1 /* 2 * SH RSPI driver 3 * 4 * Copyright (C) 2012, 2013 Renesas Solutions Corp. 5 * Copyright (C) 2014 Glider bvba 6 * 7 * Based on spi-sh.c: 8 * Copyright (C) 2011 Renesas Solutions Corp. 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; version 2 of the License. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20 #include <linux/module.h> 21 #include <linux/kernel.h> 22 #include <linux/sched.h> 23 #include <linux/errno.h> 24 #include <linux/interrupt.h> 25 #include <linux/platform_device.h> 26 #include <linux/io.h> 27 #include <linux/clk.h> 28 #include <linux/dmaengine.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/of_device.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/sh_dma.h> 33 #include <linux/spi/spi.h> 34 #include <linux/spi/rspi.h> 35 36 #define RSPI_SPCR 0x00 /* Control Register */ 37 #define RSPI_SSLP 0x01 /* Slave Select Polarity Register */ 38 #define RSPI_SPPCR 0x02 /* Pin Control Register */ 39 #define RSPI_SPSR 0x03 /* Status Register */ 40 #define RSPI_SPDR 0x04 /* Data Register */ 41 #define RSPI_SPSCR 0x08 /* Sequence Control Register */ 42 #define RSPI_SPSSR 0x09 /* Sequence Status Register */ 43 #define RSPI_SPBR 0x0a /* Bit Rate Register */ 44 #define RSPI_SPDCR 0x0b /* Data Control Register */ 45 #define RSPI_SPCKD 0x0c /* Clock Delay Register */ 46 #define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */ 47 #define RSPI_SPND 0x0e /* Next-Access Delay Register */ 48 #define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */ 49 #define RSPI_SPCMD0 0x10 /* Command Register 0 */ 50 #define RSPI_SPCMD1 0x12 /* Command Register 1 */ 51 #define RSPI_SPCMD2 0x14 /* Command Register 2 */ 52 #define RSPI_SPCMD3 0x16 /* Command Register 3 */ 53 #define RSPI_SPCMD4 0x18 /* Command Register 4 */ 54 #define RSPI_SPCMD5 0x1a /* Command Register 5 */ 55 #define RSPI_SPCMD6 0x1c /* Command Register 6 */ 56 #define RSPI_SPCMD7 0x1e /* Command Register 7 */ 57 #define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2) 58 #define RSPI_NUM_SPCMD 8 59 #define RSPI_RZ_NUM_SPCMD 4 60 #define QSPI_NUM_SPCMD 4 61 62 /* RSPI on RZ only */ 63 #define RSPI_SPBFCR 0x20 /* Buffer Control Register */ 64 #define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */ 65 66 /* QSPI only */ 67 #define QSPI_SPBFCR 0x18 /* Buffer Control Register */ 68 #define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */ 69 #define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */ 70 #define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */ 71 #define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */ 72 #define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */ 73 #define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4) 74 75 /* SPCR - Control Register */ 76 #define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */ 77 #define SPCR_SPE 0x40 /* Function Enable */ 78 #define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */ 79 #define SPCR_SPEIE 0x10 /* Error Interrupt Enable */ 80 #define SPCR_MSTR 0x08 /* Master/Slave Mode Select */ 81 #define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */ 82 /* RSPI on SH only */ 83 #define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */ 84 #define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */ 85 /* QSPI on R-Car Gen2 only */ 86 #define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */ 87 #define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */ 88 89 /* SSLP - Slave Select Polarity Register */ 90 #define SSLP_SSL1P 0x02 /* SSL1 Signal Polarity Setting */ 91 #define SSLP_SSL0P 0x01 /* SSL0 Signal Polarity Setting */ 92 93 /* SPPCR - Pin Control Register */ 94 #define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */ 95 #define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */ 96 #define SPPCR_SPOM 0x04 97 #define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */ 98 #define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */ 99 100 #define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */ 101 #define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */ 102 103 /* SPSR - Status Register */ 104 #define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */ 105 #define SPSR_TEND 0x40 /* Transmit End */ 106 #define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */ 107 #define SPSR_PERF 0x08 /* Parity Error Flag */ 108 #define SPSR_MODF 0x04 /* Mode Fault Error Flag */ 109 #define SPSR_IDLNF 0x02 /* RSPI Idle Flag */ 110 #define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */ 111 112 /* SPSCR - Sequence Control Register */ 113 #define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */ 114 115 /* SPSSR - Sequence Status Register */ 116 #define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */ 117 #define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */ 118 119 /* SPDCR - Data Control Register */ 120 #define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */ 121 #define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */ 122 #define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */ 123 #define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0) 124 #define SPDCR_SPLWORD SPDCR_SPLW1 125 #define SPDCR_SPLBYTE SPDCR_SPLW0 126 #define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */ 127 #define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */ 128 #define SPDCR_SLSEL1 0x08 129 #define SPDCR_SLSEL0 0x04 130 #define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */ 131 #define SPDCR_SPFC1 0x02 132 #define SPDCR_SPFC0 0x01 133 #define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */ 134 135 /* SPCKD - Clock Delay Register */ 136 #define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */ 137 138 /* SSLND - Slave Select Negation Delay Register */ 139 #define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */ 140 141 /* SPND - Next-Access Delay Register */ 142 #define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */ 143 144 /* SPCR2 - Control Register 2 */ 145 #define SPCR2_PTE 0x08 /* Parity Self-Test Enable */ 146 #define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */ 147 #define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */ 148 #define SPCR2_SPPE 0x01 /* Parity Enable */ 149 150 /* SPCMDn - Command Registers */ 151 #define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */ 152 #define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */ 153 #define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */ 154 #define SPCMD_LSBF 0x1000 /* LSB First */ 155 #define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */ 156 #define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK) 157 #define SPCMD_SPB_8BIT 0x0000 /* QSPI only */ 158 #define SPCMD_SPB_16BIT 0x0100 159 #define SPCMD_SPB_20BIT 0x0000 160 #define SPCMD_SPB_24BIT 0x0100 161 #define SPCMD_SPB_32BIT 0x0200 162 #define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */ 163 #define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */ 164 #define SPCMD_SPIMOD1 0x0040 165 #define SPCMD_SPIMOD0 0x0020 166 #define SPCMD_SPIMOD_SINGLE 0 167 #define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0 168 #define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1 169 #define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */ 170 #define SPCMD_SSLA_MASK 0x0030 /* SSL Assert Signal Setting (RSPI) */ 171 #define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */ 172 #define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */ 173 #define SPCMD_CPHA 0x0001 /* Clock Phase Setting */ 174 175 /* SPBFCR - Buffer Control Register */ 176 #define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */ 177 #define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */ 178 #define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */ 179 #define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */ 180 /* QSPI on R-Car Gen2 */ 181 #define SPBFCR_TXTRG_1B 0x00 /* 31 bytes (1 byte available) */ 182 #define SPBFCR_TXTRG_32B 0x30 /* 0 byte (32 bytes available) */ 183 #define SPBFCR_RXTRG_1B 0x00 /* 1 byte (31 bytes available) */ 184 #define SPBFCR_RXTRG_32B 0x07 /* 32 bytes (0 byte available) */ 185 186 #define QSPI_BUFFER_SIZE 32u 187 188 struct rspi_data { 189 void __iomem *addr; 190 u32 max_speed_hz; 191 struct spi_master *master; 192 wait_queue_head_t wait; 193 struct clk *clk; 194 u16 spcmd; 195 u8 spsr; 196 u8 sppcr; 197 int rx_irq, tx_irq; 198 const struct spi_ops *ops; 199 200 unsigned dma_callbacked:1; 201 unsigned byte_access:1; 202 }; 203 204 static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset) 205 { 206 iowrite8(data, rspi->addr + offset); 207 } 208 209 static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset) 210 { 211 iowrite16(data, rspi->addr + offset); 212 } 213 214 static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset) 215 { 216 iowrite32(data, rspi->addr + offset); 217 } 218 219 static u8 rspi_read8(const struct rspi_data *rspi, u16 offset) 220 { 221 return ioread8(rspi->addr + offset); 222 } 223 224 static u16 rspi_read16(const struct rspi_data *rspi, u16 offset) 225 { 226 return ioread16(rspi->addr + offset); 227 } 228 229 static void rspi_write_data(const struct rspi_data *rspi, u16 data) 230 { 231 if (rspi->byte_access) 232 rspi_write8(rspi, data, RSPI_SPDR); 233 else /* 16 bit */ 234 rspi_write16(rspi, data, RSPI_SPDR); 235 } 236 237 static u16 rspi_read_data(const struct rspi_data *rspi) 238 { 239 if (rspi->byte_access) 240 return rspi_read8(rspi, RSPI_SPDR); 241 else /* 16 bit */ 242 return rspi_read16(rspi, RSPI_SPDR); 243 } 244 245 /* optional functions */ 246 struct spi_ops { 247 int (*set_config_register)(struct rspi_data *rspi, int access_size); 248 int (*transfer_one)(struct spi_master *master, struct spi_device *spi, 249 struct spi_transfer *xfer); 250 u16 mode_bits; 251 u16 flags; 252 u16 fifo_size; 253 }; 254 255 /* 256 * functions for RSPI on legacy SH 257 */ 258 static int rspi_set_config_register(struct rspi_data *rspi, int access_size) 259 { 260 int spbr; 261 262 /* Sets output mode, MOSI signal, and (optionally) loopback */ 263 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR); 264 265 /* Sets transfer bit rate */ 266 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 267 2 * rspi->max_speed_hz) - 1; 268 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR); 269 270 /* Disable dummy transmission, set 16-bit word access, 1 frame */ 271 rspi_write8(rspi, 0, RSPI_SPDCR); 272 rspi->byte_access = 0; 273 274 /* Sets RSPCK, SSL, next-access delay value */ 275 rspi_write8(rspi, 0x00, RSPI_SPCKD); 276 rspi_write8(rspi, 0x00, RSPI_SSLND); 277 rspi_write8(rspi, 0x00, RSPI_SPND); 278 279 /* Sets parity, interrupt mask */ 280 rspi_write8(rspi, 0x00, RSPI_SPCR2); 281 282 /* Sets SPCMD */ 283 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size); 284 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0); 285 286 /* Sets RSPI mode */ 287 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR); 288 289 return 0; 290 } 291 292 /* 293 * functions for RSPI on RZ 294 */ 295 static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size) 296 { 297 int spbr; 298 299 /* Sets output mode, MOSI signal, and (optionally) loopback */ 300 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR); 301 302 /* Sets transfer bit rate */ 303 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 304 2 * rspi->max_speed_hz) - 1; 305 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR); 306 307 /* Disable dummy transmission, set byte access */ 308 rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR); 309 rspi->byte_access = 1; 310 311 /* Sets RSPCK, SSL, next-access delay value */ 312 rspi_write8(rspi, 0x00, RSPI_SPCKD); 313 rspi_write8(rspi, 0x00, RSPI_SSLND); 314 rspi_write8(rspi, 0x00, RSPI_SPND); 315 316 /* Sets SPCMD */ 317 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size); 318 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0); 319 320 /* Sets RSPI mode */ 321 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR); 322 323 return 0; 324 } 325 326 /* 327 * functions for QSPI 328 */ 329 static int qspi_set_config_register(struct rspi_data *rspi, int access_size) 330 { 331 int spbr; 332 333 /* Sets output mode, MOSI signal, and (optionally) loopback */ 334 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR); 335 336 /* Sets transfer bit rate */ 337 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz); 338 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR); 339 340 /* Disable dummy transmission, set byte access */ 341 rspi_write8(rspi, 0, RSPI_SPDCR); 342 rspi->byte_access = 1; 343 344 /* Sets RSPCK, SSL, next-access delay value */ 345 rspi_write8(rspi, 0x00, RSPI_SPCKD); 346 rspi_write8(rspi, 0x00, RSPI_SSLND); 347 rspi_write8(rspi, 0x00, RSPI_SPND); 348 349 /* Data Length Setting */ 350 if (access_size == 8) 351 rspi->spcmd |= SPCMD_SPB_8BIT; 352 else if (access_size == 16) 353 rspi->spcmd |= SPCMD_SPB_16BIT; 354 else 355 rspi->spcmd |= SPCMD_SPB_32BIT; 356 357 rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN; 358 359 /* Resets transfer data length */ 360 rspi_write32(rspi, 0, QSPI_SPBMUL0); 361 362 /* Resets transmit and receive buffer */ 363 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR); 364 /* Sets buffer to allow normal operation */ 365 rspi_write8(rspi, 0x00, QSPI_SPBFCR); 366 367 /* Sets SPCMD */ 368 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0); 369 370 /* Enables SPI function in master mode */ 371 rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR); 372 373 return 0; 374 } 375 376 static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg) 377 { 378 u8 data; 379 380 data = rspi_read8(rspi, reg); 381 data &= ~mask; 382 data |= (val & mask); 383 rspi_write8(rspi, data, reg); 384 } 385 386 static int qspi_set_send_trigger(struct rspi_data *rspi, unsigned int len) 387 { 388 unsigned int n; 389 390 n = min(len, QSPI_BUFFER_SIZE); 391 392 if (len >= QSPI_BUFFER_SIZE) { 393 /* sets triggering number to 32 bytes */ 394 qspi_update(rspi, SPBFCR_TXTRG_MASK, 395 SPBFCR_TXTRG_32B, QSPI_SPBFCR); 396 } else { 397 /* sets triggering number to 1 byte */ 398 qspi_update(rspi, SPBFCR_TXTRG_MASK, 399 SPBFCR_TXTRG_1B, QSPI_SPBFCR); 400 } 401 402 return n; 403 } 404 405 static void qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len) 406 { 407 unsigned int n; 408 409 n = min(len, QSPI_BUFFER_SIZE); 410 411 if (len >= QSPI_BUFFER_SIZE) { 412 /* sets triggering number to 32 bytes */ 413 qspi_update(rspi, SPBFCR_RXTRG_MASK, 414 SPBFCR_RXTRG_32B, QSPI_SPBFCR); 415 } else { 416 /* sets triggering number to 1 byte */ 417 qspi_update(rspi, SPBFCR_RXTRG_MASK, 418 SPBFCR_RXTRG_1B, QSPI_SPBFCR); 419 } 420 } 421 422 #define set_config_register(spi, n) spi->ops->set_config_register(spi, n) 423 424 static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable) 425 { 426 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR); 427 } 428 429 static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable) 430 { 431 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR); 432 } 433 434 static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask, 435 u8 enable_bit) 436 { 437 int ret; 438 439 rspi->spsr = rspi_read8(rspi, RSPI_SPSR); 440 if (rspi->spsr & wait_mask) 441 return 0; 442 443 rspi_enable_irq(rspi, enable_bit); 444 ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ); 445 if (ret == 0 && !(rspi->spsr & wait_mask)) 446 return -ETIMEDOUT; 447 448 return 0; 449 } 450 451 static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi) 452 { 453 return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE); 454 } 455 456 static inline int rspi_wait_for_rx_full(struct rspi_data *rspi) 457 { 458 return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE); 459 } 460 461 static int rspi_data_out(struct rspi_data *rspi, u8 data) 462 { 463 int error = rspi_wait_for_tx_empty(rspi); 464 if (error < 0) { 465 dev_err(&rspi->master->dev, "transmit timeout\n"); 466 return error; 467 } 468 rspi_write_data(rspi, data); 469 return 0; 470 } 471 472 static int rspi_data_in(struct rspi_data *rspi) 473 { 474 int error; 475 u8 data; 476 477 error = rspi_wait_for_rx_full(rspi); 478 if (error < 0) { 479 dev_err(&rspi->master->dev, "receive timeout\n"); 480 return error; 481 } 482 data = rspi_read_data(rspi); 483 return data; 484 } 485 486 static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx, 487 unsigned int n) 488 { 489 while (n-- > 0) { 490 if (tx) { 491 int ret = rspi_data_out(rspi, *tx++); 492 if (ret < 0) 493 return ret; 494 } 495 if (rx) { 496 int ret = rspi_data_in(rspi); 497 if (ret < 0) 498 return ret; 499 *rx++ = ret; 500 } 501 } 502 503 return 0; 504 } 505 506 static void rspi_dma_complete(void *arg) 507 { 508 struct rspi_data *rspi = arg; 509 510 rspi->dma_callbacked = 1; 511 wake_up_interruptible(&rspi->wait); 512 } 513 514 static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx, 515 struct sg_table *rx) 516 { 517 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL; 518 u8 irq_mask = 0; 519 unsigned int other_irq = 0; 520 dma_cookie_t cookie; 521 int ret; 522 523 /* First prepare and submit the DMA request(s), as this may fail */ 524 if (rx) { 525 desc_rx = dmaengine_prep_slave_sg(rspi->master->dma_rx, 526 rx->sgl, rx->nents, DMA_FROM_DEVICE, 527 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 528 if (!desc_rx) { 529 ret = -EAGAIN; 530 goto no_dma_rx; 531 } 532 533 desc_rx->callback = rspi_dma_complete; 534 desc_rx->callback_param = rspi; 535 cookie = dmaengine_submit(desc_rx); 536 if (dma_submit_error(cookie)) { 537 ret = cookie; 538 goto no_dma_rx; 539 } 540 541 irq_mask |= SPCR_SPRIE; 542 } 543 544 if (tx) { 545 desc_tx = dmaengine_prep_slave_sg(rspi->master->dma_tx, 546 tx->sgl, tx->nents, DMA_TO_DEVICE, 547 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 548 if (!desc_tx) { 549 ret = -EAGAIN; 550 goto no_dma_tx; 551 } 552 553 if (rx) { 554 /* No callback */ 555 desc_tx->callback = NULL; 556 } else { 557 desc_tx->callback = rspi_dma_complete; 558 desc_tx->callback_param = rspi; 559 } 560 cookie = dmaengine_submit(desc_tx); 561 if (dma_submit_error(cookie)) { 562 ret = cookie; 563 goto no_dma_tx; 564 } 565 566 irq_mask |= SPCR_SPTIE; 567 } 568 569 /* 570 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be 571 * called. So, this driver disables the IRQ while DMA transfer. 572 */ 573 if (tx) 574 disable_irq(other_irq = rspi->tx_irq); 575 if (rx && rspi->rx_irq != other_irq) 576 disable_irq(rspi->rx_irq); 577 578 rspi_enable_irq(rspi, irq_mask); 579 rspi->dma_callbacked = 0; 580 581 /* Now start DMA */ 582 if (rx) 583 dma_async_issue_pending(rspi->master->dma_rx); 584 if (tx) 585 dma_async_issue_pending(rspi->master->dma_tx); 586 587 ret = wait_event_interruptible_timeout(rspi->wait, 588 rspi->dma_callbacked, HZ); 589 if (ret > 0 && rspi->dma_callbacked) 590 ret = 0; 591 else if (!ret) { 592 dev_err(&rspi->master->dev, "DMA timeout\n"); 593 ret = -ETIMEDOUT; 594 if (tx) 595 dmaengine_terminate_all(rspi->master->dma_tx); 596 if (rx) 597 dmaengine_terminate_all(rspi->master->dma_rx); 598 } 599 600 rspi_disable_irq(rspi, irq_mask); 601 602 if (tx) 603 enable_irq(rspi->tx_irq); 604 if (rx && rspi->rx_irq != other_irq) 605 enable_irq(rspi->rx_irq); 606 607 return ret; 608 609 no_dma_tx: 610 if (rx) 611 dmaengine_terminate_all(rspi->master->dma_rx); 612 no_dma_rx: 613 if (ret == -EAGAIN) { 614 pr_warn_once("%s %s: DMA not available, falling back to PIO\n", 615 dev_driver_string(&rspi->master->dev), 616 dev_name(&rspi->master->dev)); 617 } 618 return ret; 619 } 620 621 static void rspi_receive_init(const struct rspi_data *rspi) 622 { 623 u8 spsr; 624 625 spsr = rspi_read8(rspi, RSPI_SPSR); 626 if (spsr & SPSR_SPRF) 627 rspi_read_data(rspi); /* dummy read */ 628 if (spsr & SPSR_OVRF) 629 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF, 630 RSPI_SPSR); 631 } 632 633 static void rspi_rz_receive_init(const struct rspi_data *rspi) 634 { 635 rspi_receive_init(rspi); 636 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR); 637 rspi_write8(rspi, 0, RSPI_SPBFCR); 638 } 639 640 static void qspi_receive_init(const struct rspi_data *rspi) 641 { 642 u8 spsr; 643 644 spsr = rspi_read8(rspi, RSPI_SPSR); 645 if (spsr & SPSR_SPRF) 646 rspi_read_data(rspi); /* dummy read */ 647 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR); 648 rspi_write8(rspi, 0, QSPI_SPBFCR); 649 } 650 651 static bool __rspi_can_dma(const struct rspi_data *rspi, 652 const struct spi_transfer *xfer) 653 { 654 return xfer->len > rspi->ops->fifo_size; 655 } 656 657 static bool rspi_can_dma(struct spi_master *master, struct spi_device *spi, 658 struct spi_transfer *xfer) 659 { 660 struct rspi_data *rspi = spi_master_get_devdata(master); 661 662 return __rspi_can_dma(rspi, xfer); 663 } 664 665 static int rspi_dma_check_then_transfer(struct rspi_data *rspi, 666 struct spi_transfer *xfer) 667 { 668 if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) { 669 /* rx_buf can be NULL on RSPI on SH in TX-only Mode */ 670 int ret = rspi_dma_transfer(rspi, &xfer->tx_sg, 671 xfer->rx_buf ? &xfer->rx_sg : NULL); 672 if (ret != -EAGAIN) 673 return 0; 674 } 675 676 return -EAGAIN; 677 } 678 679 static int rspi_common_transfer(struct rspi_data *rspi, 680 struct spi_transfer *xfer) 681 { 682 int ret; 683 684 ret = rspi_dma_check_then_transfer(rspi, xfer); 685 if (ret != -EAGAIN) 686 return ret; 687 688 ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len); 689 if (ret < 0) 690 return ret; 691 692 /* Wait for the last transmission */ 693 rspi_wait_for_tx_empty(rspi); 694 695 return 0; 696 } 697 698 static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi, 699 struct spi_transfer *xfer) 700 { 701 struct rspi_data *rspi = spi_master_get_devdata(master); 702 u8 spcr; 703 704 spcr = rspi_read8(rspi, RSPI_SPCR); 705 if (xfer->rx_buf) { 706 rspi_receive_init(rspi); 707 spcr &= ~SPCR_TXMD; 708 } else { 709 spcr |= SPCR_TXMD; 710 } 711 rspi_write8(rspi, spcr, RSPI_SPCR); 712 713 return rspi_common_transfer(rspi, xfer); 714 } 715 716 static int rspi_rz_transfer_one(struct spi_master *master, 717 struct spi_device *spi, 718 struct spi_transfer *xfer) 719 { 720 struct rspi_data *rspi = spi_master_get_devdata(master); 721 722 rspi_rz_receive_init(rspi); 723 724 return rspi_common_transfer(rspi, xfer); 725 } 726 727 static int qspi_trigger_transfer_out_int(struct rspi_data *rspi, const u8 *tx, 728 u8 *rx, unsigned int len) 729 { 730 int i, n, ret; 731 int error; 732 733 while (len > 0) { 734 n = qspi_set_send_trigger(rspi, len); 735 qspi_set_receive_trigger(rspi, len); 736 if (n == QSPI_BUFFER_SIZE) { 737 error = rspi_wait_for_tx_empty(rspi); 738 if (error < 0) { 739 dev_err(&rspi->master->dev, "transmit timeout\n"); 740 return error; 741 } 742 for (i = 0; i < n; i++) 743 rspi_write_data(rspi, *tx++); 744 745 error = rspi_wait_for_rx_full(rspi); 746 if (error < 0) { 747 dev_err(&rspi->master->dev, "receive timeout\n"); 748 return error; 749 } 750 for (i = 0; i < n; i++) 751 *rx++ = rspi_read_data(rspi); 752 } else { 753 ret = rspi_pio_transfer(rspi, tx, rx, n); 754 if (ret < 0) 755 return ret; 756 } 757 len -= n; 758 } 759 760 return 0; 761 } 762 763 static int qspi_transfer_out_in(struct rspi_data *rspi, 764 struct spi_transfer *xfer) 765 { 766 int ret; 767 768 qspi_receive_init(rspi); 769 770 ret = rspi_dma_check_then_transfer(rspi, xfer); 771 if (ret != -EAGAIN) 772 return ret; 773 774 ret = qspi_trigger_transfer_out_int(rspi, xfer->tx_buf, 775 xfer->rx_buf, xfer->len); 776 if (ret < 0) 777 return ret; 778 779 return 0; 780 } 781 782 static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer) 783 { 784 int ret; 785 786 if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) { 787 ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL); 788 if (ret != -EAGAIN) 789 return ret; 790 } 791 792 ret = rspi_pio_transfer(rspi, xfer->tx_buf, NULL, xfer->len); 793 if (ret < 0) 794 return ret; 795 796 /* Wait for the last transmission */ 797 rspi_wait_for_tx_empty(rspi); 798 799 return 0; 800 } 801 802 static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer) 803 { 804 if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) { 805 int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg); 806 if (ret != -EAGAIN) 807 return ret; 808 } 809 810 return rspi_pio_transfer(rspi, NULL, xfer->rx_buf, xfer->len); 811 } 812 813 static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi, 814 struct spi_transfer *xfer) 815 { 816 struct rspi_data *rspi = spi_master_get_devdata(master); 817 818 if (spi->mode & SPI_LOOP) { 819 return qspi_transfer_out_in(rspi, xfer); 820 } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) { 821 /* Quad or Dual SPI Write */ 822 return qspi_transfer_out(rspi, xfer); 823 } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) { 824 /* Quad or Dual SPI Read */ 825 return qspi_transfer_in(rspi, xfer); 826 } else { 827 /* Single SPI Transfer */ 828 return qspi_transfer_out_in(rspi, xfer); 829 } 830 } 831 832 static int rspi_setup(struct spi_device *spi) 833 { 834 struct rspi_data *rspi = spi_master_get_devdata(spi->master); 835 836 rspi->max_speed_hz = spi->max_speed_hz; 837 838 rspi->spcmd = SPCMD_SSLKP; 839 if (spi->mode & SPI_CPOL) 840 rspi->spcmd |= SPCMD_CPOL; 841 if (spi->mode & SPI_CPHA) 842 rspi->spcmd |= SPCMD_CPHA; 843 844 /* CMOS output mode and MOSI signal from previous transfer */ 845 rspi->sppcr = 0; 846 if (spi->mode & SPI_LOOP) 847 rspi->sppcr |= SPPCR_SPLP; 848 849 set_config_register(rspi, 8); 850 851 return 0; 852 } 853 854 static u16 qspi_transfer_mode(const struct spi_transfer *xfer) 855 { 856 if (xfer->tx_buf) 857 switch (xfer->tx_nbits) { 858 case SPI_NBITS_QUAD: 859 return SPCMD_SPIMOD_QUAD; 860 case SPI_NBITS_DUAL: 861 return SPCMD_SPIMOD_DUAL; 862 default: 863 return 0; 864 } 865 if (xfer->rx_buf) 866 switch (xfer->rx_nbits) { 867 case SPI_NBITS_QUAD: 868 return SPCMD_SPIMOD_QUAD | SPCMD_SPRW; 869 case SPI_NBITS_DUAL: 870 return SPCMD_SPIMOD_DUAL | SPCMD_SPRW; 871 default: 872 return 0; 873 } 874 875 return 0; 876 } 877 878 static int qspi_setup_sequencer(struct rspi_data *rspi, 879 const struct spi_message *msg) 880 { 881 const struct spi_transfer *xfer; 882 unsigned int i = 0, len = 0; 883 u16 current_mode = 0xffff, mode; 884 885 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 886 mode = qspi_transfer_mode(xfer); 887 if (mode == current_mode) { 888 len += xfer->len; 889 continue; 890 } 891 892 /* Transfer mode change */ 893 if (i) { 894 /* Set transfer data length of previous transfer */ 895 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1)); 896 } 897 898 if (i >= QSPI_NUM_SPCMD) { 899 dev_err(&msg->spi->dev, 900 "Too many different transfer modes"); 901 return -EINVAL; 902 } 903 904 /* Program transfer mode for this transfer */ 905 rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i)); 906 current_mode = mode; 907 len = xfer->len; 908 i++; 909 } 910 if (i) { 911 /* Set final transfer data length and sequence length */ 912 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1)); 913 rspi_write8(rspi, i - 1, RSPI_SPSCR); 914 } 915 916 return 0; 917 } 918 919 static int rspi_prepare_message(struct spi_master *master, 920 struct spi_message *msg) 921 { 922 struct rspi_data *rspi = spi_master_get_devdata(master); 923 int ret; 924 925 if (msg->spi->mode & 926 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) { 927 /* Setup sequencer for messages with multiple transfer modes */ 928 ret = qspi_setup_sequencer(rspi, msg); 929 if (ret < 0) 930 return ret; 931 } 932 933 /* Enable SPI function in master mode */ 934 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR); 935 return 0; 936 } 937 938 static int rspi_unprepare_message(struct spi_master *master, 939 struct spi_message *msg) 940 { 941 struct rspi_data *rspi = spi_master_get_devdata(master); 942 943 /* Disable SPI function */ 944 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR); 945 946 /* Reset sequencer for Single SPI Transfers */ 947 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0); 948 rspi_write8(rspi, 0, RSPI_SPSCR); 949 return 0; 950 } 951 952 static irqreturn_t rspi_irq_mux(int irq, void *_sr) 953 { 954 struct rspi_data *rspi = _sr; 955 u8 spsr; 956 irqreturn_t ret = IRQ_NONE; 957 u8 disable_irq = 0; 958 959 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR); 960 if (spsr & SPSR_SPRF) 961 disable_irq |= SPCR_SPRIE; 962 if (spsr & SPSR_SPTEF) 963 disable_irq |= SPCR_SPTIE; 964 965 if (disable_irq) { 966 ret = IRQ_HANDLED; 967 rspi_disable_irq(rspi, disable_irq); 968 wake_up(&rspi->wait); 969 } 970 971 return ret; 972 } 973 974 static irqreturn_t rspi_irq_rx(int irq, void *_sr) 975 { 976 struct rspi_data *rspi = _sr; 977 u8 spsr; 978 979 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR); 980 if (spsr & SPSR_SPRF) { 981 rspi_disable_irq(rspi, SPCR_SPRIE); 982 wake_up(&rspi->wait); 983 return IRQ_HANDLED; 984 } 985 986 return 0; 987 } 988 989 static irqreturn_t rspi_irq_tx(int irq, void *_sr) 990 { 991 struct rspi_data *rspi = _sr; 992 u8 spsr; 993 994 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR); 995 if (spsr & SPSR_SPTEF) { 996 rspi_disable_irq(rspi, SPCR_SPTIE); 997 wake_up(&rspi->wait); 998 return IRQ_HANDLED; 999 } 1000 1001 return 0; 1002 } 1003 1004 static struct dma_chan *rspi_request_dma_chan(struct device *dev, 1005 enum dma_transfer_direction dir, 1006 unsigned int id, 1007 dma_addr_t port_addr) 1008 { 1009 dma_cap_mask_t mask; 1010 struct dma_chan *chan; 1011 struct dma_slave_config cfg; 1012 int ret; 1013 1014 dma_cap_zero(mask); 1015 dma_cap_set(DMA_SLAVE, mask); 1016 1017 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter, 1018 (void *)(unsigned long)id, dev, 1019 dir == DMA_MEM_TO_DEV ? "tx" : "rx"); 1020 if (!chan) { 1021 dev_warn(dev, "dma_request_slave_channel_compat failed\n"); 1022 return NULL; 1023 } 1024 1025 memset(&cfg, 0, sizeof(cfg)); 1026 cfg.direction = dir; 1027 if (dir == DMA_MEM_TO_DEV) { 1028 cfg.dst_addr = port_addr; 1029 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1030 } else { 1031 cfg.src_addr = port_addr; 1032 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1033 } 1034 1035 ret = dmaengine_slave_config(chan, &cfg); 1036 if (ret) { 1037 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret); 1038 dma_release_channel(chan); 1039 return NULL; 1040 } 1041 1042 return chan; 1043 } 1044 1045 static int rspi_request_dma(struct device *dev, struct spi_master *master, 1046 const struct resource *res) 1047 { 1048 const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev); 1049 unsigned int dma_tx_id, dma_rx_id; 1050 1051 if (dev->of_node) { 1052 /* In the OF case we will get the slave IDs from the DT */ 1053 dma_tx_id = 0; 1054 dma_rx_id = 0; 1055 } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) { 1056 dma_tx_id = rspi_pd->dma_tx_id; 1057 dma_rx_id = rspi_pd->dma_rx_id; 1058 } else { 1059 /* The driver assumes no error. */ 1060 return 0; 1061 } 1062 1063 master->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id, 1064 res->start + RSPI_SPDR); 1065 if (!master->dma_tx) 1066 return -ENODEV; 1067 1068 master->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id, 1069 res->start + RSPI_SPDR); 1070 if (!master->dma_rx) { 1071 dma_release_channel(master->dma_tx); 1072 master->dma_tx = NULL; 1073 return -ENODEV; 1074 } 1075 1076 master->can_dma = rspi_can_dma; 1077 dev_info(dev, "DMA available"); 1078 return 0; 1079 } 1080 1081 static void rspi_release_dma(struct spi_master *master) 1082 { 1083 if (master->dma_tx) 1084 dma_release_channel(master->dma_tx); 1085 if (master->dma_rx) 1086 dma_release_channel(master->dma_rx); 1087 } 1088 1089 static int rspi_remove(struct platform_device *pdev) 1090 { 1091 struct rspi_data *rspi = platform_get_drvdata(pdev); 1092 1093 rspi_release_dma(rspi->master); 1094 pm_runtime_disable(&pdev->dev); 1095 1096 return 0; 1097 } 1098 1099 static const struct spi_ops rspi_ops = { 1100 .set_config_register = rspi_set_config_register, 1101 .transfer_one = rspi_transfer_one, 1102 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP, 1103 .flags = SPI_MASTER_MUST_TX, 1104 .fifo_size = 8, 1105 }; 1106 1107 static const struct spi_ops rspi_rz_ops = { 1108 .set_config_register = rspi_rz_set_config_register, 1109 .transfer_one = rspi_rz_transfer_one, 1110 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP, 1111 .flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX, 1112 .fifo_size = 8, /* 8 for TX, 32 for RX */ 1113 }; 1114 1115 static const struct spi_ops qspi_ops = { 1116 .set_config_register = qspi_set_config_register, 1117 .transfer_one = qspi_transfer_one, 1118 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP | 1119 SPI_TX_DUAL | SPI_TX_QUAD | 1120 SPI_RX_DUAL | SPI_RX_QUAD, 1121 .flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX, 1122 .fifo_size = 32, 1123 }; 1124 1125 #ifdef CONFIG_OF 1126 static const struct of_device_id rspi_of_match[] = { 1127 /* RSPI on legacy SH */ 1128 { .compatible = "renesas,rspi", .data = &rspi_ops }, 1129 /* RSPI on RZ/A1H */ 1130 { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops }, 1131 /* QSPI on R-Car Gen2 */ 1132 { .compatible = "renesas,qspi", .data = &qspi_ops }, 1133 { /* sentinel */ } 1134 }; 1135 1136 MODULE_DEVICE_TABLE(of, rspi_of_match); 1137 1138 static int rspi_parse_dt(struct device *dev, struct spi_master *master) 1139 { 1140 u32 num_cs; 1141 int error; 1142 1143 /* Parse DT properties */ 1144 error = of_property_read_u32(dev->of_node, "num-cs", &num_cs); 1145 if (error) { 1146 dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error); 1147 return error; 1148 } 1149 1150 master->num_chipselect = num_cs; 1151 return 0; 1152 } 1153 #else 1154 #define rspi_of_match NULL 1155 static inline int rspi_parse_dt(struct device *dev, struct spi_master *master) 1156 { 1157 return -EINVAL; 1158 } 1159 #endif /* CONFIG_OF */ 1160 1161 static int rspi_request_irq(struct device *dev, unsigned int irq, 1162 irq_handler_t handler, const char *suffix, 1163 void *dev_id) 1164 { 1165 const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", 1166 dev_name(dev), suffix); 1167 if (!name) 1168 return -ENOMEM; 1169 1170 return devm_request_irq(dev, irq, handler, 0, name, dev_id); 1171 } 1172 1173 static int rspi_probe(struct platform_device *pdev) 1174 { 1175 struct resource *res; 1176 struct spi_master *master; 1177 struct rspi_data *rspi; 1178 int ret; 1179 const struct of_device_id *of_id; 1180 const struct rspi_plat_data *rspi_pd; 1181 const struct spi_ops *ops; 1182 1183 master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data)); 1184 if (master == NULL) { 1185 dev_err(&pdev->dev, "spi_alloc_master error.\n"); 1186 return -ENOMEM; 1187 } 1188 1189 of_id = of_match_device(rspi_of_match, &pdev->dev); 1190 if (of_id) { 1191 ops = of_id->data; 1192 ret = rspi_parse_dt(&pdev->dev, master); 1193 if (ret) 1194 goto error1; 1195 } else { 1196 ops = (struct spi_ops *)pdev->id_entry->driver_data; 1197 rspi_pd = dev_get_platdata(&pdev->dev); 1198 if (rspi_pd && rspi_pd->num_chipselect) 1199 master->num_chipselect = rspi_pd->num_chipselect; 1200 else 1201 master->num_chipselect = 2; /* default */ 1202 } 1203 1204 /* ops parameter check */ 1205 if (!ops->set_config_register) { 1206 dev_err(&pdev->dev, "there is no set_config_register\n"); 1207 ret = -ENODEV; 1208 goto error1; 1209 } 1210 1211 rspi = spi_master_get_devdata(master); 1212 platform_set_drvdata(pdev, rspi); 1213 rspi->ops = ops; 1214 rspi->master = master; 1215 1216 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1217 rspi->addr = devm_ioremap_resource(&pdev->dev, res); 1218 if (IS_ERR(rspi->addr)) { 1219 ret = PTR_ERR(rspi->addr); 1220 goto error1; 1221 } 1222 1223 rspi->clk = devm_clk_get(&pdev->dev, NULL); 1224 if (IS_ERR(rspi->clk)) { 1225 dev_err(&pdev->dev, "cannot get clock\n"); 1226 ret = PTR_ERR(rspi->clk); 1227 goto error1; 1228 } 1229 1230 pm_runtime_enable(&pdev->dev); 1231 1232 init_waitqueue_head(&rspi->wait); 1233 1234 master->bus_num = pdev->id; 1235 master->setup = rspi_setup; 1236 master->auto_runtime_pm = true; 1237 master->transfer_one = ops->transfer_one; 1238 master->prepare_message = rspi_prepare_message; 1239 master->unprepare_message = rspi_unprepare_message; 1240 master->mode_bits = ops->mode_bits; 1241 master->flags = ops->flags; 1242 master->dev.of_node = pdev->dev.of_node; 1243 1244 ret = platform_get_irq_byname(pdev, "rx"); 1245 if (ret < 0) { 1246 ret = platform_get_irq_byname(pdev, "mux"); 1247 if (ret < 0) 1248 ret = platform_get_irq(pdev, 0); 1249 if (ret >= 0) 1250 rspi->rx_irq = rspi->tx_irq = ret; 1251 } else { 1252 rspi->rx_irq = ret; 1253 ret = platform_get_irq_byname(pdev, "tx"); 1254 if (ret >= 0) 1255 rspi->tx_irq = ret; 1256 } 1257 if (ret < 0) { 1258 dev_err(&pdev->dev, "platform_get_irq error\n"); 1259 goto error2; 1260 } 1261 1262 if (rspi->rx_irq == rspi->tx_irq) { 1263 /* Single multiplexed interrupt */ 1264 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux, 1265 "mux", rspi); 1266 } else { 1267 /* Multi-interrupt mode, only SPRI and SPTI are used */ 1268 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx, 1269 "rx", rspi); 1270 if (!ret) 1271 ret = rspi_request_irq(&pdev->dev, rspi->tx_irq, 1272 rspi_irq_tx, "tx", rspi); 1273 } 1274 if (ret < 0) { 1275 dev_err(&pdev->dev, "request_irq error\n"); 1276 goto error2; 1277 } 1278 1279 ret = rspi_request_dma(&pdev->dev, master, res); 1280 if (ret < 0) 1281 dev_warn(&pdev->dev, "DMA not available, using PIO\n"); 1282 1283 ret = devm_spi_register_master(&pdev->dev, master); 1284 if (ret < 0) { 1285 dev_err(&pdev->dev, "spi_register_master error.\n"); 1286 goto error3; 1287 } 1288 1289 dev_info(&pdev->dev, "probed\n"); 1290 1291 return 0; 1292 1293 error3: 1294 rspi_release_dma(master); 1295 error2: 1296 pm_runtime_disable(&pdev->dev); 1297 error1: 1298 spi_master_put(master); 1299 1300 return ret; 1301 } 1302 1303 static struct platform_device_id spi_driver_ids[] = { 1304 { "rspi", (kernel_ulong_t)&rspi_ops }, 1305 { "rspi-rz", (kernel_ulong_t)&rspi_rz_ops }, 1306 { "qspi", (kernel_ulong_t)&qspi_ops }, 1307 {}, 1308 }; 1309 1310 MODULE_DEVICE_TABLE(platform, spi_driver_ids); 1311 1312 static struct platform_driver rspi_driver = { 1313 .probe = rspi_probe, 1314 .remove = rspi_remove, 1315 .id_table = spi_driver_ids, 1316 .driver = { 1317 .name = "renesas_spi", 1318 .of_match_table = of_match_ptr(rspi_of_match), 1319 }, 1320 }; 1321 module_platform_driver(rspi_driver); 1322 1323 MODULE_DESCRIPTION("Renesas RSPI bus driver"); 1324 MODULE_LICENSE("GPL v2"); 1325 MODULE_AUTHOR("Yoshihiro Shimoda"); 1326 MODULE_ALIAS("platform:rspi"); 1327