1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SH RSPI driver 4 * 5 * Copyright (C) 2012, 2013 Renesas Solutions Corp. 6 * Copyright (C) 2014 Glider bvba 7 * 8 * Based on spi-sh.c: 9 * Copyright (C) 2011 Renesas Solutions Corp. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/errno.h> 16 #include <linux/interrupt.h> 17 #include <linux/platform_device.h> 18 #include <linux/io.h> 19 #include <linux/clk.h> 20 #include <linux/dmaengine.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/of_device.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/sh_dma.h> 25 #include <linux/spi/spi.h> 26 #include <linux/spi/rspi.h> 27 #include <linux/spinlock.h> 28 29 #define RSPI_SPCR 0x00 /* Control Register */ 30 #define RSPI_SSLP 0x01 /* Slave Select Polarity Register */ 31 #define RSPI_SPPCR 0x02 /* Pin Control Register */ 32 #define RSPI_SPSR 0x03 /* Status Register */ 33 #define RSPI_SPDR 0x04 /* Data Register */ 34 #define RSPI_SPSCR 0x08 /* Sequence Control Register */ 35 #define RSPI_SPSSR 0x09 /* Sequence Status Register */ 36 #define RSPI_SPBR 0x0a /* Bit Rate Register */ 37 #define RSPI_SPDCR 0x0b /* Data Control Register */ 38 #define RSPI_SPCKD 0x0c /* Clock Delay Register */ 39 #define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */ 40 #define RSPI_SPND 0x0e /* Next-Access Delay Register */ 41 #define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */ 42 #define RSPI_SPCMD0 0x10 /* Command Register 0 */ 43 #define RSPI_SPCMD1 0x12 /* Command Register 1 */ 44 #define RSPI_SPCMD2 0x14 /* Command Register 2 */ 45 #define RSPI_SPCMD3 0x16 /* Command Register 3 */ 46 #define RSPI_SPCMD4 0x18 /* Command Register 4 */ 47 #define RSPI_SPCMD5 0x1a /* Command Register 5 */ 48 #define RSPI_SPCMD6 0x1c /* Command Register 6 */ 49 #define RSPI_SPCMD7 0x1e /* Command Register 7 */ 50 #define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2) 51 #define RSPI_NUM_SPCMD 8 52 #define RSPI_RZ_NUM_SPCMD 4 53 #define QSPI_NUM_SPCMD 4 54 55 /* RSPI on RZ only */ 56 #define RSPI_SPBFCR 0x20 /* Buffer Control Register */ 57 #define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */ 58 59 /* QSPI only */ 60 #define QSPI_SPBFCR 0x18 /* Buffer Control Register */ 61 #define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */ 62 #define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */ 63 #define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */ 64 #define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */ 65 #define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */ 66 #define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4) 67 68 /* SPCR - Control Register */ 69 #define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */ 70 #define SPCR_SPE 0x40 /* Function Enable */ 71 #define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */ 72 #define SPCR_SPEIE 0x10 /* Error Interrupt Enable */ 73 #define SPCR_MSTR 0x08 /* Master/Slave Mode Select */ 74 #define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */ 75 /* RSPI on SH only */ 76 #define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */ 77 #define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */ 78 /* QSPI on R-Car Gen2 only */ 79 #define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */ 80 #define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */ 81 82 /* SSLP - Slave Select Polarity Register */ 83 #define SSLP_SSLP(i) BIT(i) /* SSLi Signal Polarity Setting */ 84 85 /* SPPCR - Pin Control Register */ 86 #define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */ 87 #define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */ 88 #define SPPCR_SPOM 0x04 89 #define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */ 90 #define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */ 91 92 #define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */ 93 #define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */ 94 95 /* SPSR - Status Register */ 96 #define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */ 97 #define SPSR_TEND 0x40 /* Transmit End */ 98 #define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */ 99 #define SPSR_PERF 0x08 /* Parity Error Flag */ 100 #define SPSR_MODF 0x04 /* Mode Fault Error Flag */ 101 #define SPSR_IDLNF 0x02 /* RSPI Idle Flag */ 102 #define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */ 103 104 /* SPSCR - Sequence Control Register */ 105 #define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */ 106 107 /* SPSSR - Sequence Status Register */ 108 #define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */ 109 #define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */ 110 111 /* SPDCR - Data Control Register */ 112 #define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */ 113 #define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */ 114 #define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */ 115 #define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0) 116 #define SPDCR_SPLWORD SPDCR_SPLW1 117 #define SPDCR_SPLBYTE SPDCR_SPLW0 118 #define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */ 119 #define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */ 120 #define SPDCR_SLSEL1 0x08 121 #define SPDCR_SLSEL0 0x04 122 #define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */ 123 #define SPDCR_SPFC1 0x02 124 #define SPDCR_SPFC0 0x01 125 #define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */ 126 127 /* SPCKD - Clock Delay Register */ 128 #define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */ 129 130 /* SSLND - Slave Select Negation Delay Register */ 131 #define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */ 132 133 /* SPND - Next-Access Delay Register */ 134 #define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */ 135 136 /* SPCR2 - Control Register 2 */ 137 #define SPCR2_PTE 0x08 /* Parity Self-Test Enable */ 138 #define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */ 139 #define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */ 140 #define SPCR2_SPPE 0x01 /* Parity Enable */ 141 142 /* SPCMDn - Command Registers */ 143 #define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */ 144 #define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */ 145 #define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */ 146 #define SPCMD_LSBF 0x1000 /* LSB First */ 147 #define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */ 148 #define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK) 149 #define SPCMD_SPB_8BIT 0x0000 /* QSPI only */ 150 #define SPCMD_SPB_16BIT 0x0100 151 #define SPCMD_SPB_20BIT 0x0000 152 #define SPCMD_SPB_24BIT 0x0100 153 #define SPCMD_SPB_32BIT 0x0200 154 #define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */ 155 #define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */ 156 #define SPCMD_SPIMOD1 0x0040 157 #define SPCMD_SPIMOD0 0x0020 158 #define SPCMD_SPIMOD_SINGLE 0 159 #define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0 160 #define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1 161 #define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */ 162 #define SPCMD_SSLA(i) ((i) << 4) /* SSL Assert Signal Setting */ 163 #define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */ 164 #define SPCMD_BRDV(brdv) ((brdv) << 2) 165 #define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */ 166 #define SPCMD_CPHA 0x0001 /* Clock Phase Setting */ 167 168 /* SPBFCR - Buffer Control Register */ 169 #define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */ 170 #define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */ 171 #define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */ 172 #define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */ 173 /* QSPI on R-Car Gen2 */ 174 #define SPBFCR_TXTRG_1B 0x00 /* 31 bytes (1 byte available) */ 175 #define SPBFCR_TXTRG_32B 0x30 /* 0 byte (32 bytes available) */ 176 #define SPBFCR_RXTRG_1B 0x00 /* 1 byte (31 bytes available) */ 177 #define SPBFCR_RXTRG_32B 0x07 /* 32 bytes (0 byte available) */ 178 179 #define QSPI_BUFFER_SIZE 32u 180 181 struct rspi_data { 182 void __iomem *addr; 183 u32 speed_hz; 184 struct spi_controller *ctlr; 185 struct platform_device *pdev; 186 wait_queue_head_t wait; 187 spinlock_t lock; /* Protects RMW-access to RSPI_SSLP */ 188 struct clk *clk; 189 u16 spcmd; 190 u8 spsr; 191 u8 sppcr; 192 int rx_irq, tx_irq; 193 const struct spi_ops *ops; 194 195 unsigned dma_callbacked:1; 196 unsigned byte_access:1; 197 }; 198 199 static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset) 200 { 201 iowrite8(data, rspi->addr + offset); 202 } 203 204 static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset) 205 { 206 iowrite16(data, rspi->addr + offset); 207 } 208 209 static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset) 210 { 211 iowrite32(data, rspi->addr + offset); 212 } 213 214 static u8 rspi_read8(const struct rspi_data *rspi, u16 offset) 215 { 216 return ioread8(rspi->addr + offset); 217 } 218 219 static u16 rspi_read16(const struct rspi_data *rspi, u16 offset) 220 { 221 return ioread16(rspi->addr + offset); 222 } 223 224 static void rspi_write_data(const struct rspi_data *rspi, u16 data) 225 { 226 if (rspi->byte_access) 227 rspi_write8(rspi, data, RSPI_SPDR); 228 else /* 16 bit */ 229 rspi_write16(rspi, data, RSPI_SPDR); 230 } 231 232 static u16 rspi_read_data(const struct rspi_data *rspi) 233 { 234 if (rspi->byte_access) 235 return rspi_read8(rspi, RSPI_SPDR); 236 else /* 16 bit */ 237 return rspi_read16(rspi, RSPI_SPDR); 238 } 239 240 /* optional functions */ 241 struct spi_ops { 242 int (*set_config_register)(struct rspi_data *rspi, int access_size); 243 int (*transfer_one)(struct spi_controller *ctlr, 244 struct spi_device *spi, struct spi_transfer *xfer); 245 u16 extra_mode_bits; 246 u16 min_div; 247 u16 max_div; 248 u16 flags; 249 u16 fifo_size; 250 u8 num_hw_ss; 251 }; 252 253 static void rspi_set_rate(struct rspi_data *rspi) 254 { 255 unsigned long clksrc; 256 int brdv = 0, spbr; 257 258 clksrc = clk_get_rate(rspi->clk); 259 spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz) - 1; 260 while (spbr > 255 && brdv < 3) { 261 brdv++; 262 spbr = DIV_ROUND_UP(spbr + 1, 2) - 1; 263 } 264 265 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR); 266 rspi->spcmd |= SPCMD_BRDV(brdv); 267 rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * (spbr + 1)); 268 } 269 270 /* 271 * functions for RSPI on legacy SH 272 */ 273 static int rspi_set_config_register(struct rspi_data *rspi, int access_size) 274 { 275 /* Sets output mode, MOSI signal, and (optionally) loopback */ 276 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR); 277 278 /* Sets transfer bit rate */ 279 rspi_set_rate(rspi); 280 281 /* Disable dummy transmission, set 16-bit word access, 1 frame */ 282 rspi_write8(rspi, 0, RSPI_SPDCR); 283 rspi->byte_access = 0; 284 285 /* Sets RSPCK, SSL, next-access delay value */ 286 rspi_write8(rspi, 0x00, RSPI_SPCKD); 287 rspi_write8(rspi, 0x00, RSPI_SSLND); 288 rspi_write8(rspi, 0x00, RSPI_SPND); 289 290 /* Sets parity, interrupt mask */ 291 rspi_write8(rspi, 0x00, RSPI_SPCR2); 292 293 /* Resets sequencer */ 294 rspi_write8(rspi, 0, RSPI_SPSCR); 295 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size); 296 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0); 297 298 /* Sets RSPI mode */ 299 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR); 300 301 return 0; 302 } 303 304 /* 305 * functions for RSPI on RZ 306 */ 307 static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size) 308 { 309 /* Sets output mode, MOSI signal, and (optionally) loopback */ 310 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR); 311 312 /* Sets transfer bit rate */ 313 rspi_set_rate(rspi); 314 315 /* Disable dummy transmission, set byte access */ 316 rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR); 317 rspi->byte_access = 1; 318 319 /* Sets RSPCK, SSL, next-access delay value */ 320 rspi_write8(rspi, 0x00, RSPI_SPCKD); 321 rspi_write8(rspi, 0x00, RSPI_SSLND); 322 rspi_write8(rspi, 0x00, RSPI_SPND); 323 324 /* Resets sequencer */ 325 rspi_write8(rspi, 0, RSPI_SPSCR); 326 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size); 327 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0); 328 329 /* Sets RSPI mode */ 330 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR); 331 332 return 0; 333 } 334 335 /* 336 * functions for QSPI 337 */ 338 static int qspi_set_config_register(struct rspi_data *rspi, int access_size) 339 { 340 unsigned long clksrc; 341 int brdv = 0, spbr; 342 343 /* Sets output mode, MOSI signal, and (optionally) loopback */ 344 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR); 345 346 /* Sets transfer bit rate */ 347 clksrc = clk_get_rate(rspi->clk); 348 if (rspi->speed_hz >= clksrc) { 349 spbr = 0; 350 rspi->speed_hz = clksrc; 351 } else { 352 spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz); 353 while (spbr > 255 && brdv < 3) { 354 brdv++; 355 spbr = DIV_ROUND_UP(spbr, 2); 356 } 357 spbr = clamp(spbr, 0, 255); 358 rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * spbr); 359 } 360 rspi_write8(rspi, spbr, RSPI_SPBR); 361 rspi->spcmd |= SPCMD_BRDV(brdv); 362 363 /* Disable dummy transmission, set byte access */ 364 rspi_write8(rspi, 0, RSPI_SPDCR); 365 rspi->byte_access = 1; 366 367 /* Sets RSPCK, SSL, next-access delay value */ 368 rspi_write8(rspi, 0x00, RSPI_SPCKD); 369 rspi_write8(rspi, 0x00, RSPI_SSLND); 370 rspi_write8(rspi, 0x00, RSPI_SPND); 371 372 /* Data Length Setting */ 373 if (access_size == 8) 374 rspi->spcmd |= SPCMD_SPB_8BIT; 375 else if (access_size == 16) 376 rspi->spcmd |= SPCMD_SPB_16BIT; 377 else 378 rspi->spcmd |= SPCMD_SPB_32BIT; 379 380 rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN; 381 382 /* Resets transfer data length */ 383 rspi_write32(rspi, 0, QSPI_SPBMUL0); 384 385 /* Resets transmit and receive buffer */ 386 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR); 387 /* Sets buffer to allow normal operation */ 388 rspi_write8(rspi, 0x00, QSPI_SPBFCR); 389 390 /* Resets sequencer */ 391 rspi_write8(rspi, 0, RSPI_SPSCR); 392 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0); 393 394 /* Sets RSPI mode */ 395 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR); 396 397 return 0; 398 } 399 400 static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg) 401 { 402 u8 data; 403 404 data = rspi_read8(rspi, reg); 405 data &= ~mask; 406 data |= (val & mask); 407 rspi_write8(rspi, data, reg); 408 } 409 410 static unsigned int qspi_set_send_trigger(struct rspi_data *rspi, 411 unsigned int len) 412 { 413 unsigned int n; 414 415 n = min(len, QSPI_BUFFER_SIZE); 416 417 if (len >= QSPI_BUFFER_SIZE) { 418 /* sets triggering number to 32 bytes */ 419 qspi_update(rspi, SPBFCR_TXTRG_MASK, 420 SPBFCR_TXTRG_32B, QSPI_SPBFCR); 421 } else { 422 /* sets triggering number to 1 byte */ 423 qspi_update(rspi, SPBFCR_TXTRG_MASK, 424 SPBFCR_TXTRG_1B, QSPI_SPBFCR); 425 } 426 427 return n; 428 } 429 430 static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len) 431 { 432 unsigned int n; 433 434 n = min(len, QSPI_BUFFER_SIZE); 435 436 if (len >= QSPI_BUFFER_SIZE) { 437 /* sets triggering number to 32 bytes */ 438 qspi_update(rspi, SPBFCR_RXTRG_MASK, 439 SPBFCR_RXTRG_32B, QSPI_SPBFCR); 440 } else { 441 /* sets triggering number to 1 byte */ 442 qspi_update(rspi, SPBFCR_RXTRG_MASK, 443 SPBFCR_RXTRG_1B, QSPI_SPBFCR); 444 } 445 return n; 446 } 447 448 static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable) 449 { 450 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR); 451 } 452 453 static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable) 454 { 455 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR); 456 } 457 458 static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask, 459 u8 enable_bit) 460 { 461 int ret; 462 463 rspi->spsr = rspi_read8(rspi, RSPI_SPSR); 464 if (rspi->spsr & wait_mask) 465 return 0; 466 467 rspi_enable_irq(rspi, enable_bit); 468 ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ); 469 if (ret == 0 && !(rspi->spsr & wait_mask)) 470 return -ETIMEDOUT; 471 472 return 0; 473 } 474 475 static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi) 476 { 477 return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE); 478 } 479 480 static inline int rspi_wait_for_rx_full(struct rspi_data *rspi) 481 { 482 return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE); 483 } 484 485 static int rspi_data_out(struct rspi_data *rspi, u8 data) 486 { 487 int error = rspi_wait_for_tx_empty(rspi); 488 if (error < 0) { 489 dev_err(&rspi->ctlr->dev, "transmit timeout\n"); 490 return error; 491 } 492 rspi_write_data(rspi, data); 493 return 0; 494 } 495 496 static int rspi_data_in(struct rspi_data *rspi) 497 { 498 int error; 499 u8 data; 500 501 error = rspi_wait_for_rx_full(rspi); 502 if (error < 0) { 503 dev_err(&rspi->ctlr->dev, "receive timeout\n"); 504 return error; 505 } 506 data = rspi_read_data(rspi); 507 return data; 508 } 509 510 static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx, 511 unsigned int n) 512 { 513 while (n-- > 0) { 514 if (tx) { 515 int ret = rspi_data_out(rspi, *tx++); 516 if (ret < 0) 517 return ret; 518 } 519 if (rx) { 520 int ret = rspi_data_in(rspi); 521 if (ret < 0) 522 return ret; 523 *rx++ = ret; 524 } 525 } 526 527 return 0; 528 } 529 530 static void rspi_dma_complete(void *arg) 531 { 532 struct rspi_data *rspi = arg; 533 534 rspi->dma_callbacked = 1; 535 wake_up_interruptible(&rspi->wait); 536 } 537 538 static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx, 539 struct sg_table *rx) 540 { 541 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL; 542 u8 irq_mask = 0; 543 unsigned int other_irq = 0; 544 dma_cookie_t cookie; 545 int ret; 546 547 /* First prepare and submit the DMA request(s), as this may fail */ 548 if (rx) { 549 desc_rx = dmaengine_prep_slave_sg(rspi->ctlr->dma_rx, rx->sgl, 550 rx->nents, DMA_DEV_TO_MEM, 551 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 552 if (!desc_rx) { 553 ret = -EAGAIN; 554 goto no_dma_rx; 555 } 556 557 desc_rx->callback = rspi_dma_complete; 558 desc_rx->callback_param = rspi; 559 cookie = dmaengine_submit(desc_rx); 560 if (dma_submit_error(cookie)) { 561 ret = cookie; 562 goto no_dma_rx; 563 } 564 565 irq_mask |= SPCR_SPRIE; 566 } 567 568 if (tx) { 569 desc_tx = dmaengine_prep_slave_sg(rspi->ctlr->dma_tx, tx->sgl, 570 tx->nents, DMA_MEM_TO_DEV, 571 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 572 if (!desc_tx) { 573 ret = -EAGAIN; 574 goto no_dma_tx; 575 } 576 577 if (rx) { 578 /* No callback */ 579 desc_tx->callback = NULL; 580 } else { 581 desc_tx->callback = rspi_dma_complete; 582 desc_tx->callback_param = rspi; 583 } 584 cookie = dmaengine_submit(desc_tx); 585 if (dma_submit_error(cookie)) { 586 ret = cookie; 587 goto no_dma_tx; 588 } 589 590 irq_mask |= SPCR_SPTIE; 591 } 592 593 /* 594 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be 595 * called. So, this driver disables the IRQ while DMA transfer. 596 */ 597 if (tx) 598 disable_irq(other_irq = rspi->tx_irq); 599 if (rx && rspi->rx_irq != other_irq) 600 disable_irq(rspi->rx_irq); 601 602 rspi_enable_irq(rspi, irq_mask); 603 rspi->dma_callbacked = 0; 604 605 /* Now start DMA */ 606 if (rx) 607 dma_async_issue_pending(rspi->ctlr->dma_rx); 608 if (tx) 609 dma_async_issue_pending(rspi->ctlr->dma_tx); 610 611 ret = wait_event_interruptible_timeout(rspi->wait, 612 rspi->dma_callbacked, HZ); 613 if (ret > 0 && rspi->dma_callbacked) { 614 ret = 0; 615 } else { 616 if (!ret) { 617 dev_err(&rspi->ctlr->dev, "DMA timeout\n"); 618 ret = -ETIMEDOUT; 619 } 620 if (tx) 621 dmaengine_terminate_sync(rspi->ctlr->dma_tx); 622 if (rx) 623 dmaengine_terminate_sync(rspi->ctlr->dma_rx); 624 } 625 626 rspi_disable_irq(rspi, irq_mask); 627 628 if (tx) 629 enable_irq(rspi->tx_irq); 630 if (rx && rspi->rx_irq != other_irq) 631 enable_irq(rspi->rx_irq); 632 633 return ret; 634 635 no_dma_tx: 636 if (rx) 637 dmaengine_terminate_sync(rspi->ctlr->dma_rx); 638 no_dma_rx: 639 if (ret == -EAGAIN) { 640 dev_warn_once(&rspi->ctlr->dev, 641 "DMA not available, falling back to PIO\n"); 642 } 643 return ret; 644 } 645 646 static void rspi_receive_init(const struct rspi_data *rspi) 647 { 648 u8 spsr; 649 650 spsr = rspi_read8(rspi, RSPI_SPSR); 651 if (spsr & SPSR_SPRF) 652 rspi_read_data(rspi); /* dummy read */ 653 if (spsr & SPSR_OVRF) 654 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF, 655 RSPI_SPSR); 656 } 657 658 static void rspi_rz_receive_init(const struct rspi_data *rspi) 659 { 660 rspi_receive_init(rspi); 661 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR); 662 rspi_write8(rspi, 0, RSPI_SPBFCR); 663 } 664 665 static void qspi_receive_init(const struct rspi_data *rspi) 666 { 667 u8 spsr; 668 669 spsr = rspi_read8(rspi, RSPI_SPSR); 670 if (spsr & SPSR_SPRF) 671 rspi_read_data(rspi); /* dummy read */ 672 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR); 673 rspi_write8(rspi, 0, QSPI_SPBFCR); 674 } 675 676 static bool __rspi_can_dma(const struct rspi_data *rspi, 677 const struct spi_transfer *xfer) 678 { 679 return xfer->len > rspi->ops->fifo_size; 680 } 681 682 static bool rspi_can_dma(struct spi_controller *ctlr, struct spi_device *spi, 683 struct spi_transfer *xfer) 684 { 685 struct rspi_data *rspi = spi_controller_get_devdata(ctlr); 686 687 return __rspi_can_dma(rspi, xfer); 688 } 689 690 static int rspi_dma_check_then_transfer(struct rspi_data *rspi, 691 struct spi_transfer *xfer) 692 { 693 if (!rspi->ctlr->can_dma || !__rspi_can_dma(rspi, xfer)) 694 return -EAGAIN; 695 696 /* rx_buf can be NULL on RSPI on SH in TX-only Mode */ 697 return rspi_dma_transfer(rspi, &xfer->tx_sg, 698 xfer->rx_buf ? &xfer->rx_sg : NULL); 699 } 700 701 static int rspi_common_transfer(struct rspi_data *rspi, 702 struct spi_transfer *xfer) 703 { 704 int ret; 705 706 xfer->effective_speed_hz = rspi->speed_hz; 707 708 ret = rspi_dma_check_then_transfer(rspi, xfer); 709 if (ret != -EAGAIN) 710 return ret; 711 712 ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len); 713 if (ret < 0) 714 return ret; 715 716 /* Wait for the last transmission */ 717 rspi_wait_for_tx_empty(rspi); 718 719 return 0; 720 } 721 722 static int rspi_transfer_one(struct spi_controller *ctlr, 723 struct spi_device *spi, struct spi_transfer *xfer) 724 { 725 struct rspi_data *rspi = spi_controller_get_devdata(ctlr); 726 u8 spcr; 727 728 spcr = rspi_read8(rspi, RSPI_SPCR); 729 if (xfer->rx_buf) { 730 rspi_receive_init(rspi); 731 spcr &= ~SPCR_TXMD; 732 } else { 733 spcr |= SPCR_TXMD; 734 } 735 rspi_write8(rspi, spcr, RSPI_SPCR); 736 737 return rspi_common_transfer(rspi, xfer); 738 } 739 740 static int rspi_rz_transfer_one(struct spi_controller *ctlr, 741 struct spi_device *spi, 742 struct spi_transfer *xfer) 743 { 744 struct rspi_data *rspi = spi_controller_get_devdata(ctlr); 745 746 rspi_rz_receive_init(rspi); 747 748 return rspi_common_transfer(rspi, xfer); 749 } 750 751 static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx, 752 u8 *rx, unsigned int len) 753 { 754 unsigned int i, n; 755 int ret; 756 757 while (len > 0) { 758 n = qspi_set_send_trigger(rspi, len); 759 qspi_set_receive_trigger(rspi, len); 760 ret = rspi_wait_for_tx_empty(rspi); 761 if (ret < 0) { 762 dev_err(&rspi->ctlr->dev, "transmit timeout\n"); 763 return ret; 764 } 765 for (i = 0; i < n; i++) 766 rspi_write_data(rspi, *tx++); 767 768 ret = rspi_wait_for_rx_full(rspi); 769 if (ret < 0) { 770 dev_err(&rspi->ctlr->dev, "receive timeout\n"); 771 return ret; 772 } 773 for (i = 0; i < n; i++) 774 *rx++ = rspi_read_data(rspi); 775 776 len -= n; 777 } 778 779 return 0; 780 } 781 782 static int qspi_transfer_out_in(struct rspi_data *rspi, 783 struct spi_transfer *xfer) 784 { 785 int ret; 786 787 qspi_receive_init(rspi); 788 789 ret = rspi_dma_check_then_transfer(rspi, xfer); 790 if (ret != -EAGAIN) 791 return ret; 792 793 return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf, 794 xfer->rx_buf, xfer->len); 795 } 796 797 static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer) 798 { 799 const u8 *tx = xfer->tx_buf; 800 unsigned int n = xfer->len; 801 unsigned int i, len; 802 int ret; 803 804 if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) { 805 ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL); 806 if (ret != -EAGAIN) 807 return ret; 808 } 809 810 while (n > 0) { 811 len = qspi_set_send_trigger(rspi, n); 812 ret = rspi_wait_for_tx_empty(rspi); 813 if (ret < 0) { 814 dev_err(&rspi->ctlr->dev, "transmit timeout\n"); 815 return ret; 816 } 817 for (i = 0; i < len; i++) 818 rspi_write_data(rspi, *tx++); 819 820 n -= len; 821 } 822 823 /* Wait for the last transmission */ 824 rspi_wait_for_tx_empty(rspi); 825 826 return 0; 827 } 828 829 static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer) 830 { 831 u8 *rx = xfer->rx_buf; 832 unsigned int n = xfer->len; 833 unsigned int i, len; 834 int ret; 835 836 if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) { 837 int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg); 838 if (ret != -EAGAIN) 839 return ret; 840 } 841 842 while (n > 0) { 843 len = qspi_set_receive_trigger(rspi, n); 844 ret = rspi_wait_for_rx_full(rspi); 845 if (ret < 0) { 846 dev_err(&rspi->ctlr->dev, "receive timeout\n"); 847 return ret; 848 } 849 for (i = 0; i < len; i++) 850 *rx++ = rspi_read_data(rspi); 851 852 n -= len; 853 } 854 855 return 0; 856 } 857 858 static int qspi_transfer_one(struct spi_controller *ctlr, 859 struct spi_device *spi, struct spi_transfer *xfer) 860 { 861 struct rspi_data *rspi = spi_controller_get_devdata(ctlr); 862 863 xfer->effective_speed_hz = rspi->speed_hz; 864 if (spi->mode & SPI_LOOP) { 865 return qspi_transfer_out_in(rspi, xfer); 866 } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) { 867 /* Quad or Dual SPI Write */ 868 return qspi_transfer_out(rspi, xfer); 869 } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) { 870 /* Quad or Dual SPI Read */ 871 return qspi_transfer_in(rspi, xfer); 872 } else { 873 /* Single SPI Transfer */ 874 return qspi_transfer_out_in(rspi, xfer); 875 } 876 } 877 878 static u16 qspi_transfer_mode(const struct spi_transfer *xfer) 879 { 880 if (xfer->tx_buf) 881 switch (xfer->tx_nbits) { 882 case SPI_NBITS_QUAD: 883 return SPCMD_SPIMOD_QUAD; 884 case SPI_NBITS_DUAL: 885 return SPCMD_SPIMOD_DUAL; 886 default: 887 return 0; 888 } 889 if (xfer->rx_buf) 890 switch (xfer->rx_nbits) { 891 case SPI_NBITS_QUAD: 892 return SPCMD_SPIMOD_QUAD | SPCMD_SPRW; 893 case SPI_NBITS_DUAL: 894 return SPCMD_SPIMOD_DUAL | SPCMD_SPRW; 895 default: 896 return 0; 897 } 898 899 return 0; 900 } 901 902 static int qspi_setup_sequencer(struct rspi_data *rspi, 903 const struct spi_message *msg) 904 { 905 const struct spi_transfer *xfer; 906 unsigned int i = 0, len = 0; 907 u16 current_mode = 0xffff, mode; 908 909 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 910 mode = qspi_transfer_mode(xfer); 911 if (mode == current_mode) { 912 len += xfer->len; 913 continue; 914 } 915 916 /* Transfer mode change */ 917 if (i) { 918 /* Set transfer data length of previous transfer */ 919 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1)); 920 } 921 922 if (i >= QSPI_NUM_SPCMD) { 923 dev_err(&msg->spi->dev, 924 "Too many different transfer modes"); 925 return -EINVAL; 926 } 927 928 /* Program transfer mode for this transfer */ 929 rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i)); 930 current_mode = mode; 931 len = xfer->len; 932 i++; 933 } 934 if (i) { 935 /* Set final transfer data length and sequence length */ 936 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1)); 937 rspi_write8(rspi, i - 1, RSPI_SPSCR); 938 } 939 940 return 0; 941 } 942 943 static int rspi_setup(struct spi_device *spi) 944 { 945 struct rspi_data *rspi = spi_controller_get_devdata(spi->controller); 946 u8 sslp; 947 948 if (spi->cs_gpiod) 949 return 0; 950 951 pm_runtime_get_sync(&rspi->pdev->dev); 952 spin_lock_irq(&rspi->lock); 953 954 sslp = rspi_read8(rspi, RSPI_SSLP); 955 if (spi->mode & SPI_CS_HIGH) 956 sslp |= SSLP_SSLP(spi->chip_select); 957 else 958 sslp &= ~SSLP_SSLP(spi->chip_select); 959 rspi_write8(rspi, sslp, RSPI_SSLP); 960 961 spin_unlock_irq(&rspi->lock); 962 pm_runtime_put(&rspi->pdev->dev); 963 return 0; 964 } 965 966 static int rspi_prepare_message(struct spi_controller *ctlr, 967 struct spi_message *msg) 968 { 969 struct rspi_data *rspi = spi_controller_get_devdata(ctlr); 970 struct spi_device *spi = msg->spi; 971 const struct spi_transfer *xfer; 972 int ret; 973 974 /* 975 * As the Bit Rate Register must not be changed while the device is 976 * active, all transfers in a message must use the same bit rate. 977 * In theory, the sequencer could be enabled, and each Command Register 978 * could divide the base bit rate by a different value. 979 * However, most RSPI variants do not have Transfer Data Length 980 * Multiplier Setting Registers, so each sequence step would be limited 981 * to a single word, making this feature unsuitable for large 982 * transfers, which would gain most from it. 983 */ 984 rspi->speed_hz = spi->max_speed_hz; 985 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 986 if (xfer->speed_hz < rspi->speed_hz) 987 rspi->speed_hz = xfer->speed_hz; 988 } 989 990 rspi->spcmd = SPCMD_SSLKP; 991 if (spi->mode & SPI_CPOL) 992 rspi->spcmd |= SPCMD_CPOL; 993 if (spi->mode & SPI_CPHA) 994 rspi->spcmd |= SPCMD_CPHA; 995 if (spi->mode & SPI_LSB_FIRST) 996 rspi->spcmd |= SPCMD_LSBF; 997 998 /* Configure slave signal to assert */ 999 rspi->spcmd |= SPCMD_SSLA(spi->cs_gpiod ? rspi->ctlr->unused_native_cs 1000 : spi->chip_select); 1001 1002 /* CMOS output mode and MOSI signal from previous transfer */ 1003 rspi->sppcr = 0; 1004 if (spi->mode & SPI_LOOP) 1005 rspi->sppcr |= SPPCR_SPLP; 1006 1007 rspi->ops->set_config_register(rspi, 8); 1008 1009 if (msg->spi->mode & 1010 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) { 1011 /* Setup sequencer for messages with multiple transfer modes */ 1012 ret = qspi_setup_sequencer(rspi, msg); 1013 if (ret < 0) 1014 return ret; 1015 } 1016 1017 /* Enable SPI function in master mode */ 1018 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR); 1019 return 0; 1020 } 1021 1022 static int rspi_unprepare_message(struct spi_controller *ctlr, 1023 struct spi_message *msg) 1024 { 1025 struct rspi_data *rspi = spi_controller_get_devdata(ctlr); 1026 1027 /* Disable SPI function */ 1028 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR); 1029 1030 /* Reset sequencer for Single SPI Transfers */ 1031 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0); 1032 rspi_write8(rspi, 0, RSPI_SPSCR); 1033 return 0; 1034 } 1035 1036 static irqreturn_t rspi_irq_mux(int irq, void *_sr) 1037 { 1038 struct rspi_data *rspi = _sr; 1039 u8 spsr; 1040 irqreturn_t ret = IRQ_NONE; 1041 u8 disable_irq = 0; 1042 1043 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR); 1044 if (spsr & SPSR_SPRF) 1045 disable_irq |= SPCR_SPRIE; 1046 if (spsr & SPSR_SPTEF) 1047 disable_irq |= SPCR_SPTIE; 1048 1049 if (disable_irq) { 1050 ret = IRQ_HANDLED; 1051 rspi_disable_irq(rspi, disable_irq); 1052 wake_up(&rspi->wait); 1053 } 1054 1055 return ret; 1056 } 1057 1058 static irqreturn_t rspi_irq_rx(int irq, void *_sr) 1059 { 1060 struct rspi_data *rspi = _sr; 1061 u8 spsr; 1062 1063 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR); 1064 if (spsr & SPSR_SPRF) { 1065 rspi_disable_irq(rspi, SPCR_SPRIE); 1066 wake_up(&rspi->wait); 1067 return IRQ_HANDLED; 1068 } 1069 1070 return 0; 1071 } 1072 1073 static irqreturn_t rspi_irq_tx(int irq, void *_sr) 1074 { 1075 struct rspi_data *rspi = _sr; 1076 u8 spsr; 1077 1078 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR); 1079 if (spsr & SPSR_SPTEF) { 1080 rspi_disable_irq(rspi, SPCR_SPTIE); 1081 wake_up(&rspi->wait); 1082 return IRQ_HANDLED; 1083 } 1084 1085 return 0; 1086 } 1087 1088 static struct dma_chan *rspi_request_dma_chan(struct device *dev, 1089 enum dma_transfer_direction dir, 1090 unsigned int id, 1091 dma_addr_t port_addr) 1092 { 1093 dma_cap_mask_t mask; 1094 struct dma_chan *chan; 1095 struct dma_slave_config cfg; 1096 int ret; 1097 1098 dma_cap_zero(mask); 1099 dma_cap_set(DMA_SLAVE, mask); 1100 1101 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter, 1102 (void *)(unsigned long)id, dev, 1103 dir == DMA_MEM_TO_DEV ? "tx" : "rx"); 1104 if (!chan) { 1105 dev_warn(dev, "dma_request_slave_channel_compat failed\n"); 1106 return NULL; 1107 } 1108 1109 memset(&cfg, 0, sizeof(cfg)); 1110 cfg.direction = dir; 1111 if (dir == DMA_MEM_TO_DEV) { 1112 cfg.dst_addr = port_addr; 1113 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1114 } else { 1115 cfg.src_addr = port_addr; 1116 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1117 } 1118 1119 ret = dmaengine_slave_config(chan, &cfg); 1120 if (ret) { 1121 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret); 1122 dma_release_channel(chan); 1123 return NULL; 1124 } 1125 1126 return chan; 1127 } 1128 1129 static int rspi_request_dma(struct device *dev, struct spi_controller *ctlr, 1130 const struct resource *res) 1131 { 1132 const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev); 1133 unsigned int dma_tx_id, dma_rx_id; 1134 1135 if (dev->of_node) { 1136 /* In the OF case we will get the slave IDs from the DT */ 1137 dma_tx_id = 0; 1138 dma_rx_id = 0; 1139 } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) { 1140 dma_tx_id = rspi_pd->dma_tx_id; 1141 dma_rx_id = rspi_pd->dma_rx_id; 1142 } else { 1143 /* The driver assumes no error. */ 1144 return 0; 1145 } 1146 1147 ctlr->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id, 1148 res->start + RSPI_SPDR); 1149 if (!ctlr->dma_tx) 1150 return -ENODEV; 1151 1152 ctlr->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id, 1153 res->start + RSPI_SPDR); 1154 if (!ctlr->dma_rx) { 1155 dma_release_channel(ctlr->dma_tx); 1156 ctlr->dma_tx = NULL; 1157 return -ENODEV; 1158 } 1159 1160 ctlr->can_dma = rspi_can_dma; 1161 dev_info(dev, "DMA available"); 1162 return 0; 1163 } 1164 1165 static void rspi_release_dma(struct spi_controller *ctlr) 1166 { 1167 if (ctlr->dma_tx) 1168 dma_release_channel(ctlr->dma_tx); 1169 if (ctlr->dma_rx) 1170 dma_release_channel(ctlr->dma_rx); 1171 } 1172 1173 static int rspi_remove(struct platform_device *pdev) 1174 { 1175 struct rspi_data *rspi = platform_get_drvdata(pdev); 1176 1177 rspi_release_dma(rspi->ctlr); 1178 pm_runtime_disable(&pdev->dev); 1179 1180 return 0; 1181 } 1182 1183 static const struct spi_ops rspi_ops = { 1184 .set_config_register = rspi_set_config_register, 1185 .transfer_one = rspi_transfer_one, 1186 .min_div = 2, 1187 .max_div = 4096, 1188 .flags = SPI_CONTROLLER_MUST_TX, 1189 .fifo_size = 8, 1190 .num_hw_ss = 2, 1191 }; 1192 1193 static const struct spi_ops rspi_rz_ops = { 1194 .set_config_register = rspi_rz_set_config_register, 1195 .transfer_one = rspi_rz_transfer_one, 1196 .min_div = 2, 1197 .max_div = 4096, 1198 .flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX, 1199 .fifo_size = 8, /* 8 for TX, 32 for RX */ 1200 .num_hw_ss = 1, 1201 }; 1202 1203 static const struct spi_ops qspi_ops = { 1204 .set_config_register = qspi_set_config_register, 1205 .transfer_one = qspi_transfer_one, 1206 .extra_mode_bits = SPI_TX_DUAL | SPI_TX_QUAD | 1207 SPI_RX_DUAL | SPI_RX_QUAD, 1208 .min_div = 1, 1209 .max_div = 4080, 1210 .flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX, 1211 .fifo_size = 32, 1212 .num_hw_ss = 1, 1213 }; 1214 1215 #ifdef CONFIG_OF 1216 static const struct of_device_id rspi_of_match[] = { 1217 /* RSPI on legacy SH */ 1218 { .compatible = "renesas,rspi", .data = &rspi_ops }, 1219 /* RSPI on RZ/A1H */ 1220 { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops }, 1221 /* QSPI on R-Car Gen2 */ 1222 { .compatible = "renesas,qspi", .data = &qspi_ops }, 1223 { /* sentinel */ } 1224 }; 1225 1226 MODULE_DEVICE_TABLE(of, rspi_of_match); 1227 1228 static int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr) 1229 { 1230 u32 num_cs; 1231 int error; 1232 1233 /* Parse DT properties */ 1234 error = of_property_read_u32(dev->of_node, "num-cs", &num_cs); 1235 if (error) { 1236 dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error); 1237 return error; 1238 } 1239 1240 ctlr->num_chipselect = num_cs; 1241 return 0; 1242 } 1243 #else 1244 #define rspi_of_match NULL 1245 static inline int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr) 1246 { 1247 return -EINVAL; 1248 } 1249 #endif /* CONFIG_OF */ 1250 1251 static int rspi_request_irq(struct device *dev, unsigned int irq, 1252 irq_handler_t handler, const char *suffix, 1253 void *dev_id) 1254 { 1255 const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", 1256 dev_name(dev), suffix); 1257 if (!name) 1258 return -ENOMEM; 1259 1260 return devm_request_irq(dev, irq, handler, 0, name, dev_id); 1261 } 1262 1263 static int rspi_probe(struct platform_device *pdev) 1264 { 1265 struct resource *res; 1266 struct spi_controller *ctlr; 1267 struct rspi_data *rspi; 1268 int ret; 1269 const struct rspi_plat_data *rspi_pd; 1270 const struct spi_ops *ops; 1271 unsigned long clksrc; 1272 1273 ctlr = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data)); 1274 if (ctlr == NULL) 1275 return -ENOMEM; 1276 1277 ops = of_device_get_match_data(&pdev->dev); 1278 if (ops) { 1279 ret = rspi_parse_dt(&pdev->dev, ctlr); 1280 if (ret) 1281 goto error1; 1282 } else { 1283 ops = (struct spi_ops *)pdev->id_entry->driver_data; 1284 rspi_pd = dev_get_platdata(&pdev->dev); 1285 if (rspi_pd && rspi_pd->num_chipselect) 1286 ctlr->num_chipselect = rspi_pd->num_chipselect; 1287 else 1288 ctlr->num_chipselect = 2; /* default */ 1289 } 1290 1291 rspi = spi_controller_get_devdata(ctlr); 1292 platform_set_drvdata(pdev, rspi); 1293 rspi->ops = ops; 1294 rspi->ctlr = ctlr; 1295 1296 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1297 rspi->addr = devm_ioremap_resource(&pdev->dev, res); 1298 if (IS_ERR(rspi->addr)) { 1299 ret = PTR_ERR(rspi->addr); 1300 goto error1; 1301 } 1302 1303 rspi->clk = devm_clk_get(&pdev->dev, NULL); 1304 if (IS_ERR(rspi->clk)) { 1305 dev_err(&pdev->dev, "cannot get clock\n"); 1306 ret = PTR_ERR(rspi->clk); 1307 goto error1; 1308 } 1309 1310 rspi->pdev = pdev; 1311 pm_runtime_enable(&pdev->dev); 1312 1313 init_waitqueue_head(&rspi->wait); 1314 spin_lock_init(&rspi->lock); 1315 1316 ctlr->bus_num = pdev->id; 1317 ctlr->setup = rspi_setup; 1318 ctlr->auto_runtime_pm = true; 1319 ctlr->transfer_one = ops->transfer_one; 1320 ctlr->prepare_message = rspi_prepare_message; 1321 ctlr->unprepare_message = rspi_unprepare_message; 1322 ctlr->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST | 1323 SPI_LOOP | ops->extra_mode_bits; 1324 clksrc = clk_get_rate(rspi->clk); 1325 ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, ops->max_div); 1326 ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, ops->min_div); 1327 ctlr->flags = ops->flags; 1328 ctlr->dev.of_node = pdev->dev.of_node; 1329 ctlr->use_gpio_descriptors = true; 1330 ctlr->max_native_cs = rspi->ops->num_hw_ss; 1331 1332 ret = platform_get_irq_byname_optional(pdev, "rx"); 1333 if (ret < 0) { 1334 ret = platform_get_irq_byname_optional(pdev, "mux"); 1335 if (ret < 0) 1336 ret = platform_get_irq(pdev, 0); 1337 if (ret >= 0) 1338 rspi->rx_irq = rspi->tx_irq = ret; 1339 } else { 1340 rspi->rx_irq = ret; 1341 ret = platform_get_irq_byname(pdev, "tx"); 1342 if (ret >= 0) 1343 rspi->tx_irq = ret; 1344 } 1345 1346 if (rspi->rx_irq == rspi->tx_irq) { 1347 /* Single multiplexed interrupt */ 1348 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux, 1349 "mux", rspi); 1350 } else { 1351 /* Multi-interrupt mode, only SPRI and SPTI are used */ 1352 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx, 1353 "rx", rspi); 1354 if (!ret) 1355 ret = rspi_request_irq(&pdev->dev, rspi->tx_irq, 1356 rspi_irq_tx, "tx", rspi); 1357 } 1358 if (ret < 0) { 1359 dev_err(&pdev->dev, "request_irq error\n"); 1360 goto error2; 1361 } 1362 1363 ret = rspi_request_dma(&pdev->dev, ctlr, res); 1364 if (ret < 0) 1365 dev_warn(&pdev->dev, "DMA not available, using PIO\n"); 1366 1367 ret = devm_spi_register_controller(&pdev->dev, ctlr); 1368 if (ret < 0) { 1369 dev_err(&pdev->dev, "devm_spi_register_controller error.\n"); 1370 goto error3; 1371 } 1372 1373 dev_info(&pdev->dev, "probed\n"); 1374 1375 return 0; 1376 1377 error3: 1378 rspi_release_dma(ctlr); 1379 error2: 1380 pm_runtime_disable(&pdev->dev); 1381 error1: 1382 spi_controller_put(ctlr); 1383 1384 return ret; 1385 } 1386 1387 static const struct platform_device_id spi_driver_ids[] = { 1388 { "rspi", (kernel_ulong_t)&rspi_ops }, 1389 {}, 1390 }; 1391 1392 MODULE_DEVICE_TABLE(platform, spi_driver_ids); 1393 1394 #ifdef CONFIG_PM_SLEEP 1395 static int rspi_suspend(struct device *dev) 1396 { 1397 struct rspi_data *rspi = dev_get_drvdata(dev); 1398 1399 return spi_controller_suspend(rspi->ctlr); 1400 } 1401 1402 static int rspi_resume(struct device *dev) 1403 { 1404 struct rspi_data *rspi = dev_get_drvdata(dev); 1405 1406 return spi_controller_resume(rspi->ctlr); 1407 } 1408 1409 static SIMPLE_DEV_PM_OPS(rspi_pm_ops, rspi_suspend, rspi_resume); 1410 #define DEV_PM_OPS &rspi_pm_ops 1411 #else 1412 #define DEV_PM_OPS NULL 1413 #endif /* CONFIG_PM_SLEEP */ 1414 1415 static struct platform_driver rspi_driver = { 1416 .probe = rspi_probe, 1417 .remove = rspi_remove, 1418 .id_table = spi_driver_ids, 1419 .driver = { 1420 .name = "renesas_spi", 1421 .pm = DEV_PM_OPS, 1422 .of_match_table = of_match_ptr(rspi_of_match), 1423 }, 1424 }; 1425 module_platform_driver(rspi_driver); 1426 1427 MODULE_DESCRIPTION("Renesas RSPI bus driver"); 1428 MODULE_LICENSE("GPL v2"); 1429 MODULE_AUTHOR("Yoshihiro Shimoda"); 1430