&pdev->dev, master, res);
1176 	if (ret < 0)
1177 		dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1178 
1179 	ret = devm_spi_register_master(&pdev->dev, master);
1180 	if (ret < 0) {
1181 		dev_err(&pdev->dev, "spi_register_master error.\n");
1182 		goto error3;
1183 	}
1184 
1185 	dev_info(&pdev->dev, "probed\n");
1186 
1187 	return 0;
1188 
1189 error3:
1190 	rspi_release_dma(master);
1191 error2:
1192 	pm_runtime_disable(&pdev->dev);
1193 error1:
1194 	spi_master_put(master);
1195 
1196 	return ret;
1197 }
1198 
1199 static struct platform_device_id spi_driver_ids[] = {
1200 	{ "rspi",	(kernel_ulong_t)&rspi_ops },
1201 	{ "rspi-rz",	(kernel_ulong_t)&rspi_rz_ops },
1202 	{ "qspi",	(kernel_ulong_t)&qspi_ops },
1203 	{},
1204 };
1205 
1206 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1207 
1208 static struct platform_driver rspi_driver = {
1209 	.probe =	rspi_probe,
1210 	.remove =	rspi_remove,
1211 	.id_table =	spi_driver_ids,
1212 	.driver		= {
1213 		.name = "renesas_spi",
1214 		.owner	= THIS_MODULE,
1215 		.of_match_table = of_match_ptr(rspi_of_match),
1216 	},
1217 };
1218 module_platform_driver(rspi_driver);
1219 
1220 MODULE_DESCRIPTION("Renesas RSPI bus driver");
1221 MODULE_LICENSE("GPL v2");
1222 MODULE_AUTHOR("Yoshihiro Shimoda");
1223 MODULE_ALIAS("platform:rspi");
1224