xref: /openbmc/linux/drivers/spi/spi-qup.c (revision 0e96cf7f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2008-2014, The Linux foundation. All rights reserved.
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/delay.h>
8 #include <linux/err.h>
9 #include <linux/interrupt.h>
10 #include <linux/io.h>
11 #include <linux/list.h>
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/of_device.h>
15 #include <linux/platform_device.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/spi/spi.h>
18 #include <linux/dmaengine.h>
19 #include <linux/dma-mapping.h>
20 
21 #define QUP_CONFIG			0x0000
22 #define QUP_STATE			0x0004
23 #define QUP_IO_M_MODES			0x0008
24 #define QUP_SW_RESET			0x000c
25 #define QUP_OPERATIONAL			0x0018
26 #define QUP_ERROR_FLAGS			0x001c
27 #define QUP_ERROR_FLAGS_EN		0x0020
28 #define QUP_OPERATIONAL_MASK		0x0028
29 #define QUP_HW_VERSION			0x0030
30 #define QUP_MX_OUTPUT_CNT		0x0100
31 #define QUP_OUTPUT_FIFO			0x0110
32 #define QUP_MX_WRITE_CNT		0x0150
33 #define QUP_MX_INPUT_CNT		0x0200
34 #define QUP_MX_READ_CNT			0x0208
35 #define QUP_INPUT_FIFO			0x0218
36 
37 #define SPI_CONFIG			0x0300
38 #define SPI_IO_CONTROL			0x0304
39 #define SPI_ERROR_FLAGS			0x0308
40 #define SPI_ERROR_FLAGS_EN		0x030c
41 
42 /* QUP_CONFIG fields */
43 #define QUP_CONFIG_SPI_MODE		(1 << 8)
44 #define QUP_CONFIG_CLOCK_AUTO_GATE	BIT(13)
45 #define QUP_CONFIG_NO_INPUT		BIT(7)
46 #define QUP_CONFIG_NO_OUTPUT		BIT(6)
47 #define QUP_CONFIG_N			0x001f
48 
49 /* QUP_STATE fields */
50 #define QUP_STATE_VALID			BIT(2)
51 #define QUP_STATE_RESET			0
52 #define QUP_STATE_RUN			1
53 #define QUP_STATE_PAUSE			3
54 #define QUP_STATE_MASK			3
55 #define QUP_STATE_CLEAR			2
56 
57 #define QUP_HW_VERSION_2_1_1		0x20010001
58 
59 /* QUP_IO_M_MODES fields */
60 #define QUP_IO_M_PACK_EN		BIT(15)
61 #define QUP_IO_M_UNPACK_EN		BIT(14)
62 #define QUP_IO_M_INPUT_MODE_MASK_SHIFT	12
63 #define QUP_IO_M_OUTPUT_MODE_MASK_SHIFT	10
64 #define QUP_IO_M_INPUT_MODE_MASK	(3 << QUP_IO_M_INPUT_MODE_MASK_SHIFT)
65 #define QUP_IO_M_OUTPUT_MODE_MASK	(3 << QUP_IO_M_OUTPUT_MODE_MASK_SHIFT)
66 
67 #define QUP_IO_M_OUTPUT_BLOCK_SIZE(x)	(((x) & (0x03 << 0)) >> 0)
68 #define QUP_IO_M_OUTPUT_FIFO_SIZE(x)	(((x) & (0x07 << 2)) >> 2)
69 #define QUP_IO_M_INPUT_BLOCK_SIZE(x)	(((x) & (0x03 << 5)) >> 5)
70 #define QUP_IO_M_INPUT_FIFO_SIZE(x)	(((x) & (0x07 << 7)) >> 7)
71 
72 #define QUP_IO_M_MODE_FIFO		0
73 #define QUP_IO_M_MODE_BLOCK		1
74 #define QUP_IO_M_MODE_DMOV		2
75 #define QUP_IO_M_MODE_BAM		3
76 
77 /* QUP_OPERATIONAL fields */
78 #define QUP_OP_IN_BLOCK_READ_REQ	BIT(13)
79 #define QUP_OP_OUT_BLOCK_WRITE_REQ	BIT(12)
80 #define QUP_OP_MAX_INPUT_DONE_FLAG	BIT(11)
81 #define QUP_OP_MAX_OUTPUT_DONE_FLAG	BIT(10)
82 #define QUP_OP_IN_SERVICE_FLAG		BIT(9)
83 #define QUP_OP_OUT_SERVICE_FLAG		BIT(8)
84 #define QUP_OP_IN_FIFO_FULL		BIT(7)
85 #define QUP_OP_OUT_FIFO_FULL		BIT(6)
86 #define QUP_OP_IN_FIFO_NOT_EMPTY	BIT(5)
87 #define QUP_OP_OUT_FIFO_NOT_EMPTY	BIT(4)
88 
89 /* QUP_ERROR_FLAGS and QUP_ERROR_FLAGS_EN fields */
90 #define QUP_ERROR_OUTPUT_OVER_RUN	BIT(5)
91 #define QUP_ERROR_INPUT_UNDER_RUN	BIT(4)
92 #define QUP_ERROR_OUTPUT_UNDER_RUN	BIT(3)
93 #define QUP_ERROR_INPUT_OVER_RUN	BIT(2)
94 
95 /* SPI_CONFIG fields */
96 #define SPI_CONFIG_HS_MODE		BIT(10)
97 #define SPI_CONFIG_INPUT_FIRST		BIT(9)
98 #define SPI_CONFIG_LOOPBACK		BIT(8)
99 
100 /* SPI_IO_CONTROL fields */
101 #define SPI_IO_C_FORCE_CS		BIT(11)
102 #define SPI_IO_C_CLK_IDLE_HIGH		BIT(10)
103 #define SPI_IO_C_MX_CS_MODE		BIT(8)
104 #define SPI_IO_C_CS_N_POLARITY_0	BIT(4)
105 #define SPI_IO_C_CS_SELECT(x)		(((x) & 3) << 2)
106 #define SPI_IO_C_CS_SELECT_MASK		0x000c
107 #define SPI_IO_C_TRISTATE_CS		BIT(1)
108 #define SPI_IO_C_NO_TRI_STATE		BIT(0)
109 
110 /* SPI_ERROR_FLAGS and SPI_ERROR_FLAGS_EN fields */
111 #define SPI_ERROR_CLK_OVER_RUN		BIT(1)
112 #define SPI_ERROR_CLK_UNDER_RUN		BIT(0)
113 
114 #define SPI_NUM_CHIPSELECTS		4
115 
116 #define SPI_MAX_XFER			(SZ_64K - 64)
117 
118 /* high speed mode is when bus rate is greater then 26MHz */
119 #define SPI_HS_MIN_RATE			26000000
120 #define SPI_MAX_RATE			50000000
121 
122 #define SPI_DELAY_THRESHOLD		1
123 #define SPI_DELAY_RETRY			10
124 
125 struct spi_qup {
126 	void __iomem		*base;
127 	struct device		*dev;
128 	struct clk		*cclk;	/* core clock */
129 	struct clk		*iclk;	/* interface clock */
130 	int			irq;
131 	spinlock_t		lock;
132 
133 	int			in_fifo_sz;
134 	int			out_fifo_sz;
135 	int			in_blk_sz;
136 	int			out_blk_sz;
137 
138 	struct spi_transfer	*xfer;
139 	struct completion	done;
140 	int			error;
141 	int			w_size;	/* bytes per SPI word */
142 	int			n_words;
143 	int			tx_bytes;
144 	int			rx_bytes;
145 	const u8		*tx_buf;
146 	u8			*rx_buf;
147 	int			qup_v1;
148 
149 	int			mode;
150 	struct dma_slave_config	rx_conf;
151 	struct dma_slave_config	tx_conf;
152 };
153 
154 static int spi_qup_io_config(struct spi_device *spi, struct spi_transfer *xfer);
155 
156 static inline bool spi_qup_is_flag_set(struct spi_qup *controller, u32 flag)
157 {
158 	u32 opflag = readl_relaxed(controller->base + QUP_OPERATIONAL);
159 
160 	return (opflag & flag) != 0;
161 }
162 
163 static inline bool spi_qup_is_dma_xfer(int mode)
164 {
165 	if (mode == QUP_IO_M_MODE_DMOV || mode == QUP_IO_M_MODE_BAM)
166 		return true;
167 
168 	return false;
169 }
170 
171 /* get's the transaction size length */
172 static inline unsigned int spi_qup_len(struct spi_qup *controller)
173 {
174 	return controller->n_words * controller->w_size;
175 }
176 
177 static inline bool spi_qup_is_valid_state(struct spi_qup *controller)
178 {
179 	u32 opstate = readl_relaxed(controller->base + QUP_STATE);
180 
181 	return opstate & QUP_STATE_VALID;
182 }
183 
184 static int spi_qup_set_state(struct spi_qup *controller, u32 state)
185 {
186 	unsigned long loop;
187 	u32 cur_state;
188 
189 	loop = 0;
190 	while (!spi_qup_is_valid_state(controller)) {
191 
192 		usleep_range(SPI_DELAY_THRESHOLD, SPI_DELAY_THRESHOLD * 2);
193 
194 		if (++loop > SPI_DELAY_RETRY)
195 			return -EIO;
196 	}
197 
198 	if (loop)
199 		dev_dbg(controller->dev, "invalid state for %ld,us %d\n",
200 			loop, state);
201 
202 	cur_state = readl_relaxed(controller->base + QUP_STATE);
203 	/*
204 	 * Per spec: for PAUSE_STATE to RESET_STATE, two writes
205 	 * of (b10) are required
206 	 */
207 	if (((cur_state & QUP_STATE_MASK) == QUP_STATE_PAUSE) &&
208 	    (state == QUP_STATE_RESET)) {
209 		writel_relaxed(QUP_STATE_CLEAR, controller->base + QUP_STATE);
210 		writel_relaxed(QUP_STATE_CLEAR, controller->base + QUP_STATE);
211 	} else {
212 		cur_state &= ~QUP_STATE_MASK;
213 		cur_state |= state;
214 		writel_relaxed(cur_state, controller->base + QUP_STATE);
215 	}
216 
217 	loop = 0;
218 	while (!spi_qup_is_valid_state(controller)) {
219 
220 		usleep_range(SPI_DELAY_THRESHOLD, SPI_DELAY_THRESHOLD * 2);
221 
222 		if (++loop > SPI_DELAY_RETRY)
223 			return -EIO;
224 	}
225 
226 	return 0;
227 }
228 
229 static void spi_qup_read_from_fifo(struct spi_qup *controller, u32 num_words)
230 {
231 	u8 *rx_buf = controller->rx_buf;
232 	int i, shift, num_bytes;
233 	u32 word;
234 
235 	for (; num_words; num_words--) {
236 
237 		word = readl_relaxed(controller->base + QUP_INPUT_FIFO);
238 
239 		num_bytes = min_t(int, spi_qup_len(controller) -
240 				       controller->rx_bytes,
241 				       controller->w_size);
242 
243 		if (!rx_buf) {
244 			controller->rx_bytes += num_bytes;
245 			continue;
246 		}
247 
248 		for (i = 0; i < num_bytes; i++, controller->rx_bytes++) {
249 			/*
250 			 * The data format depends on bytes per SPI word:
251 			 *  4 bytes: 0x12345678
252 			 *  2 bytes: 0x00001234
253 			 *  1 byte : 0x00000012
254 			 */
255 			shift = BITS_PER_BYTE;
256 			shift *= (controller->w_size - i - 1);
257 			rx_buf[controller->rx_bytes] = word >> shift;
258 		}
259 	}
260 }
261 
262 static void spi_qup_read(struct spi_qup *controller, u32 *opflags)
263 {
264 	u32 remainder, words_per_block, num_words;
265 	bool is_block_mode = controller->mode == QUP_IO_M_MODE_BLOCK;
266 
267 	remainder = DIV_ROUND_UP(spi_qup_len(controller) - controller->rx_bytes,
268 				 controller->w_size);
269 	words_per_block = controller->in_blk_sz >> 2;
270 
271 	do {
272 		/* ACK by clearing service flag */
273 		writel_relaxed(QUP_OP_IN_SERVICE_FLAG,
274 			       controller->base + QUP_OPERATIONAL);
275 
276 		if (is_block_mode) {
277 			num_words = (remainder > words_per_block) ?
278 					words_per_block : remainder;
279 		} else {
280 			if (!spi_qup_is_flag_set(controller,
281 						 QUP_OP_IN_FIFO_NOT_EMPTY))
282 				break;
283 
284 			num_words = 1;
285 		}
286 
287 		/* read up to the maximum transfer size available */
288 		spi_qup_read_from_fifo(controller, num_words);
289 
290 		remainder -= num_words;
291 
292 		/* if block mode, check to see if next block is available */
293 		if (is_block_mode && !spi_qup_is_flag_set(controller,
294 					QUP_OP_IN_BLOCK_READ_REQ))
295 			break;
296 
297 	} while (remainder);
298 
299 	/*
300 	 * Due to extra stickiness of the QUP_OP_IN_SERVICE_FLAG during block
301 	 * reads, it has to be cleared again at the very end.  However, be sure
302 	 * to refresh opflags value because MAX_INPUT_DONE_FLAG may now be
303 	 * present and this is used to determine if transaction is complete
304 	 */
305 	*opflags = readl_relaxed(controller->base + QUP_OPERATIONAL);
306 	if (is_block_mode && *opflags & QUP_OP_MAX_INPUT_DONE_FLAG)
307 		writel_relaxed(QUP_OP_IN_SERVICE_FLAG,
308 			       controller->base + QUP_OPERATIONAL);
309 
310 }
311 
312 static void spi_qup_write_to_fifo(struct spi_qup *controller, u32 num_words)
313 {
314 	const u8 *tx_buf = controller->tx_buf;
315 	int i, num_bytes;
316 	u32 word, data;
317 
318 	for (; num_words; num_words--) {
319 		word = 0;
320 
321 		num_bytes = min_t(int, spi_qup_len(controller) -
322 				       controller->tx_bytes,
323 				       controller->w_size);
324 		if (tx_buf)
325 			for (i = 0; i < num_bytes; i++) {
326 				data = tx_buf[controller->tx_bytes + i];
327 				word |= data << (BITS_PER_BYTE * (3 - i));
328 			}
329 
330 		controller->tx_bytes += num_bytes;
331 
332 		writel_relaxed(word, controller->base + QUP_OUTPUT_FIFO);
333 	}
334 }
335 
336 static void spi_qup_dma_done(void *data)
337 {
338 	struct spi_qup *qup = data;
339 
340 	complete(&qup->done);
341 }
342 
343 static void spi_qup_write(struct spi_qup *controller)
344 {
345 	bool is_block_mode = controller->mode == QUP_IO_M_MODE_BLOCK;
346 	u32 remainder, words_per_block, num_words;
347 
348 	remainder = DIV_ROUND_UP(spi_qup_len(controller) - controller->tx_bytes,
349 				 controller->w_size);
350 	words_per_block = controller->out_blk_sz >> 2;
351 
352 	do {
353 		/* ACK by clearing service flag */
354 		writel_relaxed(QUP_OP_OUT_SERVICE_FLAG,
355 			       controller->base + QUP_OPERATIONAL);
356 
357 		if (is_block_mode) {
358 			num_words = (remainder > words_per_block) ?
359 				words_per_block : remainder;
360 		} else {
361 			if (spi_qup_is_flag_set(controller,
362 						QUP_OP_OUT_FIFO_FULL))
363 				break;
364 
365 			num_words = 1;
366 		}
367 
368 		spi_qup_write_to_fifo(controller, num_words);
369 
370 		remainder -= num_words;
371 
372 		/* if block mode, check to see if next block is available */
373 		if (is_block_mode && !spi_qup_is_flag_set(controller,
374 					QUP_OP_OUT_BLOCK_WRITE_REQ))
375 			break;
376 
377 	} while (remainder);
378 }
379 
380 static int spi_qup_prep_sg(struct spi_master *master, struct scatterlist *sgl,
381 			   unsigned int nents, enum dma_transfer_direction dir,
382 			   dma_async_tx_callback callback)
383 {
384 	struct spi_qup *qup = spi_master_get_devdata(master);
385 	unsigned long flags = DMA_PREP_INTERRUPT | DMA_PREP_FENCE;
386 	struct dma_async_tx_descriptor *desc;
387 	struct dma_chan *chan;
388 	dma_cookie_t cookie;
389 
390 	if (dir == DMA_MEM_TO_DEV)
391 		chan = master->dma_tx;
392 	else
393 		chan = master->dma_rx;
394 
395 	desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags);
396 	if (IS_ERR_OR_NULL(desc))
397 		return desc ? PTR_ERR(desc) : -EINVAL;
398 
399 	desc->callback = callback;
400 	desc->callback_param = qup;
401 
402 	cookie = dmaengine_submit(desc);
403 
404 	return dma_submit_error(cookie);
405 }
406 
407 static void spi_qup_dma_terminate(struct spi_master *master,
408 				  struct spi_transfer *xfer)
409 {
410 	if (xfer->tx_buf)
411 		dmaengine_terminate_all(master->dma_tx);
412 	if (xfer->rx_buf)
413 		dmaengine_terminate_all(master->dma_rx);
414 }
415 
416 static u32 spi_qup_sgl_get_nents_len(struct scatterlist *sgl, u32 max,
417 				     u32 *nents)
418 {
419 	struct scatterlist *sg;
420 	u32 total = 0;
421 
422 	for (sg = sgl; sg; sg = sg_next(sg)) {
423 		unsigned int len = sg_dma_len(sg);
424 
425 		/* check for overflow as well as limit */
426 		if (((total + len) < total) || ((total + len) > max))
427 			break;
428 
429 		total += len;
430 		(*nents)++;
431 	}
432 
433 	return total;
434 }
435 
436 static int spi_qup_do_dma(struct spi_device *spi, struct spi_transfer *xfer,
437 			  unsigned long timeout)
438 {
439 	dma_async_tx_callback rx_done = NULL, tx_done = NULL;
440 	struct spi_master *master = spi->master;
441 	struct spi_qup *qup = spi_master_get_devdata(master);
442 	struct scatterlist *tx_sgl, *rx_sgl;
443 	int ret;
444 
445 	if (xfer->rx_buf)
446 		rx_done = spi_qup_dma_done;
447 	else if (xfer->tx_buf)
448 		tx_done = spi_qup_dma_done;
449 
450 	rx_sgl = xfer->rx_sg.sgl;
451 	tx_sgl = xfer->tx_sg.sgl;
452 
453 	do {
454 		u32 rx_nents = 0, tx_nents = 0;
455 
456 		if (rx_sgl)
457 			qup->n_words = spi_qup_sgl_get_nents_len(rx_sgl,
458 					SPI_MAX_XFER, &rx_nents) / qup->w_size;
459 		if (tx_sgl)
460 			qup->n_words = spi_qup_sgl_get_nents_len(tx_sgl,
461 					SPI_MAX_XFER, &tx_nents) / qup->w_size;
462 		if (!qup->n_words)
463 			return -EIO;
464 
465 		ret = spi_qup_io_config(spi, xfer);
466 		if (ret)
467 			return ret;
468 
469 		/* before issuing the descriptors, set the QUP to run */
470 		ret = spi_qup_set_state(qup, QUP_STATE_RUN);
471 		if (ret) {
472 			dev_warn(qup->dev, "cannot set RUN state\n");
473 			return ret;
474 		}
475 		if (rx_sgl) {
476 			ret = spi_qup_prep_sg(master, rx_sgl, rx_nents,
477 					      DMA_DEV_TO_MEM, rx_done);
478 			if (ret)
479 				return ret;
480 			dma_async_issue_pending(master->dma_rx);
481 		}
482 
483 		if (tx_sgl) {
484 			ret = spi_qup_prep_sg(master, tx_sgl, tx_nents,
485 					      DMA_MEM_TO_DEV, tx_done);
486 			if (ret)
487 				return ret;
488 
489 			dma_async_issue_pending(master->dma_tx);
490 		}
491 
492 		if (!wait_for_completion_timeout(&qup->done, timeout))
493 			return -ETIMEDOUT;
494 
495 		for (; rx_sgl && rx_nents--; rx_sgl = sg_next(rx_sgl))
496 			;
497 		for (; tx_sgl && tx_nents--; tx_sgl = sg_next(tx_sgl))
498 			;
499 
500 	} while (rx_sgl || tx_sgl);
501 
502 	return 0;
503 }
504 
505 static int spi_qup_do_pio(struct spi_device *spi, struct spi_transfer *xfer,
506 			  unsigned long timeout)
507 {
508 	struct spi_master *master = spi->master;
509 	struct spi_qup *qup = spi_master_get_devdata(master);
510 	int ret, n_words, iterations, offset = 0;
511 
512 	n_words = qup->n_words;
513 	iterations = n_words / SPI_MAX_XFER; /* round down */
514 	qup->rx_buf = xfer->rx_buf;
515 	qup->tx_buf = xfer->tx_buf;
516 
517 	do {
518 		if (iterations)
519 			qup->n_words = SPI_MAX_XFER;
520 		else
521 			qup->n_words = n_words % SPI_MAX_XFER;
522 
523 		if (qup->tx_buf && offset)
524 			qup->tx_buf = xfer->tx_buf + offset * SPI_MAX_XFER;
525 
526 		if (qup->rx_buf && offset)
527 			qup->rx_buf = xfer->rx_buf + offset * SPI_MAX_XFER;
528 
529 		/*
530 		 * if the transaction is small enough, we need
531 		 * to fallback to FIFO mode
532 		 */
533 		if (qup->n_words <= (qup->in_fifo_sz / sizeof(u32)))
534 			qup->mode = QUP_IO_M_MODE_FIFO;
535 
536 		ret = spi_qup_io_config(spi, xfer);
537 		if (ret)
538 			return ret;
539 
540 		ret = spi_qup_set_state(qup, QUP_STATE_RUN);
541 		if (ret) {
542 			dev_warn(qup->dev, "cannot set RUN state\n");
543 			return ret;
544 		}
545 
546 		ret = spi_qup_set_state(qup, QUP_STATE_PAUSE);
547 		if (ret) {
548 			dev_warn(qup->dev, "cannot set PAUSE state\n");
549 			return ret;
550 		}
551 
552 		if (qup->mode == QUP_IO_M_MODE_FIFO)
553 			spi_qup_write(qup);
554 
555 		ret = spi_qup_set_state(qup, QUP_STATE_RUN);
556 		if (ret) {
557 			dev_warn(qup->dev, "cannot set RUN state\n");
558 			return ret;
559 		}
560 
561 		if (!wait_for_completion_timeout(&qup->done, timeout))
562 			return -ETIMEDOUT;
563 
564 		offset++;
565 	} while (iterations--);
566 
567 	return 0;
568 }
569 
570 static irqreturn_t spi_qup_qup_irq(int irq, void *dev_id)
571 {
572 	struct spi_qup *controller = dev_id;
573 	u32 opflags, qup_err, spi_err;
574 	int error = 0;
575 
576 	qup_err = readl_relaxed(controller->base + QUP_ERROR_FLAGS);
577 	spi_err = readl_relaxed(controller->base + SPI_ERROR_FLAGS);
578 	opflags = readl_relaxed(controller->base + QUP_OPERATIONAL);
579 
580 	writel_relaxed(qup_err, controller->base + QUP_ERROR_FLAGS);
581 	writel_relaxed(spi_err, controller->base + SPI_ERROR_FLAGS);
582 
583 	if (qup_err) {
584 		if (qup_err & QUP_ERROR_OUTPUT_OVER_RUN)
585 			dev_warn(controller->dev, "OUTPUT_OVER_RUN\n");
586 		if (qup_err & QUP_ERROR_INPUT_UNDER_RUN)
587 			dev_warn(controller->dev, "INPUT_UNDER_RUN\n");
588 		if (qup_err & QUP_ERROR_OUTPUT_UNDER_RUN)
589 			dev_warn(controller->dev, "OUTPUT_UNDER_RUN\n");
590 		if (qup_err & QUP_ERROR_INPUT_OVER_RUN)
591 			dev_warn(controller->dev, "INPUT_OVER_RUN\n");
592 
593 		error = -EIO;
594 	}
595 
596 	if (spi_err) {
597 		if (spi_err & SPI_ERROR_CLK_OVER_RUN)
598 			dev_warn(controller->dev, "CLK_OVER_RUN\n");
599 		if (spi_err & SPI_ERROR_CLK_UNDER_RUN)
600 			dev_warn(controller->dev, "CLK_UNDER_RUN\n");
601 
602 		error = -EIO;
603 	}
604 
605 	if (spi_qup_is_dma_xfer(controller->mode)) {
606 		writel_relaxed(opflags, controller->base + QUP_OPERATIONAL);
607 	} else {
608 		if (opflags & QUP_OP_IN_SERVICE_FLAG)
609 			spi_qup_read(controller, &opflags);
610 
611 		if (opflags & QUP_OP_OUT_SERVICE_FLAG)
612 			spi_qup_write(controller);
613 	}
614 
615 	if ((opflags & QUP_OP_MAX_INPUT_DONE_FLAG) || error)
616 		complete(&controller->done);
617 
618 	return IRQ_HANDLED;
619 }
620 
621 /* set clock freq ... bits per word, determine mode */
622 static int spi_qup_io_prep(struct spi_device *spi, struct spi_transfer *xfer)
623 {
624 	struct spi_qup *controller = spi_master_get_devdata(spi->master);
625 	int ret;
626 
627 	if (spi->mode & SPI_LOOP && xfer->len > controller->in_fifo_sz) {
628 		dev_err(controller->dev, "too big size for loopback %d > %d\n",
629 			xfer->len, controller->in_fifo_sz);
630 		return -EIO;
631 	}
632 
633 	ret = clk_set_rate(controller->cclk, xfer->speed_hz);
634 	if (ret) {
635 		dev_err(controller->dev, "fail to set frequency %d",
636 			xfer->speed_hz);
637 		return -EIO;
638 	}
639 
640 	controller->w_size = DIV_ROUND_UP(xfer->bits_per_word, 8);
641 	controller->n_words = xfer->len / controller->w_size;
642 
643 	if (controller->n_words <= (controller->in_fifo_sz / sizeof(u32)))
644 		controller->mode = QUP_IO_M_MODE_FIFO;
645 	else if (spi->master->can_dma &&
646 		 spi->master->can_dma(spi->master, spi, xfer) &&
647 		 spi->master->cur_msg_mapped)
648 		controller->mode = QUP_IO_M_MODE_BAM;
649 	else
650 		controller->mode = QUP_IO_M_MODE_BLOCK;
651 
652 	return 0;
653 }
654 
655 /* prep qup for another spi transaction of specific type */
656 static int spi_qup_io_config(struct spi_device *spi, struct spi_transfer *xfer)
657 {
658 	struct spi_qup *controller = spi_master_get_devdata(spi->master);
659 	u32 config, iomode, control;
660 	unsigned long flags;
661 
662 	spin_lock_irqsave(&controller->lock, flags);
663 	controller->xfer     = xfer;
664 	controller->error    = 0;
665 	controller->rx_bytes = 0;
666 	controller->tx_bytes = 0;
667 	spin_unlock_irqrestore(&controller->lock, flags);
668 
669 
670 	if (spi_qup_set_state(controller, QUP_STATE_RESET)) {
671 		dev_err(controller->dev, "cannot set RESET state\n");
672 		return -EIO;
673 	}
674 
675 	switch (controller->mode) {
676 	case QUP_IO_M_MODE_FIFO:
677 		writel_relaxed(controller->n_words,
678 			       controller->base + QUP_MX_READ_CNT);
679 		writel_relaxed(controller->n_words,
680 			       controller->base + QUP_MX_WRITE_CNT);
681 		/* must be zero for FIFO */
682 		writel_relaxed(0, controller->base + QUP_MX_INPUT_CNT);
683 		writel_relaxed(0, controller->base + QUP_MX_OUTPUT_CNT);
684 		break;
685 	case QUP_IO_M_MODE_BAM:
686 		writel_relaxed(controller->n_words,
687 			       controller->base + QUP_MX_INPUT_CNT);
688 		writel_relaxed(controller->n_words,
689 			       controller->base + QUP_MX_OUTPUT_CNT);
690 		/* must be zero for BLOCK and BAM */
691 		writel_relaxed(0, controller->base + QUP_MX_READ_CNT);
692 		writel_relaxed(0, controller->base + QUP_MX_WRITE_CNT);
693 
694 		if (!controller->qup_v1) {
695 			void __iomem *input_cnt;
696 
697 			input_cnt = controller->base + QUP_MX_INPUT_CNT;
698 			/*
699 			 * for DMA transfers, both QUP_MX_INPUT_CNT and
700 			 * QUP_MX_OUTPUT_CNT must be zero to all cases but one.
701 			 * That case is a non-balanced transfer when there is
702 			 * only a rx_buf.
703 			 */
704 			if (xfer->tx_buf)
705 				writel_relaxed(0, input_cnt);
706 			else
707 				writel_relaxed(controller->n_words, input_cnt);
708 
709 			writel_relaxed(0, controller->base + QUP_MX_OUTPUT_CNT);
710 		}
711 		break;
712 	case QUP_IO_M_MODE_BLOCK:
713 		reinit_completion(&controller->done);
714 		writel_relaxed(controller->n_words,
715 			       controller->base + QUP_MX_INPUT_CNT);
716 		writel_relaxed(controller->n_words,
717 			       controller->base + QUP_MX_OUTPUT_CNT);
718 		/* must be zero for BLOCK and BAM */
719 		writel_relaxed(0, controller->base + QUP_MX_READ_CNT);
720 		writel_relaxed(0, controller->base + QUP_MX_WRITE_CNT);
721 		break;
722 	default:
723 		dev_err(controller->dev, "unknown mode = %d\n",
724 				controller->mode);
725 		return -EIO;
726 	}
727 
728 	iomode = readl_relaxed(controller->base + QUP_IO_M_MODES);
729 	/* Set input and output transfer mode */
730 	iomode &= ~(QUP_IO_M_INPUT_MODE_MASK | QUP_IO_M_OUTPUT_MODE_MASK);
731 
732 	if (!spi_qup_is_dma_xfer(controller->mode))
733 		iomode &= ~(QUP_IO_M_PACK_EN | QUP_IO_M_UNPACK_EN);
734 	else
735 		iomode |= QUP_IO_M_PACK_EN | QUP_IO_M_UNPACK_EN;
736 
737 	iomode |= (controller->mode << QUP_IO_M_OUTPUT_MODE_MASK_SHIFT);
738 	iomode |= (controller->mode << QUP_IO_M_INPUT_MODE_MASK_SHIFT);
739 
740 	writel_relaxed(iomode, controller->base + QUP_IO_M_MODES);
741 
742 	control = readl_relaxed(controller->base + SPI_IO_CONTROL);
743 
744 	if (spi->mode & SPI_CPOL)
745 		control |= SPI_IO_C_CLK_IDLE_HIGH;
746 	else
747 		control &= ~SPI_IO_C_CLK_IDLE_HIGH;
748 
749 	writel_relaxed(control, controller->base + SPI_IO_CONTROL);
750 
751 	config = readl_relaxed(controller->base + SPI_CONFIG);
752 
753 	if (spi->mode & SPI_LOOP)
754 		config |= SPI_CONFIG_LOOPBACK;
755 	else
756 		config &= ~SPI_CONFIG_LOOPBACK;
757 
758 	if (spi->mode & SPI_CPHA)
759 		config &= ~SPI_CONFIG_INPUT_FIRST;
760 	else
761 		config |= SPI_CONFIG_INPUT_FIRST;
762 
763 	/*
764 	 * HS_MODE improves signal stability for spi-clk high rates,
765 	 * but is invalid in loop back mode.
766 	 */
767 	if ((xfer->speed_hz >= SPI_HS_MIN_RATE) && !(spi->mode & SPI_LOOP))
768 		config |= SPI_CONFIG_HS_MODE;
769 	else
770 		config &= ~SPI_CONFIG_HS_MODE;
771 
772 	writel_relaxed(config, controller->base + SPI_CONFIG);
773 
774 	config = readl_relaxed(controller->base + QUP_CONFIG);
775 	config &= ~(QUP_CONFIG_NO_INPUT | QUP_CONFIG_NO_OUTPUT | QUP_CONFIG_N);
776 	config |= xfer->bits_per_word - 1;
777 	config |= QUP_CONFIG_SPI_MODE;
778 
779 	if (spi_qup_is_dma_xfer(controller->mode)) {
780 		if (!xfer->tx_buf)
781 			config |= QUP_CONFIG_NO_OUTPUT;
782 		if (!xfer->rx_buf)
783 			config |= QUP_CONFIG_NO_INPUT;
784 	}
785 
786 	writel_relaxed(config, controller->base + QUP_CONFIG);
787 
788 	/* only write to OPERATIONAL_MASK when register is present */
789 	if (!controller->qup_v1) {
790 		u32 mask = 0;
791 
792 		/*
793 		 * mask INPUT and OUTPUT service flags to prevent IRQs on FIFO
794 		 * status change in BAM mode
795 		 */
796 
797 		if (spi_qup_is_dma_xfer(controller->mode))
798 			mask = QUP_OP_IN_SERVICE_FLAG | QUP_OP_OUT_SERVICE_FLAG;
799 
800 		writel_relaxed(mask, controller->base + QUP_OPERATIONAL_MASK);
801 	}
802 
803 	return 0;
804 }
805 
806 static int spi_qup_transfer_one(struct spi_master *master,
807 			      struct spi_device *spi,
808 			      struct spi_transfer *xfer)
809 {
810 	struct spi_qup *controller = spi_master_get_devdata(master);
811 	unsigned long timeout, flags;
812 	int ret = -EIO;
813 
814 	ret = spi_qup_io_prep(spi, xfer);
815 	if (ret)
816 		return ret;
817 
818 	timeout = DIV_ROUND_UP(xfer->speed_hz, MSEC_PER_SEC);
819 	timeout = DIV_ROUND_UP(min_t(unsigned long, SPI_MAX_XFER,
820 				     xfer->len) * 8, timeout);
821 	timeout = 100 * msecs_to_jiffies(timeout);
822 
823 	reinit_completion(&controller->done);
824 
825 	spin_lock_irqsave(&controller->lock, flags);
826 	controller->xfer     = xfer;
827 	controller->error    = 0;
828 	controller->rx_bytes = 0;
829 	controller->tx_bytes = 0;
830 	spin_unlock_irqrestore(&controller->lock, flags);
831 
832 	if (spi_qup_is_dma_xfer(controller->mode))
833 		ret = spi_qup_do_dma(spi, xfer, timeout);
834 	else
835 		ret = spi_qup_do_pio(spi, xfer, timeout);
836 
837 	if (ret)
838 		goto exit;
839 
840 exit:
841 	spi_qup_set_state(controller, QUP_STATE_RESET);
842 	spin_lock_irqsave(&controller->lock, flags);
843 	if (!ret)
844 		ret = controller->error;
845 	spin_unlock_irqrestore(&controller->lock, flags);
846 
847 	if (ret && spi_qup_is_dma_xfer(controller->mode))
848 		spi_qup_dma_terminate(master, xfer);
849 
850 	return ret;
851 }
852 
853 static bool spi_qup_can_dma(struct spi_master *master, struct spi_device *spi,
854 			    struct spi_transfer *xfer)
855 {
856 	struct spi_qup *qup = spi_master_get_devdata(master);
857 	size_t dma_align = dma_get_cache_alignment();
858 	int n_words;
859 
860 	if (xfer->rx_buf) {
861 		if (!IS_ALIGNED((size_t)xfer->rx_buf, dma_align) ||
862 		    IS_ERR_OR_NULL(master->dma_rx))
863 			return false;
864 		if (qup->qup_v1 && (xfer->len % qup->in_blk_sz))
865 			return false;
866 	}
867 
868 	if (xfer->tx_buf) {
869 		if (!IS_ALIGNED((size_t)xfer->tx_buf, dma_align) ||
870 		    IS_ERR_OR_NULL(master->dma_tx))
871 			return false;
872 		if (qup->qup_v1 && (xfer->len % qup->out_blk_sz))
873 			return false;
874 	}
875 
876 	n_words = xfer->len / DIV_ROUND_UP(xfer->bits_per_word, 8);
877 	if (n_words <= (qup->in_fifo_sz / sizeof(u32)))
878 		return false;
879 
880 	return true;
881 }
882 
883 static void spi_qup_release_dma(struct spi_master *master)
884 {
885 	if (!IS_ERR_OR_NULL(master->dma_rx))
886 		dma_release_channel(master->dma_rx);
887 	if (!IS_ERR_OR_NULL(master->dma_tx))
888 		dma_release_channel(master->dma_tx);
889 }
890 
891 static int spi_qup_init_dma(struct spi_master *master, resource_size_t base)
892 {
893 	struct spi_qup *spi = spi_master_get_devdata(master);
894 	struct dma_slave_config *rx_conf = &spi->rx_conf,
895 				*tx_conf = &spi->tx_conf;
896 	struct device *dev = spi->dev;
897 	int ret;
898 
899 	/* allocate dma resources, if available */
900 	master->dma_rx = dma_request_slave_channel_reason(dev, "rx");
901 	if (IS_ERR(master->dma_rx))
902 		return PTR_ERR(master->dma_rx);
903 
904 	master->dma_tx = dma_request_slave_channel_reason(dev, "tx");
905 	if (IS_ERR(master->dma_tx)) {
906 		ret = PTR_ERR(master->dma_tx);
907 		goto err_tx;
908 	}
909 
910 	/* set DMA parameters */
911 	rx_conf->direction = DMA_DEV_TO_MEM;
912 	rx_conf->device_fc = 1;
913 	rx_conf->src_addr = base + QUP_INPUT_FIFO;
914 	rx_conf->src_maxburst = spi->in_blk_sz;
915 
916 	tx_conf->direction = DMA_MEM_TO_DEV;
917 	tx_conf->device_fc = 1;
918 	tx_conf->dst_addr = base + QUP_OUTPUT_FIFO;
919 	tx_conf->dst_maxburst = spi->out_blk_sz;
920 
921 	ret = dmaengine_slave_config(master->dma_rx, rx_conf);
922 	if (ret) {
923 		dev_err(dev, "failed to configure RX channel\n");
924 		goto err;
925 	}
926 
927 	ret = dmaengine_slave_config(master->dma_tx, tx_conf);
928 	if (ret) {
929 		dev_err(dev, "failed to configure TX channel\n");
930 		goto err;
931 	}
932 
933 	return 0;
934 
935 err:
936 	dma_release_channel(master->dma_tx);
937 err_tx:
938 	dma_release_channel(master->dma_rx);
939 	return ret;
940 }
941 
942 static void spi_qup_set_cs(struct spi_device *spi, bool val)
943 {
944 	struct spi_qup *controller;
945 	u32 spi_ioc;
946 	u32 spi_ioc_orig;
947 
948 	controller = spi_master_get_devdata(spi->master);
949 	spi_ioc = readl_relaxed(controller->base + SPI_IO_CONTROL);
950 	spi_ioc_orig = spi_ioc;
951 	if (!val)
952 		spi_ioc |= SPI_IO_C_FORCE_CS;
953 	else
954 		spi_ioc &= ~SPI_IO_C_FORCE_CS;
955 
956 	if (spi_ioc != spi_ioc_orig)
957 		writel_relaxed(spi_ioc, controller->base + SPI_IO_CONTROL);
958 }
959 
960 static int spi_qup_probe(struct platform_device *pdev)
961 {
962 	struct spi_master *master;
963 	struct clk *iclk, *cclk;
964 	struct spi_qup *controller;
965 	struct resource *res;
966 	struct device *dev;
967 	void __iomem *base;
968 	u32 max_freq, iomode, num_cs;
969 	int ret, irq, size;
970 
971 	dev = &pdev->dev;
972 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
973 	base = devm_ioremap_resource(dev, res);
974 	if (IS_ERR(base))
975 		return PTR_ERR(base);
976 
977 	irq = platform_get_irq(pdev, 0);
978 	if (irq < 0)
979 		return irq;
980 
981 	cclk = devm_clk_get(dev, "core");
982 	if (IS_ERR(cclk))
983 		return PTR_ERR(cclk);
984 
985 	iclk = devm_clk_get(dev, "iface");
986 	if (IS_ERR(iclk))
987 		return PTR_ERR(iclk);
988 
989 	/* This is optional parameter */
990 	if (of_property_read_u32(dev->of_node, "spi-max-frequency", &max_freq))
991 		max_freq = SPI_MAX_RATE;
992 
993 	if (!max_freq || max_freq > SPI_MAX_RATE) {
994 		dev_err(dev, "invalid clock frequency %d\n", max_freq);
995 		return -ENXIO;
996 	}
997 
998 	ret = clk_prepare_enable(cclk);
999 	if (ret) {
1000 		dev_err(dev, "cannot enable core clock\n");
1001 		return ret;
1002 	}
1003 
1004 	ret = clk_prepare_enable(iclk);
1005 	if (ret) {
1006 		clk_disable_unprepare(cclk);
1007 		dev_err(dev, "cannot enable iface clock\n");
1008 		return ret;
1009 	}
1010 
1011 	master = spi_alloc_master(dev, sizeof(struct spi_qup));
1012 	if (!master) {
1013 		clk_disable_unprepare(cclk);
1014 		clk_disable_unprepare(iclk);
1015 		dev_err(dev, "cannot allocate master\n");
1016 		return -ENOMEM;
1017 	}
1018 
1019 	/* use num-cs unless not present or out of range */
1020 	if (of_property_read_u32(dev->of_node, "num-cs", &num_cs) ||
1021 	    num_cs > SPI_NUM_CHIPSELECTS)
1022 		master->num_chipselect = SPI_NUM_CHIPSELECTS;
1023 	else
1024 		master->num_chipselect = num_cs;
1025 
1026 	master->bus_num = pdev->id;
1027 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1028 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1029 	master->max_speed_hz = max_freq;
1030 	master->transfer_one = spi_qup_transfer_one;
1031 	master->dev.of_node = pdev->dev.of_node;
1032 	master->auto_runtime_pm = true;
1033 	master->dma_alignment = dma_get_cache_alignment();
1034 	master->max_dma_len = SPI_MAX_XFER;
1035 
1036 	platform_set_drvdata(pdev, master);
1037 
1038 	controller = spi_master_get_devdata(master);
1039 
1040 	controller->dev = dev;
1041 	controller->base = base;
1042 	controller->iclk = iclk;
1043 	controller->cclk = cclk;
1044 	controller->irq = irq;
1045 
1046 	ret = spi_qup_init_dma(master, res->start);
1047 	if (ret == -EPROBE_DEFER)
1048 		goto error;
1049 	else if (!ret)
1050 		master->can_dma = spi_qup_can_dma;
1051 
1052 	controller->qup_v1 = (uintptr_t)of_device_get_match_data(dev);
1053 
1054 	if (!controller->qup_v1)
1055 		master->set_cs = spi_qup_set_cs;
1056 
1057 	spin_lock_init(&controller->lock);
1058 	init_completion(&controller->done);
1059 
1060 	iomode = readl_relaxed(base + QUP_IO_M_MODES);
1061 
1062 	size = QUP_IO_M_OUTPUT_BLOCK_SIZE(iomode);
1063 	if (size)
1064 		controller->out_blk_sz = size * 16;
1065 	else
1066 		controller->out_blk_sz = 4;
1067 
1068 	size = QUP_IO_M_INPUT_BLOCK_SIZE(iomode);
1069 	if (size)
1070 		controller->in_blk_sz = size * 16;
1071 	else
1072 		controller->in_blk_sz = 4;
1073 
1074 	size = QUP_IO_M_OUTPUT_FIFO_SIZE(iomode);
1075 	controller->out_fifo_sz = controller->out_blk_sz * (2 << size);
1076 
1077 	size = QUP_IO_M_INPUT_FIFO_SIZE(iomode);
1078 	controller->in_fifo_sz = controller->in_blk_sz * (2 << size);
1079 
1080 	dev_info(dev, "IN:block:%d, fifo:%d, OUT:block:%d, fifo:%d\n",
1081 		 controller->in_blk_sz, controller->in_fifo_sz,
1082 		 controller->out_blk_sz, controller->out_fifo_sz);
1083 
1084 	writel_relaxed(1, base + QUP_SW_RESET);
1085 
1086 	ret = spi_qup_set_state(controller, QUP_STATE_RESET);
1087 	if (ret) {
1088 		dev_err(dev, "cannot set RESET state\n");
1089 		goto error_dma;
1090 	}
1091 
1092 	writel_relaxed(0, base + QUP_OPERATIONAL);
1093 	writel_relaxed(0, base + QUP_IO_M_MODES);
1094 
1095 	if (!controller->qup_v1)
1096 		writel_relaxed(0, base + QUP_OPERATIONAL_MASK);
1097 
1098 	writel_relaxed(SPI_ERROR_CLK_UNDER_RUN | SPI_ERROR_CLK_OVER_RUN,
1099 		       base + SPI_ERROR_FLAGS_EN);
1100 
1101 	/* if earlier version of the QUP, disable INPUT_OVERRUN */
1102 	if (controller->qup_v1)
1103 		writel_relaxed(QUP_ERROR_OUTPUT_OVER_RUN |
1104 			QUP_ERROR_INPUT_UNDER_RUN | QUP_ERROR_OUTPUT_UNDER_RUN,
1105 			base + QUP_ERROR_FLAGS_EN);
1106 
1107 	writel_relaxed(0, base + SPI_CONFIG);
1108 	writel_relaxed(SPI_IO_C_NO_TRI_STATE, base + SPI_IO_CONTROL);
1109 
1110 	ret = devm_request_irq(dev, irq, spi_qup_qup_irq,
1111 			       IRQF_TRIGGER_HIGH, pdev->name, controller);
1112 	if (ret)
1113 		goto error_dma;
1114 
1115 	pm_runtime_set_autosuspend_delay(dev, MSEC_PER_SEC);
1116 	pm_runtime_use_autosuspend(dev);
1117 	pm_runtime_set_active(dev);
1118 	pm_runtime_enable(dev);
1119 
1120 	ret = devm_spi_register_master(dev, master);
1121 	if (ret)
1122 		goto disable_pm;
1123 
1124 	return 0;
1125 
1126 disable_pm:
1127 	pm_runtime_disable(&pdev->dev);
1128 error_dma:
1129 	spi_qup_release_dma(master);
1130 error:
1131 	clk_disable_unprepare(cclk);
1132 	clk_disable_unprepare(iclk);
1133 	spi_master_put(master);
1134 	return ret;
1135 }
1136 
1137 #ifdef CONFIG_PM
1138 static int spi_qup_pm_suspend_runtime(struct device *device)
1139 {
1140 	struct spi_master *master = dev_get_drvdata(device);
1141 	struct spi_qup *controller = spi_master_get_devdata(master);
1142 	u32 config;
1143 
1144 	/* Enable clocks auto gaiting */
1145 	config = readl(controller->base + QUP_CONFIG);
1146 	config |= QUP_CONFIG_CLOCK_AUTO_GATE;
1147 	writel_relaxed(config, controller->base + QUP_CONFIG);
1148 
1149 	clk_disable_unprepare(controller->cclk);
1150 	clk_disable_unprepare(controller->iclk);
1151 
1152 	return 0;
1153 }
1154 
1155 static int spi_qup_pm_resume_runtime(struct device *device)
1156 {
1157 	struct spi_master *master = dev_get_drvdata(device);
1158 	struct spi_qup *controller = spi_master_get_devdata(master);
1159 	u32 config;
1160 	int ret;
1161 
1162 	ret = clk_prepare_enable(controller->iclk);
1163 	if (ret)
1164 		return ret;
1165 
1166 	ret = clk_prepare_enable(controller->cclk);
1167 	if (ret)
1168 		return ret;
1169 
1170 	/* Disable clocks auto gaiting */
1171 	config = readl_relaxed(controller->base + QUP_CONFIG);
1172 	config &= ~QUP_CONFIG_CLOCK_AUTO_GATE;
1173 	writel_relaxed(config, controller->base + QUP_CONFIG);
1174 	return 0;
1175 }
1176 #endif /* CONFIG_PM */
1177 
1178 #ifdef CONFIG_PM_SLEEP
1179 static int spi_qup_suspend(struct device *device)
1180 {
1181 	struct spi_master *master = dev_get_drvdata(device);
1182 	struct spi_qup *controller = spi_master_get_devdata(master);
1183 	int ret;
1184 
1185 	ret = spi_master_suspend(master);
1186 	if (ret)
1187 		return ret;
1188 
1189 	ret = spi_qup_set_state(controller, QUP_STATE_RESET);
1190 	if (ret)
1191 		return ret;
1192 
1193 	if (!pm_runtime_suspended(device)) {
1194 		clk_disable_unprepare(controller->cclk);
1195 		clk_disable_unprepare(controller->iclk);
1196 	}
1197 	return 0;
1198 }
1199 
1200 static int spi_qup_resume(struct device *device)
1201 {
1202 	struct spi_master *master = dev_get_drvdata(device);
1203 	struct spi_qup *controller = spi_master_get_devdata(master);
1204 	int ret;
1205 
1206 	ret = clk_prepare_enable(controller->iclk);
1207 	if (ret)
1208 		return ret;
1209 
1210 	ret = clk_prepare_enable(controller->cclk);
1211 	if (ret)
1212 		return ret;
1213 
1214 	ret = spi_qup_set_state(controller, QUP_STATE_RESET);
1215 	if (ret)
1216 		return ret;
1217 
1218 	return spi_master_resume(master);
1219 }
1220 #endif /* CONFIG_PM_SLEEP */
1221 
1222 static int spi_qup_remove(struct platform_device *pdev)
1223 {
1224 	struct spi_master *master = dev_get_drvdata(&pdev->dev);
1225 	struct spi_qup *controller = spi_master_get_devdata(master);
1226 	int ret;
1227 
1228 	ret = pm_runtime_get_sync(&pdev->dev);
1229 	if (ret < 0)
1230 		return ret;
1231 
1232 	ret = spi_qup_set_state(controller, QUP_STATE_RESET);
1233 	if (ret)
1234 		return ret;
1235 
1236 	spi_qup_release_dma(master);
1237 
1238 	clk_disable_unprepare(controller->cclk);
1239 	clk_disable_unprepare(controller->iclk);
1240 
1241 	pm_runtime_put_noidle(&pdev->dev);
1242 	pm_runtime_disable(&pdev->dev);
1243 
1244 	return 0;
1245 }
1246 
1247 static const struct of_device_id spi_qup_dt_match[] = {
1248 	{ .compatible = "qcom,spi-qup-v1.1.1", .data = (void *)1, },
1249 	{ .compatible = "qcom,spi-qup-v2.1.1", },
1250 	{ .compatible = "qcom,spi-qup-v2.2.1", },
1251 	{ }
1252 };
1253 MODULE_DEVICE_TABLE(of, spi_qup_dt_match);
1254 
1255 static const struct dev_pm_ops spi_qup_dev_pm_ops = {
1256 	SET_SYSTEM_SLEEP_PM_OPS(spi_qup_suspend, spi_qup_resume)
1257 	SET_RUNTIME_PM_OPS(spi_qup_pm_suspend_runtime,
1258 			   spi_qup_pm_resume_runtime,
1259 			   NULL)
1260 };
1261 
1262 static struct platform_driver spi_qup_driver = {
1263 	.driver = {
1264 		.name		= "spi_qup",
1265 		.pm		= &spi_qup_dev_pm_ops,
1266 		.of_match_table = spi_qup_dt_match,
1267 	},
1268 	.probe = spi_qup_probe,
1269 	.remove = spi_qup_remove,
1270 };
1271 module_platform_driver(spi_qup_driver);
1272 
1273 MODULE_LICENSE("GPL v2");
1274 MODULE_ALIAS("platform:spi_qup");
1275