xref: /openbmc/linux/drivers/spi/spi-rspi.c (revision 6f4eaea2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SH RSPI driver
4  *
5  * Copyright (C) 2012, 2013  Renesas Solutions Corp.
6  * Copyright (C) 2014 Glider bvba
7  *
8  * Based on spi-sh.c:
9  * Copyright (C) 2011 Renesas Solutions Corp.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/errno.h>
16 #include <linux/interrupt.h>
17 #include <linux/platform_device.h>
18 #include <linux/io.h>
19 #include <linux/clk.h>
20 #include <linux/dmaengine.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/of_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/sh_dma.h>
25 #include <linux/spi/spi.h>
26 #include <linux/spi/rspi.h>
27 #include <linux/spinlock.h>
28 
29 #define RSPI_SPCR		0x00	/* Control Register */
30 #define RSPI_SSLP		0x01	/* Slave Select Polarity Register */
31 #define RSPI_SPPCR		0x02	/* Pin Control Register */
32 #define RSPI_SPSR		0x03	/* Status Register */
33 #define RSPI_SPDR		0x04	/* Data Register */
34 #define RSPI_SPSCR		0x08	/* Sequence Control Register */
35 #define RSPI_SPSSR		0x09	/* Sequence Status Register */
36 #define RSPI_SPBR		0x0a	/* Bit Rate Register */
37 #define RSPI_SPDCR		0x0b	/* Data Control Register */
38 #define RSPI_SPCKD		0x0c	/* Clock Delay Register */
39 #define RSPI_SSLND		0x0d	/* Slave Select Negation Delay Register */
40 #define RSPI_SPND		0x0e	/* Next-Access Delay Register */
41 #define RSPI_SPCR2		0x0f	/* Control Register 2 (SH only) */
42 #define RSPI_SPCMD0		0x10	/* Command Register 0 */
43 #define RSPI_SPCMD1		0x12	/* Command Register 1 */
44 #define RSPI_SPCMD2		0x14	/* Command Register 2 */
45 #define RSPI_SPCMD3		0x16	/* Command Register 3 */
46 #define RSPI_SPCMD4		0x18	/* Command Register 4 */
47 #define RSPI_SPCMD5		0x1a	/* Command Register 5 */
48 #define RSPI_SPCMD6		0x1c	/* Command Register 6 */
49 #define RSPI_SPCMD7		0x1e	/* Command Register 7 */
50 #define RSPI_SPCMD(i)		(RSPI_SPCMD0 + (i) * 2)
51 #define RSPI_NUM_SPCMD		8
52 #define RSPI_RZ_NUM_SPCMD	4
53 #define QSPI_NUM_SPCMD		4
54 
55 /* RSPI on RZ only */
56 #define RSPI_SPBFCR		0x20	/* Buffer Control Register */
57 #define RSPI_SPBFDR		0x22	/* Buffer Data Count Setting Register */
58 
59 /* QSPI only */
60 #define QSPI_SPBFCR		0x18	/* Buffer Control Register */
61 #define QSPI_SPBDCR		0x1a	/* Buffer Data Count Register */
62 #define QSPI_SPBMUL0		0x1c	/* Transfer Data Length Multiplier Setting Register 0 */
63 #define QSPI_SPBMUL1		0x20	/* Transfer Data Length Multiplier Setting Register 1 */
64 #define QSPI_SPBMUL2		0x24	/* Transfer Data Length Multiplier Setting Register 2 */
65 #define QSPI_SPBMUL3		0x28	/* Transfer Data Length Multiplier Setting Register 3 */
66 #define QSPI_SPBMUL(i)		(QSPI_SPBMUL0 + (i) * 4)
67 
68 /* SPCR - Control Register */
69 #define SPCR_SPRIE		0x80	/* Receive Interrupt Enable */
70 #define SPCR_SPE		0x40	/* Function Enable */
71 #define SPCR_SPTIE		0x20	/* Transmit Interrupt Enable */
72 #define SPCR_SPEIE		0x10	/* Error Interrupt Enable */
73 #define SPCR_MSTR		0x08	/* Master/Slave Mode Select */
74 #define SPCR_MODFEN		0x04	/* Mode Fault Error Detection Enable */
75 /* RSPI on SH only */
76 #define SPCR_TXMD		0x02	/* TX Only Mode (vs. Full Duplex) */
77 #define SPCR_SPMS		0x01	/* 3-wire Mode (vs. 4-wire) */
78 /* QSPI on R-Car Gen2 only */
79 #define SPCR_WSWAP		0x02	/* Word Swap of read-data for DMAC */
80 #define SPCR_BSWAP		0x01	/* Byte Swap of read-data for DMAC */
81 
82 /* SSLP - Slave Select Polarity Register */
83 #define SSLP_SSLP(i)		BIT(i)	/* SSLi Signal Polarity Setting */
84 
85 /* SPPCR - Pin Control Register */
86 #define SPPCR_MOIFE		0x20	/* MOSI Idle Value Fixing Enable */
87 #define SPPCR_MOIFV		0x10	/* MOSI Idle Fixed Value */
88 #define SPPCR_SPOM		0x04
89 #define SPPCR_SPLP2		0x02	/* Loopback Mode 2 (non-inverting) */
90 #define SPPCR_SPLP		0x01	/* Loopback Mode (inverting) */
91 
92 #define SPPCR_IO3FV		0x04	/* Single-/Dual-SPI Mode IO3 Output Fixed Value */
93 #define SPPCR_IO2FV		0x04	/* Single-/Dual-SPI Mode IO2 Output Fixed Value */
94 
95 /* SPSR - Status Register */
96 #define SPSR_SPRF		0x80	/* Receive Buffer Full Flag */
97 #define SPSR_TEND		0x40	/* Transmit End */
98 #define SPSR_SPTEF		0x20	/* Transmit Buffer Empty Flag */
99 #define SPSR_PERF		0x08	/* Parity Error Flag */
100 #define SPSR_MODF		0x04	/* Mode Fault Error Flag */
101 #define SPSR_IDLNF		0x02	/* RSPI Idle Flag */
102 #define SPSR_OVRF		0x01	/* Overrun Error Flag (RSPI only) */
103 
104 /* SPSCR - Sequence Control Register */
105 #define SPSCR_SPSLN_MASK	0x07	/* Sequence Length Specification */
106 
107 /* SPSSR - Sequence Status Register */
108 #define SPSSR_SPECM_MASK	0x70	/* Command Error Mask */
109 #define SPSSR_SPCP_MASK		0x07	/* Command Pointer Mask */
110 
111 /* SPDCR - Data Control Register */
112 #define SPDCR_TXDMY		0x80	/* Dummy Data Transmission Enable */
113 #define SPDCR_SPLW1		0x40	/* Access Width Specification (RZ) */
114 #define SPDCR_SPLW0		0x20	/* Access Width Specification (RZ) */
115 #define SPDCR_SPLLWORD		(SPDCR_SPLW1 | SPDCR_SPLW0)
116 #define SPDCR_SPLWORD		SPDCR_SPLW1
117 #define SPDCR_SPLBYTE		SPDCR_SPLW0
118 #define SPDCR_SPLW		0x20	/* Access Width Specification (SH) */
119 #define SPDCR_SPRDTD		0x10	/* Receive Transmit Data Select (SH) */
120 #define SPDCR_SLSEL1		0x08
121 #define SPDCR_SLSEL0		0x04
122 #define SPDCR_SLSEL_MASK	0x0c	/* SSL1 Output Select (SH) */
123 #define SPDCR_SPFC1		0x02
124 #define SPDCR_SPFC0		0x01
125 #define SPDCR_SPFC_MASK		0x03	/* Frame Count Setting (1-4) (SH) */
126 
127 /* SPCKD - Clock Delay Register */
128 #define SPCKD_SCKDL_MASK	0x07	/* Clock Delay Setting (1-8) */
129 
130 /* SSLND - Slave Select Negation Delay Register */
131 #define SSLND_SLNDL_MASK	0x07	/* SSL Negation Delay Setting (1-8) */
132 
133 /* SPND - Next-Access Delay Register */
134 #define SPND_SPNDL_MASK		0x07	/* Next-Access Delay Setting (1-8) */
135 
136 /* SPCR2 - Control Register 2 */
137 #define SPCR2_PTE		0x08	/* Parity Self-Test Enable */
138 #define SPCR2_SPIE		0x04	/* Idle Interrupt Enable */
139 #define SPCR2_SPOE		0x02	/* Odd Parity Enable (vs. Even) */
140 #define SPCR2_SPPE		0x01	/* Parity Enable */
141 
142 /* SPCMDn - Command Registers */
143 #define SPCMD_SCKDEN		0x8000	/* Clock Delay Setting Enable */
144 #define SPCMD_SLNDEN		0x4000	/* SSL Negation Delay Setting Enable */
145 #define SPCMD_SPNDEN		0x2000	/* Next-Access Delay Enable */
146 #define SPCMD_LSBF		0x1000	/* LSB First */
147 #define SPCMD_SPB_MASK		0x0f00	/* Data Length Setting */
148 #define SPCMD_SPB_8_TO_16(bit)	(((bit - 1) << 8) & SPCMD_SPB_MASK)
149 #define SPCMD_SPB_8BIT		0x0000	/* QSPI only */
150 #define SPCMD_SPB_16BIT		0x0100
151 #define SPCMD_SPB_20BIT		0x0000
152 #define SPCMD_SPB_24BIT		0x0100
153 #define SPCMD_SPB_32BIT		0x0200
154 #define SPCMD_SSLKP		0x0080	/* SSL Signal Level Keeping */
155 #define SPCMD_SPIMOD_MASK	0x0060	/* SPI Operating Mode (QSPI only) */
156 #define SPCMD_SPIMOD1		0x0040
157 #define SPCMD_SPIMOD0		0x0020
158 #define SPCMD_SPIMOD_SINGLE	0
159 #define SPCMD_SPIMOD_DUAL	SPCMD_SPIMOD0
160 #define SPCMD_SPIMOD_QUAD	SPCMD_SPIMOD1
161 #define SPCMD_SPRW		0x0010	/* SPI Read/Write Access (Dual/Quad) */
162 #define SPCMD_SSLA(i)		((i) << 4)	/* SSL Assert Signal Setting */
163 #define SPCMD_BRDV_MASK		0x000c	/* Bit Rate Division Setting */
164 #define SPCMD_BRDV(brdv)	((brdv) << 2)
165 #define SPCMD_CPOL		0x0002	/* Clock Polarity Setting */
166 #define SPCMD_CPHA		0x0001	/* Clock Phase Setting */
167 
168 /* SPBFCR - Buffer Control Register */
169 #define SPBFCR_TXRST		0x80	/* Transmit Buffer Data Reset */
170 #define SPBFCR_RXRST		0x40	/* Receive Buffer Data Reset */
171 #define SPBFCR_TXTRG_MASK	0x30	/* Transmit Buffer Data Triggering Number */
172 #define SPBFCR_RXTRG_MASK	0x07	/* Receive Buffer Data Triggering Number */
173 /* QSPI on R-Car Gen2 */
174 #define SPBFCR_TXTRG_1B		0x00	/* 31 bytes (1 byte available) */
175 #define SPBFCR_TXTRG_32B	0x30	/* 0 byte (32 bytes available) */
176 #define SPBFCR_RXTRG_1B		0x00	/* 1 byte (31 bytes available) */
177 #define SPBFCR_RXTRG_32B	0x07	/* 32 bytes (0 byte available) */
178 
179 #define QSPI_BUFFER_SIZE        32u
180 
181 struct rspi_data {
182 	void __iomem *addr;
183 	u32 speed_hz;
184 	struct spi_controller *ctlr;
185 	struct platform_device *pdev;
186 	wait_queue_head_t wait;
187 	spinlock_t lock;		/* Protects RMW-access to RSPI_SSLP */
188 	struct clk *clk;
189 	u16 spcmd;
190 	u8 spsr;
191 	u8 sppcr;
192 	int rx_irq, tx_irq;
193 	const struct spi_ops *ops;
194 
195 	unsigned dma_callbacked:1;
196 	unsigned byte_access:1;
197 };
198 
199 static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
200 {
201 	iowrite8(data, rspi->addr + offset);
202 }
203 
204 static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
205 {
206 	iowrite16(data, rspi->addr + offset);
207 }
208 
209 static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
210 {
211 	iowrite32(data, rspi->addr + offset);
212 }
213 
214 static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
215 {
216 	return ioread8(rspi->addr + offset);
217 }
218 
219 static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
220 {
221 	return ioread16(rspi->addr + offset);
222 }
223 
224 static void rspi_write_data(const struct rspi_data *rspi, u16 data)
225 {
226 	if (rspi->byte_access)
227 		rspi_write8(rspi, data, RSPI_SPDR);
228 	else /* 16 bit */
229 		rspi_write16(rspi, data, RSPI_SPDR);
230 }
231 
232 static u16 rspi_read_data(const struct rspi_data *rspi)
233 {
234 	if (rspi->byte_access)
235 		return rspi_read8(rspi, RSPI_SPDR);
236 	else /* 16 bit */
237 		return rspi_read16(rspi, RSPI_SPDR);
238 }
239 
240 /* optional functions */
241 struct spi_ops {
242 	int (*set_config_register)(struct rspi_data *rspi, int access_size);
243 	int (*transfer_one)(struct spi_controller *ctlr,
244 			    struct spi_device *spi, struct spi_transfer *xfer);
245 	u16 extra_mode_bits;
246 	u16 min_div;
247 	u16 max_div;
248 	u16 flags;
249 	u16 fifo_size;
250 	u8 num_hw_ss;
251 };
252 
253 static void rspi_set_rate(struct rspi_data *rspi)
254 {
255 	unsigned long clksrc;
256 	int brdv = 0, spbr;
257 
258 	clksrc = clk_get_rate(rspi->clk);
259 	spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz) - 1;
260 	while (spbr > 255 && brdv < 3) {
261 		brdv++;
262 		spbr = DIV_ROUND_UP(spbr + 1, 2) - 1;
263 	}
264 
265 	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
266 	rspi->spcmd |= SPCMD_BRDV(brdv);
267 	rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * (spbr + 1));
268 }
269 
270 /*
271  * functions for RSPI on legacy SH
272  */
273 static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
274 {
275 	/* Sets output mode, MOSI signal, and (optionally) loopback */
276 	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
277 
278 	/* Sets transfer bit rate */
279 	rspi_set_rate(rspi);
280 
281 	/* Disable dummy transmission, set 16-bit word access, 1 frame */
282 	rspi_write8(rspi, 0, RSPI_SPDCR);
283 	rspi->byte_access = 0;
284 
285 	/* Sets RSPCK, SSL, next-access delay value */
286 	rspi_write8(rspi, 0x00, RSPI_SPCKD);
287 	rspi_write8(rspi, 0x00, RSPI_SSLND);
288 	rspi_write8(rspi, 0x00, RSPI_SPND);
289 
290 	/* Sets parity, interrupt mask */
291 	rspi_write8(rspi, 0x00, RSPI_SPCR2);
292 
293 	/* Resets sequencer */
294 	rspi_write8(rspi, 0, RSPI_SPSCR);
295 	rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
296 	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
297 
298 	/* Sets RSPI mode */
299 	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
300 
301 	return 0;
302 }
303 
304 /*
305  * functions for RSPI on RZ
306  */
307 static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
308 {
309 	/* Sets output mode, MOSI signal, and (optionally) loopback */
310 	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
311 
312 	/* Sets transfer bit rate */
313 	rspi_set_rate(rspi);
314 
315 	/* Disable dummy transmission, set byte access */
316 	rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
317 	rspi->byte_access = 1;
318 
319 	/* Sets RSPCK, SSL, next-access delay value */
320 	rspi_write8(rspi, 0x00, RSPI_SPCKD);
321 	rspi_write8(rspi, 0x00, RSPI_SSLND);
322 	rspi_write8(rspi, 0x00, RSPI_SPND);
323 
324 	/* Resets sequencer */
325 	rspi_write8(rspi, 0, RSPI_SPSCR);
326 	rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
327 	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
328 
329 	/* Sets RSPI mode */
330 	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
331 
332 	return 0;
333 }
334 
335 /*
336  * functions for QSPI
337  */
338 static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
339 {
340 	unsigned long clksrc;
341 	int brdv = 0, spbr;
342 
343 	/* Sets output mode, MOSI signal, and (optionally) loopback */
344 	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
345 
346 	/* Sets transfer bit rate */
347 	clksrc = clk_get_rate(rspi->clk);
348 	if (rspi->speed_hz >= clksrc) {
349 		spbr = 0;
350 		rspi->speed_hz = clksrc;
351 	} else {
352 		spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz);
353 		while (spbr > 255 && brdv < 3) {
354 			brdv++;
355 			spbr = DIV_ROUND_UP(spbr, 2);
356 		}
357 		spbr = clamp(spbr, 0, 255);
358 		rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * spbr);
359 	}
360 	rspi_write8(rspi, spbr, RSPI_SPBR);
361 	rspi->spcmd |= SPCMD_BRDV(brdv);
362 
363 	/* Disable dummy transmission, set byte access */
364 	rspi_write8(rspi, 0, RSPI_SPDCR);
365 	rspi->byte_access = 1;
366 
367 	/* Sets RSPCK, SSL, next-access delay value */
368 	rspi_write8(rspi, 0x00, RSPI_SPCKD);
369 	rspi_write8(rspi, 0x00, RSPI_SSLND);
370 	rspi_write8(rspi, 0x00, RSPI_SPND);
371 
372 	/* Data Length Setting */
373 	if (access_size == 8)
374 		rspi->spcmd |= SPCMD_SPB_8BIT;
375 	else if (access_size == 16)
376 		rspi->spcmd |= SPCMD_SPB_16BIT;
377 	else
378 		rspi->spcmd |= SPCMD_SPB_32BIT;
379 
380 	rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
381 
382 	/* Resets transfer data length */
383 	rspi_write32(rspi, 0, QSPI_SPBMUL0);
384 
385 	/* Resets transmit and receive buffer */
386 	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
387 	/* Sets buffer to allow normal operation */
388 	rspi_write8(rspi, 0x00, QSPI_SPBFCR);
389 
390 	/* Resets sequencer */
391 	rspi_write8(rspi, 0, RSPI_SPSCR);
392 	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
393 
394 	/* Sets RSPI mode */
395 	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
396 
397 	return 0;
398 }
399 
400 static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
401 {
402 	u8 data;
403 
404 	data = rspi_read8(rspi, reg);
405 	data &= ~mask;
406 	data |= (val & mask);
407 	rspi_write8(rspi, data, reg);
408 }
409 
410 static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
411 					  unsigned int len)
412 {
413 	unsigned int n;
414 
415 	n = min(len, QSPI_BUFFER_SIZE);
416 
417 	if (len >= QSPI_BUFFER_SIZE) {
418 		/* sets triggering number to 32 bytes */
419 		qspi_update(rspi, SPBFCR_TXTRG_MASK,
420 			     SPBFCR_TXTRG_32B, QSPI_SPBFCR);
421 	} else {
422 		/* sets triggering number to 1 byte */
423 		qspi_update(rspi, SPBFCR_TXTRG_MASK,
424 			     SPBFCR_TXTRG_1B, QSPI_SPBFCR);
425 	}
426 
427 	return n;
428 }
429 
430 static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
431 {
432 	unsigned int n;
433 
434 	n = min(len, QSPI_BUFFER_SIZE);
435 
436 	if (len >= QSPI_BUFFER_SIZE) {
437 		/* sets triggering number to 32 bytes */
438 		qspi_update(rspi, SPBFCR_RXTRG_MASK,
439 			     SPBFCR_RXTRG_32B, QSPI_SPBFCR);
440 	} else {
441 		/* sets triggering number to 1 byte */
442 		qspi_update(rspi, SPBFCR_RXTRG_MASK,
443 			     SPBFCR_RXTRG_1B, QSPI_SPBFCR);
444 	}
445 	return n;
446 }
447 
448 static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
449 {
450 	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
451 }
452 
453 static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
454 {
455 	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
456 }
457 
458 static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
459 				   u8 enable_bit)
460 {
461 	int ret;
462 
463 	rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
464 	if (rspi->spsr & wait_mask)
465 		return 0;
466 
467 	rspi_enable_irq(rspi, enable_bit);
468 	ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
469 	if (ret == 0 && !(rspi->spsr & wait_mask))
470 		return -ETIMEDOUT;
471 
472 	return 0;
473 }
474 
475 static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
476 {
477 	return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
478 }
479 
480 static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
481 {
482 	return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
483 }
484 
485 static int rspi_data_out(struct rspi_data *rspi, u8 data)
486 {
487 	int error = rspi_wait_for_tx_empty(rspi);
488 	if (error < 0) {
489 		dev_err(&rspi->ctlr->dev, "transmit timeout\n");
490 		return error;
491 	}
492 	rspi_write_data(rspi, data);
493 	return 0;
494 }
495 
496 static int rspi_data_in(struct rspi_data *rspi)
497 {
498 	int error;
499 	u8 data;
500 
501 	error = rspi_wait_for_rx_full(rspi);
502 	if (error < 0) {
503 		dev_err(&rspi->ctlr->dev, "receive timeout\n");
504 		return error;
505 	}
506 	data = rspi_read_data(rspi);
507 	return data;
508 }
509 
510 static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
511 			     unsigned int n)
512 {
513 	while (n-- > 0) {
514 		if (tx) {
515 			int ret = rspi_data_out(rspi, *tx++);
516 			if (ret < 0)
517 				return ret;
518 		}
519 		if (rx) {
520 			int ret = rspi_data_in(rspi);
521 			if (ret < 0)
522 				return ret;
523 			*rx++ = ret;
524 		}
525 	}
526 
527 	return 0;
528 }
529 
530 static void rspi_dma_complete(void *arg)
531 {
532 	struct rspi_data *rspi = arg;
533 
534 	rspi->dma_callbacked = 1;
535 	wake_up_interruptible(&rspi->wait);
536 }
537 
538 static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
539 			     struct sg_table *rx)
540 {
541 	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
542 	u8 irq_mask = 0;
543 	unsigned int other_irq = 0;
544 	dma_cookie_t cookie;
545 	int ret;
546 
547 	/* First prepare and submit the DMA request(s), as this may fail */
548 	if (rx) {
549 		desc_rx = dmaengine_prep_slave_sg(rspi->ctlr->dma_rx, rx->sgl,
550 					rx->nents, DMA_DEV_TO_MEM,
551 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
552 		if (!desc_rx) {
553 			ret = -EAGAIN;
554 			goto no_dma_rx;
555 		}
556 
557 		desc_rx->callback = rspi_dma_complete;
558 		desc_rx->callback_param = rspi;
559 		cookie = dmaengine_submit(desc_rx);
560 		if (dma_submit_error(cookie)) {
561 			ret = cookie;
562 			goto no_dma_rx;
563 		}
564 
565 		irq_mask |= SPCR_SPRIE;
566 	}
567 
568 	if (tx) {
569 		desc_tx = dmaengine_prep_slave_sg(rspi->ctlr->dma_tx, tx->sgl,
570 					tx->nents, DMA_MEM_TO_DEV,
571 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
572 		if (!desc_tx) {
573 			ret = -EAGAIN;
574 			goto no_dma_tx;
575 		}
576 
577 		if (rx) {
578 			/* No callback */
579 			desc_tx->callback = NULL;
580 		} else {
581 			desc_tx->callback = rspi_dma_complete;
582 			desc_tx->callback_param = rspi;
583 		}
584 		cookie = dmaengine_submit(desc_tx);
585 		if (dma_submit_error(cookie)) {
586 			ret = cookie;
587 			goto no_dma_tx;
588 		}
589 
590 		irq_mask |= SPCR_SPTIE;
591 	}
592 
593 	/*
594 	 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
595 	 * called. So, this driver disables the IRQ while DMA transfer.
596 	 */
597 	if (tx)
598 		disable_irq(other_irq = rspi->tx_irq);
599 	if (rx && rspi->rx_irq != other_irq)
600 		disable_irq(rspi->rx_irq);
601 
602 	rspi_enable_irq(rspi, irq_mask);
603 	rspi->dma_callbacked = 0;
604 
605 	/* Now start DMA */
606 	if (rx)
607 		dma_async_issue_pending(rspi->ctlr->dma_rx);
608 	if (tx)
609 		dma_async_issue_pending(rspi->ctlr->dma_tx);
610 
611 	ret = wait_event_interruptible_timeout(rspi->wait,
612 					       rspi->dma_callbacked, HZ);
613 	if (ret > 0 && rspi->dma_callbacked) {
614 		ret = 0;
615 	} else {
616 		if (!ret) {
617 			dev_err(&rspi->ctlr->dev, "DMA timeout\n");
618 			ret = -ETIMEDOUT;
619 		}
620 		if (tx)
621 			dmaengine_terminate_all(rspi->ctlr->dma_tx);
622 		if (rx)
623 			dmaengine_terminate_all(rspi->ctlr->dma_rx);
624 	}
625 
626 	rspi_disable_irq(rspi, irq_mask);
627 
628 	if (tx)
629 		enable_irq(rspi->tx_irq);
630 	if (rx && rspi->rx_irq != other_irq)
631 		enable_irq(rspi->rx_irq);
632 
633 	return ret;
634 
635 no_dma_tx:
636 	if (rx)
637 		dmaengine_terminate_all(rspi->ctlr->dma_rx);
638 no_dma_rx:
639 	if (ret == -EAGAIN) {
640 		dev_warn_once(&rspi->ctlr->dev,
641 			      "DMA not available, falling back to PIO\n");
642 	}
643 	return ret;
644 }
645 
646 static void rspi_receive_init(const struct rspi_data *rspi)
647 {
648 	u8 spsr;
649 
650 	spsr = rspi_read8(rspi, RSPI_SPSR);
651 	if (spsr & SPSR_SPRF)
652 		rspi_read_data(rspi);	/* dummy read */
653 	if (spsr & SPSR_OVRF)
654 		rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
655 			    RSPI_SPSR);
656 }
657 
658 static void rspi_rz_receive_init(const struct rspi_data *rspi)
659 {
660 	rspi_receive_init(rspi);
661 	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
662 	rspi_write8(rspi, 0, RSPI_SPBFCR);
663 }
664 
665 static void qspi_receive_init(const struct rspi_data *rspi)
666 {
667 	u8 spsr;
668 
669 	spsr = rspi_read8(rspi, RSPI_SPSR);
670 	if (spsr & SPSR_SPRF)
671 		rspi_read_data(rspi);   /* dummy read */
672 	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
673 	rspi_write8(rspi, 0, QSPI_SPBFCR);
674 }
675 
676 static bool __rspi_can_dma(const struct rspi_data *rspi,
677 			   const struct spi_transfer *xfer)
678 {
679 	return xfer->len > rspi->ops->fifo_size;
680 }
681 
682 static bool rspi_can_dma(struct spi_controller *ctlr, struct spi_device *spi,
683 			 struct spi_transfer *xfer)
684 {
685 	struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
686 
687 	return __rspi_can_dma(rspi, xfer);
688 }
689 
690 static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
691 					 struct spi_transfer *xfer)
692 {
693 	if (!rspi->ctlr->can_dma || !__rspi_can_dma(rspi, xfer))
694 		return -EAGAIN;
695 
696 	/* rx_buf can be NULL on RSPI on SH in TX-only Mode */
697 	return rspi_dma_transfer(rspi, &xfer->tx_sg,
698 				xfer->rx_buf ? &xfer->rx_sg : NULL);
699 }
700 
701 static int rspi_common_transfer(struct rspi_data *rspi,
702 				struct spi_transfer *xfer)
703 {
704 	int ret;
705 
706 	xfer->effective_speed_hz = rspi->speed_hz;
707 
708 	ret = rspi_dma_check_then_transfer(rspi, xfer);
709 	if (ret != -EAGAIN)
710 		return ret;
711 
712 	ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
713 	if (ret < 0)
714 		return ret;
715 
716 	/* Wait for the last transmission */
717 	rspi_wait_for_tx_empty(rspi);
718 
719 	return 0;
720 }
721 
722 static int rspi_transfer_one(struct spi_controller *ctlr,
723 			     struct spi_device *spi, struct spi_transfer *xfer)
724 {
725 	struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
726 	u8 spcr;
727 
728 	spcr = rspi_read8(rspi, RSPI_SPCR);
729 	if (xfer->rx_buf) {
730 		rspi_receive_init(rspi);
731 		spcr &= ~SPCR_TXMD;
732 	} else {
733 		spcr |= SPCR_TXMD;
734 	}
735 	rspi_write8(rspi, spcr, RSPI_SPCR);
736 
737 	return rspi_common_transfer(rspi, xfer);
738 }
739 
740 static int rspi_rz_transfer_one(struct spi_controller *ctlr,
741 				struct spi_device *spi,
742 				struct spi_transfer *xfer)
743 {
744 	struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
745 
746 	rspi_rz_receive_init(rspi);
747 
748 	return rspi_common_transfer(rspi, xfer);
749 }
750 
751 static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
752 					u8 *rx, unsigned int len)
753 {
754 	unsigned int i, n;
755 	int ret;
756 
757 	while (len > 0) {
758 		n = qspi_set_send_trigger(rspi, len);
759 		qspi_set_receive_trigger(rspi, len);
760 		ret = rspi_wait_for_tx_empty(rspi);
761 		if (ret < 0) {
762 			dev_err(&rspi->ctlr->dev, "transmit timeout\n");
763 			return ret;
764 		}
765 		for (i = 0; i < n; i++)
766 			rspi_write_data(rspi, *tx++);
767 
768 		ret = rspi_wait_for_rx_full(rspi);
769 		if (ret < 0) {
770 			dev_err(&rspi->ctlr->dev, "receive timeout\n");
771 			return ret;
772 		}
773 		for (i = 0; i < n; i++)
774 			*rx++ = rspi_read_data(rspi);
775 
776 		len -= n;
777 	}
778 
779 	return 0;
780 }
781 
782 static int qspi_transfer_out_in(struct rspi_data *rspi,
783 				struct spi_transfer *xfer)
784 {
785 	int ret;
786 
787 	qspi_receive_init(rspi);
788 
789 	ret = rspi_dma_check_then_transfer(rspi, xfer);
790 	if (ret != -EAGAIN)
791 		return ret;
792 
793 	return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
794 					    xfer->rx_buf, xfer->len);
795 }
796 
797 static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
798 {
799 	const u8 *tx = xfer->tx_buf;
800 	unsigned int n = xfer->len;
801 	unsigned int i, len;
802 	int ret;
803 
804 	if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
805 		ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
806 		if (ret != -EAGAIN)
807 			return ret;
808 	}
809 
810 	while (n > 0) {
811 		len = qspi_set_send_trigger(rspi, n);
812 		ret = rspi_wait_for_tx_empty(rspi);
813 		if (ret < 0) {
814 			dev_err(&rspi->ctlr->dev, "transmit timeout\n");
815 			return ret;
816 		}
817 		for (i = 0; i < len; i++)
818 			rspi_write_data(rspi, *tx++);
819 
820 		n -= len;
821 	}
822 
823 	/* Wait for the last transmission */
824 	rspi_wait_for_tx_empty(rspi);
825 
826 	return 0;
827 }
828 
829 static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
830 {
831 	u8 *rx = xfer->rx_buf;
832 	unsigned int n = xfer->len;
833 	unsigned int i, len;
834 	int ret;
835 
836 	if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
837 		int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
838 		if (ret != -EAGAIN)
839 			return ret;
840 	}
841 
842 	while (n > 0) {
843 		len = qspi_set_receive_trigger(rspi, n);
844 		ret = rspi_wait_for_rx_full(rspi);
845 		if (ret < 0) {
846 			dev_err(&rspi->ctlr->dev, "receive timeout\n");
847 			return ret;
848 		}
849 		for (i = 0; i < len; i++)
850 			*rx++ = rspi_read_data(rspi);
851 
852 		n -= len;
853 	}
854 
855 	return 0;
856 }
857 
858 static int qspi_transfer_one(struct spi_controller *ctlr,
859 			     struct spi_device *spi, struct spi_transfer *xfer)
860 {
861 	struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
862 
863 	xfer->effective_speed_hz = rspi->speed_hz;
864 	if (spi->mode & SPI_LOOP) {
865 		return qspi_transfer_out_in(rspi, xfer);
866 	} else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
867 		/* Quad or Dual SPI Write */
868 		return qspi_transfer_out(rspi, xfer);
869 	} else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
870 		/* Quad or Dual SPI Read */
871 		return qspi_transfer_in(rspi, xfer);
872 	} else {
873 		/* Single SPI Transfer */
874 		return qspi_transfer_out_in(rspi, xfer);
875 	}
876 }
877 
878 static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
879 {
880 	if (xfer->tx_buf)
881 		switch (xfer->tx_nbits) {
882 		case SPI_NBITS_QUAD:
883 			return SPCMD_SPIMOD_QUAD;
884 		case SPI_NBITS_DUAL:
885 			return SPCMD_SPIMOD_DUAL;
886 		default:
887 			return 0;
888 		}
889 	if (xfer->rx_buf)
890 		switch (xfer->rx_nbits) {
891 		case SPI_NBITS_QUAD:
892 			return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
893 		case SPI_NBITS_DUAL:
894 			return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
895 		default:
896 			return 0;
897 		}
898 
899 	return 0;
900 }
901 
902 static int qspi_setup_sequencer(struct rspi_data *rspi,
903 				const struct spi_message *msg)
904 {
905 	const struct spi_transfer *xfer;
906 	unsigned int i = 0, len = 0;
907 	u16 current_mode = 0xffff, mode;
908 
909 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
910 		mode = qspi_transfer_mode(xfer);
911 		if (mode == current_mode) {
912 			len += xfer->len;
913 			continue;
914 		}
915 
916 		/* Transfer mode change */
917 		if (i) {
918 			/* Set transfer data length of previous transfer */
919 			rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
920 		}
921 
922 		if (i >= QSPI_NUM_SPCMD) {
923 			dev_err(&msg->spi->dev,
924 				"Too many different transfer modes");
925 			return -EINVAL;
926 		}
927 
928 		/* Program transfer mode for this transfer */
929 		rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
930 		current_mode = mode;
931 		len = xfer->len;
932 		i++;
933 	}
934 	if (i) {
935 		/* Set final transfer data length and sequence length */
936 		rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
937 		rspi_write8(rspi, i - 1, RSPI_SPSCR);
938 	}
939 
940 	return 0;
941 }
942 
943 static int rspi_setup(struct spi_device *spi)
944 {
945 	struct rspi_data *rspi = spi_controller_get_devdata(spi->controller);
946 	u8 sslp;
947 
948 	if (spi->cs_gpiod)
949 		return 0;
950 
951 	pm_runtime_get_sync(&rspi->pdev->dev);
952 	spin_lock_irq(&rspi->lock);
953 
954 	sslp = rspi_read8(rspi, RSPI_SSLP);
955 	if (spi->mode & SPI_CS_HIGH)
956 		sslp |= SSLP_SSLP(spi->chip_select);
957 	else
958 		sslp &= ~SSLP_SSLP(spi->chip_select);
959 	rspi_write8(rspi, sslp, RSPI_SSLP);
960 
961 	spin_unlock_irq(&rspi->lock);
962 	pm_runtime_put(&rspi->pdev->dev);
963 	return 0;
964 }
965 
966 static int rspi_prepare_message(struct spi_controller *ctlr,
967 				struct spi_message *msg)
968 {
969 	struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
970 	struct spi_device *spi = msg->spi;
971 	const struct spi_transfer *xfer;
972 	int ret;
973 
974 	/*
975 	 * As the Bit Rate Register must not be changed while the device is
976 	 * active, all transfers in a message must use the same bit rate.
977 	 * In theory, the sequencer could be enabled, and each Command Register
978 	 * could divide the base bit rate by a different value.
979 	 * However, most RSPI variants do not have Transfer Data Length
980 	 * Multiplier Setting Registers, so each sequence step would be limited
981 	 * to a single word, making this feature unsuitable for large
982 	 * transfers, which would gain most from it.
983 	 */
984 	rspi->speed_hz = spi->max_speed_hz;
985 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
986 		if (xfer->speed_hz < rspi->speed_hz)
987 			rspi->speed_hz = xfer->speed_hz;
988 	}
989 
990 	rspi->spcmd = SPCMD_SSLKP;
991 	if (spi->mode & SPI_CPOL)
992 		rspi->spcmd |= SPCMD_CPOL;
993 	if (spi->mode & SPI_CPHA)
994 		rspi->spcmd |= SPCMD_CPHA;
995 	if (spi->mode & SPI_LSB_FIRST)
996 		rspi->spcmd |= SPCMD_LSBF;
997 
998 	/* Configure slave signal to assert */
999 	rspi->spcmd |= SPCMD_SSLA(spi->cs_gpiod ? rspi->ctlr->unused_native_cs
1000 						: spi->chip_select);
1001 
1002 	/* CMOS output mode and MOSI signal from previous transfer */
1003 	rspi->sppcr = 0;
1004 	if (spi->mode & SPI_LOOP)
1005 		rspi->sppcr |= SPPCR_SPLP;
1006 
1007 	rspi->ops->set_config_register(rspi, 8);
1008 
1009 	if (msg->spi->mode &
1010 	    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
1011 		/* Setup sequencer for messages with multiple transfer modes */
1012 		ret = qspi_setup_sequencer(rspi, msg);
1013 		if (ret < 0)
1014 			return ret;
1015 	}
1016 
1017 	/* Enable SPI function in master mode */
1018 	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
1019 	return 0;
1020 }
1021 
1022 static int rspi_unprepare_message(struct spi_controller *ctlr,
1023 				  struct spi_message *msg)
1024 {
1025 	struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
1026 
1027 	/* Disable SPI function */
1028 	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
1029 
1030 	/* Reset sequencer for Single SPI Transfers */
1031 	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
1032 	rspi_write8(rspi, 0, RSPI_SPSCR);
1033 	return 0;
1034 }
1035 
1036 static irqreturn_t rspi_irq_mux(int irq, void *_sr)
1037 {
1038 	struct rspi_data *rspi = _sr;
1039 	u8 spsr;
1040 	irqreturn_t ret = IRQ_NONE;
1041 	u8 disable_irq = 0;
1042 
1043 	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1044 	if (spsr & SPSR_SPRF)
1045 		disable_irq |= SPCR_SPRIE;
1046 	if (spsr & SPSR_SPTEF)
1047 		disable_irq |= SPCR_SPTIE;
1048 
1049 	if (disable_irq) {
1050 		ret = IRQ_HANDLED;
1051 		rspi_disable_irq(rspi, disable_irq);
1052 		wake_up(&rspi->wait);
1053 	}
1054 
1055 	return ret;
1056 }
1057 
1058 static irqreturn_t rspi_irq_rx(int irq, void *_sr)
1059 {
1060 	struct rspi_data *rspi = _sr;
1061 	u8 spsr;
1062 
1063 	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1064 	if (spsr & SPSR_SPRF) {
1065 		rspi_disable_irq(rspi, SPCR_SPRIE);
1066 		wake_up(&rspi->wait);
1067 		return IRQ_HANDLED;
1068 	}
1069 
1070 	return 0;
1071 }
1072 
1073 static irqreturn_t rspi_irq_tx(int irq, void *_sr)
1074 {
1075 	struct rspi_data *rspi = _sr;
1076 	u8 spsr;
1077 
1078 	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1079 	if (spsr & SPSR_SPTEF) {
1080 		rspi_disable_irq(rspi, SPCR_SPTIE);
1081 		wake_up(&rspi->wait);
1082 		return IRQ_HANDLED;
1083 	}
1084 
1085 	return 0;
1086 }
1087 
1088 static struct dma_chan *rspi_request_dma_chan(struct device *dev,
1089 					      enum dma_transfer_direction dir,
1090 					      unsigned int id,
1091 					      dma_addr_t port_addr)
1092 {
1093 	dma_cap_mask_t mask;
1094 	struct dma_chan *chan;
1095 	struct dma_slave_config cfg;
1096 	int ret;
1097 
1098 	dma_cap_zero(mask);
1099 	dma_cap_set(DMA_SLAVE, mask);
1100 
1101 	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1102 				(void *)(unsigned long)id, dev,
1103 				dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1104 	if (!chan) {
1105 		dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1106 		return NULL;
1107 	}
1108 
1109 	memset(&cfg, 0, sizeof(cfg));
1110 	cfg.direction = dir;
1111 	if (dir == DMA_MEM_TO_DEV) {
1112 		cfg.dst_addr = port_addr;
1113 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1114 	} else {
1115 		cfg.src_addr = port_addr;
1116 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1117 	}
1118 
1119 	ret = dmaengine_slave_config(chan, &cfg);
1120 	if (ret) {
1121 		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1122 		dma_release_channel(chan);
1123 		return NULL;
1124 	}
1125 
1126 	return chan;
1127 }
1128 
1129 static int rspi_request_dma(struct device *dev, struct spi_controller *ctlr,
1130 			    const struct resource *res)
1131 {
1132 	const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
1133 	unsigned int dma_tx_id, dma_rx_id;
1134 
1135 	if (dev->of_node) {
1136 		/* In the OF case we will get the slave IDs from the DT */
1137 		dma_tx_id = 0;
1138 		dma_rx_id = 0;
1139 	} else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
1140 		dma_tx_id = rspi_pd->dma_tx_id;
1141 		dma_rx_id = rspi_pd->dma_rx_id;
1142 	} else {
1143 		/* The driver assumes no error. */
1144 		return 0;
1145 	}
1146 
1147 	ctlr->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
1148 					     res->start + RSPI_SPDR);
1149 	if (!ctlr->dma_tx)
1150 		return -ENODEV;
1151 
1152 	ctlr->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
1153 					     res->start + RSPI_SPDR);
1154 	if (!ctlr->dma_rx) {
1155 		dma_release_channel(ctlr->dma_tx);
1156 		ctlr->dma_tx = NULL;
1157 		return -ENODEV;
1158 	}
1159 
1160 	ctlr->can_dma = rspi_can_dma;
1161 	dev_info(dev, "DMA available");
1162 	return 0;
1163 }
1164 
1165 static void rspi_release_dma(struct spi_controller *ctlr)
1166 {
1167 	if (ctlr->dma_tx)
1168 		dma_release_channel(ctlr->dma_tx);
1169 	if (ctlr->dma_rx)
1170 		dma_release_channel(ctlr->dma_rx);
1171 }
1172 
1173 static int rspi_remove(struct platform_device *pdev)
1174 {
1175 	struct rspi_data *rspi = platform_get_drvdata(pdev);
1176 
1177 	rspi_release_dma(rspi->ctlr);
1178 	pm_runtime_disable(&pdev->dev);
1179 
1180 	return 0;
1181 }
1182 
1183 static const struct spi_ops rspi_ops = {
1184 	.set_config_register =	rspi_set_config_register,
1185 	.transfer_one =		rspi_transfer_one,
1186 	.min_div =		2,
1187 	.max_div =		4096,
1188 	.flags =		SPI_CONTROLLER_MUST_TX,
1189 	.fifo_size =		8,
1190 	.num_hw_ss =		2,
1191 };
1192 
1193 static const struct spi_ops rspi_rz_ops = {
1194 	.set_config_register =	rspi_rz_set_config_register,
1195 	.transfer_one =		rspi_rz_transfer_one,
1196 	.min_div =		2,
1197 	.max_div =		4096,
1198 	.flags =		SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1199 	.fifo_size =		8,	/* 8 for TX, 32 for RX */
1200 	.num_hw_ss =		1,
1201 };
1202 
1203 static const struct spi_ops qspi_ops = {
1204 	.set_config_register =	qspi_set_config_register,
1205 	.transfer_one =		qspi_transfer_one,
1206 	.extra_mode_bits =	SPI_TX_DUAL | SPI_TX_QUAD |
1207 				SPI_RX_DUAL | SPI_RX_QUAD,
1208 	.min_div =		1,
1209 	.max_div =		4080,
1210 	.flags =		SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1211 	.fifo_size =		32,
1212 	.num_hw_ss =		1,
1213 };
1214 
1215 #ifdef CONFIG_OF
1216 static const struct of_device_id rspi_of_match[] = {
1217 	/* RSPI on legacy SH */
1218 	{ .compatible = "renesas,rspi", .data = &rspi_ops },
1219 	/* RSPI on RZ/A1H */
1220 	{ .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1221 	/* QSPI on R-Car Gen2 */
1222 	{ .compatible = "renesas,qspi", .data = &qspi_ops },
1223 	{ /* sentinel */ }
1224 };
1225 
1226 MODULE_DEVICE_TABLE(of, rspi_of_match);
1227 
1228 static int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1229 {
1230 	u32 num_cs;
1231 	int error;
1232 
1233 	/* Parse DT properties */
1234 	error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1235 	if (error) {
1236 		dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1237 		return error;
1238 	}
1239 
1240 	ctlr->num_chipselect = num_cs;
1241 	return 0;
1242 }
1243 #else
1244 #define rspi_of_match	NULL
1245 static inline int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1246 {
1247 	return -EINVAL;
1248 }
1249 #endif /* CONFIG_OF */
1250 
1251 static int rspi_request_irq(struct device *dev, unsigned int irq,
1252 			    irq_handler_t handler, const char *suffix,
1253 			    void *dev_id)
1254 {
1255 	const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1256 					  dev_name(dev), suffix);
1257 	if (!name)
1258 		return -ENOMEM;
1259 
1260 	return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1261 }
1262 
1263 static int rspi_probe(struct platform_device *pdev)
1264 {
1265 	struct resource *res;
1266 	struct spi_controller *ctlr;
1267 	struct rspi_data *rspi;
1268 	int ret;
1269 	const struct rspi_plat_data *rspi_pd;
1270 	const struct spi_ops *ops;
1271 	unsigned long clksrc;
1272 
1273 	ctlr = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1274 	if (ctlr == NULL)
1275 		return -ENOMEM;
1276 
1277 	ops = of_device_get_match_data(&pdev->dev);
1278 	if (ops) {
1279 		ret = rspi_parse_dt(&pdev->dev, ctlr);
1280 		if (ret)
1281 			goto error1;
1282 	} else {
1283 		ops = (struct spi_ops *)pdev->id_entry->driver_data;
1284 		rspi_pd = dev_get_platdata(&pdev->dev);
1285 		if (rspi_pd && rspi_pd->num_chipselect)
1286 			ctlr->num_chipselect = rspi_pd->num_chipselect;
1287 		else
1288 			ctlr->num_chipselect = 2; /* default */
1289 	}
1290 
1291 	rspi = spi_controller_get_devdata(ctlr);
1292 	platform_set_drvdata(pdev, rspi);
1293 	rspi->ops = ops;
1294 	rspi->ctlr = ctlr;
1295 
1296 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1297 	rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1298 	if (IS_ERR(rspi->addr)) {
1299 		ret = PTR_ERR(rspi->addr);
1300 		goto error1;
1301 	}
1302 
1303 	rspi->clk = devm_clk_get(&pdev->dev, NULL);
1304 	if (IS_ERR(rspi->clk)) {
1305 		dev_err(&pdev->dev, "cannot get clock\n");
1306 		ret = PTR_ERR(rspi->clk);
1307 		goto error1;
1308 	}
1309 
1310 	rspi->pdev = pdev;
1311 	pm_runtime_enable(&pdev->dev);
1312 
1313 	init_waitqueue_head(&rspi->wait);
1314 	spin_lock_init(&rspi->lock);
1315 
1316 	ctlr->bus_num = pdev->id;
1317 	ctlr->setup = rspi_setup;
1318 	ctlr->auto_runtime_pm = true;
1319 	ctlr->transfer_one = ops->transfer_one;
1320 	ctlr->prepare_message = rspi_prepare_message;
1321 	ctlr->unprepare_message = rspi_unprepare_message;
1322 	ctlr->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1323 			  SPI_LOOP | ops->extra_mode_bits;
1324 	clksrc = clk_get_rate(rspi->clk);
1325 	ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, ops->max_div);
1326 	ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, ops->min_div);
1327 	ctlr->flags = ops->flags;
1328 	ctlr->dev.of_node = pdev->dev.of_node;
1329 	ctlr->use_gpio_descriptors = true;
1330 	ctlr->max_native_cs = rspi->ops->num_hw_ss;
1331 
1332 	ret = platform_get_irq_byname_optional(pdev, "rx");
1333 	if (ret < 0) {
1334 		ret = platform_get_irq_byname_optional(pdev, "mux");
1335 		if (ret < 0)
1336 			ret = platform_get_irq(pdev, 0);
1337 		if (ret >= 0)
1338 			rspi->rx_irq = rspi->tx_irq = ret;
1339 	} else {
1340 		rspi->rx_irq = ret;
1341 		ret = platform_get_irq_byname(pdev, "tx");
1342 		if (ret >= 0)
1343 			rspi->tx_irq = ret;
1344 	}
1345 
1346 	if (rspi->rx_irq == rspi->tx_irq) {
1347 		/* Single multiplexed interrupt */
1348 		ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1349 				       "mux", rspi);
1350 	} else {
1351 		/* Multi-interrupt mode, only SPRI and SPTI are used */
1352 		ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1353 				       "rx", rspi);
1354 		if (!ret)
1355 			ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1356 					       rspi_irq_tx, "tx", rspi);
1357 	}
1358 	if (ret < 0) {
1359 		dev_err(&pdev->dev, "request_irq error\n");
1360 		goto error2;
1361 	}
1362 
1363 	ret = rspi_request_dma(&pdev->dev, ctlr, res);
1364 	if (ret < 0)
1365 		dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1366 
1367 	ret = devm_spi_register_controller(&pdev->dev, ctlr);
1368 	if (ret < 0) {
1369 		dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1370 		goto error3;
1371 	}
1372 
1373 	dev_info(&pdev->dev, "probed\n");
1374 
1375 	return 0;
1376 
1377 error3:
1378 	rspi_release_dma(ctlr);
1379 error2:
1380 	pm_runtime_disable(&pdev->dev);
1381 error1:
1382 	spi_controller_put(ctlr);
1383 
1384 	return ret;
1385 }
1386 
1387 static const struct platform_device_id spi_driver_ids[] = {
1388 	{ "rspi",	(kernel_ulong_t)&rspi_ops },
1389 	{},
1390 };
1391 
1392 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1393 
1394 #ifdef CONFIG_PM_SLEEP
1395 static int rspi_suspend(struct device *dev)
1396 {
1397 	struct rspi_data *rspi = dev_get_drvdata(dev);
1398 
1399 	return spi_controller_suspend(rspi->ctlr);
1400 }
1401 
1402 static int rspi_resume(struct device *dev)
1403 {
1404 	struct rspi_data *rspi = dev_get_drvdata(dev);
1405 
1406 	return spi_controller_resume(rspi->ctlr);
1407 }
1408 
1409 static SIMPLE_DEV_PM_OPS(rspi_pm_ops, rspi_suspend, rspi_resume);
1410 #define DEV_PM_OPS	&rspi_pm_ops
1411 #else
1412 #define DEV_PM_OPS	NULL
1413 #endif /* CONFIG_PM_SLEEP */
1414 
1415 static struct platform_driver rspi_driver = {
1416 	.probe =	rspi_probe,
1417 	.remove =	rspi_remove,
1418 	.id_table =	spi_driver_ids,
1419 	.driver		= {
1420 		.name = "renesas_spi",
1421 		.pm = DEV_PM_OPS,
1422 		.of_match_table = of_match_ptr(rspi_of_match),
1423 	},
1424 };
1425 module_platform_driver(rspi_driver);
1426 
1427 MODULE_DESCRIPTION("Renesas RSPI bus driver");
1428 MODULE_LICENSE("GPL v2");
1429 MODULE_AUTHOR("Yoshihiro Shimoda");
1430 MODULE_ALIAS("platform:rspi");
1431