1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (c) 2017-2018, The Linux foundation. All rights reserved.
3
4 #include <linux/clk.h>
5 #include <linux/dmapool.h>
6 #include <linux/dma-mapping.h>
7 #include <linux/interconnect.h>
8 #include <linux/interrupt.h>
9 #include <linux/io.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/platform_device.h>
13 #include <linux/pinctrl/consumer.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/pm_opp.h>
16 #include <linux/spi/spi.h>
17 #include <linux/spi/spi-mem.h>
18
19
20 #define QSPI_NUM_CS 2
21 #define QSPI_BYTES_PER_WORD 4
22
23 #define MSTR_CONFIG 0x0000
24 #define FULL_CYCLE_MODE BIT(3)
25 #define FB_CLK_EN BIT(4)
26 #define PIN_HOLDN BIT(6)
27 #define PIN_WPN BIT(7)
28 #define DMA_ENABLE BIT(8)
29 #define BIG_ENDIAN_MODE BIT(9)
30 #define SPI_MODE_MSK 0xc00
31 #define SPI_MODE_SHFT 10
32 #define CHIP_SELECT_NUM BIT(12)
33 #define SBL_EN BIT(13)
34 #define LPA_BASE_MSK 0x3c000
35 #define LPA_BASE_SHFT 14
36 #define TX_DATA_DELAY_MSK 0xc0000
37 #define TX_DATA_DELAY_SHFT 18
38 #define TX_CLK_DELAY_MSK 0x300000
39 #define TX_CLK_DELAY_SHFT 20
40 #define TX_CS_N_DELAY_MSK 0xc00000
41 #define TX_CS_N_DELAY_SHFT 22
42 #define TX_DATA_OE_DELAY_MSK 0x3000000
43 #define TX_DATA_OE_DELAY_SHFT 24
44
45 #define AHB_MASTER_CFG 0x0004
46 #define HMEM_TYPE_START_MID_TRANS_MSK 0x7
47 #define HMEM_TYPE_START_MID_TRANS_SHFT 0
48 #define HMEM_TYPE_LAST_TRANS_MSK 0x38
49 #define HMEM_TYPE_LAST_TRANS_SHFT 3
50 #define USE_HMEMTYPE_LAST_ON_DESC_OR_CHAIN_MSK 0xc0
51 #define USE_HMEMTYPE_LAST_ON_DESC_OR_CHAIN_SHFT 6
52 #define HMEMTYPE_READ_TRANS_MSK 0x700
53 #define HMEMTYPE_READ_TRANS_SHFT 8
54 #define HSHARED BIT(11)
55 #define HINNERSHARED BIT(12)
56
57 #define MSTR_INT_EN 0x000C
58 #define MSTR_INT_STATUS 0x0010
59 #define RESP_FIFO_UNDERRUN BIT(0)
60 #define RESP_FIFO_NOT_EMPTY BIT(1)
61 #define RESP_FIFO_RDY BIT(2)
62 #define HRESP_FROM_NOC_ERR BIT(3)
63 #define WR_FIFO_EMPTY BIT(9)
64 #define WR_FIFO_FULL BIT(10)
65 #define WR_FIFO_OVERRUN BIT(11)
66 #define TRANSACTION_DONE BIT(16)
67 #define DMA_CHAIN_DONE BIT(31)
68 #define QSPI_ERR_IRQS (RESP_FIFO_UNDERRUN | HRESP_FROM_NOC_ERR | \
69 WR_FIFO_OVERRUN)
70 #define QSPI_ALL_IRQS (QSPI_ERR_IRQS | RESP_FIFO_RDY | \
71 WR_FIFO_EMPTY | WR_FIFO_FULL | \
72 TRANSACTION_DONE | DMA_CHAIN_DONE)
73
74 #define PIO_XFER_CTRL 0x0014
75 #define REQUEST_COUNT_MSK 0xffff
76
77 #define PIO_XFER_CFG 0x0018
78 #define TRANSFER_DIRECTION BIT(0)
79 #define MULTI_IO_MODE_MSK 0xe
80 #define MULTI_IO_MODE_SHFT 1
81 #define TRANSFER_FRAGMENT BIT(8)
82 #define SDR_1BIT 1
83 #define SDR_2BIT 2
84 #define SDR_4BIT 3
85 #define DDR_1BIT 5
86 #define DDR_2BIT 6
87 #define DDR_4BIT 7
88 #define DMA_DESC_SINGLE_SPI 1
89 #define DMA_DESC_DUAL_SPI 2
90 #define DMA_DESC_QUAD_SPI 3
91
92 #define PIO_XFER_STATUS 0x001c
93 #define WR_FIFO_BYTES_MSK 0xffff0000
94 #define WR_FIFO_BYTES_SHFT 16
95
96 #define PIO_DATAOUT_1B 0x0020
97 #define PIO_DATAOUT_4B 0x0024
98
99 #define RD_FIFO_CFG 0x0028
100 #define CONTINUOUS_MODE BIT(0)
101
102 #define RD_FIFO_STATUS 0x002c
103 #define FIFO_EMPTY BIT(11)
104 #define WR_CNTS_MSK 0x7f0
105 #define WR_CNTS_SHFT 4
106 #define RDY_64BYTE BIT(3)
107 #define RDY_32BYTE BIT(2)
108 #define RDY_16BYTE BIT(1)
109 #define FIFO_RDY BIT(0)
110
111 #define RD_FIFO_RESET 0x0030
112 #define RESET_FIFO BIT(0)
113
114 #define NEXT_DMA_DESC_ADDR 0x0040
115 #define CURRENT_DMA_DESC_ADDR 0x0044
116 #define CURRENT_MEM_ADDR 0x0048
117
118 #define CUR_MEM_ADDR 0x0048
119 #define HW_VERSION 0x004c
120 #define RD_FIFO 0x0050
121 #define SAMPLING_CLK_CFG 0x0090
122 #define SAMPLING_CLK_STATUS 0x0094
123
124 #define QSPI_ALIGN_REQ 32
125
126 enum qspi_dir {
127 QSPI_READ,
128 QSPI_WRITE,
129 };
130
131 struct qspi_cmd_desc {
132 u32 data_address;
133 u32 next_descriptor;
134 u32 direction:1;
135 u32 multi_io_mode:3;
136 u32 reserved1:4;
137 u32 fragment:1;
138 u32 reserved2:7;
139 u32 length:16;
140 };
141
142 struct qspi_xfer {
143 union {
144 const void *tx_buf;
145 void *rx_buf;
146 };
147 unsigned int rem_bytes;
148 unsigned int buswidth;
149 enum qspi_dir dir;
150 bool is_last;
151 };
152
153 enum qspi_clocks {
154 QSPI_CLK_CORE,
155 QSPI_CLK_IFACE,
156 QSPI_NUM_CLKS
157 };
158
159 /*
160 * Number of entries in sgt returned from spi framework that-
161 * will be supported. Can be modified as required.
162 * In practice, given max_dma_len is 64KB, the number of
163 * entries is not expected to exceed 1.
164 */
165 #define QSPI_MAX_SG 5
166
167 struct qcom_qspi {
168 void __iomem *base;
169 struct device *dev;
170 struct clk_bulk_data *clks;
171 struct qspi_xfer xfer;
172 struct dma_pool *dma_cmd_pool;
173 dma_addr_t dma_cmd_desc[QSPI_MAX_SG];
174 void *virt_cmd_desc[QSPI_MAX_SG];
175 unsigned int n_cmd_desc;
176 struct icc_path *icc_path_cpu_to_qspi;
177 unsigned long last_speed;
178 /* Lock to protect data accessed by IRQs */
179 spinlock_t lock;
180 };
181
qspi_buswidth_to_iomode(struct qcom_qspi * ctrl,unsigned int buswidth)182 static u32 qspi_buswidth_to_iomode(struct qcom_qspi *ctrl,
183 unsigned int buswidth)
184 {
185 switch (buswidth) {
186 case 1:
187 return SDR_1BIT;
188 case 2:
189 return SDR_2BIT;
190 case 4:
191 return SDR_4BIT;
192 default:
193 dev_warn_once(ctrl->dev,
194 "Unexpected bus width: %u\n", buswidth);
195 return SDR_1BIT;
196 }
197 }
198
qcom_qspi_pio_xfer_cfg(struct qcom_qspi * ctrl)199 static void qcom_qspi_pio_xfer_cfg(struct qcom_qspi *ctrl)
200 {
201 u32 pio_xfer_cfg;
202 u32 iomode;
203 const struct qspi_xfer *xfer;
204
205 xfer = &ctrl->xfer;
206 pio_xfer_cfg = readl(ctrl->base + PIO_XFER_CFG);
207 pio_xfer_cfg &= ~TRANSFER_DIRECTION;
208 pio_xfer_cfg |= xfer->dir;
209 if (xfer->is_last)
210 pio_xfer_cfg &= ~TRANSFER_FRAGMENT;
211 else
212 pio_xfer_cfg |= TRANSFER_FRAGMENT;
213 pio_xfer_cfg &= ~MULTI_IO_MODE_MSK;
214 iomode = qspi_buswidth_to_iomode(ctrl, xfer->buswidth);
215 pio_xfer_cfg |= iomode << MULTI_IO_MODE_SHFT;
216
217 writel(pio_xfer_cfg, ctrl->base + PIO_XFER_CFG);
218 }
219
qcom_qspi_pio_xfer_ctrl(struct qcom_qspi * ctrl)220 static void qcom_qspi_pio_xfer_ctrl(struct qcom_qspi *ctrl)
221 {
222 u32 pio_xfer_ctrl;
223
224 pio_xfer_ctrl = readl(ctrl->base + PIO_XFER_CTRL);
225 pio_xfer_ctrl &= ~REQUEST_COUNT_MSK;
226 pio_xfer_ctrl |= ctrl->xfer.rem_bytes;
227 writel(pio_xfer_ctrl, ctrl->base + PIO_XFER_CTRL);
228 }
229
qcom_qspi_pio_xfer(struct qcom_qspi * ctrl)230 static void qcom_qspi_pio_xfer(struct qcom_qspi *ctrl)
231 {
232 u32 ints;
233
234 qcom_qspi_pio_xfer_cfg(ctrl);
235
236 /* Ack any previous interrupts that might be hanging around */
237 writel(QSPI_ALL_IRQS, ctrl->base + MSTR_INT_STATUS);
238
239 /* Setup new interrupts */
240 if (ctrl->xfer.dir == QSPI_WRITE)
241 ints = QSPI_ERR_IRQS | WR_FIFO_EMPTY;
242 else
243 ints = QSPI_ERR_IRQS | RESP_FIFO_RDY;
244 writel(ints, ctrl->base + MSTR_INT_EN);
245
246 /* Kick off the transfer */
247 qcom_qspi_pio_xfer_ctrl(ctrl);
248 }
249
qcom_qspi_handle_err(struct spi_controller * host,struct spi_message * msg)250 static void qcom_qspi_handle_err(struct spi_controller *host,
251 struct spi_message *msg)
252 {
253 u32 int_status;
254 struct qcom_qspi *ctrl = spi_controller_get_devdata(host);
255 unsigned long flags;
256 int i;
257
258 spin_lock_irqsave(&ctrl->lock, flags);
259 writel(0, ctrl->base + MSTR_INT_EN);
260 int_status = readl(ctrl->base + MSTR_INT_STATUS);
261 writel(int_status, ctrl->base + MSTR_INT_STATUS);
262 ctrl->xfer.rem_bytes = 0;
263
264 /* free cmd descriptors if they are around (DMA mode) */
265 for (i = 0; i < ctrl->n_cmd_desc; i++)
266 dma_pool_free(ctrl->dma_cmd_pool, ctrl->virt_cmd_desc[i],
267 ctrl->dma_cmd_desc[i]);
268 ctrl->n_cmd_desc = 0;
269 spin_unlock_irqrestore(&ctrl->lock, flags);
270 }
271
qcom_qspi_set_speed(struct qcom_qspi * ctrl,unsigned long speed_hz)272 static int qcom_qspi_set_speed(struct qcom_qspi *ctrl, unsigned long speed_hz)
273 {
274 int ret;
275 unsigned int avg_bw_cpu;
276
277 if (speed_hz == ctrl->last_speed)
278 return 0;
279
280 /* In regular operation (SBL_EN=1) core must be 4x transfer clock */
281 ret = dev_pm_opp_set_rate(ctrl->dev, speed_hz * 4);
282 if (ret) {
283 dev_err(ctrl->dev, "Failed to set core clk %d\n", ret);
284 return ret;
285 }
286
287 /*
288 * Set BW quota for CPU.
289 * We don't have explicit peak requirement so keep it equal to avg_bw.
290 */
291 avg_bw_cpu = Bps_to_icc(speed_hz);
292 ret = icc_set_bw(ctrl->icc_path_cpu_to_qspi, avg_bw_cpu, avg_bw_cpu);
293 if (ret) {
294 dev_err(ctrl->dev, "%s: ICC BW voting failed for cpu: %d\n",
295 __func__, ret);
296 return ret;
297 }
298
299 ctrl->last_speed = speed_hz;
300
301 return 0;
302 }
303
qcom_qspi_alloc_desc(struct qcom_qspi * ctrl,dma_addr_t dma_ptr,uint32_t n_bytes)304 static int qcom_qspi_alloc_desc(struct qcom_qspi *ctrl, dma_addr_t dma_ptr,
305 uint32_t n_bytes)
306 {
307 struct qspi_cmd_desc *virt_cmd_desc, *prev;
308 dma_addr_t dma_cmd_desc;
309
310 /* allocate for dma cmd descriptor */
311 virt_cmd_desc = dma_pool_alloc(ctrl->dma_cmd_pool, GFP_ATOMIC | __GFP_ZERO, &dma_cmd_desc);
312 if (!virt_cmd_desc) {
313 dev_warn_once(ctrl->dev, "Couldn't find memory for descriptor\n");
314 return -EAGAIN;
315 }
316
317 ctrl->virt_cmd_desc[ctrl->n_cmd_desc] = virt_cmd_desc;
318 ctrl->dma_cmd_desc[ctrl->n_cmd_desc] = dma_cmd_desc;
319 ctrl->n_cmd_desc++;
320
321 /* setup cmd descriptor */
322 virt_cmd_desc->data_address = dma_ptr;
323 virt_cmd_desc->direction = ctrl->xfer.dir;
324 virt_cmd_desc->multi_io_mode = qspi_buswidth_to_iomode(ctrl, ctrl->xfer.buswidth);
325 virt_cmd_desc->fragment = !ctrl->xfer.is_last;
326 virt_cmd_desc->length = n_bytes;
327
328 /* update previous descriptor */
329 if (ctrl->n_cmd_desc >= 2) {
330 prev = (ctrl->virt_cmd_desc)[ctrl->n_cmd_desc - 2];
331 prev->next_descriptor = dma_cmd_desc;
332 prev->fragment = 1;
333 }
334
335 return 0;
336 }
337
qcom_qspi_setup_dma_desc(struct qcom_qspi * ctrl,struct spi_transfer * xfer)338 static int qcom_qspi_setup_dma_desc(struct qcom_qspi *ctrl,
339 struct spi_transfer *xfer)
340 {
341 int ret;
342 struct sg_table *sgt;
343 dma_addr_t dma_ptr_sg;
344 unsigned int dma_len_sg;
345 int i;
346
347 if (ctrl->n_cmd_desc) {
348 dev_err(ctrl->dev, "Remnant dma buffers n_cmd_desc-%d\n", ctrl->n_cmd_desc);
349 return -EIO;
350 }
351
352 sgt = (ctrl->xfer.dir == QSPI_READ) ? &xfer->rx_sg : &xfer->tx_sg;
353 if (!sgt->nents || sgt->nents > QSPI_MAX_SG) {
354 dev_warn_once(ctrl->dev, "Cannot handle %d entries in scatter list\n", sgt->nents);
355 return -EAGAIN;
356 }
357
358 for (i = 0; i < sgt->nents; i++) {
359 dma_ptr_sg = sg_dma_address(sgt->sgl + i);
360 dma_len_sg = sg_dma_len(sgt->sgl + i);
361 if (!IS_ALIGNED(dma_ptr_sg, QSPI_ALIGN_REQ)) {
362 dev_warn_once(ctrl->dev, "dma_address not aligned to %d\n", QSPI_ALIGN_REQ);
363 return -EAGAIN;
364 }
365 /*
366 * When reading with DMA the controller writes to memory 1 word
367 * at a time. If the length isn't a multiple of 4 bytes then
368 * the controller can clobber the things later in memory.
369 * Fallback to PIO to be safe.
370 */
371 if (ctrl->xfer.dir == QSPI_READ && (dma_len_sg & 0x03)) {
372 dev_warn_once(ctrl->dev, "fallback to PIO for read of size %#010x\n",
373 dma_len_sg);
374 return -EAGAIN;
375 }
376 }
377
378 for (i = 0; i < sgt->nents; i++) {
379 dma_ptr_sg = sg_dma_address(sgt->sgl + i);
380 dma_len_sg = sg_dma_len(sgt->sgl + i);
381
382 ret = qcom_qspi_alloc_desc(ctrl, dma_ptr_sg, dma_len_sg);
383 if (ret)
384 goto cleanup;
385 }
386 return 0;
387
388 cleanup:
389 for (i = 0; i < ctrl->n_cmd_desc; i++)
390 dma_pool_free(ctrl->dma_cmd_pool, ctrl->virt_cmd_desc[i],
391 ctrl->dma_cmd_desc[i]);
392 ctrl->n_cmd_desc = 0;
393 return ret;
394 }
395
qcom_qspi_dma_xfer(struct qcom_qspi * ctrl)396 static void qcom_qspi_dma_xfer(struct qcom_qspi *ctrl)
397 {
398 /* Setup new interrupts */
399 writel(DMA_CHAIN_DONE, ctrl->base + MSTR_INT_EN);
400
401 /* kick off transfer */
402 writel((u32)((ctrl->dma_cmd_desc)[0]), ctrl->base + NEXT_DMA_DESC_ADDR);
403 }
404
405 /* Switch to DMA if transfer length exceeds this */
406 #define QSPI_MAX_BYTES_FIFO 64
407
qcom_qspi_can_dma(struct spi_controller * ctlr,struct spi_device * slv,struct spi_transfer * xfer)408 static bool qcom_qspi_can_dma(struct spi_controller *ctlr,
409 struct spi_device *slv, struct spi_transfer *xfer)
410 {
411 return xfer->len > QSPI_MAX_BYTES_FIFO;
412 }
413
qcom_qspi_transfer_one(struct spi_controller * host,struct spi_device * slv,struct spi_transfer * xfer)414 static int qcom_qspi_transfer_one(struct spi_controller *host,
415 struct spi_device *slv,
416 struct spi_transfer *xfer)
417 {
418 struct qcom_qspi *ctrl = spi_controller_get_devdata(host);
419 int ret;
420 unsigned long speed_hz;
421 unsigned long flags;
422 u32 mstr_cfg;
423
424 speed_hz = slv->max_speed_hz;
425 if (xfer->speed_hz)
426 speed_hz = xfer->speed_hz;
427
428 ret = qcom_qspi_set_speed(ctrl, speed_hz);
429 if (ret)
430 return ret;
431
432 spin_lock_irqsave(&ctrl->lock, flags);
433 mstr_cfg = readl(ctrl->base + MSTR_CONFIG);
434
435 /* We are half duplex, so either rx or tx will be set */
436 if (xfer->rx_buf) {
437 ctrl->xfer.dir = QSPI_READ;
438 ctrl->xfer.buswidth = xfer->rx_nbits;
439 ctrl->xfer.rx_buf = xfer->rx_buf;
440 } else {
441 ctrl->xfer.dir = QSPI_WRITE;
442 ctrl->xfer.buswidth = xfer->tx_nbits;
443 ctrl->xfer.tx_buf = xfer->tx_buf;
444 }
445 ctrl->xfer.is_last = list_is_last(&xfer->transfer_list,
446 &host->cur_msg->transfers);
447 ctrl->xfer.rem_bytes = xfer->len;
448
449 if (xfer->rx_sg.nents || xfer->tx_sg.nents) {
450 /* do DMA transfer */
451 if (!(mstr_cfg & DMA_ENABLE)) {
452 mstr_cfg |= DMA_ENABLE;
453 writel(mstr_cfg, ctrl->base + MSTR_CONFIG);
454 }
455
456 ret = qcom_qspi_setup_dma_desc(ctrl, xfer);
457 if (ret != -EAGAIN) {
458 if (!ret) {
459 dma_wmb();
460 qcom_qspi_dma_xfer(ctrl);
461 }
462 goto exit;
463 }
464 dev_warn_once(ctrl->dev, "DMA failure, falling back to PIO\n");
465 ret = 0; /* We'll retry w/ PIO */
466 }
467
468 if (mstr_cfg & DMA_ENABLE) {
469 mstr_cfg &= ~DMA_ENABLE;
470 writel(mstr_cfg, ctrl->base + MSTR_CONFIG);
471 }
472 qcom_qspi_pio_xfer(ctrl);
473
474 exit:
475 spin_unlock_irqrestore(&ctrl->lock, flags);
476
477 if (ret)
478 return ret;
479
480 /* We'll call spi_finalize_current_transfer() when done */
481 return 1;
482 }
483
qcom_qspi_prepare_message(struct spi_controller * host,struct spi_message * message)484 static int qcom_qspi_prepare_message(struct spi_controller *host,
485 struct spi_message *message)
486 {
487 u32 mstr_cfg;
488 struct qcom_qspi *ctrl;
489 int tx_data_oe_delay = 1;
490 int tx_data_delay = 1;
491 unsigned long flags;
492
493 ctrl = spi_controller_get_devdata(host);
494 spin_lock_irqsave(&ctrl->lock, flags);
495
496 mstr_cfg = readl(ctrl->base + MSTR_CONFIG);
497 mstr_cfg &= ~CHIP_SELECT_NUM;
498 if (spi_get_chipselect(message->spi, 0))
499 mstr_cfg |= CHIP_SELECT_NUM;
500
501 mstr_cfg |= FB_CLK_EN | PIN_WPN | PIN_HOLDN | SBL_EN | FULL_CYCLE_MODE;
502 mstr_cfg &= ~(SPI_MODE_MSK | TX_DATA_OE_DELAY_MSK | TX_DATA_DELAY_MSK);
503 mstr_cfg |= message->spi->mode << SPI_MODE_SHFT;
504 mstr_cfg |= tx_data_oe_delay << TX_DATA_OE_DELAY_SHFT;
505 mstr_cfg |= tx_data_delay << TX_DATA_DELAY_SHFT;
506 mstr_cfg &= ~DMA_ENABLE;
507
508 writel(mstr_cfg, ctrl->base + MSTR_CONFIG);
509 spin_unlock_irqrestore(&ctrl->lock, flags);
510
511 return 0;
512 }
513
qcom_qspi_alloc_dma(struct qcom_qspi * ctrl)514 static int qcom_qspi_alloc_dma(struct qcom_qspi *ctrl)
515 {
516 ctrl->dma_cmd_pool = dmam_pool_create("qspi cmd desc pool",
517 ctrl->dev, sizeof(struct qspi_cmd_desc), 0, 0);
518 if (!ctrl->dma_cmd_pool)
519 return -ENOMEM;
520
521 return 0;
522 }
523
pio_read(struct qcom_qspi * ctrl)524 static irqreturn_t pio_read(struct qcom_qspi *ctrl)
525 {
526 u32 rd_fifo_status;
527 u32 rd_fifo;
528 unsigned int wr_cnts;
529 unsigned int bytes_to_read;
530 unsigned int words_to_read;
531 u32 *word_buf;
532 u8 *byte_buf;
533 int i;
534
535 rd_fifo_status = readl(ctrl->base + RD_FIFO_STATUS);
536
537 if (!(rd_fifo_status & FIFO_RDY)) {
538 dev_dbg(ctrl->dev, "Spurious IRQ %#x\n", rd_fifo_status);
539 return IRQ_NONE;
540 }
541
542 wr_cnts = (rd_fifo_status & WR_CNTS_MSK) >> WR_CNTS_SHFT;
543 wr_cnts = min(wr_cnts, ctrl->xfer.rem_bytes);
544
545 words_to_read = wr_cnts / QSPI_BYTES_PER_WORD;
546 bytes_to_read = wr_cnts % QSPI_BYTES_PER_WORD;
547
548 if (words_to_read) {
549 word_buf = ctrl->xfer.rx_buf;
550 ctrl->xfer.rem_bytes -= words_to_read * QSPI_BYTES_PER_WORD;
551 ioread32_rep(ctrl->base + RD_FIFO, word_buf, words_to_read);
552 ctrl->xfer.rx_buf = word_buf + words_to_read;
553 }
554
555 if (bytes_to_read) {
556 byte_buf = ctrl->xfer.rx_buf;
557 rd_fifo = readl(ctrl->base + RD_FIFO);
558 ctrl->xfer.rem_bytes -= bytes_to_read;
559 for (i = 0; i < bytes_to_read; i++)
560 *byte_buf++ = rd_fifo >> (i * BITS_PER_BYTE);
561 ctrl->xfer.rx_buf = byte_buf;
562 }
563
564 return IRQ_HANDLED;
565 }
566
pio_write(struct qcom_qspi * ctrl)567 static irqreturn_t pio_write(struct qcom_qspi *ctrl)
568 {
569 const void *xfer_buf = ctrl->xfer.tx_buf;
570 const int *word_buf;
571 const char *byte_buf;
572 unsigned int wr_fifo_bytes;
573 unsigned int wr_fifo_words;
574 unsigned int wr_size;
575 unsigned int rem_words;
576
577 wr_fifo_bytes = readl(ctrl->base + PIO_XFER_STATUS);
578 wr_fifo_bytes >>= WR_FIFO_BYTES_SHFT;
579
580 if (ctrl->xfer.rem_bytes < QSPI_BYTES_PER_WORD) {
581 /* Process the last 1-3 bytes */
582 wr_size = min(wr_fifo_bytes, ctrl->xfer.rem_bytes);
583 ctrl->xfer.rem_bytes -= wr_size;
584
585 byte_buf = xfer_buf;
586 while (wr_size--)
587 writel(*byte_buf++,
588 ctrl->base + PIO_DATAOUT_1B);
589 ctrl->xfer.tx_buf = byte_buf;
590 } else {
591 /*
592 * Process all the whole words; to keep things simple we'll
593 * just wait for the next interrupt to handle the last 1-3
594 * bytes if we don't have an even number of words.
595 */
596 rem_words = ctrl->xfer.rem_bytes / QSPI_BYTES_PER_WORD;
597 wr_fifo_words = wr_fifo_bytes / QSPI_BYTES_PER_WORD;
598
599 wr_size = min(rem_words, wr_fifo_words);
600 ctrl->xfer.rem_bytes -= wr_size * QSPI_BYTES_PER_WORD;
601
602 word_buf = xfer_buf;
603 iowrite32_rep(ctrl->base + PIO_DATAOUT_4B, word_buf, wr_size);
604 ctrl->xfer.tx_buf = word_buf + wr_size;
605
606 }
607
608 return IRQ_HANDLED;
609 }
610
qcom_qspi_irq(int irq,void * dev_id)611 static irqreturn_t qcom_qspi_irq(int irq, void *dev_id)
612 {
613 u32 int_status;
614 struct qcom_qspi *ctrl = dev_id;
615 irqreturn_t ret = IRQ_NONE;
616
617 spin_lock(&ctrl->lock);
618
619 int_status = readl(ctrl->base + MSTR_INT_STATUS);
620 writel(int_status, ctrl->base + MSTR_INT_STATUS);
621
622 /* Ignore disabled interrupts */
623 int_status &= readl(ctrl->base + MSTR_INT_EN);
624
625 /* PIO mode handling */
626 if (ctrl->xfer.dir == QSPI_WRITE) {
627 if (int_status & WR_FIFO_EMPTY)
628 ret = pio_write(ctrl);
629 } else {
630 if (int_status & RESP_FIFO_RDY)
631 ret = pio_read(ctrl);
632 }
633
634 if (int_status & QSPI_ERR_IRQS) {
635 if (int_status & RESP_FIFO_UNDERRUN)
636 dev_err(ctrl->dev, "IRQ error: FIFO underrun\n");
637 if (int_status & WR_FIFO_OVERRUN)
638 dev_err(ctrl->dev, "IRQ error: FIFO overrun\n");
639 if (int_status & HRESP_FROM_NOC_ERR)
640 dev_err(ctrl->dev, "IRQ error: NOC response error\n");
641 ret = IRQ_HANDLED;
642 }
643
644 if (!ctrl->xfer.rem_bytes) {
645 writel(0, ctrl->base + MSTR_INT_EN);
646 spi_finalize_current_transfer(dev_get_drvdata(ctrl->dev));
647 }
648
649 /* DMA mode handling */
650 if (int_status & DMA_CHAIN_DONE) {
651 int i;
652
653 writel(0, ctrl->base + MSTR_INT_EN);
654 ctrl->xfer.rem_bytes = 0;
655
656 for (i = 0; i < ctrl->n_cmd_desc; i++)
657 dma_pool_free(ctrl->dma_cmd_pool, ctrl->virt_cmd_desc[i],
658 ctrl->dma_cmd_desc[i]);
659 ctrl->n_cmd_desc = 0;
660
661 ret = IRQ_HANDLED;
662 spi_finalize_current_transfer(dev_get_drvdata(ctrl->dev));
663 }
664
665 spin_unlock(&ctrl->lock);
666 return ret;
667 }
668
qcom_qspi_adjust_op_size(struct spi_mem * mem,struct spi_mem_op * op)669 static int qcom_qspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
670 {
671 /*
672 * If qcom_qspi_can_dma() is going to return false we don't need to
673 * adjust anything.
674 */
675 if (op->data.nbytes <= QSPI_MAX_BYTES_FIFO)
676 return 0;
677
678 /*
679 * When reading, the transfer needs to be a multiple of 4 bytes so
680 * shrink the transfer if that's not true. The caller will then do a
681 * second transfer to finish things up.
682 */
683 if (op->data.dir == SPI_MEM_DATA_IN && (op->data.nbytes & 0x3))
684 op->data.nbytes &= ~0x3;
685
686 return 0;
687 }
688
689 static const struct spi_controller_mem_ops qcom_qspi_mem_ops = {
690 .adjust_op_size = qcom_qspi_adjust_op_size,
691 };
692
qcom_qspi_probe(struct platform_device * pdev)693 static int qcom_qspi_probe(struct platform_device *pdev)
694 {
695 int ret;
696 struct device *dev;
697 struct spi_controller *host;
698 struct qcom_qspi *ctrl;
699
700 dev = &pdev->dev;
701
702 host = devm_spi_alloc_host(dev, sizeof(*ctrl));
703 if (!host)
704 return -ENOMEM;
705
706 platform_set_drvdata(pdev, host);
707
708 ctrl = spi_controller_get_devdata(host);
709
710 spin_lock_init(&ctrl->lock);
711 ctrl->dev = dev;
712 ctrl->base = devm_platform_ioremap_resource(pdev, 0);
713 if (IS_ERR(ctrl->base))
714 return PTR_ERR(ctrl->base);
715
716 ctrl->clks = devm_kcalloc(dev, QSPI_NUM_CLKS,
717 sizeof(*ctrl->clks), GFP_KERNEL);
718 if (!ctrl->clks)
719 return -ENOMEM;
720
721 ctrl->clks[QSPI_CLK_CORE].id = "core";
722 ctrl->clks[QSPI_CLK_IFACE].id = "iface";
723 ret = devm_clk_bulk_get(dev, QSPI_NUM_CLKS, ctrl->clks);
724 if (ret)
725 return ret;
726
727 ctrl->icc_path_cpu_to_qspi = devm_of_icc_get(dev, "qspi-config");
728 if (IS_ERR(ctrl->icc_path_cpu_to_qspi))
729 return dev_err_probe(dev, PTR_ERR(ctrl->icc_path_cpu_to_qspi),
730 "Failed to get cpu path\n");
731
732 /* Set BW vote for register access */
733 ret = icc_set_bw(ctrl->icc_path_cpu_to_qspi, Bps_to_icc(1000),
734 Bps_to_icc(1000));
735 if (ret) {
736 dev_err(ctrl->dev, "%s: ICC BW voting failed for cpu: %d\n",
737 __func__, ret);
738 return ret;
739 }
740
741 ret = icc_disable(ctrl->icc_path_cpu_to_qspi);
742 if (ret) {
743 dev_err(ctrl->dev, "%s: ICC disable failed for cpu: %d\n",
744 __func__, ret);
745 return ret;
746 }
747
748 ret = platform_get_irq(pdev, 0);
749 if (ret < 0)
750 return ret;
751 ret = devm_request_irq(dev, ret, qcom_qspi_irq, 0, dev_name(dev), ctrl);
752 if (ret) {
753 dev_err(dev, "Failed to request irq %d\n", ret);
754 return ret;
755 }
756
757 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
758 if (ret)
759 return dev_err_probe(dev, ret, "could not set DMA mask\n");
760
761 host->max_speed_hz = 300000000;
762 host->max_dma_len = 65536; /* as per HPG */
763 host->dma_alignment = QSPI_ALIGN_REQ;
764 host->num_chipselect = QSPI_NUM_CS;
765 host->bus_num = -1;
766 host->dev.of_node = pdev->dev.of_node;
767 host->mode_bits = SPI_MODE_0 |
768 SPI_TX_DUAL | SPI_RX_DUAL |
769 SPI_TX_QUAD | SPI_RX_QUAD;
770 host->flags = SPI_CONTROLLER_HALF_DUPLEX;
771 host->prepare_message = qcom_qspi_prepare_message;
772 host->transfer_one = qcom_qspi_transfer_one;
773 host->handle_err = qcom_qspi_handle_err;
774 if (of_property_read_bool(pdev->dev.of_node, "iommus"))
775 host->can_dma = qcom_qspi_can_dma;
776 host->auto_runtime_pm = true;
777 host->mem_ops = &qcom_qspi_mem_ops;
778
779 ret = devm_pm_opp_set_clkname(&pdev->dev, "core");
780 if (ret)
781 return ret;
782 /* OPP table is optional */
783 ret = devm_pm_opp_of_add_table(&pdev->dev);
784 if (ret && ret != -ENODEV) {
785 dev_err(&pdev->dev, "invalid OPP table in device tree\n");
786 return ret;
787 }
788
789 ret = qcom_qspi_alloc_dma(ctrl);
790 if (ret)
791 return ret;
792
793 pm_runtime_use_autosuspend(dev);
794 pm_runtime_set_autosuspend_delay(dev, 250);
795 pm_runtime_enable(dev);
796
797 ret = spi_register_controller(host);
798 if (!ret)
799 return 0;
800
801 pm_runtime_disable(dev);
802
803 return ret;
804 }
805
qcom_qspi_remove(struct platform_device * pdev)806 static void qcom_qspi_remove(struct platform_device *pdev)
807 {
808 struct spi_controller *host = platform_get_drvdata(pdev);
809
810 /* Unregister _before_ disabling pm_runtime() so we stop transfers */
811 spi_unregister_controller(host);
812
813 pm_runtime_disable(&pdev->dev);
814 }
815
qcom_qspi_runtime_suspend(struct device * dev)816 static int __maybe_unused qcom_qspi_runtime_suspend(struct device *dev)
817 {
818 struct spi_controller *host = dev_get_drvdata(dev);
819 struct qcom_qspi *ctrl = spi_controller_get_devdata(host);
820 int ret;
821
822 /* Drop the performance state vote */
823 dev_pm_opp_set_rate(dev, 0);
824 clk_bulk_disable_unprepare(QSPI_NUM_CLKS, ctrl->clks);
825
826 ret = icc_disable(ctrl->icc_path_cpu_to_qspi);
827 if (ret) {
828 dev_err_ratelimited(ctrl->dev, "%s: ICC disable failed for cpu: %d\n",
829 __func__, ret);
830 return ret;
831 }
832
833 pinctrl_pm_select_sleep_state(dev);
834
835 return 0;
836 }
837
qcom_qspi_runtime_resume(struct device * dev)838 static int __maybe_unused qcom_qspi_runtime_resume(struct device *dev)
839 {
840 struct spi_controller *host = dev_get_drvdata(dev);
841 struct qcom_qspi *ctrl = spi_controller_get_devdata(host);
842 int ret;
843
844 pinctrl_pm_select_default_state(dev);
845
846 ret = icc_enable(ctrl->icc_path_cpu_to_qspi);
847 if (ret) {
848 dev_err_ratelimited(ctrl->dev, "%s: ICC enable failed for cpu: %d\n",
849 __func__, ret);
850 return ret;
851 }
852
853 ret = clk_bulk_prepare_enable(QSPI_NUM_CLKS, ctrl->clks);
854 if (ret)
855 return ret;
856
857 return dev_pm_opp_set_rate(dev, ctrl->last_speed * 4);
858 }
859
qcom_qspi_suspend(struct device * dev)860 static int __maybe_unused qcom_qspi_suspend(struct device *dev)
861 {
862 struct spi_controller *host = dev_get_drvdata(dev);
863 int ret;
864
865 ret = spi_controller_suspend(host);
866 if (ret)
867 return ret;
868
869 ret = pm_runtime_force_suspend(dev);
870 if (ret)
871 spi_controller_resume(host);
872
873 return ret;
874 }
875
qcom_qspi_resume(struct device * dev)876 static int __maybe_unused qcom_qspi_resume(struct device *dev)
877 {
878 struct spi_controller *host = dev_get_drvdata(dev);
879 int ret;
880
881 ret = pm_runtime_force_resume(dev);
882 if (ret)
883 return ret;
884
885 ret = spi_controller_resume(host);
886 if (ret)
887 pm_runtime_force_suspend(dev);
888
889 return ret;
890 }
891
892 static const struct dev_pm_ops qcom_qspi_dev_pm_ops = {
893 SET_RUNTIME_PM_OPS(qcom_qspi_runtime_suspend,
894 qcom_qspi_runtime_resume, NULL)
895 SET_SYSTEM_SLEEP_PM_OPS(qcom_qspi_suspend, qcom_qspi_resume)
896 };
897
898 static const struct of_device_id qcom_qspi_dt_match[] = {
899 { .compatible = "qcom,qspi-v1", },
900 { }
901 };
902 MODULE_DEVICE_TABLE(of, qcom_qspi_dt_match);
903
904 static struct platform_driver qcom_qspi_driver = {
905 .driver = {
906 .name = "qcom_qspi",
907 .pm = &qcom_qspi_dev_pm_ops,
908 .of_match_table = qcom_qspi_dt_match,
909 },
910 .probe = qcom_qspi_probe,
911 .remove_new = qcom_qspi_remove,
912 };
913 module_platform_driver(qcom_qspi_driver);
914
915 MODULE_DESCRIPTION("SPI driver for QSPI cores");
916 MODULE_LICENSE("GPL v2");
917