1 /* 2 * SH RSPI driver 3 * 4 * Copyright (C) 2012, 2013 Renesas Solutions Corp. 5 * Copyright (C) 2014 Glider bvba 6 * 7 * Based on spi-sh.c: 8 * Copyright (C) 2011 Renesas Solutions Corp. 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; version 2 of the License. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20 #include <linux/module.h> 21 #include <linux/kernel.h> 22 #include <linux/sched.h> 23 #include <linux/errno.h> 24 #include <linux/interrupt.h> 25 #include <linux/platform_device.h> 26 #include <linux/io.h> 27 #include <linux/clk.h> 28 #include <linux/dmaengine.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/of_device.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/sh_dma.h> 33 #include <linux/spi/spi.h> 34 #include <linux/spi/rspi.h> 35 36 #define RSPI_SPCR 0x00 /* Control Register */ 37 #define RSPI_SSLP 0x01 /* Slave Select Polarity Register */ 38 #define RSPI_SPPCR 0x02 /* Pin Control Register */ 39 #define RSPI_SPSR 0x03 /* Status Register */ 40 #define RSPI_SPDR 0x04 /* Data Register */ 41 #define RSPI_SPSCR 0x08 /* Sequence Control Register */ 42 #define RSPI_SPSSR 0x09 /* Sequence Status Register */ 43 #define RSPI_SPBR 0x0a /* Bit Rate Register */ 44 #define RSPI_SPDCR 0x0b /* Data Control Register */ 45 #define RSPI_SPCKD 0x0c /* Clock Delay Register */ 46 #define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */ 47 #define RSPI_SPND 0x0e /* Next-Access Delay Register */ 48 #define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */ 49 #define RSPI_SPCMD0 0x10 /* Command Register 0 */ 50 #define RSPI_SPCMD1 0x12 /* Command Register 1 */ 51 #define RSPI_SPCMD2 0x14 /* Command Register 2 */ 52 #define RSPI_SPCMD3 0x16 /* Command Register 3 */ 53 #define RSPI_SPCMD4 0x18 /* Command Register 4 */ 54 #define RSPI_SPCMD5 0x1a /* Command Register 5 */ 55 #define RSPI_SPCMD6 0x1c /* Command Register 6 */ 56 #define RSPI_SPCMD7 0x1e /* Command Register 7 */ 57 #define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2) 58 #define RSPI_NUM_SPCMD 8 59 #define RSPI_RZ_NUM_SPCMD 4 60 #define QSPI_NUM_SPCMD 4 61 62 /* RSPI on RZ only */ 63 #define RSPI_SPBFCR 0x20 /* Buffer Control Register */ 64 #define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */ 65 66 /* QSPI only */ 67 #define QSPI_SPBFCR 0x18 /* Buffer Control Register */ 68 #define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */ 69 #define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */ 70 #define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */ 71 #define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */ 72 #define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */ 73 #define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4) 74 75 /* SPCR - Control Register */ 76 #define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */ 77 #define SPCR_SPE 0x40 /* Function Enable */ 78 #define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */ 79 #define SPCR_SPEIE 0x10 /* Error Interrupt Enable */ 80 #define SPCR_MSTR 0x08 /* Master/Slave Mode Select */ 81 #define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */ 82 /* RSPI on SH only */ 83 #define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */ 84 #define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */ 85 /* QSPI on R-Car Gen2 only */ 86 #define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */ 87 #define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */ 88 89 /* SSLP - Slave Select Polarity Register */ 90 #define SSLP_SSL1P 0x02 /* SSL1 Signal Polarity Setting */ 91 #define SSLP_SSL0P 0x01 /* SSL0 Signal Polarity Setting */ 92 93 /* SPPCR - Pin Control Register */ 94 #define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */ 95 #define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */ 96 #define SPPCR_SPOM 0x04 97 #define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */ 98 #define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */ 99 100 #define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */ 101 #define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */ 102 103 /* SPSR - Status Register */ 104 #define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */ 105 #define SPSR_TEND 0x40 /* Transmit End */ 106 #define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */ 107 #define SPSR_PERF 0x08 /* Parity Error Flag */ 108 #define SPSR_MODF 0x04 /* Mode Fault Error Flag */ 109 #define SPSR_IDLNF 0x02 /* RSPI Idle Flag */ 110 #define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */ 111 112 /* SPSCR - Sequence Control Register */ 113 #define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */ 114 115 /* SPSSR - Sequence Status Register */ 116 #define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */ 117 #define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */ 118 119 /* SPDCR - Data Control Register */ 120 #define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */ 121 #define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */ 122 #define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */ 123 #define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0) 124 #define SPDCR_SPLWORD SPDCR_SPLW1 125 #define SPDCR_SPLBYTE SPDCR_SPLW0 126 #define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */ 127 #define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */ 128 #define SPDCR_SLSEL1 0x08 129 #define SPDCR_SLSEL0 0x04 130 #define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */ 131 #define SPDCR_SPFC1 0x02 132 #define SPDCR_SPFC0 0x01 133 #define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */ 134 135 /* SPCKD - Clock Delay Register */ 136 #define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */ 137 138 /* SSLND - Slave Select Negation Delay Register */ 139 #define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */ 140 141 /* SPND - Next-Access Delay Register */ 142 #define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */ 143 144 /* SPCR2 - Control Register 2 */ 145 #define SPCR2_PTE 0x08 /* Parity Self-Test Enable */ 146 #define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */ 147 #define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */ 148 #define SPCR2_SPPE 0x01 /* Parity Enable */ 149 150 /* SPCMDn - Command Registers */ 151 #define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */ 152 #define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */ 153 #define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */ 154 #define SPCMD_LSBF 0x1000 /* LSB First */ 155 #define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */ 156 #define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK) 157 #define SPCMD_SPB_8BIT 0x0000 /* QSPI only */ 158 #define SPCMD_SPB_16BIT 0x0100 159 #define SPCMD_SPB_20BIT 0x0000 160 #define SPCMD_SPB_24BIT 0x0100 161 #define SPCMD_SPB_32BIT 0x0200 162 #define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */ 163 #define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */ 164 #define SPCMD_SPIMOD1 0x0040 165 #define SPCMD_SPIMOD0 0x0020 166 #define SPCMD_SPIMOD_SINGLE 0 167 #define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0 168 #define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1 169 #define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */ 170 #define SPCMD_SSLA_MASK 0x0030 /* SSL Assert Signal Setting (RSPI) */ 171 #define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */ 172 #define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */ 173 #define SPCMD_CPHA 0x0001 /* Clock Phase Setting */ 174 175 /* SPBFCR - Buffer Control Register */ 176 #define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */ 177 #define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */ 178 #define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */ 179 #define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */ 180 /* QSPI on R-Car Gen2 */ 181 #define SPBFCR_TXTRG_1B 0x00 /* 31 bytes (1 byte available) */ 182 #define SPBFCR_TXTRG_32B 0x30 /* 0 byte (32 bytes available) */ 183 #define SPBFCR_RXTRG_1B 0x00 /* 1 byte (31 bytes available) */ 184 #define SPBFCR_RXTRG_32B 0x07 /* 32 bytes (0 byte available) */ 185 186 #define QSPI_BUFFER_SIZE 32u 187 188 struct rspi_data { 189 void __iomem *addr; 190 u32 max_speed_hz; 191 struct spi_master *master; 192 wait_queue_head_t wait; 193 struct clk *clk; 194 u16 spcmd; 195 u8 spsr; 196 u8 sppcr; 197 int rx_irq, tx_irq; 198 const struct spi_ops *ops; 199 200 unsigned dma_callbacked:1; 201 unsigned byte_access:1; 202 }; 203 204 static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset) 205 { 206 iowrite8(data, rspi->addr + offset); 207 } 208 209 static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset) 210 { 211 iowrite16(data, rspi->addr + offset); 212 } 213 214 static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset) 215 { 216 iowrite32(data, rspi->addr + offset); 217 } 218 219 static u8 rspi_read8(const struct rspi_data *rspi, u16 offset) 220 { 221 return ioread8(rspi->addr + offset); 222 } 223 224 static u16 rspi_read16(const struct rspi_data *rspi, u16 offset) 225 { 226 return ioread16(rspi->addr + offset); 227 } 228 229 static void rspi_write_data(const struct rspi_data *rspi, u16 data) 230 { 231 if (rspi->byte_access) 232 rspi_write8(rspi, data, RSPI_SPDR); 233 else /* 16 bit */ 234 rspi_write16(rspi, data, RSPI_SPDR); 235 } 236 237 static u16 rspi_read_data(const struct rspi_data *rspi) 238 { 239 if (rspi->byte_access) 240 return rspi_read8(rspi, RSPI_SPDR); 241 else /* 16 bit */ 242 return rspi_read16(rspi, RSPI_SPDR); 243 } 244 245 /* optional functions */ 246 struct spi_ops { 247 int (*set_config_register)(struct rspi_data *rspi, int access_size); 248 int (*transfer_one)(struct spi_master *master, struct spi_device *spi, 249 struct spi_transfer *xfer); 250 u16 mode_bits; 251 u16 flags; 252 u16 fifo_size; 253 }; 254 255 /* 256 * functions for RSPI on legacy SH 257 */ 258 static int rspi_set_config_register(struct rspi_data *rspi, int access_size) 259 { 260 int spbr; 261 262 /* Sets output mode, MOSI signal, and (optionally) loopback */ 263 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR); 264 265 /* Sets transfer bit rate */ 266 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 267 2 * rspi->max_speed_hz) - 1; 268 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR); 269 270 /* Disable dummy transmission, set 16-bit word access, 1 frame */ 271 rspi_write8(rspi, 0, RSPI_SPDCR); 272 rspi->byte_access = 0; 273 274 /* Sets RSPCK, SSL, next-access delay value */ 275 rspi_write8(rspi, 0x00, RSPI_SPCKD); 276 rspi_write8(rspi, 0x00, RSPI_SSLND); 277 rspi_write8(rspi, 0x00, RSPI_SPND); 278 279 /* Sets parity, interrupt mask */ 280 rspi_write8(rspi, 0x00, RSPI_SPCR2); 281 282 /* Sets SPCMD */ 283 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size); 284 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0); 285 286 /* Sets RSPI mode */ 287 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR); 288 289 return 0; 290 } 291 292 /* 293 * functions for RSPI on RZ 294 */ 295 static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size) 296 { 297 int spbr; 298 int div = 0; 299 unsigned long clksrc; 300 301 /* Sets output mode, MOSI signal, and (optionally) loopback */ 302 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR); 303 304 clksrc = clk_get_rate(rspi->clk); 305 while (div < 3) { 306 if (rspi->max_speed_hz >= clksrc/4) /* 4=(CLK/2)/2 */ 307 break; 308 div++; 309 clksrc /= 2; 310 } 311 312 /* Sets transfer bit rate */ 313 spbr = DIV_ROUND_UP(clksrc, 2 * rspi->max_speed_hz) - 1; 314 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR); 315 rspi->spcmd |= div << 2; 316 317 /* Disable dummy transmission, set byte access */ 318 rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR); 319 rspi->byte_access = 1; 320 321 /* Sets RSPCK, SSL, next-access delay value */ 322 rspi_write8(rspi, 0x00, RSPI_SPCKD); 323 rspi_write8(rspi, 0x00, RSPI_SSLND); 324 rspi_write8(rspi, 0x00, RSPI_SPND); 325 326 /* Sets SPCMD */ 327 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size); 328 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0); 329 330 /* Sets RSPI mode */ 331 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR); 332 333 return 0; 334 } 335 336 /* 337 * functions for QSPI 338 */ 339 static int qspi_set_config_register(struct rspi_data *rspi, int access_size) 340 { 341 int spbr; 342 343 /* Sets output mode, MOSI signal, and (optionally) loopback */ 344 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR); 345 346 /* Sets transfer bit rate */ 347 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz); 348 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR); 349 350 /* Disable dummy transmission, set byte access */ 351 rspi_write8(rspi, 0, RSPI_SPDCR); 352 rspi->byte_access = 1; 353 354 /* Sets RSPCK, SSL, next-access delay value */ 355 rspi_write8(rspi, 0x00, RSPI_SPCKD); 356 rspi_write8(rspi, 0x00, RSPI_SSLND); 357 rspi_write8(rspi, 0x00, RSPI_SPND); 358 359 /* Data Length Setting */ 360 if (access_size == 8) 361 rspi->spcmd |= SPCMD_SPB_8BIT; 362 else if (access_size == 16) 363 rspi->spcmd |= SPCMD_SPB_16BIT; 364 else 365 rspi->spcmd |= SPCMD_SPB_32BIT; 366 367 rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN; 368 369 /* Resets transfer data length */ 370 rspi_write32(rspi, 0, QSPI_SPBMUL0); 371 372 /* Resets transmit and receive buffer */ 373 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR); 374 /* Sets buffer to allow normal operation */ 375 rspi_write8(rspi, 0x00, QSPI_SPBFCR); 376 377 /* Sets SPCMD */ 378 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0); 379 380 /* Sets RSPI mode */ 381 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR); 382 383 return 0; 384 } 385 386 static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg) 387 { 388 u8 data; 389 390 data = rspi_read8(rspi, reg); 391 data &= ~mask; 392 data |= (val & mask); 393 rspi_write8(rspi, data, reg); 394 } 395 396 static unsigned int qspi_set_send_trigger(struct rspi_data *rspi, 397 unsigned int len) 398 { 399 unsigned int n; 400 401 n = min(len, QSPI_BUFFER_SIZE); 402 403 if (len >= QSPI_BUFFER_SIZE) { 404 /* sets triggering number to 32 bytes */ 405 qspi_update(rspi, SPBFCR_TXTRG_MASK, 406 SPBFCR_TXTRG_32B, QSPI_SPBFCR); 407 } else { 408 /* sets triggering number to 1 byte */ 409 qspi_update(rspi, SPBFCR_TXTRG_MASK, 410 SPBFCR_TXTRG_1B, QSPI_SPBFCR); 411 } 412 413 return n; 414 } 415 416 static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len) 417 { 418 unsigned int n; 419 420 n = min(len, QSPI_BUFFER_SIZE); 421 422 if (len >= QSPI_BUFFER_SIZE) { 423 /* sets triggering number to 32 bytes */ 424 qspi_update(rspi, SPBFCR_RXTRG_MASK, 425 SPBFCR_RXTRG_32B, QSPI_SPBFCR); 426 } else { 427 /* sets triggering number to 1 byte */ 428 qspi_update(rspi, SPBFCR_RXTRG_MASK, 429 SPBFCR_RXTRG_1B, QSPI_SPBFCR); 430 } 431 return n; 432 } 433 434 #define set_config_register(spi, n) spi->ops->set_config_register(spi, n) 435 436 static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable) 437 { 438 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR); 439 } 440 441 static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable) 442 { 443 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR); 444 } 445 446 static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask, 447 u8 enable_bit) 448 { 449 int ret; 450 451 rspi->spsr = rspi_read8(rspi, RSPI_SPSR); 452 if (rspi->spsr & wait_mask) 453 return 0; 454 455 rspi_enable_irq(rspi, enable_bit); 456 ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ); 457 if (ret == 0 && !(rspi->spsr & wait_mask)) 458 return -ETIMEDOUT; 459 460 return 0; 461 } 462 463 static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi) 464 { 465 return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE); 466 } 467 468 static inline int rspi_wait_for_rx_full(struct rspi_data *rspi) 469 { 470 return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE); 471 } 472 473 static int rspi_data_out(struct rspi_data *rspi, u8 data) 474 { 475 int error = rspi_wait_for_tx_empty(rspi); 476 if (error < 0) { 477 dev_err(&rspi->master->dev, "transmit timeout\n"); 478 return error; 479 } 480 rspi_write_data(rspi, data); 481 return 0; 482 } 483 484 static int rspi_data_in(struct rspi_data *rspi) 485 { 486 int error; 487 u8 data; 488 489 error = rspi_wait_for_rx_full(rspi); 490 if (error < 0) { 491 dev_err(&rspi->master->dev, "receive timeout\n"); 492 return error; 493 } 494 data = rspi_read_data(rspi); 495 return data; 496 } 497 498 static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx, 499 unsigned int n) 500 { 501 while (n-- > 0) { 502 if (tx) { 503 int ret = rspi_data_out(rspi, *tx++); 504 if (ret < 0) 505 return ret; 506 } 507 if (rx) { 508 int ret = rspi_data_in(rspi); 509 if (ret < 0) 510 return ret; 511 *rx++ = ret; 512 } 513 } 514 515 return 0; 516 } 517 518 static void rspi_dma_complete(void *arg) 519 { 520 struct rspi_data *rspi = arg; 521 522 rspi->dma_callbacked = 1; 523 wake_up_interruptible(&rspi->wait); 524 } 525 526 static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx, 527 struct sg_table *rx) 528 { 529 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL; 530 u8 irq_mask = 0; 531 unsigned int other_irq = 0; 532 dma_cookie_t cookie; 533 int ret; 534 535 /* First prepare and submit the DMA request(s), as this may fail */ 536 if (rx) { 537 desc_rx = dmaengine_prep_slave_sg(rspi->master->dma_rx, 538 rx->sgl, rx->nents, DMA_DEV_TO_MEM, 539 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 540 if (!desc_rx) { 541 ret = -EAGAIN; 542 goto no_dma_rx; 543 } 544 545 desc_rx->callback = rspi_dma_complete; 546 desc_rx->callback_param = rspi; 547 cookie = dmaengine_submit(desc_rx); 548 if (dma_submit_error(cookie)) { 549 ret = cookie; 550 goto no_dma_rx; 551 } 552 553 irq_mask |= SPCR_SPRIE; 554 } 555 556 if (tx) { 557 desc_tx = dmaengine_prep_slave_sg(rspi->master->dma_tx, 558 tx->sgl, tx->nents, DMA_MEM_TO_DEV, 559 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 560 if (!desc_tx) { 561 ret = -EAGAIN; 562 goto no_dma_tx; 563 } 564 565 if (rx) { 566 /* No callback */ 567 desc_tx->callback = NULL; 568 } else { 569 desc_tx->callback = rspi_dma_complete; 570 desc_tx->callback_param = rspi; 571 } 572 cookie = dmaengine_submit(desc_tx); 573 if (dma_submit_error(cookie)) { 574 ret = cookie; 575 goto no_dma_tx; 576 } 577 578 irq_mask |= SPCR_SPTIE; 579 } 580 581 /* 582 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be 583 * called. So, this driver disables the IRQ while DMA transfer. 584 */ 585 if (tx) 586 disable_irq(other_irq = rspi->tx_irq); 587 if (rx && rspi->rx_irq != other_irq) 588 disable_irq(rspi->rx_irq); 589 590 rspi_enable_irq(rspi, irq_mask); 591 rspi->dma_callbacked = 0; 592 593 /* Now start DMA */ 594 if (rx) 595 dma_async_issue_pending(rspi->master->dma_rx); 596 if (tx) 597 dma_async_issue_pending(rspi->master->dma_tx); 598 599 ret = wait_event_interruptible_timeout(rspi->wait, 600 rspi->dma_callbacked, HZ); 601 if (ret > 0 && rspi->dma_callbacked) { 602 ret = 0; 603 } else { 604 if (!ret) { 605 dev_err(&rspi->master->dev, "DMA timeout\n"); 606 ret = -ETIMEDOUT; 607 } 608 if (tx) 609 dmaengine_terminate_all(rspi->master->dma_tx); 610 if (rx) 611 dmaengine_terminate_all(rspi->master->dma_rx); 612 } 613 614 rspi_disable_irq(rspi, irq_mask); 615 616 if (tx) 617 enable_irq(rspi->tx_irq); 618 if (rx && rspi->rx_irq != other_irq) 619 enable_irq(rspi->rx_irq); 620 621 return ret; 622 623 no_dma_tx: 624 if (rx) 625 dmaengine_terminate_all(rspi->master->dma_rx); 626 no_dma_rx: 627 if (ret == -EAGAIN) { 628 pr_warn_once("%s %s: DMA not available, falling back to PIO\n", 629 dev_driver_string(&rspi->master->dev), 630 dev_name(&rspi->master->dev)); 631 } 632 return ret; 633 } 634 635 static void rspi_receive_init(const struct rspi_data *rspi) 636 { 637 u8 spsr; 638 639 spsr = rspi_read8(rspi, RSPI_SPSR); 640 if (spsr & SPSR_SPRF) 641 rspi_read_data(rspi); /* dummy read */ 642 if (spsr & SPSR_OVRF) 643 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF, 644 RSPI_SPSR); 645 } 646 647 static void rspi_rz_receive_init(const struct rspi_data *rspi) 648 { 649 rspi_receive_init(rspi); 650 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR); 651 rspi_write8(rspi, 0, RSPI_SPBFCR); 652 } 653 654 static void qspi_receive_init(const struct rspi_data *rspi) 655 { 656 u8 spsr; 657 658 spsr = rspi_read8(rspi, RSPI_SPSR); 659 if (spsr & SPSR_SPRF) 660 rspi_read_data(rspi); /* dummy read */ 661 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR); 662 rspi_write8(rspi, 0, QSPI_SPBFCR); 663 } 664 665 static bool __rspi_can_dma(const struct rspi_data *rspi, 666 const struct spi_transfer *xfer) 667 { 668 return xfer->len > rspi->ops->fifo_size; 669 } 670 671 static bool rspi_can_dma(struct spi_master *master, struct spi_device *spi, 672 struct spi_transfer *xfer) 673 { 674 struct rspi_data *rspi = spi_master_get_devdata(master); 675 676 return __rspi_can_dma(rspi, xfer); 677 } 678 679 static int rspi_dma_check_then_transfer(struct rspi_data *rspi, 680 struct spi_transfer *xfer) 681 { 682 if (!rspi->master->can_dma || !__rspi_can_dma(rspi, xfer)) 683 return -EAGAIN; 684 685 /* rx_buf can be NULL on RSPI on SH in TX-only Mode */ 686 return rspi_dma_transfer(rspi, &xfer->tx_sg, 687 xfer->rx_buf ? &xfer->rx_sg : NULL); 688 } 689 690 static int rspi_common_transfer(struct rspi_data *rspi, 691 struct spi_transfer *xfer) 692 { 693 int ret; 694 695 ret = rspi_dma_check_then_transfer(rspi, xfer); 696 if (ret != -EAGAIN) 697 return ret; 698 699 ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len); 700 if (ret < 0) 701 return ret; 702 703 /* Wait for the last transmission */ 704 rspi_wait_for_tx_empty(rspi); 705 706 return 0; 707 } 708 709 static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi, 710 struct spi_transfer *xfer) 711 { 712 struct rspi_data *rspi = spi_master_get_devdata(master); 713 u8 spcr; 714 715 spcr = rspi_read8(rspi, RSPI_SPCR); 716 if (xfer->rx_buf) { 717 rspi_receive_init(rspi); 718 spcr &= ~SPCR_TXMD; 719 } else { 720 spcr |= SPCR_TXMD; 721 } 722 rspi_write8(rspi, spcr, RSPI_SPCR); 723 724 return rspi_common_transfer(rspi, xfer); 725 } 726 727 static int rspi_rz_transfer_one(struct spi_master *master, 728 struct spi_device *spi, 729 struct spi_transfer *xfer) 730 { 731 struct rspi_data *rspi = spi_master_get_devdata(master); 732 733 rspi_rz_receive_init(rspi); 734 735 return rspi_common_transfer(rspi, xfer); 736 } 737 738 static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx, 739 u8 *rx, unsigned int len) 740 { 741 unsigned int i, n; 742 int ret; 743 744 while (len > 0) { 745 n = qspi_set_send_trigger(rspi, len); 746 qspi_set_receive_trigger(rspi, len); 747 if (n == QSPI_BUFFER_SIZE) { 748 ret = rspi_wait_for_tx_empty(rspi); 749 if (ret < 0) { 750 dev_err(&rspi->master->dev, "transmit timeout\n"); 751 return ret; 752 } 753 for (i = 0; i < n; i++) 754 rspi_write_data(rspi, *tx++); 755 756 ret = rspi_wait_for_rx_full(rspi); 757 if (ret < 0) { 758 dev_err(&rspi->master->dev, "receive timeout\n"); 759 return ret; 760 } 761 for (i = 0; i < n; i++) 762 *rx++ = rspi_read_data(rspi); 763 } else { 764 ret = rspi_pio_transfer(rspi, tx, rx, n); 765 if (ret < 0) 766 return ret; 767 } 768 len -= n; 769 } 770 771 return 0; 772 } 773 774 static int qspi_transfer_out_in(struct rspi_data *rspi, 775 struct spi_transfer *xfer) 776 { 777 int ret; 778 779 qspi_receive_init(rspi); 780 781 ret = rspi_dma_check_then_transfer(rspi, xfer); 782 if (ret != -EAGAIN) 783 return ret; 784 785 return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf, 786 xfer->rx_buf, xfer->len); 787 } 788 789 static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer) 790 { 791 const u8 *tx = xfer->tx_buf; 792 unsigned int n = xfer->len; 793 unsigned int i, len; 794 int ret; 795 796 if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) { 797 ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL); 798 if (ret != -EAGAIN) 799 return ret; 800 } 801 802 while (n > 0) { 803 len = qspi_set_send_trigger(rspi, n); 804 if (len == QSPI_BUFFER_SIZE) { 805 ret = rspi_wait_for_tx_empty(rspi); 806 if (ret < 0) { 807 dev_err(&rspi->master->dev, "transmit timeout\n"); 808 return ret; 809 } 810 for (i = 0; i < len; i++) 811 rspi_write_data(rspi, *tx++); 812 } else { 813 ret = rspi_pio_transfer(rspi, tx, NULL, len); 814 if (ret < 0) 815 return ret; 816 } 817 n -= len; 818 } 819 820 /* Wait for the last transmission */ 821 rspi_wait_for_tx_empty(rspi); 822 823 return 0; 824 } 825 826 static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer) 827 { 828 u8 *rx = xfer->rx_buf; 829 unsigned int n = xfer->len; 830 unsigned int i, len; 831 int ret; 832 833 if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) { 834 int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg); 835 if (ret != -EAGAIN) 836 return ret; 837 } 838 839 while (n > 0) { 840 len = qspi_set_receive_trigger(rspi, n); 841 if (len == QSPI_BUFFER_SIZE) { 842 ret = rspi_wait_for_rx_full(rspi); 843 if (ret < 0) { 844 dev_err(&rspi->master->dev, "receive timeout\n"); 845 return ret; 846 } 847 for (i = 0; i < len; i++) 848 *rx++ = rspi_read_data(rspi); 849 } else { 850 ret = rspi_pio_transfer(rspi, NULL, rx, len); 851 if (ret < 0) 852 return ret; 853 } 854 n -= len; 855 } 856 857 return 0; 858 } 859 860 static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi, 861 struct spi_transfer *xfer) 862 { 863 struct rspi_data *rspi = spi_master_get_devdata(master); 864 865 if (spi->mode & SPI_LOOP) { 866 return qspi_transfer_out_in(rspi, xfer); 867 } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) { 868 /* Quad or Dual SPI Write */ 869 return qspi_transfer_out(rspi, xfer); 870 } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) { 871 /* Quad or Dual SPI Read */ 872 return qspi_transfer_in(rspi, xfer); 873 } else { 874 /* Single SPI Transfer */ 875 return qspi_transfer_out_in(rspi, xfer); 876 } 877 } 878 879 static int rspi_setup(struct spi_device *spi) 880 { 881 struct rspi_data *rspi = spi_master_get_devdata(spi->master); 882 883 rspi->max_speed_hz = spi->max_speed_hz; 884 885 rspi->spcmd = SPCMD_SSLKP; 886 if (spi->mode & SPI_CPOL) 887 rspi->spcmd |= SPCMD_CPOL; 888 if (spi->mode & SPI_CPHA) 889 rspi->spcmd |= SPCMD_CPHA; 890 891 /* CMOS output mode and MOSI signal from previous transfer */ 892 rspi->sppcr = 0; 893 if (spi->mode & SPI_LOOP) 894 rspi->sppcr |= SPPCR_SPLP; 895 896 set_config_register(rspi, 8); 897 898 return 0; 899 } 900 901 static u16 qspi_transfer_mode(const struct spi_transfer *xfer) 902 { 903 if (xfer->tx_buf) 904 switch (xfer->tx_nbits) { 905 case SPI_NBITS_QUAD: 906 return SPCMD_SPIMOD_QUAD; 907 case SPI_NBITS_DUAL: 908 return SPCMD_SPIMOD_DUAL; 909 default: 910 return 0; 911 } 912 if (xfer->rx_buf) 913 switch (xfer->rx_nbits) { 914 case SPI_NBITS_QUAD: 915 return SPCMD_SPIMOD_QUAD | SPCMD_SPRW; 916 case SPI_NBITS_DUAL: 917 return SPCMD_SPIMOD_DUAL | SPCMD_SPRW; 918 default: 919 return 0; 920 } 921 922 return 0; 923 } 924 925 static int qspi_setup_sequencer(struct rspi_data *rspi, 926 const struct spi_message *msg) 927 { 928 const struct spi_transfer *xfer; 929 unsigned int i = 0, len = 0; 930 u16 current_mode = 0xffff, mode; 931 932 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 933 mode = qspi_transfer_mode(xfer); 934 if (mode == current_mode) { 935 len += xfer->len; 936 continue; 937 } 938 939 /* Transfer mode change */ 940 if (i) { 941 /* Set transfer data length of previous transfer */ 942 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1)); 943 } 944 945 if (i >= QSPI_NUM_SPCMD) { 946 dev_err(&msg->spi->dev, 947 "Too many different transfer modes"); 948 return -EINVAL; 949 } 950 951 /* Program transfer mode for this transfer */ 952 rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i)); 953 current_mode = mode; 954 len = xfer->len; 955 i++; 956 } 957 if (i) { 958 /* Set final transfer data length and sequence length */ 959 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1)); 960 rspi_write8(rspi, i - 1, RSPI_SPSCR); 961 } 962 963 return 0; 964 } 965 966 static int rspi_prepare_message(struct spi_master *master, 967 struct spi_message *msg) 968 { 969 struct rspi_data *rspi = spi_master_get_devdata(master); 970 int ret; 971 972 if (msg->spi->mode & 973 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) { 974 /* Setup sequencer for messages with multiple transfer modes */ 975 ret = qspi_setup_sequencer(rspi, msg); 976 if (ret < 0) 977 return ret; 978 } 979 980 /* Enable SPI function in master mode */ 981 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR); 982 return 0; 983 } 984 985 static int rspi_unprepare_message(struct spi_master *master, 986 struct spi_message *msg) 987 { 988 struct rspi_data *rspi = spi_master_get_devdata(master); 989 990 /* Disable SPI function */ 991 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR); 992 993 /* Reset sequencer for Single SPI Transfers */ 994 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0); 995 rspi_write8(rspi, 0, RSPI_SPSCR); 996 return 0; 997 } 998 999 static irqreturn_t rspi_irq_mux(int irq, void *_sr) 1000 { 1001 struct rspi_data *rspi = _sr; 1002 u8 spsr; 1003 irqreturn_t ret = IRQ_NONE; 1004 u8 disable_irq = 0; 1005 1006 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR); 1007 if (spsr & SPSR_SPRF) 1008 disable_irq |= SPCR_SPRIE; 1009 if (spsr & SPSR_SPTEF) 1010 disable_irq |= SPCR_SPTIE; 1011 1012 if (disable_irq) { 1013 ret = IRQ_HANDLED; 1014 rspi_disable_irq(rspi, disable_irq); 1015 wake_up(&rspi->wait); 1016 } 1017 1018 return ret; 1019 } 1020 1021 static irqreturn_t rspi_irq_rx(int irq, void *_sr) 1022 { 1023 struct rspi_data *rspi = _sr; 1024 u8 spsr; 1025 1026 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR); 1027 if (spsr & SPSR_SPRF) { 1028 rspi_disable_irq(rspi, SPCR_SPRIE); 1029 wake_up(&rspi->wait); 1030 return IRQ_HANDLED; 1031 } 1032 1033 return 0; 1034 } 1035 1036 static irqreturn_t rspi_irq_tx(int irq, void *_sr) 1037 { 1038 struct rspi_data *rspi = _sr; 1039 u8 spsr; 1040 1041 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR); 1042 if (spsr & SPSR_SPTEF) { 1043 rspi_disable_irq(rspi, SPCR_SPTIE); 1044 wake_up(&rspi->wait); 1045 return IRQ_HANDLED; 1046 } 1047 1048 return 0; 1049 } 1050 1051 static struct dma_chan *rspi_request_dma_chan(struct device *dev, 1052 enum dma_transfer_direction dir, 1053 unsigned int id, 1054 dma_addr_t port_addr) 1055 { 1056 dma_cap_mask_t mask; 1057 struct dma_chan *chan; 1058 struct dma_slave_config cfg; 1059 int ret; 1060 1061 dma_cap_zero(mask); 1062 dma_cap_set(DMA_SLAVE, mask); 1063 1064 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter, 1065 (void *)(unsigned long)id, dev, 1066 dir == DMA_MEM_TO_DEV ? "tx" : "rx"); 1067 if (!chan) { 1068 dev_warn(dev, "dma_request_slave_channel_compat failed\n"); 1069 return NULL; 1070 } 1071 1072 memset(&cfg, 0, sizeof(cfg)); 1073 cfg.direction = dir; 1074 if (dir == DMA_MEM_TO_DEV) { 1075 cfg.dst_addr = port_addr; 1076 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1077 } else { 1078 cfg.src_addr = port_addr; 1079 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1080 } 1081 1082 ret = dmaengine_slave_config(chan, &cfg); 1083 if (ret) { 1084 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret); 1085 dma_release_channel(chan); 1086 return NULL; 1087 } 1088 1089 return chan; 1090 } 1091 1092 static int rspi_request_dma(struct device *dev, struct spi_master *master, 1093 const struct resource *res) 1094 { 1095 const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev); 1096 unsigned int dma_tx_id, dma_rx_id; 1097 1098 if (dev->of_node) { 1099 /* In the OF case we will get the slave IDs from the DT */ 1100 dma_tx_id = 0; 1101 dma_rx_id = 0; 1102 } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) { 1103 dma_tx_id = rspi_pd->dma_tx_id; 1104 dma_rx_id = rspi_pd->dma_rx_id; 1105 } else { 1106 /* The driver assumes no error. */ 1107 return 0; 1108 } 1109 1110 master->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id, 1111 res->start + RSPI_SPDR); 1112 if (!master->dma_tx) 1113 return -ENODEV; 1114 1115 master->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id, 1116 res->start + RSPI_SPDR); 1117 if (!master->dma_rx) { 1118 dma_release_channel(master->dma_tx); 1119 master->dma_tx = NULL; 1120 return -ENODEV; 1121 } 1122 1123 master->can_dma = rspi_can_dma; 1124 dev_info(dev, "DMA available"); 1125 return 0; 1126 } 1127 1128 static void rspi_release_dma(struct spi_master *master) 1129 { 1130 if (master->dma_tx) 1131 dma_release_channel(master->dma_tx); 1132 if (master->dma_rx) 1133 dma_release_channel(master->dma_rx); 1134 } 1135 1136 static int rspi_remove(struct platform_device *pdev) 1137 { 1138 struct rspi_data *rspi = platform_get_drvdata(pdev); 1139 1140 rspi_release_dma(rspi->master); 1141 pm_runtime_disable(&pdev->dev); 1142 1143 return 0; 1144 } 1145 1146 static const struct spi_ops rspi_ops = { 1147 .set_config_register = rspi_set_config_register, 1148 .transfer_one = rspi_transfer_one, 1149 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP, 1150 .flags = SPI_MASTER_MUST_TX, 1151 .fifo_size = 8, 1152 }; 1153 1154 static const struct spi_ops rspi_rz_ops = { 1155 .set_config_register = rspi_rz_set_config_register, 1156 .transfer_one = rspi_rz_transfer_one, 1157 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP, 1158 .flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX, 1159 .fifo_size = 8, /* 8 for TX, 32 for RX */ 1160 }; 1161 1162 static const struct spi_ops qspi_ops = { 1163 .set_config_register = qspi_set_config_register, 1164 .transfer_one = qspi_transfer_one, 1165 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP | 1166 SPI_TX_DUAL | SPI_TX_QUAD | 1167 SPI_RX_DUAL | SPI_RX_QUAD, 1168 .flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX, 1169 .fifo_size = 32, 1170 }; 1171 1172 #ifdef CONFIG_OF 1173 static const struct of_device_id rspi_of_match[] = { 1174 /* RSPI on legacy SH */ 1175 { .compatible = "renesas,rspi", .data = &rspi_ops }, 1176 /* RSPI on RZ/A1H */ 1177 { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops }, 1178 /* QSPI on R-Car Gen2 */ 1179 { .compatible = "renesas,qspi", .data = &qspi_ops }, 1180 { /* sentinel */ } 1181 }; 1182 1183 MODULE_DEVICE_TABLE(of, rspi_of_match); 1184 1185 static int rspi_parse_dt(struct device *dev, struct spi_master *master) 1186 { 1187 u32 num_cs; 1188 int error; 1189 1190 /* Parse DT properties */ 1191 error = of_property_read_u32(dev->of_node, "num-cs", &num_cs); 1192 if (error) { 1193 dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error); 1194 return error; 1195 } 1196 1197 master->num_chipselect = num_cs; 1198 return 0; 1199 } 1200 #else 1201 #define rspi_of_match NULL 1202 static inline int rspi_parse_dt(struct device *dev, struct spi_master *master) 1203 { 1204 return -EINVAL; 1205 } 1206 #endif /* CONFIG_OF */ 1207 1208 static int rspi_request_irq(struct device *dev, unsigned int irq, 1209 irq_handler_t handler, const char *suffix, 1210 void *dev_id) 1211 { 1212 const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", 1213 dev_name(dev), suffix); 1214 if (!name) 1215 return -ENOMEM; 1216 1217 return devm_request_irq(dev, irq, handler, 0, name, dev_id); 1218 } 1219 1220 static int rspi_probe(struct platform_device *pdev) 1221 { 1222 struct resource *res; 1223 struct spi_master *master; 1224 struct rspi_data *rspi; 1225 int ret; 1226 const struct rspi_plat_data *rspi_pd; 1227 const struct spi_ops *ops; 1228 1229 master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data)); 1230 if (master == NULL) 1231 return -ENOMEM; 1232 1233 ops = of_device_get_match_data(&pdev->dev); 1234 if (ops) { 1235 ret = rspi_parse_dt(&pdev->dev, master); 1236 if (ret) 1237 goto error1; 1238 } else { 1239 ops = (struct spi_ops *)pdev->id_entry->driver_data; 1240 rspi_pd = dev_get_platdata(&pdev->dev); 1241 if (rspi_pd && rspi_pd->num_chipselect) 1242 master->num_chipselect = rspi_pd->num_chipselect; 1243 else 1244 master->num_chipselect = 2; /* default */ 1245 } 1246 1247 /* ops parameter check */ 1248 if (!ops->set_config_register) { 1249 dev_err(&pdev->dev, "there is no set_config_register\n"); 1250 ret = -ENODEV; 1251 goto error1; 1252 } 1253 1254 rspi = spi_master_get_devdata(master); 1255 platform_set_drvdata(pdev, rspi); 1256 rspi->ops = ops; 1257 rspi->master = master; 1258 1259 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1260 rspi->addr = devm_ioremap_resource(&pdev->dev, res); 1261 if (IS_ERR(rspi->addr)) { 1262 ret = PTR_ERR(rspi->addr); 1263 goto error1; 1264 } 1265 1266 rspi->clk = devm_clk_get(&pdev->dev, NULL); 1267 if (IS_ERR(rspi->clk)) { 1268 dev_err(&pdev->dev, "cannot get clock\n"); 1269 ret = PTR_ERR(rspi->clk); 1270 goto error1; 1271 } 1272 1273 pm_runtime_enable(&pdev->dev); 1274 1275 init_waitqueue_head(&rspi->wait); 1276 1277 master->bus_num = pdev->id; 1278 master->setup = rspi_setup; 1279 master->auto_runtime_pm = true; 1280 master->transfer_one = ops->transfer_one; 1281 master->prepare_message = rspi_prepare_message; 1282 master->unprepare_message = rspi_unprepare_message; 1283 master->mode_bits = ops->mode_bits; 1284 master->flags = ops->flags; 1285 master->dev.of_node = pdev->dev.of_node; 1286 1287 ret = platform_get_irq_byname(pdev, "rx"); 1288 if (ret < 0) { 1289 ret = platform_get_irq_byname(pdev, "mux"); 1290 if (ret < 0) 1291 ret = platform_get_irq(pdev, 0); 1292 if (ret >= 0) 1293 rspi->rx_irq = rspi->tx_irq = ret; 1294 } else { 1295 rspi->rx_irq = ret; 1296 ret = platform_get_irq_byname(pdev, "tx"); 1297 if (ret >= 0) 1298 rspi->tx_irq = ret; 1299 } 1300 if (ret < 0) { 1301 dev_err(&pdev->dev, "platform_get_irq error\n"); 1302 goto error2; 1303 } 1304 1305 if (rspi->rx_irq == rspi->tx_irq) { 1306 /* Single multiplexed interrupt */ 1307 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux, 1308 "mux", rspi); 1309 } else { 1310 /* Multi-interrupt mode, only SPRI and SPTI are used */ 1311 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx, 1312 "rx", rspi); 1313 if (!ret) 1314 ret = rspi_request_irq(&pdev->dev, rspi->tx_irq, 1315 rspi_irq_tx, "tx", rspi); 1316 } 1317 if (ret < 0) { 1318 dev_err(&pdev->dev, "request_irq error\n"); 1319 goto error2; 1320 } 1321 1322 ret = rspi_request_dma(&pdev->dev, master, res); 1323 if (ret < 0) 1324 dev_warn(&pdev->dev, "DMA not available, using PIO\n"); 1325 1326 ret = devm_spi_register_master(&pdev->dev, master); 1327 if (ret < 0) { 1328 dev_err(&pdev->dev, "spi_register_master error.\n"); 1329 goto error3; 1330 } 1331 1332 dev_info(&pdev->dev, "probed\n"); 1333 1334 return 0; 1335 1336 error3: 1337 rspi_release_dma(master); 1338 error2: 1339 pm_runtime_disable(&pdev->dev); 1340 error1: 1341 spi_master_put(master); 1342 1343 return ret; 1344 } 1345 1346 static const struct platform_device_id spi_driver_ids[] = { 1347 { "rspi", (kernel_ulong_t)&rspi_ops }, 1348 { "rspi-rz", (kernel_ulong_t)&rspi_rz_ops }, 1349 { "qspi", (kernel_ulong_t)&qspi_ops }, 1350 {}, 1351 }; 1352 1353 MODULE_DEVICE_TABLE(platform, spi_driver_ids); 1354 1355 #ifdef CONFIG_PM_SLEEP 1356 static int rspi_suspend(struct device *dev) 1357 { 1358 struct platform_device *pdev = to_platform_device(dev); 1359 struct rspi_data *rspi = platform_get_drvdata(pdev); 1360 1361 return spi_master_suspend(rspi->master); 1362 } 1363 1364 static int rspi_resume(struct device *dev) 1365 { 1366 struct platform_device *pdev = to_platform_device(dev); 1367 struct rspi_data *rspi = platform_get_drvdata(pdev); 1368 1369 return spi_master_resume(rspi->master); 1370 } 1371 1372 static SIMPLE_DEV_PM_OPS(rspi_pm_ops, rspi_suspend, rspi_resume); 1373 #define DEV_PM_OPS &rspi_pm_ops 1374 #else 1375 #define DEV_PM_OPS NULL 1376 #endif /* CONFIG_PM_SLEEP */ 1377 1378 static struct platform_driver rspi_driver = { 1379 .probe = rspi_probe, 1380 .remove = rspi_remove, 1381 .id_table = spi_driver_ids, 1382 .driver = { 1383 .name = "renesas_spi", 1384 .pm = DEV_PM_OPS, 1385 .of_match_table = of_match_ptr(rspi_of_match), 1386 }, 1387 }; 1388 module_platform_driver(rspi_driver); 1389 1390 MODULE_DESCRIPTION("Renesas RSPI bus driver"); 1391 MODULE_LICENSE("GPL v2"); 1392 MODULE_AUTHOR("Yoshihiro Shimoda"); 1393 MODULE_ALIAS("platform:rspi"); 1394