xref: /openbmc/linux/drivers/spi/spi-rspi.c (revision aa3fc090)
1 /*
2  * SH RSPI driver
3  *
4  * Copyright (C) 2012, 2013  Renesas Solutions Corp.
5  * Copyright (C) 2014 Glider bvba
6  *
7  * Based on spi-sh.c:
8  * Copyright (C) 2011 Renesas Solutions Corp.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; version 2 of the License.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/sched.h>
28 #include <linux/errno.h>
29 #include <linux/interrupt.h>
30 #include <linux/platform_device.h>
31 #include <linux/io.h>
32 #include <linux/clk.h>
33 #include <linux/dmaengine.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/of_device.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/sh_dma.h>
38 #include <linux/spi/spi.h>
39 #include <linux/spi/rspi.h>
40 
41 #define RSPI_SPCR		0x00	/* Control Register */
42 #define RSPI_SSLP		0x01	/* Slave Select Polarity Register */
43 #define RSPI_SPPCR		0x02	/* Pin Control Register */
44 #define RSPI_SPSR		0x03	/* Status Register */
45 #define RSPI_SPDR		0x04	/* Data Register */
46 #define RSPI_SPSCR		0x08	/* Sequence Control Register */
47 #define RSPI_SPSSR		0x09	/* Sequence Status Register */
48 #define RSPI_SPBR		0x0a	/* Bit Rate Register */
49 #define RSPI_SPDCR		0x0b	/* Data Control Register */
50 #define RSPI_SPCKD		0x0c	/* Clock Delay Register */
51 #define RSPI_SSLND		0x0d	/* Slave Select Negation Delay Register */
52 #define RSPI_SPND		0x0e	/* Next-Access Delay Register */
53 #define RSPI_SPCR2		0x0f	/* Control Register 2 (SH only) */
54 #define RSPI_SPCMD0		0x10	/* Command Register 0 */
55 #define RSPI_SPCMD1		0x12	/* Command Register 1 */
56 #define RSPI_SPCMD2		0x14	/* Command Register 2 */
57 #define RSPI_SPCMD3		0x16	/* Command Register 3 */
58 #define RSPI_SPCMD4		0x18	/* Command Register 4 */
59 #define RSPI_SPCMD5		0x1a	/* Command Register 5 */
60 #define RSPI_SPCMD6		0x1c	/* Command Register 6 */
61 #define RSPI_SPCMD7		0x1e	/* Command Register 7 */
62 #define RSPI_SPCMD(i)		(RSPI_SPCMD0 + (i) * 2)
63 #define RSPI_NUM_SPCMD		8
64 #define RSPI_RZ_NUM_SPCMD	4
65 #define QSPI_NUM_SPCMD		4
66 
67 /* RSPI on RZ only */
68 #define RSPI_SPBFCR		0x20	/* Buffer Control Register */
69 #define RSPI_SPBFDR		0x22	/* Buffer Data Count Setting Register */
70 
71 /* QSPI only */
72 #define QSPI_SPBFCR		0x18	/* Buffer Control Register */
73 #define QSPI_SPBDCR		0x1a	/* Buffer Data Count Register */
74 #define QSPI_SPBMUL0		0x1c	/* Transfer Data Length Multiplier Setting Register 0 */
75 #define QSPI_SPBMUL1		0x20	/* Transfer Data Length Multiplier Setting Register 1 */
76 #define QSPI_SPBMUL2		0x24	/* Transfer Data Length Multiplier Setting Register 2 */
77 #define QSPI_SPBMUL3		0x28	/* Transfer Data Length Multiplier Setting Register 3 */
78 #define QSPI_SPBMUL(i)		(QSPI_SPBMUL0 + (i) * 4)
79 
80 /* SPCR - Control Register */
81 #define SPCR_SPRIE		0x80	/* Receive Interrupt Enable */
82 #define SPCR_SPE		0x40	/* Function Enable */
83 #define SPCR_SPTIE		0x20	/* Transmit Interrupt Enable */
84 #define SPCR_SPEIE		0x10	/* Error Interrupt Enable */
85 #define SPCR_MSTR		0x08	/* Master/Slave Mode Select */
86 #define SPCR_MODFEN		0x04	/* Mode Fault Error Detection Enable */
87 /* RSPI on SH only */
88 #define SPCR_TXMD		0x02	/* TX Only Mode (vs. Full Duplex) */
89 #define SPCR_SPMS		0x01	/* 3-wire Mode (vs. 4-wire) */
90 /* QSPI on R-Car M2 only */
91 #define SPCR_WSWAP		0x02	/* Word Swap of read-data for DMAC */
92 #define SPCR_BSWAP		0x01	/* Byte Swap of read-data for DMAC */
93 
94 /* SSLP - Slave Select Polarity Register */
95 #define SSLP_SSL1P		0x02	/* SSL1 Signal Polarity Setting */
96 #define SSLP_SSL0P		0x01	/* SSL0 Signal Polarity Setting */
97 
98 /* SPPCR - Pin Control Register */
99 #define SPPCR_MOIFE		0x20	/* MOSI Idle Value Fixing Enable */
100 #define SPPCR_MOIFV		0x10	/* MOSI Idle Fixed Value */
101 #define SPPCR_SPOM		0x04
102 #define SPPCR_SPLP2		0x02	/* Loopback Mode 2 (non-inverting) */
103 #define SPPCR_SPLP		0x01	/* Loopback Mode (inverting) */
104 
105 #define SPPCR_IO3FV		0x04	/* Single-/Dual-SPI Mode IO3 Output Fixed Value */
106 #define SPPCR_IO2FV		0x04	/* Single-/Dual-SPI Mode IO2 Output Fixed Value */
107 
108 /* SPSR - Status Register */
109 #define SPSR_SPRF		0x80	/* Receive Buffer Full Flag */
110 #define SPSR_TEND		0x40	/* Transmit End */
111 #define SPSR_SPTEF		0x20	/* Transmit Buffer Empty Flag */
112 #define SPSR_PERF		0x08	/* Parity Error Flag */
113 #define SPSR_MODF		0x04	/* Mode Fault Error Flag */
114 #define SPSR_IDLNF		0x02	/* RSPI Idle Flag */
115 #define SPSR_OVRF		0x01	/* Overrun Error Flag (RSPI only) */
116 
117 /* SPSCR - Sequence Control Register */
118 #define SPSCR_SPSLN_MASK	0x07	/* Sequence Length Specification */
119 
120 /* SPSSR - Sequence Status Register */
121 #define SPSSR_SPECM_MASK	0x70	/* Command Error Mask */
122 #define SPSSR_SPCP_MASK		0x07	/* Command Pointer Mask */
123 
124 /* SPDCR - Data Control Register */
125 #define SPDCR_TXDMY		0x80	/* Dummy Data Transmission Enable */
126 #define SPDCR_SPLW1		0x40	/* Access Width Specification (RZ) */
127 #define SPDCR_SPLW0		0x20	/* Access Width Specification (RZ) */
128 #define SPDCR_SPLLWORD		(SPDCR_SPLW1 | SPDCR_SPLW0)
129 #define SPDCR_SPLWORD		SPDCR_SPLW1
130 #define SPDCR_SPLBYTE		SPDCR_SPLW0
131 #define SPDCR_SPLW		0x20	/* Access Width Specification (SH) */
132 #define SPDCR_SPRDTD		0x10	/* Receive Transmit Data Select (SH) */
133 #define SPDCR_SLSEL1		0x08
134 #define SPDCR_SLSEL0		0x04
135 #define SPDCR_SLSEL_MASK	0x0c	/* SSL1 Output Select (SH) */
136 #define SPDCR_SPFC1		0x02
137 #define SPDCR_SPFC0		0x01
138 #define SPDCR_SPFC_MASK		0x03	/* Frame Count Setting (1-4) (SH) */
139 
140 /* SPCKD - Clock Delay Register */
141 #define SPCKD_SCKDL_MASK	0x07	/* Clock Delay Setting (1-8) */
142 
143 /* SSLND - Slave Select Negation Delay Register */
144 #define SSLND_SLNDL_MASK	0x07	/* SSL Negation Delay Setting (1-8) */
145 
146 /* SPND - Next-Access Delay Register */
147 #define SPND_SPNDL_MASK		0x07	/* Next-Access Delay Setting (1-8) */
148 
149 /* SPCR2 - Control Register 2 */
150 #define SPCR2_PTE		0x08	/* Parity Self-Test Enable */
151 #define SPCR2_SPIE		0x04	/* Idle Interrupt Enable */
152 #define SPCR2_SPOE		0x02	/* Odd Parity Enable (vs. Even) */
153 #define SPCR2_SPPE		0x01	/* Parity Enable */
154 
155 /* SPCMDn - Command Registers */
156 #define SPCMD_SCKDEN		0x8000	/* Clock Delay Setting Enable */
157 #define SPCMD_SLNDEN		0x4000	/* SSL Negation Delay Setting Enable */
158 #define SPCMD_SPNDEN		0x2000	/* Next-Access Delay Enable */
159 #define SPCMD_LSBF		0x1000	/* LSB First */
160 #define SPCMD_SPB_MASK		0x0f00	/* Data Length Setting */
161 #define SPCMD_SPB_8_TO_16(bit)	(((bit - 1) << 8) & SPCMD_SPB_MASK)
162 #define SPCMD_SPB_8BIT		0x0000	/* QSPI only */
163 #define SPCMD_SPB_16BIT		0x0100
164 #define SPCMD_SPB_20BIT		0x0000
165 #define SPCMD_SPB_24BIT		0x0100
166 #define SPCMD_SPB_32BIT		0x0200
167 #define SPCMD_SSLKP		0x0080	/* SSL Signal Level Keeping */
168 #define SPCMD_SPIMOD_MASK	0x0060	/* SPI Operating Mode (QSPI only) */
169 #define SPCMD_SPIMOD1		0x0040
170 #define SPCMD_SPIMOD0		0x0020
171 #define SPCMD_SPIMOD_SINGLE	0
172 #define SPCMD_SPIMOD_DUAL	SPCMD_SPIMOD0
173 #define SPCMD_SPIMOD_QUAD	SPCMD_SPIMOD1
174 #define SPCMD_SPRW		0x0010	/* SPI Read/Write Access (Dual/Quad) */
175 #define SPCMD_SSLA_MASK		0x0030	/* SSL Assert Signal Setting (RSPI) */
176 #define SPCMD_BRDV_MASK		0x000c	/* Bit Rate Division Setting */
177 #define SPCMD_CPOL		0x0002	/* Clock Polarity Setting */
178 #define SPCMD_CPHA		0x0001	/* Clock Phase Setting */
179 
180 /* SPBFCR - Buffer Control Register */
181 #define SPBFCR_TXRST		0x80	/* Transmit Buffer Data Reset */
182 #define SPBFCR_RXRST		0x40	/* Receive Buffer Data Reset */
183 #define SPBFCR_TXTRG_MASK	0x30	/* Transmit Buffer Data Triggering Number */
184 #define SPBFCR_RXTRG_MASK	0x07	/* Receive Buffer Data Triggering Number */
185 
186 struct rspi_data {
187 	void __iomem *addr;
188 	u32 max_speed_hz;
189 	struct spi_master *master;
190 	wait_queue_head_t wait;
191 	struct clk *clk;
192 	u16 spcmd;
193 	u8 spsr;
194 	u8 sppcr;
195 	int rx_irq, tx_irq;
196 	const struct spi_ops *ops;
197 
198 	unsigned dma_callbacked:1;
199 	unsigned byte_access:1;
200 };
201 
202 static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
203 {
204 	iowrite8(data, rspi->addr + offset);
205 }
206 
207 static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
208 {
209 	iowrite16(data, rspi->addr + offset);
210 }
211 
212 static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
213 {
214 	iowrite32(data, rspi->addr + offset);
215 }
216 
217 static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
218 {
219 	return ioread8(rspi->addr + offset);
220 }
221 
222 static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
223 {
224 	return ioread16(rspi->addr + offset);
225 }
226 
227 static void rspi_write_data(const struct rspi_data *rspi, u16 data)
228 {
229 	if (rspi->byte_access)
230 		rspi_write8(rspi, data, RSPI_SPDR);
231 	else /* 16 bit */
232 		rspi_write16(rspi, data, RSPI_SPDR);
233 }
234 
235 static u16 rspi_read_data(const struct rspi_data *rspi)
236 {
237 	if (rspi->byte_access)
238 		return rspi_read8(rspi, RSPI_SPDR);
239 	else /* 16 bit */
240 		return rspi_read16(rspi, RSPI_SPDR);
241 }
242 
243 /* optional functions */
244 struct spi_ops {
245 	int (*set_config_register)(struct rspi_data *rspi, int access_size);
246 	int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
247 			    struct spi_transfer *xfer);
248 	u16 mode_bits;
249 	u16 flags;
250 	u16 fifo_size;
251 };
252 
253 /*
254  * functions for RSPI on legacy SH
255  */
256 static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
257 {
258 	int spbr;
259 
260 	/* Sets output mode, MOSI signal, and (optionally) loopback */
261 	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
262 
263 	/* Sets transfer bit rate */
264 	spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
265 			    2 * rspi->max_speed_hz) - 1;
266 	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
267 
268 	/* Disable dummy transmission, set 16-bit word access, 1 frame */
269 	rspi_write8(rspi, 0, RSPI_SPDCR);
270 	rspi->byte_access = 0;
271 
272 	/* Sets RSPCK, SSL, next-access delay value */
273 	rspi_write8(rspi, 0x00, RSPI_SPCKD);
274 	rspi_write8(rspi, 0x00, RSPI_SSLND);
275 	rspi_write8(rspi, 0x00, RSPI_SPND);
276 
277 	/* Sets parity, interrupt mask */
278 	rspi_write8(rspi, 0x00, RSPI_SPCR2);
279 
280 	/* Sets SPCMD */
281 	rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
282 	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
283 
284 	/* Sets RSPI mode */
285 	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
286 
287 	return 0;
288 }
289 
290 /*
291  * functions for RSPI on RZ
292  */
293 static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
294 {
295 	int spbr;
296 
297 	/* Sets output mode, MOSI signal, and (optionally) loopback */
298 	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
299 
300 	/* Sets transfer bit rate */
301 	spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
302 			    2 * rspi->max_speed_hz) - 1;
303 	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
304 
305 	/* Disable dummy transmission, set byte access */
306 	rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
307 	rspi->byte_access = 1;
308 
309 	/* Sets RSPCK, SSL, next-access delay value */
310 	rspi_write8(rspi, 0x00, RSPI_SPCKD);
311 	rspi_write8(rspi, 0x00, RSPI_SSLND);
312 	rspi_write8(rspi, 0x00, RSPI_SPND);
313 
314 	/* Sets SPCMD */
315 	rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
316 	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
317 
318 	/* Sets RSPI mode */
319 	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
320 
321 	return 0;
322 }
323 
324 /*
325  * functions for QSPI
326  */
327 static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
328 {
329 	int spbr;
330 
331 	/* Sets output mode, MOSI signal, and (optionally) loopback */
332 	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
333 
334 	/* Sets transfer bit rate */
335 	spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz);
336 	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
337 
338 	/* Disable dummy transmission, set byte access */
339 	rspi_write8(rspi, 0, RSPI_SPDCR);
340 	rspi->byte_access = 1;
341 
342 	/* Sets RSPCK, SSL, next-access delay value */
343 	rspi_write8(rspi, 0x00, RSPI_SPCKD);
344 	rspi_write8(rspi, 0x00, RSPI_SSLND);
345 	rspi_write8(rspi, 0x00, RSPI_SPND);
346 
347 	/* Data Length Setting */
348 	if (access_size == 8)
349 		rspi->spcmd |= SPCMD_SPB_8BIT;
350 	else if (access_size == 16)
351 		rspi->spcmd |= SPCMD_SPB_16BIT;
352 	else
353 		rspi->spcmd |= SPCMD_SPB_32BIT;
354 
355 	rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
356 
357 	/* Resets transfer data length */
358 	rspi_write32(rspi, 0, QSPI_SPBMUL0);
359 
360 	/* Resets transmit and receive buffer */
361 	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
362 	/* Sets buffer to allow normal operation */
363 	rspi_write8(rspi, 0x00, QSPI_SPBFCR);
364 
365 	/* Sets SPCMD */
366 	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
367 
368 	/* Enables SPI function in master mode */
369 	rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR);
370 
371 	return 0;
372 }
373 
374 #define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
375 
376 static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
377 {
378 	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
379 }
380 
381 static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
382 {
383 	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
384 }
385 
386 static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
387 				   u8 enable_bit)
388 {
389 	int ret;
390 
391 	rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
392 	if (rspi->spsr & wait_mask)
393 		return 0;
394 
395 	rspi_enable_irq(rspi, enable_bit);
396 	ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
397 	if (ret == 0 && !(rspi->spsr & wait_mask))
398 		return -ETIMEDOUT;
399 
400 	return 0;
401 }
402 
403 static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
404 {
405 	return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
406 }
407 
408 static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
409 {
410 	return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
411 }
412 
413 static int rspi_data_out(struct rspi_data *rspi, u8 data)
414 {
415 	int error = rspi_wait_for_tx_empty(rspi);
416 	if (error < 0) {
417 		dev_err(&rspi->master->dev, "transmit timeout\n");
418 		return error;
419 	}
420 	rspi_write_data(rspi, data);
421 	return 0;
422 }
423 
424 static int rspi_data_in(struct rspi_data *rspi)
425 {
426 	int error;
427 	u8 data;
428 
429 	error = rspi_wait_for_rx_full(rspi);
430 	if (error < 0) {
431 		dev_err(&rspi->master->dev, "receive timeout\n");
432 		return error;
433 	}
434 	data = rspi_read_data(rspi);
435 	return data;
436 }
437 
438 static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
439 			     unsigned int n)
440 {
441 	while (n-- > 0) {
442 		if (tx) {
443 			int ret = rspi_data_out(rspi, *tx++);
444 			if (ret < 0)
445 				return ret;
446 		}
447 		if (rx) {
448 			int ret = rspi_data_in(rspi);
449 			if (ret < 0)
450 				return ret;
451 			*rx++ = ret;
452 		}
453 	}
454 
455 	return 0;
456 }
457 
458 static void rspi_dma_complete(void *arg)
459 {
460 	struct rspi_data *rspi = arg;
461 
462 	rspi->dma_callbacked = 1;
463 	wake_up_interruptible(&rspi->wait);
464 }
465 
466 static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
467 			     struct sg_table *rx)
468 {
469 	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
470 	u8 irq_mask = 0;
471 	unsigned int other_irq = 0;
472 	dma_cookie_t cookie;
473 	int ret;
474 
475 	if (tx) {
476 		desc_tx = dmaengine_prep_slave_sg(rspi->master->dma_tx,
477 					tx->sgl, tx->nents, DMA_TO_DEVICE,
478 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
479 		if (!desc_tx)
480 			return -EIO;
481 
482 		irq_mask |= SPCR_SPTIE;
483 	}
484 	if (rx) {
485 		desc_rx = dmaengine_prep_slave_sg(rspi->master->dma_rx,
486 					rx->sgl, rx->nents, DMA_FROM_DEVICE,
487 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
488 		if (!desc_rx)
489 			return -EIO;
490 
491 		irq_mask |= SPCR_SPRIE;
492 	}
493 
494 	/*
495 	 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
496 	 * called. So, this driver disables the IRQ while DMA transfer.
497 	 */
498 	if (tx)
499 		disable_irq(other_irq = rspi->tx_irq);
500 	if (rx && rspi->rx_irq != other_irq)
501 		disable_irq(rspi->rx_irq);
502 
503 	rspi_enable_irq(rspi, irq_mask);
504 	rspi->dma_callbacked = 0;
505 
506 	if (rx) {
507 		desc_rx->callback = rspi_dma_complete;
508 		desc_rx->callback_param = rspi;
509 		cookie = dmaengine_submit(desc_rx);
510 		if (dma_submit_error(cookie))
511 			return cookie;
512 		dma_async_issue_pending(rspi->master->dma_rx);
513 	}
514 	if (tx) {
515 		if (rx) {
516 			/* No callback */
517 			desc_tx->callback = NULL;
518 		} else {
519 			desc_tx->callback = rspi_dma_complete;
520 			desc_tx->callback_param = rspi;
521 		}
522 		cookie = dmaengine_submit(desc_tx);
523 		if (dma_submit_error(cookie))
524 			return cookie;
525 		dma_async_issue_pending(rspi->master->dma_tx);
526 	}
527 
528 	ret = wait_event_interruptible_timeout(rspi->wait,
529 					       rspi->dma_callbacked, HZ);
530 	if (ret > 0 && rspi->dma_callbacked)
531 		ret = 0;
532 	else if (!ret)
533 		ret = -ETIMEDOUT;
534 
535 	rspi_disable_irq(rspi, irq_mask);
536 
537 	if (tx)
538 		enable_irq(rspi->tx_irq);
539 	if (rx && rspi->rx_irq != other_irq)
540 		enable_irq(rspi->rx_irq);
541 
542 	return ret;
543 }
544 
545 static void rspi_receive_init(const struct rspi_data *rspi)
546 {
547 	u8 spsr;
548 
549 	spsr = rspi_read8(rspi, RSPI_SPSR);
550 	if (spsr & SPSR_SPRF)
551 		rspi_read_data(rspi);	/* dummy read */
552 	if (spsr & SPSR_OVRF)
553 		rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
554 			    RSPI_SPSR);
555 }
556 
557 static void rspi_rz_receive_init(const struct rspi_data *rspi)
558 {
559 	rspi_receive_init(rspi);
560 	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
561 	rspi_write8(rspi, 0, RSPI_SPBFCR);
562 }
563 
564 static void qspi_receive_init(const struct rspi_data *rspi)
565 {
566 	u8 spsr;
567 
568 	spsr = rspi_read8(rspi, RSPI_SPSR);
569 	if (spsr & SPSR_SPRF)
570 		rspi_read_data(rspi);   /* dummy read */
571 	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
572 	rspi_write8(rspi, 0, QSPI_SPBFCR);
573 }
574 
575 static bool __rspi_can_dma(const struct rspi_data *rspi,
576 			   const struct spi_transfer *xfer)
577 {
578 	return xfer->len > rspi->ops->fifo_size;
579 }
580 
581 static bool rspi_can_dma(struct spi_master *master, struct spi_device *spi,
582 			 struct spi_transfer *xfer)
583 {
584 	struct rspi_data *rspi = spi_master_get_devdata(master);
585 
586 	return __rspi_can_dma(rspi, xfer);
587 }
588 
589 static int rspi_common_transfer(struct rspi_data *rspi,
590 				struct spi_transfer *xfer)
591 {
592 	int ret;
593 
594 	if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
595 		/* rx_buf can be NULL on RSPI on SH in TX-only Mode */
596 		return rspi_dma_transfer(rspi, &xfer->tx_sg,
597 					 xfer->rx_buf ? &xfer->rx_sg : NULL);
598 	}
599 
600 	ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
601 	if (ret < 0)
602 		return ret;
603 
604 	/* Wait for the last transmission */
605 	rspi_wait_for_tx_empty(rspi);
606 
607 	return 0;
608 }
609 
610 static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi,
611 			     struct spi_transfer *xfer)
612 {
613 	struct rspi_data *rspi = spi_master_get_devdata(master);
614 	u8 spcr;
615 
616 	spcr = rspi_read8(rspi, RSPI_SPCR);
617 	if (xfer->rx_buf) {
618 		rspi_receive_init(rspi);
619 		spcr &= ~SPCR_TXMD;
620 	} else {
621 		spcr |= SPCR_TXMD;
622 	}
623 	rspi_write8(rspi, spcr, RSPI_SPCR);
624 
625 	return rspi_common_transfer(rspi, xfer);
626 }
627 
628 static int rspi_rz_transfer_one(struct spi_master *master,
629 				struct spi_device *spi,
630 				struct spi_transfer *xfer)
631 {
632 	struct rspi_data *rspi = spi_master_get_devdata(master);
633 	int ret;
634 
635 	rspi_rz_receive_init(rspi);
636 
637 	return rspi_common_transfer(rspi, xfer);
638 }
639 
640 static int qspi_transfer_out_in(struct rspi_data *rspi,
641 				struct spi_transfer *xfer)
642 {
643 	qspi_receive_init(rspi);
644 
645 	return rspi_common_transfer(rspi, xfer);
646 }
647 
648 static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
649 {
650 	int ret;
651 
652 	if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer))
653 		return rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
654 
655 	ret = rspi_pio_transfer(rspi, xfer->tx_buf, NULL, xfer->len);
656 	if (ret < 0)
657 		return ret;
658 
659 	/* Wait for the last transmission */
660 	rspi_wait_for_tx_empty(rspi);
661 
662 	return 0;
663 }
664 
665 static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
666 {
667 	if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer))
668 		return rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
669 
670 	return rspi_pio_transfer(rspi, NULL, xfer->rx_buf, xfer->len);
671 }
672 
673 static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi,
674 			     struct spi_transfer *xfer)
675 {
676 	struct rspi_data *rspi = spi_master_get_devdata(master);
677 
678 	if (spi->mode & SPI_LOOP) {
679 		return qspi_transfer_out_in(rspi, xfer);
680 	} else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
681 		/* Quad or Dual SPI Write */
682 		return qspi_transfer_out(rspi, xfer);
683 	} else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
684 		/* Quad or Dual SPI Read */
685 		return qspi_transfer_in(rspi, xfer);
686 	} else {
687 		/* Single SPI Transfer */
688 		return qspi_transfer_out_in(rspi, xfer);
689 	}
690 }
691 
692 static int rspi_setup(struct spi_device *spi)
693 {
694 	struct rspi_data *rspi = spi_master_get_devdata(spi->master);
695 
696 	rspi->max_speed_hz = spi->max_speed_hz;
697 
698 	rspi->spcmd = SPCMD_SSLKP;
699 	if (spi->mode & SPI_CPOL)
700 		rspi->spcmd |= SPCMD_CPOL;
701 	if (spi->mode & SPI_CPHA)
702 		rspi->spcmd |= SPCMD_CPHA;
703 
704 	/* CMOS output mode and MOSI signal from previous transfer */
705 	rspi->sppcr = 0;
706 	if (spi->mode & SPI_LOOP)
707 		rspi->sppcr |= SPPCR_SPLP;
708 
709 	set_config_register(rspi, 8);
710 
711 	return 0;
712 }
713 
714 static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
715 {
716 	if (xfer->tx_buf)
717 		switch (xfer->tx_nbits) {
718 		case SPI_NBITS_QUAD:
719 			return SPCMD_SPIMOD_QUAD;
720 		case SPI_NBITS_DUAL:
721 			return SPCMD_SPIMOD_DUAL;
722 		default:
723 			return 0;
724 		}
725 	if (xfer->rx_buf)
726 		switch (xfer->rx_nbits) {
727 		case SPI_NBITS_QUAD:
728 			return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
729 		case SPI_NBITS_DUAL:
730 			return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
731 		default:
732 			return 0;
733 		}
734 
735 	return 0;
736 }
737 
738 static int qspi_setup_sequencer(struct rspi_data *rspi,
739 				const struct spi_message *msg)
740 {
741 	const struct spi_transfer *xfer;
742 	unsigned int i = 0, len = 0;
743 	u16 current_mode = 0xffff, mode;
744 
745 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
746 		mode = qspi_transfer_mode(xfer);
747 		if (mode == current_mode) {
748 			len += xfer->len;
749 			continue;
750 		}
751 
752 		/* Transfer mode change */
753 		if (i) {
754 			/* Set transfer data length of previous transfer */
755 			rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
756 		}
757 
758 		if (i >= QSPI_NUM_SPCMD) {
759 			dev_err(&msg->spi->dev,
760 				"Too many different transfer modes");
761 			return -EINVAL;
762 		}
763 
764 		/* Program transfer mode for this transfer */
765 		rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
766 		current_mode = mode;
767 		len = xfer->len;
768 		i++;
769 	}
770 	if (i) {
771 		/* Set final transfer data length and sequence length */
772 		rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
773 		rspi_write8(rspi, i - 1, RSPI_SPSCR);
774 	}
775 
776 	return 0;
777 }
778 
779 static int rspi_prepare_message(struct spi_master *master,
780 				struct spi_message *msg)
781 {
782 	struct rspi_data *rspi = spi_master_get_devdata(master);
783 	int ret;
784 
785 	if (msg->spi->mode &
786 	    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
787 		/* Setup sequencer for messages with multiple transfer modes */
788 		ret = qspi_setup_sequencer(rspi, msg);
789 		if (ret < 0)
790 			return ret;
791 	}
792 
793 	/* Enable SPI function in master mode */
794 	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
795 	return 0;
796 }
797 
798 static int rspi_unprepare_message(struct spi_master *master,
799 				  struct spi_message *msg)
800 {
801 	struct rspi_data *rspi = spi_master_get_devdata(master);
802 
803 	/* Disable SPI function */
804 	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
805 
806 	/* Reset sequencer for Single SPI Transfers */
807 	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
808 	rspi_write8(rspi, 0, RSPI_SPSCR);
809 	return 0;
810 }
811 
812 static irqreturn_t rspi_irq_mux(int irq, void *_sr)
813 {
814 	struct rspi_data *rspi = _sr;
815 	u8 spsr;
816 	irqreturn_t ret = IRQ_NONE;
817 	u8 disable_irq = 0;
818 
819 	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
820 	if (spsr & SPSR_SPRF)
821 		disable_irq |= SPCR_SPRIE;
822 	if (spsr & SPSR_SPTEF)
823 		disable_irq |= SPCR_SPTIE;
824 
825 	if (disable_irq) {
826 		ret = IRQ_HANDLED;
827 		rspi_disable_irq(rspi, disable_irq);
828 		wake_up(&rspi->wait);
829 	}
830 
831 	return ret;
832 }
833 
834 static irqreturn_t rspi_irq_rx(int irq, void *_sr)
835 {
836 	struct rspi_data *rspi = _sr;
837 	u8 spsr;
838 
839 	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
840 	if (spsr & SPSR_SPRF) {
841 		rspi_disable_irq(rspi, SPCR_SPRIE);
842 		wake_up(&rspi->wait);
843 		return IRQ_HANDLED;
844 	}
845 
846 	return 0;
847 }
848 
849 static irqreturn_t rspi_irq_tx(int irq, void *_sr)
850 {
851 	struct rspi_data *rspi = _sr;
852 	u8 spsr;
853 
854 	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
855 	if (spsr & SPSR_SPTEF) {
856 		rspi_disable_irq(rspi, SPCR_SPTIE);
857 		wake_up(&rspi->wait);
858 		return IRQ_HANDLED;
859 	}
860 
861 	return 0;
862 }
863 
864 static struct dma_chan *rspi_request_dma_chan(struct device *dev,
865 					      enum dma_transfer_direction dir,
866 					      unsigned int id,
867 					      dma_addr_t port_addr)
868 {
869 	dma_cap_mask_t mask;
870 	struct dma_chan *chan;
871 	struct dma_slave_config cfg;
872 	int ret;
873 
874 	dma_cap_zero(mask);
875 	dma_cap_set(DMA_SLAVE, mask);
876 
877 	chan = dma_request_channel(mask, shdma_chan_filter,
878 				   (void *)(unsigned long)id);
879 	if (!chan) {
880 		dev_warn(dev, "dma_request_channel failed\n");
881 		return NULL;
882 	}
883 
884 	memset(&cfg, 0, sizeof(cfg));
885 	cfg.slave_id = id;
886 	cfg.direction = dir;
887 	if (dir == DMA_MEM_TO_DEV)
888 		cfg.dst_addr = port_addr;
889 	else
890 		cfg.src_addr = port_addr;
891 
892 	ret = dmaengine_slave_config(chan, &cfg);
893 	if (ret) {
894 		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
895 		dma_release_channel(chan);
896 		return NULL;
897 	}
898 
899 	return chan;
900 }
901 
902 static int rspi_request_dma(struct device *dev, struct spi_master *master,
903 			    const struct resource *res)
904 {
905 	const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
906 
907 	if (!rspi_pd || !rspi_pd->dma_rx_id || !rspi_pd->dma_tx_id)
908 		return 0;	/* The driver assumes no error. */
909 
910 	master->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM,
911 					       rspi_pd->dma_rx_id,
912 					       res->start + RSPI_SPDR);
913 	if (!master->dma_rx)
914 		return -ENODEV;
915 
916 	master->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV,
917 					       rspi_pd->dma_tx_id,
918 					       res->start + RSPI_SPDR);
919 	if (!master->dma_tx) {
920 		dma_release_channel(master->dma_rx);
921 		master->dma_rx = NULL;
922 		return -ENODEV;
923 	}
924 
925 	master->can_dma = rspi_can_dma;
926 	dev_info(dev, "DMA available");
927 	return 0;
928 }
929 
930 static void rspi_release_dma(struct rspi_data *rspi)
931 {
932 	if (rspi->master->dma_tx)
933 		dma_release_channel(rspi->master->dma_tx);
934 	if (rspi->master->dma_rx)
935 		dma_release_channel(rspi->master->dma_rx);
936 }
937 
938 static int rspi_remove(struct platform_device *pdev)
939 {
940 	struct rspi_data *rspi = platform_get_drvdata(pdev);
941 
942 	rspi_release_dma(rspi);
943 	pm_runtime_disable(&pdev->dev);
944 
945 	return 0;
946 }
947 
948 static const struct spi_ops rspi_ops = {
949 	.set_config_register =	rspi_set_config_register,
950 	.transfer_one =		rspi_transfer_one,
951 	.mode_bits =		SPI_CPHA | SPI_CPOL | SPI_LOOP,
952 	.flags =		SPI_MASTER_MUST_TX,
953 	.fifo_size =		8,
954 };
955 
956 static const struct spi_ops rspi_rz_ops = {
957 	.set_config_register =	rspi_rz_set_config_register,
958 	.transfer_one =		rspi_rz_transfer_one,
959 	.mode_bits =		SPI_CPHA | SPI_CPOL | SPI_LOOP,
960 	.flags =		SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
961 	.fifo_size =		8,	/* 8 for TX, 32 for RX */
962 };
963 
964 static const struct spi_ops qspi_ops = {
965 	.set_config_register =	qspi_set_config_register,
966 	.transfer_one =		qspi_transfer_one,
967 	.mode_bits =		SPI_CPHA | SPI_CPOL | SPI_LOOP |
968 				SPI_TX_DUAL | SPI_TX_QUAD |
969 				SPI_RX_DUAL | SPI_RX_QUAD,
970 	.flags =		SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
971 	.fifo_size =		32,
972 };
973 
974 #ifdef CONFIG_OF
975 static const struct of_device_id rspi_of_match[] = {
976 	/* RSPI on legacy SH */
977 	{ .compatible = "renesas,rspi", .data = &rspi_ops },
978 	/* RSPI on RZ/A1H */
979 	{ .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
980 	/* QSPI on R-Car Gen2 */
981 	{ .compatible = "renesas,qspi", .data = &qspi_ops },
982 	{ /* sentinel */ }
983 };
984 
985 MODULE_DEVICE_TABLE(of, rspi_of_match);
986 
987 static int rspi_parse_dt(struct device *dev, struct spi_master *master)
988 {
989 	u32 num_cs;
990 	int error;
991 
992 	/* Parse DT properties */
993 	error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
994 	if (error) {
995 		dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
996 		return error;
997 	}
998 
999 	master->num_chipselect = num_cs;
1000 	return 0;
1001 }
1002 #else
1003 #define rspi_of_match	NULL
1004 static inline int rspi_parse_dt(struct device *dev, struct spi_master *master)
1005 {
1006 	return -EINVAL;
1007 }
1008 #endif /* CONFIG_OF */
1009 
1010 static int rspi_request_irq(struct device *dev, unsigned int irq,
1011 			    irq_handler_t handler, const char *suffix,
1012 			    void *dev_id)
1013 {
1014 	const char *base = dev_name(dev);
1015 	size_t len = strlen(base) + strlen(suffix) + 2;
1016 	char *name = devm_kzalloc(dev, len, GFP_KERNEL);
1017 	if (!name)
1018 		return -ENOMEM;
1019 	snprintf(name, len, "%s:%s", base, suffix);
1020 	return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1021 }
1022 
1023 static int rspi_probe(struct platform_device *pdev)
1024 {
1025 	struct resource *res;
1026 	struct spi_master *master;
1027 	struct rspi_data *rspi;
1028 	int ret;
1029 	const struct of_device_id *of_id;
1030 	const struct rspi_plat_data *rspi_pd;
1031 	const struct spi_ops *ops;
1032 
1033 	master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1034 	if (master == NULL) {
1035 		dev_err(&pdev->dev, "spi_alloc_master error.\n");
1036 		return -ENOMEM;
1037 	}
1038 
1039 	of_id = of_match_device(rspi_of_match, &pdev->dev);
1040 	if (of_id) {
1041 		ops = of_id->data;
1042 		ret = rspi_parse_dt(&pdev->dev, master);
1043 		if (ret)
1044 			goto error1;
1045 	} else {
1046 		ops = (struct spi_ops *)pdev->id_entry->driver_data;
1047 		rspi_pd = dev_get_platdata(&pdev->dev);
1048 		if (rspi_pd && rspi_pd->num_chipselect)
1049 			master->num_chipselect = rspi_pd->num_chipselect;
1050 		else
1051 			master->num_chipselect = 2; /* default */
1052 	};
1053 
1054 	/* ops parameter check */
1055 	if (!ops->set_config_register) {
1056 		dev_err(&pdev->dev, "there is no set_config_register\n");
1057 		ret = -ENODEV;
1058 		goto error1;
1059 	}
1060 
1061 	rspi = spi_master_get_devdata(master);
1062 	platform_set_drvdata(pdev, rspi);
1063 	rspi->ops = ops;
1064 	rspi->master = master;
1065 
1066 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1067 	rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1068 	if (IS_ERR(rspi->addr)) {
1069 		ret = PTR_ERR(rspi->addr);
1070 		goto error1;
1071 	}
1072 
1073 	rspi->clk = devm_clk_get(&pdev->dev, NULL);
1074 	if (IS_ERR(rspi->clk)) {
1075 		dev_err(&pdev->dev, "cannot get clock\n");
1076 		ret = PTR_ERR(rspi->clk);
1077 		goto error1;
1078 	}
1079 
1080 	pm_runtime_enable(&pdev->dev);
1081 
1082 	init_waitqueue_head(&rspi->wait);
1083 
1084 	master->bus_num = pdev->id;
1085 	master->setup = rspi_setup;
1086 	master->auto_runtime_pm = true;
1087 	master->transfer_one = ops->transfer_one;
1088 	master->prepare_message = rspi_prepare_message;
1089 	master->unprepare_message = rspi_unprepare_message;
1090 	master->mode_bits = ops->mode_bits;
1091 	master->flags = ops->flags;
1092 	master->dev.of_node = pdev->dev.of_node;
1093 
1094 	ret = platform_get_irq_byname(pdev, "rx");
1095 	if (ret < 0) {
1096 		ret = platform_get_irq_byname(pdev, "mux");
1097 		if (ret < 0)
1098 			ret = platform_get_irq(pdev, 0);
1099 		if (ret >= 0)
1100 			rspi->rx_irq = rspi->tx_irq = ret;
1101 	} else {
1102 		rspi->rx_irq = ret;
1103 		ret = platform_get_irq_byname(pdev, "tx");
1104 		if (ret >= 0)
1105 			rspi->tx_irq = ret;
1106 	}
1107 	if (ret < 0) {
1108 		dev_err(&pdev->dev, "platform_get_irq error\n");
1109 		goto error2;
1110 	}
1111 
1112 	if (rspi->rx_irq == rspi->tx_irq) {
1113 		/* Single multiplexed interrupt */
1114 		ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1115 				       "mux", rspi);
1116 	} else {
1117 		/* Multi-interrupt mode, only SPRI and SPTI are used */
1118 		ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1119 				       "rx", rspi);
1120 		if (!ret)
1121 			ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1122 					       rspi_irq_tx, "tx", rspi);
1123 	}
1124 	if (ret < 0) {
1125 		dev_err(&pdev->dev, "request_irq error\n");
1126 		goto error2;
1127 	}
1128 
1129 	ret = rspi_request_dma(&pdev->dev, master, res);
1130 	if (ret < 0)
1131 		dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1132 
1133 	ret = devm_spi_register_master(&pdev->dev, master);
1134 	if (ret < 0) {
1135 		dev_err(&pdev->dev, "spi_register_master error.\n");
1136 		goto error3;
1137 	}
1138 
1139 	dev_info(&pdev->dev, "probed\n");
1140 
1141 	return 0;
1142 
1143 error3:
1144 	rspi_release_dma(rspi);
1145 error2:
1146 	pm_runtime_disable(&pdev->dev);
1147 error1:
1148 	spi_master_put(master);
1149 
1150 	return ret;
1151 }
1152 
1153 static struct platform_device_id spi_driver_ids[] = {
1154 	{ "rspi",	(kernel_ulong_t)&rspi_ops },
1155 	{ "rspi-rz",	(kernel_ulong_t)&rspi_rz_ops },
1156 	{ "qspi",	(kernel_ulong_t)&qspi_ops },
1157 	{},
1158 };
1159 
1160 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1161 
1162 static struct platform_driver rspi_driver = {
1163 	.probe =	rspi_probe,
1164 	.remove =	rspi_remove,
1165 	.id_table =	spi_driver_ids,
1166 	.driver		= {
1167 		.name = "renesas_spi",
1168 		.owner	= THIS_MODULE,
1169 		.of_match_table = of_match_ptr(rspi_of_match),
1170 	},
1171 };
1172 module_platform_driver(rspi_driver);
1173 
1174 MODULE_DESCRIPTION("Renesas RSPI bus driver");
1175 MODULE_LICENSE("GPL v2");
1176 MODULE_AUTHOR("Yoshihiro Shimoda");
1177 MODULE_ALIAS("platform:rspi");
1178