1 /* 2 * SH RSPI driver 3 * 4 * Copyright (C) 2012, 2013 Renesas Solutions Corp. 5 * Copyright (C) 2014 Glider bvba 6 * 7 * Based on spi-sh.c: 8 * Copyright (C) 2011 Renesas Solutions Corp. 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; version 2 of the License. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20 #include <linux/module.h> 21 #include <linux/kernel.h> 22 #include <linux/sched.h> 23 #include <linux/errno.h> 24 #include <linux/interrupt.h> 25 #include <linux/platform_device.h> 26 #include <linux/io.h> 27 #include <linux/clk.h> 28 #include <linux/dmaengine.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/of_device.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/sh_dma.h> 33 #include <linux/spi/spi.h> 34 #include <linux/spi/rspi.h> 35 36 #define RSPI_SPCR 0x00 /* Control Register */ 37 #define RSPI_SSLP 0x01 /* Slave Select Polarity Register */ 38 #define RSPI_SPPCR 0x02 /* Pin Control Register */ 39 #define RSPI_SPSR 0x03 /* Status Register */ 40 #define RSPI_SPDR 0x04 /* Data Register */ 41 #define RSPI_SPSCR 0x08 /* Sequence Control Register */ 42 #define RSPI_SPSSR 0x09 /* Sequence Status Register */ 43 #define RSPI_SPBR 0x0a /* Bit Rate Register */ 44 #define RSPI_SPDCR 0x0b /* Data Control Register */ 45 #define RSPI_SPCKD 0x0c /* Clock Delay Register */ 46 #define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */ 47 #define RSPI_SPND 0x0e /* Next-Access Delay Register */ 48 #define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */ 49 #define RSPI_SPCMD0 0x10 /* Command Register 0 */ 50 #define RSPI_SPCMD1 0x12 /* Command Register 1 */ 51 #define RSPI_SPCMD2 0x14 /* Command Register 2 */ 52 #define RSPI_SPCMD3 0x16 /* Command Register 3 */ 53 #define RSPI_SPCMD4 0x18 /* Command Register 4 */ 54 #define RSPI_SPCMD5 0x1a /* Command Register 5 */ 55 #define RSPI_SPCMD6 0x1c /* Command Register 6 */ 56 #define RSPI_SPCMD7 0x1e /* Command Register 7 */ 57 #define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2) 58 #define RSPI_NUM_SPCMD 8 59 #define RSPI_RZ_NUM_SPCMD 4 60 #define QSPI_NUM_SPCMD 4 61 62 /* RSPI on RZ only */ 63 #define RSPI_SPBFCR 0x20 /* Buffer Control Register */ 64 #define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */ 65 66 /* QSPI only */ 67 #define QSPI_SPBFCR 0x18 /* Buffer Control Register */ 68 #define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */ 69 #define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */ 70 #define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */ 71 #define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */ 72 #define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */ 73 #define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4) 74 75 /* SPCR - Control Register */ 76 #define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */ 77 #define SPCR_SPE 0x40 /* Function Enable */ 78 #define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */ 79 #define SPCR_SPEIE 0x10 /* Error Interrupt Enable */ 80 #define SPCR_MSTR 0x08 /* Master/Slave Mode Select */ 81 #define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */ 82 /* RSPI on SH only */ 83 #define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */ 84 #define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */ 85 /* QSPI on R-Car Gen2 only */ 86 #define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */ 87 #define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */ 88 89 /* SSLP - Slave Select Polarity Register */ 90 #define SSLP_SSL1P 0x02 /* SSL1 Signal Polarity Setting */ 91 #define SSLP_SSL0P 0x01 /* SSL0 Signal Polarity Setting */ 92 93 /* SPPCR - Pin Control Register */ 94 #define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */ 95 #define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */ 96 #define SPPCR_SPOM 0x04 97 #define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */ 98 #define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */ 99 100 #define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */ 101 #define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */ 102 103 /* SPSR - Status Register */ 104 #define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */ 105 #define SPSR_TEND 0x40 /* Transmit End */ 106 #define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */ 107 #define SPSR_PERF 0x08 /* Parity Error Flag */ 108 #define SPSR_MODF 0x04 /* Mode Fault Error Flag */ 109 #define SPSR_IDLNF 0x02 /* RSPI Idle Flag */ 110 #define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */ 111 112 /* SPSCR - Sequence Control Register */ 113 #define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */ 114 115 /* SPSSR - Sequence Status Register */ 116 #define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */ 117 #define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */ 118 119 /* SPDCR - Data Control Register */ 120 #define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */ 121 #define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */ 122 #define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */ 123 #define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0) 124 #define SPDCR_SPLWORD SPDCR_SPLW1 125 #define SPDCR_SPLBYTE SPDCR_SPLW0 126 #define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */ 127 #define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */ 128 #define SPDCR_SLSEL1 0x08 129 #define SPDCR_SLSEL0 0x04 130 #define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */ 131 #define SPDCR_SPFC1 0x02 132 #define SPDCR_SPFC0 0x01 133 #define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */ 134 135 /* SPCKD - Clock Delay Register */ 136 #define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */ 137 138 /* SSLND - Slave Select Negation Delay Register */ 139 #define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */ 140 141 /* SPND - Next-Access Delay Register */ 142 #define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */ 143 144 /* SPCR2 - Control Register 2 */ 145 #define SPCR2_PTE 0x08 /* Parity Self-Test Enable */ 146 #define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */ 147 #define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */ 148 #define SPCR2_SPPE 0x01 /* Parity Enable */ 149 150 /* SPCMDn - Command Registers */ 151 #define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */ 152 #define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */ 153 #define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */ 154 #define SPCMD_LSBF 0x1000 /* LSB First */ 155 #define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */ 156 #define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK) 157 #define SPCMD_SPB_8BIT 0x0000 /* QSPI only */ 158 #define SPCMD_SPB_16BIT 0x0100 159 #define SPCMD_SPB_20BIT 0x0000 160 #define SPCMD_SPB_24BIT 0x0100 161 #define SPCMD_SPB_32BIT 0x0200 162 #define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */ 163 #define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */ 164 #define SPCMD_SPIMOD1 0x0040 165 #define SPCMD_SPIMOD0 0x0020 166 #define SPCMD_SPIMOD_SINGLE 0 167 #define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0 168 #define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1 169 #define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */ 170 #define SPCMD_SSLA_MASK 0x0030 /* SSL Assert Signal Setting (RSPI) */ 171 #define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */ 172 #define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */ 173 #define SPCMD_CPHA 0x0001 /* Clock Phase Setting */ 174 175 /* SPBFCR - Buffer Control Register */ 176 #define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */ 177 #define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */ 178 #define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */ 179 #define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */ 180 /* QSPI on R-Car Gen2 */ 181 #define SPBFCR_TXTRG_1B 0x00 /* 31 bytes (1 byte available) */ 182 #define SPBFCR_TXTRG_32B 0x30 /* 0 byte (32 bytes available) */ 183 #define SPBFCR_RXTRG_1B 0x00 /* 1 byte (31 bytes available) */ 184 #define SPBFCR_RXTRG_32B 0x07 /* 32 bytes (0 byte available) */ 185 186 #define QSPI_BUFFER_SIZE 32u 187 188 struct rspi_data { 189 void __iomem *addr; 190 u32 max_speed_hz; 191 struct spi_master *master; 192 wait_queue_head_t wait; 193 struct clk *clk; 194 u16 spcmd; 195 u8 spsr; 196 u8 sppcr; 197 int rx_irq, tx_irq; 198 const struct spi_ops *ops; 199 200 unsigned dma_callbacked:1; 201 unsigned byte_access:1; 202 }; 203 204 static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset) 205 { 206 iowrite8(data, rspi->addr + offset); 207 } 208 209 static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset) 210 { 211 iowrite16(data, rspi->addr + offset); 212 } 213 214 static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset) 215 { 216 iowrite32(data, rspi->addr + offset); 217 } 218 219 static u8 rspi_read8(const struct rspi_data *rspi, u16 offset) 220 { 221 return ioread8(rspi->addr + offset); 222 } 223 224 static u16 rspi_read16(const struct rspi_data *rspi, u16 offset) 225 { 226 return ioread16(rspi->addr + offset); 227 } 228 229 static void rspi_write_data(const struct rspi_data *rspi, u16 data) 230 { 231 if (rspi->byte_access) 232 rspi_write8(rspi, data, RSPI_SPDR); 233 else /* 16 bit */ 234 rspi_write16(rspi, data, RSPI_SPDR); 235 } 236 237 static u16 rspi_read_data(const struct rspi_data *rspi) 238 { 239 if (rspi->byte_access) 240 return rspi_read8(rspi, RSPI_SPDR); 241 else /* 16 bit */ 242 return rspi_read16(rspi, RSPI_SPDR); 243 } 244 245 /* optional functions */ 246 struct spi_ops { 247 int (*set_config_register)(struct rspi_data *rspi, int access_size); 248 int (*transfer_one)(struct spi_master *master, struct spi_device *spi, 249 struct spi_transfer *xfer); 250 u16 mode_bits; 251 u16 flags; 252 u16 fifo_size; 253 }; 254 255 /* 256 * functions for RSPI on legacy SH 257 */ 258 static int rspi_set_config_register(struct rspi_data *rspi, int access_size) 259 { 260 int spbr; 261 262 /* Sets output mode, MOSI signal, and (optionally) loopback */ 263 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR); 264 265 /* Sets transfer bit rate */ 266 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 267 2 * rspi->max_speed_hz) - 1; 268 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR); 269 270 /* Disable dummy transmission, set 16-bit word access, 1 frame */ 271 rspi_write8(rspi, 0, RSPI_SPDCR); 272 rspi->byte_access = 0; 273 274 /* Sets RSPCK, SSL, next-access delay value */ 275 rspi_write8(rspi, 0x00, RSPI_SPCKD); 276 rspi_write8(rspi, 0x00, RSPI_SSLND); 277 rspi_write8(rspi, 0x00, RSPI_SPND); 278 279 /* Sets parity, interrupt mask */ 280 rspi_write8(rspi, 0x00, RSPI_SPCR2); 281 282 /* Sets SPCMD */ 283 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size); 284 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0); 285 286 /* Sets RSPI mode */ 287 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR); 288 289 return 0; 290 } 291 292 /* 293 * functions for RSPI on RZ 294 */ 295 static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size) 296 { 297 int spbr; 298 299 /* Sets output mode, MOSI signal, and (optionally) loopback */ 300 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR); 301 302 /* Sets transfer bit rate */ 303 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 304 2 * rspi->max_speed_hz) - 1; 305 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR); 306 307 /* Disable dummy transmission, set byte access */ 308 rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR); 309 rspi->byte_access = 1; 310 311 /* Sets RSPCK, SSL, next-access delay value */ 312 rspi_write8(rspi, 0x00, RSPI_SPCKD); 313 rspi_write8(rspi, 0x00, RSPI_SSLND); 314 rspi_write8(rspi, 0x00, RSPI_SPND); 315 316 /* Sets SPCMD */ 317 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size); 318 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0); 319 320 /* Sets RSPI mode */ 321 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR); 322 323 return 0; 324 } 325 326 /* 327 * functions for QSPI 328 */ 329 static int qspi_set_config_register(struct rspi_data *rspi, int access_size) 330 { 331 int spbr; 332 333 /* Sets output mode, MOSI signal, and (optionally) loopback */ 334 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR); 335 336 /* Sets transfer bit rate */ 337 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz); 338 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR); 339 340 /* Disable dummy transmission, set byte access */ 341 rspi_write8(rspi, 0, RSPI_SPDCR); 342 rspi->byte_access = 1; 343 344 /* Sets RSPCK, SSL, next-access delay value */ 345 rspi_write8(rspi, 0x00, RSPI_SPCKD); 346 rspi_write8(rspi, 0x00, RSPI_SSLND); 347 rspi_write8(rspi, 0x00, RSPI_SPND); 348 349 /* Data Length Setting */ 350 if (access_size == 8) 351 rspi->spcmd |= SPCMD_SPB_8BIT; 352 else if (access_size == 16) 353 rspi->spcmd |= SPCMD_SPB_16BIT; 354 else 355 rspi->spcmd |= SPCMD_SPB_32BIT; 356 357 rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN; 358 359 /* Resets transfer data length */ 360 rspi_write32(rspi, 0, QSPI_SPBMUL0); 361 362 /* Resets transmit and receive buffer */ 363 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR); 364 /* Sets buffer to allow normal operation */ 365 rspi_write8(rspi, 0x00, QSPI_SPBFCR); 366 367 /* Sets SPCMD */ 368 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0); 369 370 /* Enables SPI function in master mode */ 371 rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR); 372 373 return 0; 374 } 375 376 static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg) 377 { 378 u8 data; 379 380 data = rspi_read8(rspi, reg); 381 data &= ~mask; 382 data |= (val & mask); 383 rspi_write8(rspi, data, reg); 384 } 385 386 static unsigned int qspi_set_send_trigger(struct rspi_data *rspi, 387 unsigned int len) 388 { 389 unsigned int n; 390 391 n = min(len, QSPI_BUFFER_SIZE); 392 393 if (len >= QSPI_BUFFER_SIZE) { 394 /* sets triggering number to 32 bytes */ 395 qspi_update(rspi, SPBFCR_TXTRG_MASK, 396 SPBFCR_TXTRG_32B, QSPI_SPBFCR); 397 } else { 398 /* sets triggering number to 1 byte */ 399 qspi_update(rspi, SPBFCR_TXTRG_MASK, 400 SPBFCR_TXTRG_1B, QSPI_SPBFCR); 401 } 402 403 return n; 404 } 405 406 static void qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len) 407 { 408 unsigned int n; 409 410 n = min(len, QSPI_BUFFER_SIZE); 411 412 if (len >= QSPI_BUFFER_SIZE) { 413 /* sets triggering number to 32 bytes */ 414 qspi_update(rspi, SPBFCR_RXTRG_MASK, 415 SPBFCR_RXTRG_32B, QSPI_SPBFCR); 416 } else { 417 /* sets triggering number to 1 byte */ 418 qspi_update(rspi, SPBFCR_RXTRG_MASK, 419 SPBFCR_RXTRG_1B, QSPI_SPBFCR); 420 } 421 } 422 423 #define set_config_register(spi, n) spi->ops->set_config_register(spi, n) 424 425 static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable) 426 { 427 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR); 428 } 429 430 static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable) 431 { 432 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR); 433 } 434 435 static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask, 436 u8 enable_bit) 437 { 438 int ret; 439 440 rspi->spsr = rspi_read8(rspi, RSPI_SPSR); 441 if (rspi->spsr & wait_mask) 442 return 0; 443 444 rspi_enable_irq(rspi, enable_bit); 445 ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ); 446 if (ret == 0 && !(rspi->spsr & wait_mask)) 447 return -ETIMEDOUT; 448 449 return 0; 450 } 451 452 static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi) 453 { 454 return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE); 455 } 456 457 static inline int rspi_wait_for_rx_full(struct rspi_data *rspi) 458 { 459 return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE); 460 } 461 462 static int rspi_data_out(struct rspi_data *rspi, u8 data) 463 { 464 int error = rspi_wait_for_tx_empty(rspi); 465 if (error < 0) { 466 dev_err(&rspi->master->dev, "transmit timeout\n"); 467 return error; 468 } 469 rspi_write_data(rspi, data); 470 return 0; 471 } 472 473 static int rspi_data_in(struct rspi_data *rspi) 474 { 475 int error; 476 u8 data; 477 478 error = rspi_wait_for_rx_full(rspi); 479 if (error < 0) { 480 dev_err(&rspi->master->dev, "receive timeout\n"); 481 return error; 482 } 483 data = rspi_read_data(rspi); 484 return data; 485 } 486 487 static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx, 488 unsigned int n) 489 { 490 while (n-- > 0) { 491 if (tx) { 492 int ret = rspi_data_out(rspi, *tx++); 493 if (ret < 0) 494 return ret; 495 } 496 if (rx) { 497 int ret = rspi_data_in(rspi); 498 if (ret < 0) 499 return ret; 500 *rx++ = ret; 501 } 502 } 503 504 return 0; 505 } 506 507 static void rspi_dma_complete(void *arg) 508 { 509 struct rspi_data *rspi = arg; 510 511 rspi->dma_callbacked = 1; 512 wake_up_interruptible(&rspi->wait); 513 } 514 515 static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx, 516 struct sg_table *rx) 517 { 518 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL; 519 u8 irq_mask = 0; 520 unsigned int other_irq = 0; 521 dma_cookie_t cookie; 522 int ret; 523 524 /* First prepare and submit the DMA request(s), as this may fail */ 525 if (rx) { 526 desc_rx = dmaengine_prep_slave_sg(rspi->master->dma_rx, 527 rx->sgl, rx->nents, DMA_FROM_DEVICE, 528 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 529 if (!desc_rx) { 530 ret = -EAGAIN; 531 goto no_dma_rx; 532 } 533 534 desc_rx->callback = rspi_dma_complete; 535 desc_rx->callback_param = rspi; 536 cookie = dmaengine_submit(desc_rx); 537 if (dma_submit_error(cookie)) { 538 ret = cookie; 539 goto no_dma_rx; 540 } 541 542 irq_mask |= SPCR_SPRIE; 543 } 544 545 if (tx) { 546 desc_tx = dmaengine_prep_slave_sg(rspi->master->dma_tx, 547 tx->sgl, tx->nents, DMA_TO_DEVICE, 548 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 549 if (!desc_tx) { 550 ret = -EAGAIN; 551 goto no_dma_tx; 552 } 553 554 if (rx) { 555 /* No callback */ 556 desc_tx->callback = NULL; 557 } else { 558 desc_tx->callback = rspi_dma_complete; 559 desc_tx->callback_param = rspi; 560 } 561 cookie = dmaengine_submit(desc_tx); 562 if (dma_submit_error(cookie)) { 563 ret = cookie; 564 goto no_dma_tx; 565 } 566 567 irq_mask |= SPCR_SPTIE; 568 } 569 570 /* 571 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be 572 * called. So, this driver disables the IRQ while DMA transfer. 573 */ 574 if (tx) 575 disable_irq(other_irq = rspi->tx_irq); 576 if (rx && rspi->rx_irq != other_irq) 577 disable_irq(rspi->rx_irq); 578 579 rspi_enable_irq(rspi, irq_mask); 580 rspi->dma_callbacked = 0; 581 582 /* Now start DMA */ 583 if (rx) 584 dma_async_issue_pending(rspi->master->dma_rx); 585 if (tx) 586 dma_async_issue_pending(rspi->master->dma_tx); 587 588 ret = wait_event_interruptible_timeout(rspi->wait, 589 rspi->dma_callbacked, HZ); 590 if (ret > 0 && rspi->dma_callbacked) 591 ret = 0; 592 else if (!ret) { 593 dev_err(&rspi->master->dev, "DMA timeout\n"); 594 ret = -ETIMEDOUT; 595 if (tx) 596 dmaengine_terminate_all(rspi->master->dma_tx); 597 if (rx) 598 dmaengine_terminate_all(rspi->master->dma_rx); 599 } 600 601 rspi_disable_irq(rspi, irq_mask); 602 603 if (tx) 604 enable_irq(rspi->tx_irq); 605 if (rx && rspi->rx_irq != other_irq) 606 enable_irq(rspi->rx_irq); 607 608 return ret; 609 610 no_dma_tx: 611 if (rx) 612 dmaengine_terminate_all(rspi->master->dma_rx); 613 no_dma_rx: 614 if (ret == -EAGAIN) { 615 pr_warn_once("%s %s: DMA not available, falling back to PIO\n", 616 dev_driver_string(&rspi->master->dev), 617 dev_name(&rspi->master->dev)); 618 } 619 return ret; 620 } 621 622 static void rspi_receive_init(const struct rspi_data *rspi) 623 { 624 u8 spsr; 625 626 spsr = rspi_read8(rspi, RSPI_SPSR); 627 if (spsr & SPSR_SPRF) 628 rspi_read_data(rspi); /* dummy read */ 629 if (spsr & SPSR_OVRF) 630 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF, 631 RSPI_SPSR); 632 } 633 634 static void rspi_rz_receive_init(const struct rspi_data *rspi) 635 { 636 rspi_receive_init(rspi); 637 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR); 638 rspi_write8(rspi, 0, RSPI_SPBFCR); 639 } 640 641 static void qspi_receive_init(const struct rspi_data *rspi) 642 { 643 u8 spsr; 644 645 spsr = rspi_read8(rspi, RSPI_SPSR); 646 if (spsr & SPSR_SPRF) 647 rspi_read_data(rspi); /* dummy read */ 648 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR); 649 rspi_write8(rspi, 0, QSPI_SPBFCR); 650 } 651 652 static bool __rspi_can_dma(const struct rspi_data *rspi, 653 const struct spi_transfer *xfer) 654 { 655 return xfer->len > rspi->ops->fifo_size; 656 } 657 658 static bool rspi_can_dma(struct spi_master *master, struct spi_device *spi, 659 struct spi_transfer *xfer) 660 { 661 struct rspi_data *rspi = spi_master_get_devdata(master); 662 663 return __rspi_can_dma(rspi, xfer); 664 } 665 666 static int rspi_dma_check_then_transfer(struct rspi_data *rspi, 667 struct spi_transfer *xfer) 668 { 669 if (!rspi->master->can_dma || !__rspi_can_dma(rspi, xfer)) 670 return -EAGAIN; 671 672 /* rx_buf can be NULL on RSPI on SH in TX-only Mode */ 673 return rspi_dma_transfer(rspi, &xfer->tx_sg, 674 xfer->rx_buf ? &xfer->rx_sg : NULL); 675 } 676 677 static int rspi_common_transfer(struct rspi_data *rspi, 678 struct spi_transfer *xfer) 679 { 680 int ret; 681 682 ret = rspi_dma_check_then_transfer(rspi, xfer); 683 if (ret != -EAGAIN) 684 return ret; 685 686 ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len); 687 if (ret < 0) 688 return ret; 689 690 /* Wait for the last transmission */ 691 rspi_wait_for_tx_empty(rspi); 692 693 return 0; 694 } 695 696 static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi, 697 struct spi_transfer *xfer) 698 { 699 struct rspi_data *rspi = spi_master_get_devdata(master); 700 u8 spcr; 701 702 spcr = rspi_read8(rspi, RSPI_SPCR); 703 if (xfer->rx_buf) { 704 rspi_receive_init(rspi); 705 spcr &= ~SPCR_TXMD; 706 } else { 707 spcr |= SPCR_TXMD; 708 } 709 rspi_write8(rspi, spcr, RSPI_SPCR); 710 711 return rspi_common_transfer(rspi, xfer); 712 } 713 714 static int rspi_rz_transfer_one(struct spi_master *master, 715 struct spi_device *spi, 716 struct spi_transfer *xfer) 717 { 718 struct rspi_data *rspi = spi_master_get_devdata(master); 719 720 rspi_rz_receive_init(rspi); 721 722 return rspi_common_transfer(rspi, xfer); 723 } 724 725 static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx, 726 u8 *rx, unsigned int len) 727 { 728 unsigned int i, n; 729 int ret; 730 731 while (len > 0) { 732 n = qspi_set_send_trigger(rspi, len); 733 qspi_set_receive_trigger(rspi, len); 734 if (n == QSPI_BUFFER_SIZE) { 735 ret = rspi_wait_for_tx_empty(rspi); 736 if (ret < 0) { 737 dev_err(&rspi->master->dev, "transmit timeout\n"); 738 return ret; 739 } 740 for (i = 0; i < n; i++) 741 rspi_write_data(rspi, *tx++); 742 743 ret = rspi_wait_for_rx_full(rspi); 744 if (ret < 0) { 745 dev_err(&rspi->master->dev, "receive timeout\n"); 746 return ret; 747 } 748 for (i = 0; i < n; i++) 749 *rx++ = rspi_read_data(rspi); 750 } else { 751 ret = rspi_pio_transfer(rspi, tx, rx, n); 752 if (ret < 0) 753 return ret; 754 } 755 len -= n; 756 } 757 758 return 0; 759 } 760 761 static int qspi_transfer_out_in(struct rspi_data *rspi, 762 struct spi_transfer *xfer) 763 { 764 int ret; 765 766 qspi_receive_init(rspi); 767 768 ret = rspi_dma_check_then_transfer(rspi, xfer); 769 if (ret != -EAGAIN) 770 return ret; 771 772 return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf, 773 xfer->rx_buf, xfer->len); 774 } 775 776 static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer) 777 { 778 int ret; 779 780 if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) { 781 ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL); 782 if (ret != -EAGAIN) 783 return ret; 784 } 785 786 ret = rspi_pio_transfer(rspi, xfer->tx_buf, NULL, xfer->len); 787 if (ret < 0) 788 return ret; 789 790 /* Wait for the last transmission */ 791 rspi_wait_for_tx_empty(rspi); 792 793 return 0; 794 } 795 796 static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer) 797 { 798 if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) { 799 int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg); 800 if (ret != -EAGAIN) 801 return ret; 802 } 803 804 return rspi_pio_transfer(rspi, NULL, xfer->rx_buf, xfer->len); 805 } 806 807 static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi, 808 struct spi_transfer *xfer) 809 { 810 struct rspi_data *rspi = spi_master_get_devdata(master); 811 812 if (spi->mode & SPI_LOOP) { 813 return qspi_transfer_out_in(rspi, xfer); 814 } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) { 815 /* Quad or Dual SPI Write */ 816 return qspi_transfer_out(rspi, xfer); 817 } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) { 818 /* Quad or Dual SPI Read */ 819 return qspi_transfer_in(rspi, xfer); 820 } else { 821 /* Single SPI Transfer */ 822 return qspi_transfer_out_in(rspi, xfer); 823 } 824 } 825 826 static int rspi_setup(struct spi_device *spi) 827 { 828 struct rspi_data *rspi = spi_master_get_devdata(spi->master); 829 830 rspi->max_speed_hz = spi->max_speed_hz; 831 832 rspi->spcmd = SPCMD_SSLKP; 833 if (spi->mode & SPI_CPOL) 834 rspi->spcmd |= SPCMD_CPOL; 835 if (spi->mode & SPI_CPHA) 836 rspi->spcmd |= SPCMD_CPHA; 837 838 /* CMOS output mode and MOSI signal from previous transfer */ 839 rspi->sppcr = 0; 840 if (spi->mode & SPI_LOOP) 841 rspi->sppcr |= SPPCR_SPLP; 842 843 set_config_register(rspi, 8); 844 845 return 0; 846 } 847 848 static u16 qspi_transfer_mode(const struct spi_transfer *xfer) 849 { 850 if (xfer->tx_buf) 851 switch (xfer->tx_nbits) { 852 case SPI_NBITS_QUAD: 853 return SPCMD_SPIMOD_QUAD; 854 case SPI_NBITS_DUAL: 855 return SPCMD_SPIMOD_DUAL; 856 default: 857 return 0; 858 } 859 if (xfer->rx_buf) 860 switch (xfer->rx_nbits) { 861 case SPI_NBITS_QUAD: 862 return SPCMD_SPIMOD_QUAD | SPCMD_SPRW; 863 case SPI_NBITS_DUAL: 864 return SPCMD_SPIMOD_DUAL | SPCMD_SPRW; 865 default: 866 return 0; 867 } 868 869 return 0; 870 } 871 872 static int qspi_setup_sequencer(struct rspi_data *rspi, 873 const struct spi_message *msg) 874 { 875 const struct spi_transfer *xfer; 876 unsigned int i = 0, len = 0; 877 u16 current_mode = 0xffff, mode; 878 879 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 880 mode = qspi_transfer_mode(xfer); 881 if (mode == current_mode) { 882 len += xfer->len; 883 continue; 884 } 885 886 /* Transfer mode change */ 887 if (i) { 888 /* Set transfer data length of previous transfer */ 889 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1)); 890 } 891 892 if (i >= QSPI_NUM_SPCMD) { 893 dev_err(&msg->spi->dev, 894 "Too many different transfer modes"); 895 return -EINVAL; 896 } 897 898 /* Program transfer mode for this transfer */ 899 rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i)); 900 current_mode = mode; 901 len = xfer->len; 902 i++; 903 } 904 if (i) { 905 /* Set final transfer data length and sequence length */ 906 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1)); 907 rspi_write8(rspi, i - 1, RSPI_SPSCR); 908 } 909 910 return 0; 911 } 912 913 static int rspi_prepare_message(struct spi_master *master, 914 struct spi_message *msg) 915 { 916 struct rspi_data *rspi = spi_master_get_devdata(master); 917 int ret; 918 919 if (msg->spi->mode & 920 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) { 921 /* Setup sequencer for messages with multiple transfer modes */ 922 ret = qspi_setup_sequencer(rspi, msg); 923 if (ret < 0) 924 return ret; 925 } 926 927 /* Enable SPI function in master mode */ 928 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR); 929 return 0; 930 } 931 932 static int rspi_unprepare_message(struct spi_master *master, 933 struct spi_message *msg) 934 { 935 struct rspi_data *rspi = spi_master_get_devdata(master); 936 937 /* Disable SPI function */ 938 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR); 939 940 /* Reset sequencer for Single SPI Transfers */ 941 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0); 942 rspi_write8(rspi, 0, RSPI_SPSCR); 943 return 0; 944 } 945 946 static irqreturn_t rspi_irq_mux(int irq, void *_sr) 947 { 948 struct rspi_data *rspi = _sr; 949 u8 spsr; 950 irqreturn_t ret = IRQ_NONE; 951 u8 disable_irq = 0; 952 953 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR); 954 if (spsr & SPSR_SPRF) 955 disable_irq |= SPCR_SPRIE; 956 if (spsr & SPSR_SPTEF) 957 disable_irq |= SPCR_SPTIE; 958 959 if (disable_irq) { 960 ret = IRQ_HANDLED; 961 rspi_disable_irq(rspi, disable_irq); 962 wake_up(&rspi->wait); 963 } 964 965 return ret; 966 } 967 968 static irqreturn_t rspi_irq_rx(int irq, void *_sr) 969 { 970 struct rspi_data *rspi = _sr; 971 u8 spsr; 972 973 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR); 974 if (spsr & SPSR_SPRF) { 975 rspi_disable_irq(rspi, SPCR_SPRIE); 976 wake_up(&rspi->wait); 977 return IRQ_HANDLED; 978 } 979 980 return 0; 981 } 982 983 static irqreturn_t rspi_irq_tx(int irq, void *_sr) 984 { 985 struct rspi_data *rspi = _sr; 986 u8 spsr; 987 988 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR); 989 if (spsr & SPSR_SPTEF) { 990 rspi_disable_irq(rspi, SPCR_SPTIE); 991 wake_up(&rspi->wait); 992 return IRQ_HANDLED; 993 } 994 995 return 0; 996 } 997 998 static struct dma_chan *rspi_request_dma_chan(struct device *dev, 999 enum dma_transfer_direction dir, 1000 unsigned int id, 1001 dma_addr_t port_addr) 1002 { 1003 dma_cap_mask_t mask; 1004 struct dma_chan *chan; 1005 struct dma_slave_config cfg; 1006 int ret; 1007 1008 dma_cap_zero(mask); 1009 dma_cap_set(DMA_SLAVE, mask); 1010 1011 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter, 1012 (void *)(unsigned long)id, dev, 1013 dir == DMA_MEM_TO_DEV ? "tx" : "rx"); 1014 if (!chan) { 1015 dev_warn(dev, "dma_request_slave_channel_compat failed\n"); 1016 return NULL; 1017 } 1018 1019 memset(&cfg, 0, sizeof(cfg)); 1020 cfg.direction = dir; 1021 if (dir == DMA_MEM_TO_DEV) { 1022 cfg.dst_addr = port_addr; 1023 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1024 } else { 1025 cfg.src_addr = port_addr; 1026 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1027 } 1028 1029 ret = dmaengine_slave_config(chan, &cfg); 1030 if (ret) { 1031 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret); 1032 dma_release_channel(chan); 1033 return NULL; 1034 } 1035 1036 return chan; 1037 } 1038 1039 static int rspi_request_dma(struct device *dev, struct spi_master *master, 1040 const struct resource *res) 1041 { 1042 const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev); 1043 unsigned int dma_tx_id, dma_rx_id; 1044 1045 if (dev->of_node) { 1046 /* In the OF case we will get the slave IDs from the DT */ 1047 dma_tx_id = 0; 1048 dma_rx_id = 0; 1049 } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) { 1050 dma_tx_id = rspi_pd->dma_tx_id; 1051 dma_rx_id = rspi_pd->dma_rx_id; 1052 } else { 1053 /* The driver assumes no error. */ 1054 return 0; 1055 } 1056 1057 master->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id, 1058 res->start + RSPI_SPDR); 1059 if (!master->dma_tx) 1060 return -ENODEV; 1061 1062 master->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id, 1063 res->start + RSPI_SPDR); 1064 if (!master->dma_rx) { 1065 dma_release_channel(master->dma_tx); 1066 master->dma_tx = NULL; 1067 return -ENODEV; 1068 } 1069 1070 master->can_dma = rspi_can_dma; 1071 dev_info(dev, "DMA available"); 1072 return 0; 1073 } 1074 1075 static void rspi_release_dma(struct spi_master *master) 1076 { 1077 if (master->dma_tx) 1078 dma_release_channel(master->dma_tx); 1079 if (master->dma_rx) 1080 dma_release_channel(master->dma_rx); 1081 } 1082 1083 static int rspi_remove(struct platform_device *pdev) 1084 { 1085 struct rspi_data *rspi = platform_get_drvdata(pdev); 1086 1087 rspi_release_dma(rspi->master); 1088 pm_runtime_disable(&pdev->dev); 1089 1090 return 0; 1091 } 1092 1093 static const struct spi_ops rspi_ops = { 1094 .set_config_register = rspi_set_config_register, 1095 .transfer_one = rspi_transfer_one, 1096 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP, 1097 .flags = SPI_MASTER_MUST_TX, 1098 .fifo_size = 8, 1099 }; 1100 1101 static const struct spi_ops rspi_rz_ops = { 1102 .set_config_register = rspi_rz_set_config_register, 1103 .transfer_one = rspi_rz_transfer_one, 1104 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP, 1105 .flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX, 1106 .fifo_size = 8, /* 8 for TX, 32 for RX */ 1107 }; 1108 1109 static const struct spi_ops qspi_ops = { 1110 .set_config_register = qspi_set_config_register, 1111 .transfer_one = qspi_transfer_one, 1112 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP | 1113 SPI_TX_DUAL | SPI_TX_QUAD | 1114 SPI_RX_DUAL | SPI_RX_QUAD, 1115 .flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX, 1116 .fifo_size = 32, 1117 }; 1118 1119 #ifdef CONFIG_OF 1120 static const struct of_device_id rspi_of_match[] = { 1121 /* RSPI on legacy SH */ 1122 { .compatible = "renesas,rspi", .data = &rspi_ops }, 1123 /* RSPI on RZ/A1H */ 1124 { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops }, 1125 /* QSPI on R-Car Gen2 */ 1126 { .compatible = "renesas,qspi", .data = &qspi_ops }, 1127 { /* sentinel */ } 1128 }; 1129 1130 MODULE_DEVICE_TABLE(of, rspi_of_match); 1131 1132 static int rspi_parse_dt(struct device *dev, struct spi_master *master) 1133 { 1134 u32 num_cs; 1135 int error; 1136 1137 /* Parse DT properties */ 1138 error = of_property_read_u32(dev->of_node, "num-cs", &num_cs); 1139 if (error) { 1140 dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error); 1141 return error; 1142 } 1143 1144 master->num_chipselect = num_cs; 1145 return 0; 1146 } 1147 #else 1148 #define rspi_of_match NULL 1149 static inline int rspi_parse_dt(struct device *dev, struct spi_master *master) 1150 { 1151 return -EINVAL; 1152 } 1153 #endif /* CONFIG_OF */ 1154 1155 static int rspi_request_irq(struct device *dev, unsigned int irq, 1156 irq_handler_t handler, const char *suffix, 1157 void *dev_id) 1158 { 1159 const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", 1160 dev_name(dev), suffix); 1161 if (!name) 1162 return -ENOMEM; 1163 1164 return devm_request_irq(dev, irq, handler, 0, name, dev_id); 1165 } 1166 1167 static int rspi_probe(struct platform_device *pdev) 1168 { 1169 struct resource *res; 1170 struct spi_master *master; 1171 struct rspi_data *rspi; 1172 int ret; 1173 const struct of_device_id *of_id; 1174 const struct rspi_plat_data *rspi_pd; 1175 const struct spi_ops *ops; 1176 1177 master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data)); 1178 if (master == NULL) { 1179 dev_err(&pdev->dev, "spi_alloc_master error.\n"); 1180 return -ENOMEM; 1181 } 1182 1183 of_id = of_match_device(rspi_of_match, &pdev->dev); 1184 if (of_id) { 1185 ops = of_id->data; 1186 ret = rspi_parse_dt(&pdev->dev, master); 1187 if (ret) 1188 goto error1; 1189 } else { 1190 ops = (struct spi_ops *)pdev->id_entry->driver_data; 1191 rspi_pd = dev_get_platdata(&pdev->dev); 1192 if (rspi_pd && rspi_pd->num_chipselect) 1193 master->num_chipselect = rspi_pd->num_chipselect; 1194 else 1195 master->num_chipselect = 2; /* default */ 1196 } 1197 1198 /* ops parameter check */ 1199 if (!ops->set_config_register) { 1200 dev_err(&pdev->dev, "there is no set_config_register\n"); 1201 ret = -ENODEV; 1202 goto error1; 1203 } 1204 1205 rspi = spi_master_get_devdata(master); 1206 platform_set_drvdata(pdev, rspi); 1207 rspi->ops = ops; 1208 rspi->master = master; 1209 1210 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1211 rspi->addr = devm_ioremap_resource(&pdev->dev, res); 1212 if (IS_ERR(rspi->addr)) { 1213 ret = PTR_ERR(rspi->addr); 1214 goto error1; 1215 } 1216 1217 rspi->clk = devm_clk_get(&pdev->dev, NULL); 1218 if (IS_ERR(rspi->clk)) { 1219 dev_err(&pdev->dev, "cannot get clock\n"); 1220 ret = PTR_ERR(rspi->clk); 1221 goto error1; 1222 } 1223 1224 pm_runtime_enable(&pdev->dev); 1225 1226 init_waitqueue_head(&rspi->wait); 1227 1228 master->bus_num = pdev->id; 1229 master->setup = rspi_setup; 1230 master->auto_runtime_pm = true; 1231 master->transfer_one = ops->transfer_one; 1232 master->prepare_message = rspi_prepare_message; 1233 master->unprepare_message = rspi_unprepare_message; 1234 master->mode_bits = ops->mode_bits; 1235 master->flags = ops->flags; 1236 master->dev.of_node = pdev->dev.of_node; 1237 1238 ret = platform_get_irq_byname(pdev, "rx"); 1239 if (ret < 0) { 1240 ret = platform_get_irq_byname(pdev, "mux"); 1241 if (ret < 0) 1242 ret = platform_get_irq(pdev, 0); 1243 if (ret >= 0) 1244 rspi->rx_irq = rspi->tx_irq = ret; 1245 } else { 1246 rspi->rx_irq = ret; 1247 ret = platform_get_irq_byname(pdev, "tx"); 1248 if (ret >= 0) 1249 rspi->tx_irq = ret; 1250 } 1251 if (ret < 0) { 1252 dev_err(&pdev->dev, "platform_get_irq error\n"); 1253 goto error2; 1254 } 1255 1256 if (rspi->rx_irq == rspi->tx_irq) { 1257 /* Single multiplexed interrupt */ 1258 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux, 1259 "mux", rspi); 1260 } else { 1261 /* Multi-interrupt mode, only SPRI and SPTI are used */ 1262 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx, 1263 "rx", rspi); 1264 if (!ret) 1265 ret = rspi_request_irq(&pdev->dev, rspi->tx_irq, 1266 rspi_irq_tx, "tx", rspi); 1267 } 1268 if (ret < 0) { 1269 dev_err(&pdev->dev, "request_irq error\n"); 1270 goto error2; 1271 } 1272 1273 ret = rspi_request_dma(&pdev->dev, master, res); 1274 if (ret < 0) 1275 dev_warn(&pdev->dev, "DMA not available, using PIO\n"); 1276 1277 ret = devm_spi_register_master(&pdev->dev, master); 1278 if (ret < 0) { 1279 dev_err(&pdev->dev, "spi_register_master error.\n"); 1280 goto error3; 1281 } 1282 1283 dev_info(&pdev->dev, "probed\n"); 1284 1285 return 0; 1286 1287 error3: 1288 rspi_release_dma(master); 1289 error2: 1290 pm_runtime_disable(&pdev->dev); 1291 error1: 1292 spi_master_put(master); 1293 1294 return ret; 1295 } 1296 1297 static const struct platform_device_id spi_driver_ids[] = { 1298 { "rspi", (kernel_ulong_t)&rspi_ops }, 1299 { "rspi-rz", (kernel_ulong_t)&rspi_rz_ops }, 1300 { "qspi", (kernel_ulong_t)&qspi_ops }, 1301 {}, 1302 }; 1303 1304 MODULE_DEVICE_TABLE(platform, spi_driver_ids); 1305 1306 static struct platform_driver rspi_driver = { 1307 .probe = rspi_probe, 1308 .remove = rspi_remove, 1309 .id_table = spi_driver_ids, 1310 .driver = { 1311 .name = "renesas_spi", 1312 .of_match_table = of_match_ptr(rspi_of_match), 1313 }, 1314 }; 1315 module_platform_driver(rspi_driver); 1316 1317 MODULE_DESCRIPTION("Renesas RSPI bus driver"); 1318 MODULE_LICENSE("GPL v2"); 1319 MODULE_AUTHOR("Yoshihiro Shimoda"); 1320 MODULE_ALIAS("platform:rspi"); 1321