xref: /openbmc/linux/drivers/spi/spi-rockchip.c (revision d034bff6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2014, Fuzhou Rockchip Electronics Co., Ltd
4  * Author: Addy Ke <addy.ke@rock-chips.com>
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/dmaengine.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/pinctrl/consumer.h>
13 #include <linux/platform_device.h>
14 #include <linux/spi/spi.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/scatterlist.h>
17 
18 #define DRIVER_NAME "rockchip-spi"
19 
20 #define ROCKCHIP_SPI_CLR_BITS(reg, bits) \
21 		writel_relaxed(readl_relaxed(reg) & ~(bits), reg)
22 #define ROCKCHIP_SPI_SET_BITS(reg, bits) \
23 		writel_relaxed(readl_relaxed(reg) | (bits), reg)
24 
25 /* SPI register offsets */
26 #define ROCKCHIP_SPI_CTRLR0			0x0000
27 #define ROCKCHIP_SPI_CTRLR1			0x0004
28 #define ROCKCHIP_SPI_SSIENR			0x0008
29 #define ROCKCHIP_SPI_SER			0x000c
30 #define ROCKCHIP_SPI_BAUDR			0x0010
31 #define ROCKCHIP_SPI_TXFTLR			0x0014
32 #define ROCKCHIP_SPI_RXFTLR			0x0018
33 #define ROCKCHIP_SPI_TXFLR			0x001c
34 #define ROCKCHIP_SPI_RXFLR			0x0020
35 #define ROCKCHIP_SPI_SR				0x0024
36 #define ROCKCHIP_SPI_IPR			0x0028
37 #define ROCKCHIP_SPI_IMR			0x002c
38 #define ROCKCHIP_SPI_ISR			0x0030
39 #define ROCKCHIP_SPI_RISR			0x0034
40 #define ROCKCHIP_SPI_ICR			0x0038
41 #define ROCKCHIP_SPI_DMACR			0x003c
42 #define ROCKCHIP_SPI_DMATDLR			0x0040
43 #define ROCKCHIP_SPI_DMARDLR			0x0044
44 #define ROCKCHIP_SPI_VERSION			0x0048
45 #define ROCKCHIP_SPI_TXDR			0x0400
46 #define ROCKCHIP_SPI_RXDR			0x0800
47 
48 /* Bit fields in CTRLR0 */
49 #define CR0_DFS_OFFSET				0
50 #define CR0_DFS_4BIT				0x0
51 #define CR0_DFS_8BIT				0x1
52 #define CR0_DFS_16BIT				0x2
53 
54 #define CR0_CFS_OFFSET				2
55 
56 #define CR0_SCPH_OFFSET				6
57 
58 #define CR0_SCPOL_OFFSET			7
59 
60 #define CR0_CSM_OFFSET				8
61 #define CR0_CSM_KEEP				0x0
62 /* ss_n be high for half sclk_out cycles */
63 #define CR0_CSM_HALF				0X1
64 /* ss_n be high for one sclk_out cycle */
65 #define CR0_CSM_ONE					0x2
66 
67 /* ss_n to sclk_out delay */
68 #define CR0_SSD_OFFSET				10
69 /*
70  * The period between ss_n active and
71  * sclk_out active is half sclk_out cycles
72  */
73 #define CR0_SSD_HALF				0x0
74 /*
75  * The period between ss_n active and
76  * sclk_out active is one sclk_out cycle
77  */
78 #define CR0_SSD_ONE					0x1
79 
80 #define CR0_EM_OFFSET				11
81 #define CR0_EM_LITTLE				0x0
82 #define CR0_EM_BIG					0x1
83 
84 #define CR0_FBM_OFFSET				12
85 #define CR0_FBM_MSB					0x0
86 #define CR0_FBM_LSB					0x1
87 
88 #define CR0_BHT_OFFSET				13
89 #define CR0_BHT_16BIT				0x0
90 #define CR0_BHT_8BIT				0x1
91 
92 #define CR0_RSD_OFFSET				14
93 #define CR0_RSD_MAX				0x3
94 
95 #define CR0_FRF_OFFSET				16
96 #define CR0_FRF_SPI					0x0
97 #define CR0_FRF_SSP					0x1
98 #define CR0_FRF_MICROWIRE			0x2
99 
100 #define CR0_XFM_OFFSET				18
101 #define CR0_XFM_MASK				(0x03 << SPI_XFM_OFFSET)
102 #define CR0_XFM_TR					0x0
103 #define CR0_XFM_TO					0x1
104 #define CR0_XFM_RO					0x2
105 
106 #define CR0_OPM_OFFSET				20
107 #define CR0_OPM_HOST				0x0
108 #define CR0_OPM_TARGET				0x1
109 
110 #define CR0_SOI_OFFSET				23
111 
112 #define CR0_MTM_OFFSET				0x21
113 
114 /* Bit fields in SER, 2bit */
115 #define SER_MASK					0x3
116 
117 /* Bit fields in BAUDR */
118 #define BAUDR_SCKDV_MIN				2
119 #define BAUDR_SCKDV_MAX				65534
120 
121 /* Bit fields in SR, 6bit */
122 #define SR_MASK						0x3f
123 #define SR_BUSY						(1 << 0)
124 #define SR_TF_FULL					(1 << 1)
125 #define SR_TF_EMPTY					(1 << 2)
126 #define SR_RF_EMPTY					(1 << 3)
127 #define SR_RF_FULL					(1 << 4)
128 #define SR_TARGET_TX_BUSY				(1 << 5)
129 
130 /* Bit fields in ISR, IMR, ISR, RISR, 5bit */
131 #define INT_MASK					0x1f
132 #define INT_TF_EMPTY				(1 << 0)
133 #define INT_TF_OVERFLOW				(1 << 1)
134 #define INT_RF_UNDERFLOW			(1 << 2)
135 #define INT_RF_OVERFLOW				(1 << 3)
136 #define INT_RF_FULL				(1 << 4)
137 #define INT_CS_INACTIVE				(1 << 6)
138 
139 /* Bit fields in ICR, 4bit */
140 #define ICR_MASK					0x0f
141 #define ICR_ALL						(1 << 0)
142 #define ICR_RF_UNDERFLOW			(1 << 1)
143 #define ICR_RF_OVERFLOW				(1 << 2)
144 #define ICR_TF_OVERFLOW				(1 << 3)
145 
146 /* Bit fields in DMACR */
147 #define RF_DMA_EN					(1 << 0)
148 #define TF_DMA_EN					(1 << 1)
149 
150 /* Driver state flags */
151 #define RXDMA					(1 << 0)
152 #define TXDMA					(1 << 1)
153 
154 /* sclk_out: spi host internal logic in rk3x can support 50Mhz */
155 #define MAX_SCLK_OUT				50000000U
156 
157 /*
158  * SPI_CTRLR1 is 16-bits, so we should support lengths of 0xffff + 1. However,
159  * the controller seems to hang when given 0x10000, so stick with this for now.
160  */
161 #define ROCKCHIP_SPI_MAX_TRANLEN		0xffff
162 
163 /* 2 for native cs, 2 for cs-gpio */
164 #define ROCKCHIP_SPI_MAX_CS_NUM			4
165 #define ROCKCHIP_SPI_VER2_TYPE1			0x05EC0002
166 #define ROCKCHIP_SPI_VER2_TYPE2			0x00110002
167 
168 #define ROCKCHIP_AUTOSUSPEND_TIMEOUT		2000
169 
170 struct rockchip_spi {
171 	struct device *dev;
172 
173 	struct clk *spiclk;
174 	struct clk *apb_pclk;
175 
176 	void __iomem *regs;
177 	dma_addr_t dma_addr_rx;
178 	dma_addr_t dma_addr_tx;
179 
180 	const void *tx;
181 	void *rx;
182 	unsigned int tx_left;
183 	unsigned int rx_left;
184 
185 	atomic_t state;
186 
187 	/*depth of the FIFO buffer */
188 	u32 fifo_len;
189 	/* frequency of spiclk */
190 	u32 freq;
191 
192 	u8 n_bytes;
193 	u8 rsd;
194 
195 	bool cs_asserted[ROCKCHIP_SPI_MAX_CS_NUM];
196 
197 	bool target_abort;
198 	bool cs_inactive; /* spi target tansmition stop when cs inactive */
199 	bool cs_high_supported; /* native CS supports active-high polarity */
200 
201 	struct spi_transfer *xfer; /* Store xfer temporarily */
202 };
203 
spi_enable_chip(struct rockchip_spi * rs,bool enable)204 static inline void spi_enable_chip(struct rockchip_spi *rs, bool enable)
205 {
206 	writel_relaxed((enable ? 1U : 0U), rs->regs + ROCKCHIP_SPI_SSIENR);
207 }
208 
wait_for_tx_idle(struct rockchip_spi * rs,bool target_mode)209 static inline void wait_for_tx_idle(struct rockchip_spi *rs, bool target_mode)
210 {
211 	unsigned long timeout = jiffies + msecs_to_jiffies(5);
212 
213 	do {
214 		if (target_mode) {
215 			if (!(readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_TARGET_TX_BUSY) &&
216 			    !((readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_BUSY)))
217 				return;
218 		} else {
219 			if (!(readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_BUSY))
220 				return;
221 		}
222 	} while (!time_after(jiffies, timeout));
223 
224 	dev_warn(rs->dev, "spi controller is in busy state!\n");
225 }
226 
get_fifo_len(struct rockchip_spi * rs)227 static u32 get_fifo_len(struct rockchip_spi *rs)
228 {
229 	u32 ver;
230 
231 	ver = readl_relaxed(rs->regs + ROCKCHIP_SPI_VERSION);
232 
233 	switch (ver) {
234 	case ROCKCHIP_SPI_VER2_TYPE1:
235 	case ROCKCHIP_SPI_VER2_TYPE2:
236 		return 64;
237 	default:
238 		return 32;
239 	}
240 }
241 
rockchip_spi_set_cs(struct spi_device * spi,bool enable)242 static void rockchip_spi_set_cs(struct spi_device *spi, bool enable)
243 {
244 	struct spi_controller *ctlr = spi->controller;
245 	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
246 	bool cs_asserted = spi->mode & SPI_CS_HIGH ? enable : !enable;
247 
248 	/* Return immediately for no-op */
249 	if (cs_asserted == rs->cs_asserted[spi_get_chipselect(spi, 0)])
250 		return;
251 
252 	if (cs_asserted) {
253 		/* Keep things powered as long as CS is asserted */
254 		pm_runtime_get_sync(rs->dev);
255 
256 		if (spi_get_csgpiod(spi, 0))
257 			ROCKCHIP_SPI_SET_BITS(rs->regs + ROCKCHIP_SPI_SER, 1);
258 		else
259 			ROCKCHIP_SPI_SET_BITS(rs->regs + ROCKCHIP_SPI_SER,
260 					      BIT(spi_get_chipselect(spi, 0)));
261 	} else {
262 		if (spi_get_csgpiod(spi, 0))
263 			ROCKCHIP_SPI_CLR_BITS(rs->regs + ROCKCHIP_SPI_SER, 1);
264 		else
265 			ROCKCHIP_SPI_CLR_BITS(rs->regs + ROCKCHIP_SPI_SER,
266 					      BIT(spi_get_chipselect(spi, 0)));
267 
268 		/* Drop reference from when we first asserted CS */
269 		pm_runtime_put(rs->dev);
270 	}
271 
272 	rs->cs_asserted[spi_get_chipselect(spi, 0)] = cs_asserted;
273 }
274 
rockchip_spi_handle_err(struct spi_controller * ctlr,struct spi_message * msg)275 static void rockchip_spi_handle_err(struct spi_controller *ctlr,
276 				    struct spi_message *msg)
277 {
278 	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
279 
280 	/* stop running spi transfer
281 	 * this also flushes both rx and tx fifos
282 	 */
283 	spi_enable_chip(rs, false);
284 
285 	/* make sure all interrupts are masked and status cleared */
286 	writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR);
287 	writel_relaxed(0xffffffff, rs->regs + ROCKCHIP_SPI_ICR);
288 
289 	if (atomic_read(&rs->state) & TXDMA)
290 		dmaengine_terminate_async(ctlr->dma_tx);
291 
292 	if (atomic_read(&rs->state) & RXDMA)
293 		dmaengine_terminate_async(ctlr->dma_rx);
294 }
295 
rockchip_spi_pio_writer(struct rockchip_spi * rs)296 static void rockchip_spi_pio_writer(struct rockchip_spi *rs)
297 {
298 	u32 tx_free = rs->fifo_len - readl_relaxed(rs->regs + ROCKCHIP_SPI_TXFLR);
299 	u32 words = min(rs->tx_left, tx_free);
300 
301 	rs->tx_left -= words;
302 	for (; words; words--) {
303 		u32 txw;
304 
305 		if (rs->n_bytes == 1)
306 			txw = *(u8 *)rs->tx;
307 		else
308 			txw = *(u16 *)rs->tx;
309 
310 		writel_relaxed(txw, rs->regs + ROCKCHIP_SPI_TXDR);
311 		rs->tx += rs->n_bytes;
312 	}
313 }
314 
rockchip_spi_pio_reader(struct rockchip_spi * rs)315 static void rockchip_spi_pio_reader(struct rockchip_spi *rs)
316 {
317 	u32 words = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFLR);
318 	u32 rx_left = (rs->rx_left > words) ? rs->rx_left - words : 0;
319 
320 	/* the hardware doesn't allow us to change fifo threshold
321 	 * level while spi is enabled, so instead make sure to leave
322 	 * enough words in the rx fifo to get the last interrupt
323 	 * exactly when all words have been received
324 	 */
325 	if (rx_left) {
326 		u32 ftl = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFTLR) + 1;
327 
328 		if (rx_left < ftl) {
329 			rx_left = ftl;
330 			words = rs->rx_left - rx_left;
331 		}
332 	}
333 
334 	rs->rx_left = rx_left;
335 	for (; words; words--) {
336 		u32 rxw = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXDR);
337 
338 		if (!rs->rx)
339 			continue;
340 
341 		if (rs->n_bytes == 1)
342 			*(u8 *)rs->rx = (u8)rxw;
343 		else
344 			*(u16 *)rs->rx = (u16)rxw;
345 		rs->rx += rs->n_bytes;
346 	}
347 }
348 
rockchip_spi_isr(int irq,void * dev_id)349 static irqreturn_t rockchip_spi_isr(int irq, void *dev_id)
350 {
351 	struct spi_controller *ctlr = dev_id;
352 	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
353 
354 	/* When int_cs_inactive comes, spi target abort */
355 	if (rs->cs_inactive && readl_relaxed(rs->regs + ROCKCHIP_SPI_IMR) & INT_CS_INACTIVE) {
356 		ctlr->target_abort(ctlr);
357 		writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR);
358 		writel_relaxed(0xffffffff, rs->regs + ROCKCHIP_SPI_ICR);
359 
360 		return IRQ_HANDLED;
361 	}
362 
363 	if (rs->tx_left)
364 		rockchip_spi_pio_writer(rs);
365 
366 	rockchip_spi_pio_reader(rs);
367 	if (!rs->rx_left) {
368 		spi_enable_chip(rs, false);
369 		writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR);
370 		writel_relaxed(0xffffffff, rs->regs + ROCKCHIP_SPI_ICR);
371 		spi_finalize_current_transfer(ctlr);
372 	}
373 
374 	return IRQ_HANDLED;
375 }
376 
rockchip_spi_prepare_irq(struct rockchip_spi * rs,struct spi_controller * ctlr,struct spi_transfer * xfer)377 static int rockchip_spi_prepare_irq(struct rockchip_spi *rs,
378 				    struct spi_controller *ctlr,
379 				    struct spi_transfer *xfer)
380 {
381 	rs->tx = xfer->tx_buf;
382 	rs->rx = xfer->rx_buf;
383 	rs->tx_left = rs->tx ? xfer->len / rs->n_bytes : 0;
384 	rs->rx_left = xfer->len / rs->n_bytes;
385 
386 	writel_relaxed(0xffffffff, rs->regs + ROCKCHIP_SPI_ICR);
387 
388 	spi_enable_chip(rs, true);
389 
390 	if (rs->tx_left)
391 		rockchip_spi_pio_writer(rs);
392 
393 	if (rs->cs_inactive)
394 		writel_relaxed(INT_RF_FULL | INT_CS_INACTIVE, rs->regs + ROCKCHIP_SPI_IMR);
395 	else
396 		writel_relaxed(INT_RF_FULL, rs->regs + ROCKCHIP_SPI_IMR);
397 
398 	/* 1 means the transfer is in progress */
399 	return 1;
400 }
401 
rockchip_spi_dma_rxcb(void * data)402 static void rockchip_spi_dma_rxcb(void *data)
403 {
404 	struct spi_controller *ctlr = data;
405 	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
406 	int state = atomic_fetch_andnot(RXDMA, &rs->state);
407 
408 	if (state & TXDMA && !rs->target_abort)
409 		return;
410 
411 	if (rs->cs_inactive)
412 		writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR);
413 
414 	spi_enable_chip(rs, false);
415 	spi_finalize_current_transfer(ctlr);
416 }
417 
rockchip_spi_dma_txcb(void * data)418 static void rockchip_spi_dma_txcb(void *data)
419 {
420 	struct spi_controller *ctlr = data;
421 	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
422 	int state = atomic_fetch_andnot(TXDMA, &rs->state);
423 
424 	if (state & RXDMA && !rs->target_abort)
425 		return;
426 
427 	/* Wait until the FIFO data completely. */
428 	wait_for_tx_idle(rs, ctlr->target);
429 
430 	spi_enable_chip(rs, false);
431 	spi_finalize_current_transfer(ctlr);
432 }
433 
rockchip_spi_calc_burst_size(u32 data_len)434 static u32 rockchip_spi_calc_burst_size(u32 data_len)
435 {
436 	u32 i;
437 
438 	/* burst size: 1, 2, 4, 8 */
439 	for (i = 1; i < 8; i <<= 1) {
440 		if (data_len & i)
441 			break;
442 	}
443 
444 	return i;
445 }
446 
rockchip_spi_prepare_dma(struct rockchip_spi * rs,struct spi_controller * ctlr,struct spi_transfer * xfer)447 static int rockchip_spi_prepare_dma(struct rockchip_spi *rs,
448 		struct spi_controller *ctlr, struct spi_transfer *xfer)
449 {
450 	struct dma_async_tx_descriptor *rxdesc, *txdesc;
451 
452 	atomic_set(&rs->state, 0);
453 
454 	rs->tx = xfer->tx_buf;
455 	rs->rx = xfer->rx_buf;
456 
457 	rxdesc = NULL;
458 	if (xfer->rx_buf) {
459 		struct dma_slave_config rxconf = {
460 			.direction = DMA_DEV_TO_MEM,
461 			.src_addr = rs->dma_addr_rx,
462 			.src_addr_width = rs->n_bytes,
463 			.src_maxburst = rockchip_spi_calc_burst_size(xfer->len / rs->n_bytes),
464 		};
465 
466 		dmaengine_slave_config(ctlr->dma_rx, &rxconf);
467 
468 		rxdesc = dmaengine_prep_slave_sg(
469 				ctlr->dma_rx,
470 				xfer->rx_sg.sgl, xfer->rx_sg.nents,
471 				DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
472 		if (!rxdesc)
473 			return -EINVAL;
474 
475 		rxdesc->callback = rockchip_spi_dma_rxcb;
476 		rxdesc->callback_param = ctlr;
477 	}
478 
479 	txdesc = NULL;
480 	if (xfer->tx_buf) {
481 		struct dma_slave_config txconf = {
482 			.direction = DMA_MEM_TO_DEV,
483 			.dst_addr = rs->dma_addr_tx,
484 			.dst_addr_width = rs->n_bytes,
485 			.dst_maxburst = rs->fifo_len / 4,
486 		};
487 
488 		dmaengine_slave_config(ctlr->dma_tx, &txconf);
489 
490 		txdesc = dmaengine_prep_slave_sg(
491 				ctlr->dma_tx,
492 				xfer->tx_sg.sgl, xfer->tx_sg.nents,
493 				DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
494 		if (!txdesc) {
495 			if (rxdesc)
496 				dmaengine_terminate_sync(ctlr->dma_rx);
497 			return -EINVAL;
498 		}
499 
500 		txdesc->callback = rockchip_spi_dma_txcb;
501 		txdesc->callback_param = ctlr;
502 	}
503 
504 	/* rx must be started before tx due to spi instinct */
505 	if (rxdesc) {
506 		atomic_or(RXDMA, &rs->state);
507 		ctlr->dma_rx->cookie = dmaengine_submit(rxdesc);
508 		dma_async_issue_pending(ctlr->dma_rx);
509 	}
510 
511 	if (rs->cs_inactive)
512 		writel_relaxed(INT_CS_INACTIVE, rs->regs + ROCKCHIP_SPI_IMR);
513 
514 	spi_enable_chip(rs, true);
515 
516 	if (txdesc) {
517 		atomic_or(TXDMA, &rs->state);
518 		dmaengine_submit(txdesc);
519 		dma_async_issue_pending(ctlr->dma_tx);
520 	}
521 
522 	/* 1 means the transfer is in progress */
523 	return 1;
524 }
525 
rockchip_spi_config(struct rockchip_spi * rs,struct spi_device * spi,struct spi_transfer * xfer,bool use_dma,bool target_mode)526 static int rockchip_spi_config(struct rockchip_spi *rs,
527 		struct spi_device *spi, struct spi_transfer *xfer,
528 		bool use_dma, bool target_mode)
529 {
530 	u32 cr0 = CR0_FRF_SPI  << CR0_FRF_OFFSET
531 		| CR0_BHT_8BIT << CR0_BHT_OFFSET
532 		| CR0_SSD_ONE  << CR0_SSD_OFFSET
533 		| CR0_EM_BIG   << CR0_EM_OFFSET;
534 	u32 cr1;
535 	u32 dmacr = 0;
536 
537 	if (target_mode)
538 		cr0 |= CR0_OPM_TARGET << CR0_OPM_OFFSET;
539 	rs->target_abort = false;
540 
541 	cr0 |= rs->rsd << CR0_RSD_OFFSET;
542 	cr0 |= (spi->mode & 0x3U) << CR0_SCPH_OFFSET;
543 	if (spi->mode & SPI_LSB_FIRST)
544 		cr0 |= CR0_FBM_LSB << CR0_FBM_OFFSET;
545 	if (spi->mode & SPI_CS_HIGH)
546 		cr0 |= BIT(spi_get_chipselect(spi, 0)) << CR0_SOI_OFFSET;
547 
548 	if (xfer->rx_buf && xfer->tx_buf)
549 		cr0 |= CR0_XFM_TR << CR0_XFM_OFFSET;
550 	else if (xfer->rx_buf)
551 		cr0 |= CR0_XFM_RO << CR0_XFM_OFFSET;
552 	else if (use_dma)
553 		cr0 |= CR0_XFM_TO << CR0_XFM_OFFSET;
554 
555 	switch (xfer->bits_per_word) {
556 	case 4:
557 		cr0 |= CR0_DFS_4BIT << CR0_DFS_OFFSET;
558 		cr1 = xfer->len - 1;
559 		break;
560 	case 8:
561 		cr0 |= CR0_DFS_8BIT << CR0_DFS_OFFSET;
562 		cr1 = xfer->len - 1;
563 		break;
564 	case 16:
565 		cr0 |= CR0_DFS_16BIT << CR0_DFS_OFFSET;
566 		cr1 = xfer->len / 2 - 1;
567 		break;
568 	default:
569 		/* we only whitelist 4, 8 and 16 bit words in
570 		 * ctlr->bits_per_word_mask, so this shouldn't
571 		 * happen
572 		 */
573 		dev_err(rs->dev, "unknown bits per word: %d\n",
574 			xfer->bits_per_word);
575 		return -EINVAL;
576 	}
577 
578 	if (use_dma) {
579 		if (xfer->tx_buf)
580 			dmacr |= TF_DMA_EN;
581 		if (xfer->rx_buf)
582 			dmacr |= RF_DMA_EN;
583 	}
584 
585 	writel_relaxed(cr0, rs->regs + ROCKCHIP_SPI_CTRLR0);
586 	writel_relaxed(cr1, rs->regs + ROCKCHIP_SPI_CTRLR1);
587 
588 	/* unfortunately setting the fifo threshold level to generate an
589 	 * interrupt exactly when the fifo is full doesn't seem to work,
590 	 * so we need the strict inequality here
591 	 */
592 	if ((xfer->len / rs->n_bytes) < rs->fifo_len)
593 		writel_relaxed(xfer->len / rs->n_bytes - 1, rs->regs + ROCKCHIP_SPI_RXFTLR);
594 	else
595 		writel_relaxed(rs->fifo_len / 2 - 1, rs->regs + ROCKCHIP_SPI_RXFTLR);
596 
597 	writel_relaxed(rs->fifo_len / 2 - 1, rs->regs + ROCKCHIP_SPI_DMATDLR);
598 	writel_relaxed(rockchip_spi_calc_burst_size(xfer->len / rs->n_bytes) - 1,
599 		       rs->regs + ROCKCHIP_SPI_DMARDLR);
600 	writel_relaxed(dmacr, rs->regs + ROCKCHIP_SPI_DMACR);
601 
602 	/* the hardware only supports an even clock divisor, so
603 	 * round divisor = spiclk / speed up to nearest even number
604 	 * so that the resulting speed is <= the requested speed
605 	 */
606 	writel_relaxed(2 * DIV_ROUND_UP(rs->freq, 2 * xfer->speed_hz),
607 			rs->regs + ROCKCHIP_SPI_BAUDR);
608 
609 	return 0;
610 }
611 
rockchip_spi_max_transfer_size(struct spi_device * spi)612 static size_t rockchip_spi_max_transfer_size(struct spi_device *spi)
613 {
614 	return ROCKCHIP_SPI_MAX_TRANLEN;
615 }
616 
rockchip_spi_target_abort(struct spi_controller * ctlr)617 static int rockchip_spi_target_abort(struct spi_controller *ctlr)
618 {
619 	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
620 	u32 rx_fifo_left;
621 	struct dma_tx_state state;
622 	enum dma_status status;
623 
624 	/* Get current dma rx point */
625 	if (atomic_read(&rs->state) & RXDMA) {
626 		dmaengine_pause(ctlr->dma_rx);
627 		status = dmaengine_tx_status(ctlr->dma_rx, ctlr->dma_rx->cookie, &state);
628 		if (status == DMA_ERROR) {
629 			rs->rx = rs->xfer->rx_buf;
630 			rs->xfer->len = 0;
631 			rx_fifo_left = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFLR);
632 			for (; rx_fifo_left; rx_fifo_left--)
633 				readl_relaxed(rs->regs + ROCKCHIP_SPI_RXDR);
634 			goto out;
635 		} else {
636 			rs->rx += rs->xfer->len - rs->n_bytes * state.residue;
637 		}
638 	}
639 
640 	/* Get the valid data left in rx fifo and set rs->xfer->len real rx size */
641 	if (rs->rx) {
642 		rx_fifo_left = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFLR);
643 		for (; rx_fifo_left; rx_fifo_left--) {
644 			u32 rxw = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXDR);
645 
646 			if (rs->n_bytes == 1)
647 				*(u8 *)rs->rx = (u8)rxw;
648 			else
649 				*(u16 *)rs->rx = (u16)rxw;
650 			rs->rx += rs->n_bytes;
651 		}
652 		rs->xfer->len = (unsigned int)(rs->rx - rs->xfer->rx_buf);
653 	}
654 
655 out:
656 	if (atomic_read(&rs->state) & RXDMA)
657 		dmaengine_terminate_sync(ctlr->dma_rx);
658 	if (atomic_read(&rs->state) & TXDMA)
659 		dmaengine_terminate_sync(ctlr->dma_tx);
660 	atomic_set(&rs->state, 0);
661 	spi_enable_chip(rs, false);
662 	rs->target_abort = true;
663 	spi_finalize_current_transfer(ctlr);
664 
665 	return 0;
666 }
667 
rockchip_spi_transfer_one(struct spi_controller * ctlr,struct spi_device * spi,struct spi_transfer * xfer)668 static int rockchip_spi_transfer_one(
669 		struct spi_controller *ctlr,
670 		struct spi_device *spi,
671 		struct spi_transfer *xfer)
672 {
673 	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
674 	int ret;
675 	bool use_dma;
676 
677 	/* Zero length transfers won't trigger an interrupt on completion */
678 	if (!xfer->len) {
679 		spi_finalize_current_transfer(ctlr);
680 		return 1;
681 	}
682 
683 	WARN_ON(readl_relaxed(rs->regs + ROCKCHIP_SPI_SSIENR) &&
684 		(readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_BUSY));
685 
686 	if (!xfer->tx_buf && !xfer->rx_buf) {
687 		dev_err(rs->dev, "No buffer for transfer\n");
688 		return -EINVAL;
689 	}
690 
691 	if (xfer->len > ROCKCHIP_SPI_MAX_TRANLEN) {
692 		dev_err(rs->dev, "Transfer is too long (%d)\n", xfer->len);
693 		return -EINVAL;
694 	}
695 
696 	rs->n_bytes = xfer->bits_per_word <= 8 ? 1 : 2;
697 	rs->xfer = xfer;
698 	use_dma = ctlr->can_dma ? ctlr->can_dma(ctlr, spi, xfer) : false;
699 
700 	ret = rockchip_spi_config(rs, spi, xfer, use_dma, ctlr->target);
701 	if (ret)
702 		return ret;
703 
704 	if (use_dma)
705 		return rockchip_spi_prepare_dma(rs, ctlr, xfer);
706 
707 	return rockchip_spi_prepare_irq(rs, ctlr, xfer);
708 }
709 
rockchip_spi_can_dma(struct spi_controller * ctlr,struct spi_device * spi,struct spi_transfer * xfer)710 static bool rockchip_spi_can_dma(struct spi_controller *ctlr,
711 				 struct spi_device *spi,
712 				 struct spi_transfer *xfer)
713 {
714 	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
715 	unsigned int bytes_per_word = xfer->bits_per_word <= 8 ? 1 : 2;
716 
717 	/* if the numbor of spi words to transfer is less than the fifo
718 	 * length we can just fill the fifo and wait for a single irq,
719 	 * so don't bother setting up dma
720 	 */
721 	return xfer->len / bytes_per_word >= rs->fifo_len;
722 }
723 
rockchip_spi_setup(struct spi_device * spi)724 static int rockchip_spi_setup(struct spi_device *spi)
725 {
726 	struct rockchip_spi *rs = spi_controller_get_devdata(spi->controller);
727 	u32 cr0;
728 
729 	if (!spi_get_csgpiod(spi, 0) && (spi->mode & SPI_CS_HIGH) && !rs->cs_high_supported) {
730 		dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
731 		return -EINVAL;
732 	}
733 
734 	pm_runtime_get_sync(rs->dev);
735 
736 	cr0 = readl_relaxed(rs->regs + ROCKCHIP_SPI_CTRLR0);
737 
738 	cr0 &= ~(0x3 << CR0_SCPH_OFFSET);
739 	cr0 |= ((spi->mode & 0x3) << CR0_SCPH_OFFSET);
740 	if (spi->mode & SPI_CS_HIGH && spi_get_chipselect(spi, 0) <= 1)
741 		cr0 |= BIT(spi_get_chipselect(spi, 0)) << CR0_SOI_OFFSET;
742 	else if (spi_get_chipselect(spi, 0) <= 1)
743 		cr0 &= ~(BIT(spi_get_chipselect(spi, 0)) << CR0_SOI_OFFSET);
744 
745 	writel_relaxed(cr0, rs->regs + ROCKCHIP_SPI_CTRLR0);
746 
747 	pm_runtime_put(rs->dev);
748 
749 	return 0;
750 }
751 
rockchip_spi_probe(struct platform_device * pdev)752 static int rockchip_spi_probe(struct platform_device *pdev)
753 {
754 	int ret;
755 	struct rockchip_spi *rs;
756 	struct spi_controller *ctlr;
757 	struct resource *mem;
758 	struct device_node *np = pdev->dev.of_node;
759 	u32 rsd_nsecs, num_cs;
760 	bool target_mode;
761 
762 	target_mode = of_property_read_bool(np, "spi-slave");
763 
764 	if (target_mode)
765 		ctlr = spi_alloc_target(&pdev->dev,
766 				sizeof(struct rockchip_spi));
767 	else
768 		ctlr = spi_alloc_host(&pdev->dev,
769 				sizeof(struct rockchip_spi));
770 
771 	if (!ctlr)
772 		return -ENOMEM;
773 
774 	platform_set_drvdata(pdev, ctlr);
775 
776 	rs = spi_controller_get_devdata(ctlr);
777 
778 	/* Get basic io resource and map it */
779 	rs->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &mem);
780 	if (IS_ERR(rs->regs)) {
781 		ret =  PTR_ERR(rs->regs);
782 		goto err_put_ctlr;
783 	}
784 
785 	rs->apb_pclk = devm_clk_get(&pdev->dev, "apb_pclk");
786 	if (IS_ERR(rs->apb_pclk)) {
787 		dev_err(&pdev->dev, "Failed to get apb_pclk\n");
788 		ret = PTR_ERR(rs->apb_pclk);
789 		goto err_put_ctlr;
790 	}
791 
792 	rs->spiclk = devm_clk_get(&pdev->dev, "spiclk");
793 	if (IS_ERR(rs->spiclk)) {
794 		dev_err(&pdev->dev, "Failed to get spi_pclk\n");
795 		ret = PTR_ERR(rs->spiclk);
796 		goto err_put_ctlr;
797 	}
798 
799 	ret = clk_prepare_enable(rs->apb_pclk);
800 	if (ret < 0) {
801 		dev_err(&pdev->dev, "Failed to enable apb_pclk\n");
802 		goto err_put_ctlr;
803 	}
804 
805 	ret = clk_prepare_enable(rs->spiclk);
806 	if (ret < 0) {
807 		dev_err(&pdev->dev, "Failed to enable spi_clk\n");
808 		goto err_disable_apbclk;
809 	}
810 
811 	spi_enable_chip(rs, false);
812 
813 	ret = platform_get_irq(pdev, 0);
814 	if (ret < 0)
815 		goto err_disable_spiclk;
816 
817 	ret = devm_request_threaded_irq(&pdev->dev, ret, rockchip_spi_isr, NULL,
818 			IRQF_ONESHOT, dev_name(&pdev->dev), ctlr);
819 	if (ret)
820 		goto err_disable_spiclk;
821 
822 	rs->dev = &pdev->dev;
823 	rs->freq = clk_get_rate(rs->spiclk);
824 
825 	if (!of_property_read_u32(pdev->dev.of_node, "rx-sample-delay-ns",
826 				  &rsd_nsecs)) {
827 		/* rx sample delay is expressed in parent clock cycles (max 3) */
828 		u32 rsd = DIV_ROUND_CLOSEST(rsd_nsecs * (rs->freq >> 8),
829 				1000000000 >> 8);
830 		if (!rsd) {
831 			dev_warn(rs->dev, "%u Hz are too slow to express %u ns delay\n",
832 					rs->freq, rsd_nsecs);
833 		} else if (rsd > CR0_RSD_MAX) {
834 			rsd = CR0_RSD_MAX;
835 			dev_warn(rs->dev, "%u Hz are too fast to express %u ns delay, clamping at %u ns\n",
836 					rs->freq, rsd_nsecs,
837 					CR0_RSD_MAX * 1000000000U / rs->freq);
838 		}
839 		rs->rsd = rsd;
840 	}
841 
842 	rs->fifo_len = get_fifo_len(rs);
843 	if (!rs->fifo_len) {
844 		dev_err(&pdev->dev, "Failed to get fifo length\n");
845 		ret = -EINVAL;
846 		goto err_disable_spiclk;
847 	}
848 
849 	pm_runtime_set_autosuspend_delay(&pdev->dev, ROCKCHIP_AUTOSUSPEND_TIMEOUT);
850 	pm_runtime_use_autosuspend(&pdev->dev);
851 	pm_runtime_set_active(&pdev->dev);
852 	pm_runtime_enable(&pdev->dev);
853 
854 	ctlr->auto_runtime_pm = true;
855 	ctlr->bus_num = pdev->id;
856 	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_LSB_FIRST;
857 	if (target_mode) {
858 		ctlr->mode_bits |= SPI_NO_CS;
859 		ctlr->target_abort = rockchip_spi_target_abort;
860 	} else {
861 		ctlr->flags = SPI_CONTROLLER_GPIO_SS;
862 		ctlr->max_native_cs = ROCKCHIP_SPI_MAX_CS_NUM;
863 		/*
864 		 * rk spi0 has two native cs, spi1..5 one cs only
865 		 * if num-cs is missing in the dts, default to 1
866 		 */
867 		if (of_property_read_u32(np, "num-cs", &num_cs))
868 			num_cs = 1;
869 		ctlr->num_chipselect = num_cs;
870 		ctlr->use_gpio_descriptors = true;
871 	}
872 	ctlr->dev.of_node = pdev->dev.of_node;
873 	ctlr->bits_per_word_mask = SPI_BPW_MASK(16) | SPI_BPW_MASK(8) | SPI_BPW_MASK(4);
874 	ctlr->min_speed_hz = rs->freq / BAUDR_SCKDV_MAX;
875 	ctlr->max_speed_hz = min(rs->freq / BAUDR_SCKDV_MIN, MAX_SCLK_OUT);
876 
877 	ctlr->setup = rockchip_spi_setup;
878 	ctlr->set_cs = rockchip_spi_set_cs;
879 	ctlr->transfer_one = rockchip_spi_transfer_one;
880 	ctlr->max_transfer_size = rockchip_spi_max_transfer_size;
881 	ctlr->handle_err = rockchip_spi_handle_err;
882 
883 	ctlr->dma_tx = dma_request_chan(rs->dev, "tx");
884 	if (IS_ERR(ctlr->dma_tx)) {
885 		/* Check tx to see if we need defer probing driver */
886 		if (PTR_ERR(ctlr->dma_tx) == -EPROBE_DEFER) {
887 			ret = -EPROBE_DEFER;
888 			goto err_disable_pm_runtime;
889 		}
890 		dev_warn(rs->dev, "Failed to request TX DMA channel\n");
891 		ctlr->dma_tx = NULL;
892 	}
893 
894 	ctlr->dma_rx = dma_request_chan(rs->dev, "rx");
895 	if (IS_ERR(ctlr->dma_rx)) {
896 		if (PTR_ERR(ctlr->dma_rx) == -EPROBE_DEFER) {
897 			ret = -EPROBE_DEFER;
898 			goto err_free_dma_tx;
899 		}
900 		dev_warn(rs->dev, "Failed to request RX DMA channel\n");
901 		ctlr->dma_rx = NULL;
902 	}
903 
904 	if (ctlr->dma_tx && ctlr->dma_rx) {
905 		rs->dma_addr_tx = mem->start + ROCKCHIP_SPI_TXDR;
906 		rs->dma_addr_rx = mem->start + ROCKCHIP_SPI_RXDR;
907 		ctlr->can_dma = rockchip_spi_can_dma;
908 	}
909 
910 	switch (readl_relaxed(rs->regs + ROCKCHIP_SPI_VERSION)) {
911 	case ROCKCHIP_SPI_VER2_TYPE2:
912 		rs->cs_high_supported = true;
913 		ctlr->mode_bits |= SPI_CS_HIGH;
914 		if (ctlr->can_dma && target_mode)
915 			rs->cs_inactive = true;
916 		else
917 			rs->cs_inactive = false;
918 		break;
919 	default:
920 		rs->cs_inactive = false;
921 		break;
922 	}
923 
924 	ret = devm_spi_register_controller(&pdev->dev, ctlr);
925 	if (ret < 0) {
926 		dev_err(&pdev->dev, "Failed to register controller\n");
927 		goto err_free_dma_rx;
928 	}
929 
930 	return 0;
931 
932 err_free_dma_rx:
933 	if (ctlr->dma_rx)
934 		dma_release_channel(ctlr->dma_rx);
935 err_free_dma_tx:
936 	if (ctlr->dma_tx)
937 		dma_release_channel(ctlr->dma_tx);
938 err_disable_pm_runtime:
939 	pm_runtime_disable(&pdev->dev);
940 err_disable_spiclk:
941 	clk_disable_unprepare(rs->spiclk);
942 err_disable_apbclk:
943 	clk_disable_unprepare(rs->apb_pclk);
944 err_put_ctlr:
945 	spi_controller_put(ctlr);
946 
947 	return ret;
948 }
949 
rockchip_spi_remove(struct platform_device * pdev)950 static void rockchip_spi_remove(struct platform_device *pdev)
951 {
952 	struct spi_controller *ctlr = spi_controller_get(platform_get_drvdata(pdev));
953 	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
954 
955 	pm_runtime_get_sync(&pdev->dev);
956 
957 	clk_disable_unprepare(rs->spiclk);
958 	clk_disable_unprepare(rs->apb_pclk);
959 
960 	pm_runtime_put_noidle(&pdev->dev);
961 	pm_runtime_disable(&pdev->dev);
962 	pm_runtime_set_suspended(&pdev->dev);
963 
964 	if (ctlr->dma_tx)
965 		dma_release_channel(ctlr->dma_tx);
966 	if (ctlr->dma_rx)
967 		dma_release_channel(ctlr->dma_rx);
968 
969 	spi_controller_put(ctlr);
970 }
971 
972 #ifdef CONFIG_PM_SLEEP
rockchip_spi_suspend(struct device * dev)973 static int rockchip_spi_suspend(struct device *dev)
974 {
975 	int ret;
976 	struct spi_controller *ctlr = dev_get_drvdata(dev);
977 
978 	ret = spi_controller_suspend(ctlr);
979 	if (ret < 0)
980 		return ret;
981 
982 	ret = pm_runtime_force_suspend(dev);
983 	if (ret < 0) {
984 		spi_controller_resume(ctlr);
985 		return ret;
986 	}
987 
988 	pinctrl_pm_select_sleep_state(dev);
989 
990 	return 0;
991 }
992 
rockchip_spi_resume(struct device * dev)993 static int rockchip_spi_resume(struct device *dev)
994 {
995 	int ret;
996 	struct spi_controller *ctlr = dev_get_drvdata(dev);
997 
998 	pinctrl_pm_select_default_state(dev);
999 
1000 	ret = pm_runtime_force_resume(dev);
1001 	if (ret < 0)
1002 		return ret;
1003 
1004 	return spi_controller_resume(ctlr);
1005 }
1006 #endif /* CONFIG_PM_SLEEP */
1007 
1008 #ifdef CONFIG_PM
rockchip_spi_runtime_suspend(struct device * dev)1009 static int rockchip_spi_runtime_suspend(struct device *dev)
1010 {
1011 	struct spi_controller *ctlr = dev_get_drvdata(dev);
1012 	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
1013 
1014 	clk_disable_unprepare(rs->spiclk);
1015 	clk_disable_unprepare(rs->apb_pclk);
1016 
1017 	return 0;
1018 }
1019 
rockchip_spi_runtime_resume(struct device * dev)1020 static int rockchip_spi_runtime_resume(struct device *dev)
1021 {
1022 	int ret;
1023 	struct spi_controller *ctlr = dev_get_drvdata(dev);
1024 	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
1025 
1026 	ret = clk_prepare_enable(rs->apb_pclk);
1027 	if (ret < 0)
1028 		return ret;
1029 
1030 	ret = clk_prepare_enable(rs->spiclk);
1031 	if (ret < 0)
1032 		clk_disable_unprepare(rs->apb_pclk);
1033 
1034 	return 0;
1035 }
1036 #endif /* CONFIG_PM */
1037 
1038 static const struct dev_pm_ops rockchip_spi_pm = {
1039 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(rockchip_spi_suspend, rockchip_spi_resume)
1040 	SET_RUNTIME_PM_OPS(rockchip_spi_runtime_suspend,
1041 			   rockchip_spi_runtime_resume, NULL)
1042 };
1043 
1044 static const struct of_device_id rockchip_spi_dt_match[] = {
1045 	{ .compatible = "rockchip,px30-spi", },
1046 	{ .compatible = "rockchip,rk3036-spi", },
1047 	{ .compatible = "rockchip,rk3066-spi", },
1048 	{ .compatible = "rockchip,rk3188-spi", },
1049 	{ .compatible = "rockchip,rk3228-spi", },
1050 	{ .compatible = "rockchip,rk3288-spi", },
1051 	{ .compatible = "rockchip,rk3308-spi", },
1052 	{ .compatible = "rockchip,rk3328-spi", },
1053 	{ .compatible = "rockchip,rk3368-spi", },
1054 	{ .compatible = "rockchip,rk3399-spi", },
1055 	{ .compatible = "rockchip,rv1108-spi", },
1056 	{ .compatible = "rockchip,rv1126-spi", },
1057 	{ },
1058 };
1059 MODULE_DEVICE_TABLE(of, rockchip_spi_dt_match);
1060 
1061 static struct platform_driver rockchip_spi_driver = {
1062 	.driver = {
1063 		.name	= DRIVER_NAME,
1064 		.pm = &rockchip_spi_pm,
1065 		.of_match_table = of_match_ptr(rockchip_spi_dt_match),
1066 	},
1067 	.probe = rockchip_spi_probe,
1068 	.remove_new = rockchip_spi_remove,
1069 };
1070 
1071 module_platform_driver(rockchip_spi_driver);
1072 
1073 MODULE_AUTHOR("Addy Ke <addy.ke@rock-chips.com>");
1074 MODULE_DESCRIPTION("ROCKCHIP SPI Controller Driver");
1075 MODULE_LICENSE("GPL v2");
1076