xref: /openbmc/linux/drivers/spi/spi-pxa2xx.c (revision fcbd8037f7df694aa7bfb7ce82c0c7f5e53e7b7b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4  * Copyright (C) 2013, Intel Corporation
5  */
6 
7 #include <linux/bitops.h>
8 #include <linux/init.h>
9 #include <linux/module.h>
10 #include <linux/device.h>
11 #include <linux/ioport.h>
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/platform_device.h>
18 #include <linux/spi/pxa2xx_spi.h>
19 #include <linux/spi/spi.h>
20 #include <linux/delay.h>
21 #include <linux/gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/slab.h>
24 #include <linux/clk.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/acpi.h>
27 #include <linux/of_device.h>
28 
29 #include "spi-pxa2xx.h"
30 
31 MODULE_AUTHOR("Stephen Street");
32 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
33 MODULE_LICENSE("GPL");
34 MODULE_ALIAS("platform:pxa2xx-spi");
35 
36 #define TIMOUT_DFLT		1000
37 
38 /*
39  * for testing SSCR1 changes that require SSP restart, basically
40  * everything except the service and interrupt enables, the pxa270 developer
41  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
42  * list, but the PXA255 dev man says all bits without really meaning the
43  * service and interrupt enables
44  */
45 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
46 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
47 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
48 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
49 				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
50 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
51 
52 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
53 				| QUARK_X1000_SSCR1_EFWR	\
54 				| QUARK_X1000_SSCR1_RFT		\
55 				| QUARK_X1000_SSCR1_TFT		\
56 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
57 
58 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
59 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
60 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
61 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
62 				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
63 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
64 
65 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
66 #define LPSS_CS_CONTROL_SW_MODE			BIT(0)
67 #define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
68 #define LPSS_CAPS_CS_EN_SHIFT			9
69 #define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
70 
71 struct lpss_config {
72 	/* LPSS offset from drv_data->ioaddr */
73 	unsigned offset;
74 	/* Register offsets from drv_data->lpss_base or -1 */
75 	int reg_general;
76 	int reg_ssp;
77 	int reg_cs_ctrl;
78 	int reg_capabilities;
79 	/* FIFO thresholds */
80 	u32 rx_threshold;
81 	u32 tx_threshold_lo;
82 	u32 tx_threshold_hi;
83 	/* Chip select control */
84 	unsigned cs_sel_shift;
85 	unsigned cs_sel_mask;
86 	unsigned cs_num;
87 };
88 
89 /* Keep these sorted with enum pxa_ssp_type */
90 static const struct lpss_config lpss_platforms[] = {
91 	{	/* LPSS_LPT_SSP */
92 		.offset = 0x800,
93 		.reg_general = 0x08,
94 		.reg_ssp = 0x0c,
95 		.reg_cs_ctrl = 0x18,
96 		.reg_capabilities = -1,
97 		.rx_threshold = 64,
98 		.tx_threshold_lo = 160,
99 		.tx_threshold_hi = 224,
100 	},
101 	{	/* LPSS_BYT_SSP */
102 		.offset = 0x400,
103 		.reg_general = 0x08,
104 		.reg_ssp = 0x0c,
105 		.reg_cs_ctrl = 0x18,
106 		.reg_capabilities = -1,
107 		.rx_threshold = 64,
108 		.tx_threshold_lo = 160,
109 		.tx_threshold_hi = 224,
110 	},
111 	{	/* LPSS_BSW_SSP */
112 		.offset = 0x400,
113 		.reg_general = 0x08,
114 		.reg_ssp = 0x0c,
115 		.reg_cs_ctrl = 0x18,
116 		.reg_capabilities = -1,
117 		.rx_threshold = 64,
118 		.tx_threshold_lo = 160,
119 		.tx_threshold_hi = 224,
120 		.cs_sel_shift = 2,
121 		.cs_sel_mask = 1 << 2,
122 		.cs_num = 2,
123 	},
124 	{	/* LPSS_SPT_SSP */
125 		.offset = 0x200,
126 		.reg_general = -1,
127 		.reg_ssp = 0x20,
128 		.reg_cs_ctrl = 0x24,
129 		.reg_capabilities = -1,
130 		.rx_threshold = 1,
131 		.tx_threshold_lo = 32,
132 		.tx_threshold_hi = 56,
133 	},
134 	{	/* LPSS_BXT_SSP */
135 		.offset = 0x200,
136 		.reg_general = -1,
137 		.reg_ssp = 0x20,
138 		.reg_cs_ctrl = 0x24,
139 		.reg_capabilities = 0xfc,
140 		.rx_threshold = 1,
141 		.tx_threshold_lo = 16,
142 		.tx_threshold_hi = 48,
143 		.cs_sel_shift = 8,
144 		.cs_sel_mask = 3 << 8,
145 	},
146 	{	/* LPSS_CNL_SSP */
147 		.offset = 0x200,
148 		.reg_general = -1,
149 		.reg_ssp = 0x20,
150 		.reg_cs_ctrl = 0x24,
151 		.reg_capabilities = 0xfc,
152 		.rx_threshold = 1,
153 		.tx_threshold_lo = 32,
154 		.tx_threshold_hi = 56,
155 		.cs_sel_shift = 8,
156 		.cs_sel_mask = 3 << 8,
157 	},
158 };
159 
160 static inline const struct lpss_config
161 *lpss_get_config(const struct driver_data *drv_data)
162 {
163 	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
164 }
165 
166 static bool is_lpss_ssp(const struct driver_data *drv_data)
167 {
168 	switch (drv_data->ssp_type) {
169 	case LPSS_LPT_SSP:
170 	case LPSS_BYT_SSP:
171 	case LPSS_BSW_SSP:
172 	case LPSS_SPT_SSP:
173 	case LPSS_BXT_SSP:
174 	case LPSS_CNL_SSP:
175 		return true;
176 	default:
177 		return false;
178 	}
179 }
180 
181 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
182 {
183 	return drv_data->ssp_type == QUARK_X1000_SSP;
184 }
185 
186 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
187 {
188 	switch (drv_data->ssp_type) {
189 	case QUARK_X1000_SSP:
190 		return QUARK_X1000_SSCR1_CHANGE_MASK;
191 	case CE4100_SSP:
192 		return CE4100_SSCR1_CHANGE_MASK;
193 	default:
194 		return SSCR1_CHANGE_MASK;
195 	}
196 }
197 
198 static u32
199 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
200 {
201 	switch (drv_data->ssp_type) {
202 	case QUARK_X1000_SSP:
203 		return RX_THRESH_QUARK_X1000_DFLT;
204 	case CE4100_SSP:
205 		return RX_THRESH_CE4100_DFLT;
206 	default:
207 		return RX_THRESH_DFLT;
208 	}
209 }
210 
211 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
212 {
213 	u32 mask;
214 
215 	switch (drv_data->ssp_type) {
216 	case QUARK_X1000_SSP:
217 		mask = QUARK_X1000_SSSR_TFL_MASK;
218 		break;
219 	case CE4100_SSP:
220 		mask = CE4100_SSSR_TFL_MASK;
221 		break;
222 	default:
223 		mask = SSSR_TFL_MASK;
224 		break;
225 	}
226 
227 	return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
228 }
229 
230 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
231 				     u32 *sccr1_reg)
232 {
233 	u32 mask;
234 
235 	switch (drv_data->ssp_type) {
236 	case QUARK_X1000_SSP:
237 		mask = QUARK_X1000_SSCR1_RFT;
238 		break;
239 	case CE4100_SSP:
240 		mask = CE4100_SSCR1_RFT;
241 		break;
242 	default:
243 		mask = SSCR1_RFT;
244 		break;
245 	}
246 	*sccr1_reg &= ~mask;
247 }
248 
249 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
250 				   u32 *sccr1_reg, u32 threshold)
251 {
252 	switch (drv_data->ssp_type) {
253 	case QUARK_X1000_SSP:
254 		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
255 		break;
256 	case CE4100_SSP:
257 		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
258 		break;
259 	default:
260 		*sccr1_reg |= SSCR1_RxTresh(threshold);
261 		break;
262 	}
263 }
264 
265 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
266 				  u32 clk_div, u8 bits)
267 {
268 	switch (drv_data->ssp_type) {
269 	case QUARK_X1000_SSP:
270 		return clk_div
271 			| QUARK_X1000_SSCR0_Motorola
272 			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
273 			| SSCR0_SSE;
274 	default:
275 		return clk_div
276 			| SSCR0_Motorola
277 			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
278 			| SSCR0_SSE
279 			| (bits > 16 ? SSCR0_EDSS : 0);
280 	}
281 }
282 
283 /*
284  * Read and write LPSS SSP private registers. Caller must first check that
285  * is_lpss_ssp() returns true before these can be called.
286  */
287 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
288 {
289 	WARN_ON(!drv_data->lpss_base);
290 	return readl(drv_data->lpss_base + offset);
291 }
292 
293 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
294 				  unsigned offset, u32 value)
295 {
296 	WARN_ON(!drv_data->lpss_base);
297 	writel(value, drv_data->lpss_base + offset);
298 }
299 
300 /*
301  * lpss_ssp_setup - perform LPSS SSP specific setup
302  * @drv_data: pointer to the driver private data
303  *
304  * Perform LPSS SSP specific setup. This function must be called first if
305  * one is going to use LPSS SSP private registers.
306  */
307 static void lpss_ssp_setup(struct driver_data *drv_data)
308 {
309 	const struct lpss_config *config;
310 	u32 value;
311 
312 	config = lpss_get_config(drv_data);
313 	drv_data->lpss_base = drv_data->ioaddr + config->offset;
314 
315 	/* Enable software chip select control */
316 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
317 	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
318 	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
319 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
320 
321 	/* Enable multiblock DMA transfers */
322 	if (drv_data->controller_info->enable_dma) {
323 		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
324 
325 		if (config->reg_general >= 0) {
326 			value = __lpss_ssp_read_priv(drv_data,
327 						     config->reg_general);
328 			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
329 			__lpss_ssp_write_priv(drv_data,
330 					      config->reg_general, value);
331 		}
332 	}
333 }
334 
335 static void lpss_ssp_select_cs(struct spi_device *spi,
336 			       const struct lpss_config *config)
337 {
338 	struct driver_data *drv_data =
339 		spi_controller_get_devdata(spi->controller);
340 	u32 value, cs;
341 
342 	if (!config->cs_sel_mask)
343 		return;
344 
345 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
346 
347 	cs = spi->chip_select;
348 	cs <<= config->cs_sel_shift;
349 	if (cs != (value & config->cs_sel_mask)) {
350 		/*
351 		 * When switching another chip select output active the
352 		 * output must be selected first and wait 2 ssp_clk cycles
353 		 * before changing state to active. Otherwise a short
354 		 * glitch will occur on the previous chip select since
355 		 * output select is latched but state control is not.
356 		 */
357 		value &= ~config->cs_sel_mask;
358 		value |= cs;
359 		__lpss_ssp_write_priv(drv_data,
360 				      config->reg_cs_ctrl, value);
361 		ndelay(1000000000 /
362 		       (drv_data->controller->max_speed_hz / 2));
363 	}
364 }
365 
366 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
367 {
368 	struct driver_data *drv_data =
369 		spi_controller_get_devdata(spi->controller);
370 	const struct lpss_config *config;
371 	u32 value;
372 
373 	config = lpss_get_config(drv_data);
374 
375 	if (enable)
376 		lpss_ssp_select_cs(spi, config);
377 
378 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
379 	if (enable)
380 		value &= ~LPSS_CS_CONTROL_CS_HIGH;
381 	else
382 		value |= LPSS_CS_CONTROL_CS_HIGH;
383 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
384 }
385 
386 static void cs_assert(struct spi_device *spi)
387 {
388 	struct chip_data *chip = spi_get_ctldata(spi);
389 	struct driver_data *drv_data =
390 		spi_controller_get_devdata(spi->controller);
391 
392 	if (drv_data->ssp_type == CE4100_SSP) {
393 		pxa2xx_spi_write(drv_data, SSSR, chip->frm);
394 		return;
395 	}
396 
397 	if (chip->cs_control) {
398 		chip->cs_control(PXA2XX_CS_ASSERT);
399 		return;
400 	}
401 
402 	if (chip->gpiod_cs) {
403 		gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted);
404 		return;
405 	}
406 
407 	if (is_lpss_ssp(drv_data))
408 		lpss_ssp_cs_control(spi, true);
409 }
410 
411 static void cs_deassert(struct spi_device *spi)
412 {
413 	struct chip_data *chip = spi_get_ctldata(spi);
414 	struct driver_data *drv_data =
415 		spi_controller_get_devdata(spi->controller);
416 	unsigned long timeout;
417 
418 	if (drv_data->ssp_type == CE4100_SSP)
419 		return;
420 
421 	/* Wait until SSP becomes idle before deasserting the CS */
422 	timeout = jiffies + msecs_to_jiffies(10);
423 	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
424 	       !time_after(jiffies, timeout))
425 		cpu_relax();
426 
427 	if (chip->cs_control) {
428 		chip->cs_control(PXA2XX_CS_DEASSERT);
429 		return;
430 	}
431 
432 	if (chip->gpiod_cs) {
433 		gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted);
434 		return;
435 	}
436 
437 	if (is_lpss_ssp(drv_data))
438 		lpss_ssp_cs_control(spi, false);
439 }
440 
441 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
442 {
443 	if (level)
444 		cs_deassert(spi);
445 	else
446 		cs_assert(spi);
447 }
448 
449 int pxa2xx_spi_flush(struct driver_data *drv_data)
450 {
451 	unsigned long limit = loops_per_jiffy << 1;
452 
453 	do {
454 		while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
455 			pxa2xx_spi_read(drv_data, SSDR);
456 	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
457 	write_SSSR_CS(drv_data, SSSR_ROR);
458 
459 	return limit;
460 }
461 
462 static int null_writer(struct driver_data *drv_data)
463 {
464 	u8 n_bytes = drv_data->n_bytes;
465 
466 	if (pxa2xx_spi_txfifo_full(drv_data)
467 		|| (drv_data->tx == drv_data->tx_end))
468 		return 0;
469 
470 	pxa2xx_spi_write(drv_data, SSDR, 0);
471 	drv_data->tx += n_bytes;
472 
473 	return 1;
474 }
475 
476 static int null_reader(struct driver_data *drv_data)
477 {
478 	u8 n_bytes = drv_data->n_bytes;
479 
480 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
481 	       && (drv_data->rx < drv_data->rx_end)) {
482 		pxa2xx_spi_read(drv_data, SSDR);
483 		drv_data->rx += n_bytes;
484 	}
485 
486 	return drv_data->rx == drv_data->rx_end;
487 }
488 
489 static int u8_writer(struct driver_data *drv_data)
490 {
491 	if (pxa2xx_spi_txfifo_full(drv_data)
492 		|| (drv_data->tx == drv_data->tx_end))
493 		return 0;
494 
495 	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
496 	++drv_data->tx;
497 
498 	return 1;
499 }
500 
501 static int u8_reader(struct driver_data *drv_data)
502 {
503 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
504 	       && (drv_data->rx < drv_data->rx_end)) {
505 		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
506 		++drv_data->rx;
507 	}
508 
509 	return drv_data->rx == drv_data->rx_end;
510 }
511 
512 static int u16_writer(struct driver_data *drv_data)
513 {
514 	if (pxa2xx_spi_txfifo_full(drv_data)
515 		|| (drv_data->tx == drv_data->tx_end))
516 		return 0;
517 
518 	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
519 	drv_data->tx += 2;
520 
521 	return 1;
522 }
523 
524 static int u16_reader(struct driver_data *drv_data)
525 {
526 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
527 	       && (drv_data->rx < drv_data->rx_end)) {
528 		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
529 		drv_data->rx += 2;
530 	}
531 
532 	return drv_data->rx == drv_data->rx_end;
533 }
534 
535 static int u32_writer(struct driver_data *drv_data)
536 {
537 	if (pxa2xx_spi_txfifo_full(drv_data)
538 		|| (drv_data->tx == drv_data->tx_end))
539 		return 0;
540 
541 	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
542 	drv_data->tx += 4;
543 
544 	return 1;
545 }
546 
547 static int u32_reader(struct driver_data *drv_data)
548 {
549 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
550 	       && (drv_data->rx < drv_data->rx_end)) {
551 		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
552 		drv_data->rx += 4;
553 	}
554 
555 	return drv_data->rx == drv_data->rx_end;
556 }
557 
558 static void reset_sccr1(struct driver_data *drv_data)
559 {
560 	struct chip_data *chip =
561 		spi_get_ctldata(drv_data->controller->cur_msg->spi);
562 	u32 sccr1_reg;
563 
564 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
565 	switch (drv_data->ssp_type) {
566 	case QUARK_X1000_SSP:
567 		sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
568 		break;
569 	case CE4100_SSP:
570 		sccr1_reg &= ~CE4100_SSCR1_RFT;
571 		break;
572 	default:
573 		sccr1_reg &= ~SSCR1_RFT;
574 		break;
575 	}
576 	sccr1_reg |= chip->threshold;
577 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
578 }
579 
580 static void int_error_stop(struct driver_data *drv_data, const char* msg)
581 {
582 	/* Stop and reset SSP */
583 	write_SSSR_CS(drv_data, drv_data->clear_sr);
584 	reset_sccr1(drv_data);
585 	if (!pxa25x_ssp_comp(drv_data))
586 		pxa2xx_spi_write(drv_data, SSTO, 0);
587 	pxa2xx_spi_flush(drv_data);
588 	pxa2xx_spi_write(drv_data, SSCR0,
589 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
590 
591 	dev_err(&drv_data->pdev->dev, "%s\n", msg);
592 
593 	drv_data->controller->cur_msg->status = -EIO;
594 	spi_finalize_current_transfer(drv_data->controller);
595 }
596 
597 static void int_transfer_complete(struct driver_data *drv_data)
598 {
599 	/* Clear and disable interrupts */
600 	write_SSSR_CS(drv_data, drv_data->clear_sr);
601 	reset_sccr1(drv_data);
602 	if (!pxa25x_ssp_comp(drv_data))
603 		pxa2xx_spi_write(drv_data, SSTO, 0);
604 
605 	spi_finalize_current_transfer(drv_data->controller);
606 }
607 
608 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
609 {
610 	u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
611 		       drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
612 
613 	u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
614 
615 	if (irq_status & SSSR_ROR) {
616 		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
617 		return IRQ_HANDLED;
618 	}
619 
620 	if (irq_status & SSSR_TUR) {
621 		int_error_stop(drv_data, "interrupt_transfer: fifo underrun");
622 		return IRQ_HANDLED;
623 	}
624 
625 	if (irq_status & SSSR_TINT) {
626 		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
627 		if (drv_data->read(drv_data)) {
628 			int_transfer_complete(drv_data);
629 			return IRQ_HANDLED;
630 		}
631 	}
632 
633 	/* Drain rx fifo, Fill tx fifo and prevent overruns */
634 	do {
635 		if (drv_data->read(drv_data)) {
636 			int_transfer_complete(drv_data);
637 			return IRQ_HANDLED;
638 		}
639 	} while (drv_data->write(drv_data));
640 
641 	if (drv_data->read(drv_data)) {
642 		int_transfer_complete(drv_data);
643 		return IRQ_HANDLED;
644 	}
645 
646 	if (drv_data->tx == drv_data->tx_end) {
647 		u32 bytes_left;
648 		u32 sccr1_reg;
649 
650 		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
651 		sccr1_reg &= ~SSCR1_TIE;
652 
653 		/*
654 		 * PXA25x_SSP has no timeout, set up rx threshould for the
655 		 * remaining RX bytes.
656 		 */
657 		if (pxa25x_ssp_comp(drv_data)) {
658 			u32 rx_thre;
659 
660 			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
661 
662 			bytes_left = drv_data->rx_end - drv_data->rx;
663 			switch (drv_data->n_bytes) {
664 			case 4:
665 				bytes_left >>= 2;
666 				break;
667 			case 2:
668 				bytes_left >>= 1;
669 				break;
670 			}
671 
672 			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
673 			if (rx_thre > bytes_left)
674 				rx_thre = bytes_left;
675 
676 			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
677 		}
678 		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
679 	}
680 
681 	/* We did something */
682 	return IRQ_HANDLED;
683 }
684 
685 static void handle_bad_msg(struct driver_data *drv_data)
686 {
687 	pxa2xx_spi_write(drv_data, SSCR0,
688 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
689 	pxa2xx_spi_write(drv_data, SSCR1,
690 			 pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1);
691 	if (!pxa25x_ssp_comp(drv_data))
692 		pxa2xx_spi_write(drv_data, SSTO, 0);
693 	write_SSSR_CS(drv_data, drv_data->clear_sr);
694 
695 	dev_err(&drv_data->pdev->dev,
696 		"bad message state in interrupt handler\n");
697 }
698 
699 static irqreturn_t ssp_int(int irq, void *dev_id)
700 {
701 	struct driver_data *drv_data = dev_id;
702 	u32 sccr1_reg;
703 	u32 mask = drv_data->mask_sr;
704 	u32 status;
705 
706 	/*
707 	 * The IRQ might be shared with other peripherals so we must first
708 	 * check that are we RPM suspended or not. If we are we assume that
709 	 * the IRQ was not for us (we shouldn't be RPM suspended when the
710 	 * interrupt is enabled).
711 	 */
712 	if (pm_runtime_suspended(&drv_data->pdev->dev))
713 		return IRQ_NONE;
714 
715 	/*
716 	 * If the device is not yet in RPM suspended state and we get an
717 	 * interrupt that is meant for another device, check if status bits
718 	 * are all set to one. That means that the device is already
719 	 * powered off.
720 	 */
721 	status = pxa2xx_spi_read(drv_data, SSSR);
722 	if (status == ~0)
723 		return IRQ_NONE;
724 
725 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
726 
727 	/* Ignore possible writes if we don't need to write */
728 	if (!(sccr1_reg & SSCR1_TIE))
729 		mask &= ~SSSR_TFS;
730 
731 	/* Ignore RX timeout interrupt if it is disabled */
732 	if (!(sccr1_reg & SSCR1_TINTE))
733 		mask &= ~SSSR_TINT;
734 
735 	if (!(status & mask))
736 		return IRQ_NONE;
737 
738 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
739 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
740 
741 	if (!drv_data->controller->cur_msg) {
742 		handle_bad_msg(drv_data);
743 		/* Never fail */
744 		return IRQ_HANDLED;
745 	}
746 
747 	return drv_data->transfer_handler(drv_data);
748 }
749 
750 /*
751  * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
752  * input frequency by fractions of 2^24. It also has a divider by 5.
753  *
754  * There are formulas to get baud rate value for given input frequency and
755  * divider parameters, such as DDS_CLK_RATE and SCR:
756  *
757  * Fsys = 200MHz
758  *
759  * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
760  * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
761  *
762  * DDS_CLK_RATE either 2^n or 2^n / 5.
763  * SCR is in range 0 .. 255
764  *
765  * Divisor = 5^i * 2^j * 2 * k
766  *       i = [0, 1]      i = 1 iff j = 0 or j > 3
767  *       j = [0, 23]     j = 0 iff i = 1
768  *       k = [1, 256]
769  * Special case: j = 0, i = 1: Divisor = 2 / 5
770  *
771  * Accordingly to the specification the recommended values for DDS_CLK_RATE
772  * are:
773  *	Case 1:		2^n, n = [0, 23]
774  *	Case 2:		2^24 * 2 / 5 (0x666666)
775  *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
776  *
777  * In all cases the lowest possible value is better.
778  *
779  * The function calculates parameters for all cases and chooses the one closest
780  * to the asked baud rate.
781  */
782 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
783 {
784 	unsigned long xtal = 200000000;
785 	unsigned long fref = xtal / 2;		/* mandatory division by 2,
786 						   see (2) */
787 						/* case 3 */
788 	unsigned long fref1 = fref / 2;		/* case 1 */
789 	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
790 	unsigned long scale;
791 	unsigned long q, q1, q2;
792 	long r, r1, r2;
793 	u32 mul;
794 
795 	/* Case 1 */
796 
797 	/* Set initial value for DDS_CLK_RATE */
798 	mul = (1 << 24) >> 1;
799 
800 	/* Calculate initial quot */
801 	q1 = DIV_ROUND_UP(fref1, rate);
802 
803 	/* Scale q1 if it's too big */
804 	if (q1 > 256) {
805 		/* Scale q1 to range [1, 512] */
806 		scale = fls_long(q1 - 1);
807 		if (scale > 9) {
808 			q1 >>= scale - 9;
809 			mul >>= scale - 9;
810 		}
811 
812 		/* Round the result if we have a remainder */
813 		q1 += q1 & 1;
814 	}
815 
816 	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
817 	scale = __ffs(q1);
818 	q1 >>= scale;
819 	mul >>= scale;
820 
821 	/* Get the remainder */
822 	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
823 
824 	/* Case 2 */
825 
826 	q2 = DIV_ROUND_UP(fref2, rate);
827 	r2 = abs(fref2 / q2 - rate);
828 
829 	/*
830 	 * Choose the best between two: less remainder we have the better. We
831 	 * can't go case 2 if q2 is greater than 256 since SCR register can
832 	 * hold only values 0 .. 255.
833 	 */
834 	if (r2 >= r1 || q2 > 256) {
835 		/* case 1 is better */
836 		r = r1;
837 		q = q1;
838 	} else {
839 		/* case 2 is better */
840 		r = r2;
841 		q = q2;
842 		mul = (1 << 24) * 2 / 5;
843 	}
844 
845 	/* Check case 3 only if the divisor is big enough */
846 	if (fref / rate >= 80) {
847 		u64 fssp;
848 		u32 m;
849 
850 		/* Calculate initial quot */
851 		q1 = DIV_ROUND_UP(fref, rate);
852 		m = (1 << 24) / q1;
853 
854 		/* Get the remainder */
855 		fssp = (u64)fref * m;
856 		do_div(fssp, 1 << 24);
857 		r1 = abs(fssp - rate);
858 
859 		/* Choose this one if it suits better */
860 		if (r1 < r) {
861 			/* case 3 is better */
862 			q = 1;
863 			mul = m;
864 		}
865 	}
866 
867 	*dds = mul;
868 	return q - 1;
869 }
870 
871 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
872 {
873 	unsigned long ssp_clk = drv_data->controller->max_speed_hz;
874 	const struct ssp_device *ssp = drv_data->ssp;
875 
876 	rate = min_t(int, ssp_clk, rate);
877 
878 	/*
879 	 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
880 	 * that the SSP transmission rate can be greater than the device rate
881 	 */
882 	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
883 		return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
884 	else
885 		return (DIV_ROUND_UP(ssp_clk, rate) - 1)  & 0xfff;
886 }
887 
888 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
889 					   int rate)
890 {
891 	struct chip_data *chip =
892 		spi_get_ctldata(drv_data->controller->cur_msg->spi);
893 	unsigned int clk_div;
894 
895 	switch (drv_data->ssp_type) {
896 	case QUARK_X1000_SSP:
897 		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
898 		break;
899 	default:
900 		clk_div = ssp_get_clk_div(drv_data, rate);
901 		break;
902 	}
903 	return clk_div << 8;
904 }
905 
906 static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
907 			       struct spi_device *spi,
908 			       struct spi_transfer *xfer)
909 {
910 	struct chip_data *chip = spi_get_ctldata(spi);
911 
912 	return chip->enable_dma &&
913 	       xfer->len <= MAX_DMA_LEN &&
914 	       xfer->len >= chip->dma_burst_size;
915 }
916 
917 static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
918 				   struct spi_device *spi,
919 				   struct spi_transfer *transfer)
920 {
921 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
922 	struct spi_message *message = controller->cur_msg;
923 	struct chip_data *chip = spi_get_ctldata(spi);
924 	u32 dma_thresh = chip->dma_threshold;
925 	u32 dma_burst = chip->dma_burst_size;
926 	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
927 	u32 clk_div;
928 	u8 bits;
929 	u32 speed;
930 	u32 cr0;
931 	u32 cr1;
932 	int err;
933 	int dma_mapped;
934 
935 	/* Check if we can DMA this transfer */
936 	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
937 
938 		/* reject already-mapped transfers; PIO won't always work */
939 		if (message->is_dma_mapped
940 				|| transfer->rx_dma || transfer->tx_dma) {
941 			dev_err(&spi->dev,
942 				"Mapped transfer length of %u is greater than %d\n",
943 				transfer->len, MAX_DMA_LEN);
944 			return -EINVAL;
945 		}
946 
947 		/* warn ... we force this to PIO mode */
948 		dev_warn_ratelimited(&spi->dev,
949 				     "DMA disabled for transfer length %ld greater than %d\n",
950 				     (long)transfer->len, MAX_DMA_LEN);
951 	}
952 
953 	/* Setup the transfer state based on the type of transfer */
954 	if (pxa2xx_spi_flush(drv_data) == 0) {
955 		dev_err(&spi->dev, "Flush failed\n");
956 		return -EIO;
957 	}
958 	drv_data->n_bytes = chip->n_bytes;
959 	drv_data->tx = (void *)transfer->tx_buf;
960 	drv_data->tx_end = drv_data->tx + transfer->len;
961 	drv_data->rx = transfer->rx_buf;
962 	drv_data->rx_end = drv_data->rx + transfer->len;
963 	drv_data->write = drv_data->tx ? chip->write : null_writer;
964 	drv_data->read = drv_data->rx ? chip->read : null_reader;
965 
966 	/* Change speed and bit per word on a per transfer */
967 	bits = transfer->bits_per_word;
968 	speed = transfer->speed_hz;
969 
970 	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
971 
972 	if (bits <= 8) {
973 		drv_data->n_bytes = 1;
974 		drv_data->read = drv_data->read != null_reader ?
975 					u8_reader : null_reader;
976 		drv_data->write = drv_data->write != null_writer ?
977 					u8_writer : null_writer;
978 	} else if (bits <= 16) {
979 		drv_data->n_bytes = 2;
980 		drv_data->read = drv_data->read != null_reader ?
981 					u16_reader : null_reader;
982 		drv_data->write = drv_data->write != null_writer ?
983 					u16_writer : null_writer;
984 	} else if (bits <= 32) {
985 		drv_data->n_bytes = 4;
986 		drv_data->read = drv_data->read != null_reader ?
987 					u32_reader : null_reader;
988 		drv_data->write = drv_data->write != null_writer ?
989 					u32_writer : null_writer;
990 	}
991 	/*
992 	 * if bits/word is changed in dma mode, then must check the
993 	 * thresholds and burst also
994 	 */
995 	if (chip->enable_dma) {
996 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
997 						spi,
998 						bits, &dma_burst,
999 						&dma_thresh))
1000 			dev_warn_ratelimited(&spi->dev,
1001 					     "DMA burst size reduced to match bits_per_word\n");
1002 	}
1003 
1004 	dma_mapped = controller->can_dma &&
1005 		     controller->can_dma(controller, spi, transfer) &&
1006 		     controller->cur_msg_mapped;
1007 	if (dma_mapped) {
1008 
1009 		/* Ensure we have the correct interrupt handler */
1010 		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1011 
1012 		err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1013 		if (err)
1014 			return err;
1015 
1016 		/* Clear status and start DMA engine */
1017 		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1018 		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1019 
1020 		pxa2xx_spi_dma_start(drv_data);
1021 	} else {
1022 		/* Ensure we have the correct interrupt handler	*/
1023 		drv_data->transfer_handler = interrupt_transfer;
1024 
1025 		/* Clear status  */
1026 		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1027 		write_SSSR_CS(drv_data, drv_data->clear_sr);
1028 	}
1029 
1030 	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1031 	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1032 	if (!pxa25x_ssp_comp(drv_data))
1033 		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1034 			controller->max_speed_hz
1035 				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1036 			dma_mapped ? "DMA" : "PIO");
1037 	else
1038 		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1039 			controller->max_speed_hz / 2
1040 				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1041 			dma_mapped ? "DMA" : "PIO");
1042 
1043 	if (is_lpss_ssp(drv_data)) {
1044 		if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1045 		    != chip->lpss_rx_threshold)
1046 			pxa2xx_spi_write(drv_data, SSIRF,
1047 					 chip->lpss_rx_threshold);
1048 		if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1049 		    != chip->lpss_tx_threshold)
1050 			pxa2xx_spi_write(drv_data, SSITF,
1051 					 chip->lpss_tx_threshold);
1052 	}
1053 
1054 	if (is_quark_x1000_ssp(drv_data) &&
1055 	    (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1056 		pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1057 
1058 	/* see if we need to reload the config registers */
1059 	if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1060 	    || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1061 	    != (cr1 & change_mask)) {
1062 		/* stop the SSP, and update the other bits */
1063 		pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1064 		if (!pxa25x_ssp_comp(drv_data))
1065 			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1066 		/* first set CR1 without interrupt and service enables */
1067 		pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1068 		/* restart the SSP */
1069 		pxa2xx_spi_write(drv_data, SSCR0, cr0);
1070 
1071 	} else {
1072 		if (!pxa25x_ssp_comp(drv_data))
1073 			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1074 	}
1075 
1076 	if (drv_data->ssp_type == MMP2_SSP) {
1077 		u8 tx_level = (pxa2xx_spi_read(drv_data, SSSR)
1078 					& SSSR_TFL_MASK) >> 8;
1079 
1080 		if (tx_level) {
1081 			/* On MMP2, flipping SSE doesn't to empty TXFIFO. */
1082 			dev_warn(&spi->dev, "%d bytes of garbage in TXFIFO!\n",
1083 								tx_level);
1084 			if (tx_level > transfer->len)
1085 				tx_level = transfer->len;
1086 			drv_data->tx += tx_level;
1087 		}
1088 	}
1089 
1090 	if (spi_controller_is_slave(controller)) {
1091 		while (drv_data->write(drv_data))
1092 			;
1093 		if (drv_data->gpiod_ready) {
1094 			gpiod_set_value(drv_data->gpiod_ready, 1);
1095 			udelay(1);
1096 			gpiod_set_value(drv_data->gpiod_ready, 0);
1097 		}
1098 	}
1099 
1100 	/*
1101 	 * Release the data by enabling service requests and interrupts,
1102 	 * without changing any mode bits
1103 	 */
1104 	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1105 
1106 	return 1;
1107 }
1108 
1109 static int pxa2xx_spi_slave_abort(struct spi_controller *controller)
1110 {
1111 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1112 
1113 	/* Stop and reset SSP */
1114 	write_SSSR_CS(drv_data, drv_data->clear_sr);
1115 	reset_sccr1(drv_data);
1116 	if (!pxa25x_ssp_comp(drv_data))
1117 		pxa2xx_spi_write(drv_data, SSTO, 0);
1118 	pxa2xx_spi_flush(drv_data);
1119 	pxa2xx_spi_write(drv_data, SSCR0,
1120 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1121 
1122 	dev_dbg(&drv_data->pdev->dev, "transfer aborted\n");
1123 
1124 	drv_data->controller->cur_msg->status = -EINTR;
1125 	spi_finalize_current_transfer(drv_data->controller);
1126 
1127 	return 0;
1128 }
1129 
1130 static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1131 				 struct spi_message *msg)
1132 {
1133 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1134 
1135 	/* Disable the SSP */
1136 	pxa2xx_spi_write(drv_data, SSCR0,
1137 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1138 	/* Clear and disable interrupts and service requests */
1139 	write_SSSR_CS(drv_data, drv_data->clear_sr);
1140 	pxa2xx_spi_write(drv_data, SSCR1,
1141 			 pxa2xx_spi_read(drv_data, SSCR1)
1142 			 & ~(drv_data->int_cr1 | drv_data->dma_cr1));
1143 	if (!pxa25x_ssp_comp(drv_data))
1144 		pxa2xx_spi_write(drv_data, SSTO, 0);
1145 
1146 	/*
1147 	 * Stop the DMA if running. Note DMA callback handler may have unset
1148 	 * the dma_running already, which is fine as stopping is not needed
1149 	 * then but we shouldn't rely this flag for anything else than
1150 	 * stopping. For instance to differentiate between PIO and DMA
1151 	 * transfers.
1152 	 */
1153 	if (atomic_read(&drv_data->dma_running))
1154 		pxa2xx_spi_dma_stop(drv_data);
1155 }
1156 
1157 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1158 {
1159 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1160 
1161 	/* Disable the SSP now */
1162 	pxa2xx_spi_write(drv_data, SSCR0,
1163 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1164 
1165 	return 0;
1166 }
1167 
1168 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1169 		    struct pxa2xx_spi_chip *chip_info)
1170 {
1171 	struct driver_data *drv_data =
1172 		spi_controller_get_devdata(spi->controller);
1173 	struct gpio_desc *gpiod;
1174 	int err = 0;
1175 
1176 	if (chip == NULL)
1177 		return 0;
1178 
1179 	if (drv_data->cs_gpiods) {
1180 		gpiod = drv_data->cs_gpiods[spi->chip_select];
1181 		if (gpiod) {
1182 			chip->gpiod_cs = gpiod;
1183 			chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1184 			gpiod_set_value(gpiod, chip->gpio_cs_inverted);
1185 		}
1186 
1187 		return 0;
1188 	}
1189 
1190 	if (chip_info == NULL)
1191 		return 0;
1192 
1193 	/* NOTE: setup() can be called multiple times, possibly with
1194 	 * different chip_info, release previously requested GPIO
1195 	 */
1196 	if (chip->gpiod_cs) {
1197 		gpiod_put(chip->gpiod_cs);
1198 		chip->gpiod_cs = NULL;
1199 	}
1200 
1201 	/* If (*cs_control) is provided, ignore GPIO chip select */
1202 	if (chip_info->cs_control) {
1203 		chip->cs_control = chip_info->cs_control;
1204 		return 0;
1205 	}
1206 
1207 	if (gpio_is_valid(chip_info->gpio_cs)) {
1208 		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1209 		if (err) {
1210 			dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1211 				chip_info->gpio_cs);
1212 			return err;
1213 		}
1214 
1215 		gpiod = gpio_to_desc(chip_info->gpio_cs);
1216 		chip->gpiod_cs = gpiod;
1217 		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1218 
1219 		err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted);
1220 	}
1221 
1222 	return err;
1223 }
1224 
1225 static int setup(struct spi_device *spi)
1226 {
1227 	struct pxa2xx_spi_chip *chip_info;
1228 	struct chip_data *chip;
1229 	const struct lpss_config *config;
1230 	struct driver_data *drv_data =
1231 		spi_controller_get_devdata(spi->controller);
1232 	uint tx_thres, tx_hi_thres, rx_thres;
1233 
1234 	switch (drv_data->ssp_type) {
1235 	case QUARK_X1000_SSP:
1236 		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1237 		tx_hi_thres = 0;
1238 		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1239 		break;
1240 	case CE4100_SSP:
1241 		tx_thres = TX_THRESH_CE4100_DFLT;
1242 		tx_hi_thres = 0;
1243 		rx_thres = RX_THRESH_CE4100_DFLT;
1244 		break;
1245 	case LPSS_LPT_SSP:
1246 	case LPSS_BYT_SSP:
1247 	case LPSS_BSW_SSP:
1248 	case LPSS_SPT_SSP:
1249 	case LPSS_BXT_SSP:
1250 	case LPSS_CNL_SSP:
1251 		config = lpss_get_config(drv_data);
1252 		tx_thres = config->tx_threshold_lo;
1253 		tx_hi_thres = config->tx_threshold_hi;
1254 		rx_thres = config->rx_threshold;
1255 		break;
1256 	default:
1257 		tx_hi_thres = 0;
1258 		if (spi_controller_is_slave(drv_data->controller)) {
1259 			tx_thres = 1;
1260 			rx_thres = 2;
1261 		} else {
1262 			tx_thres = TX_THRESH_DFLT;
1263 			rx_thres = RX_THRESH_DFLT;
1264 		}
1265 		break;
1266 	}
1267 
1268 	/* Only alloc on first setup */
1269 	chip = spi_get_ctldata(spi);
1270 	if (!chip) {
1271 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1272 		if (!chip)
1273 			return -ENOMEM;
1274 
1275 		if (drv_data->ssp_type == CE4100_SSP) {
1276 			if (spi->chip_select > 4) {
1277 				dev_err(&spi->dev,
1278 					"failed setup: cs number must not be > 4.\n");
1279 				kfree(chip);
1280 				return -EINVAL;
1281 			}
1282 
1283 			chip->frm = spi->chip_select;
1284 		}
1285 		chip->enable_dma = drv_data->controller_info->enable_dma;
1286 		chip->timeout = TIMOUT_DFLT;
1287 	}
1288 
1289 	/* protocol drivers may change the chip settings, so...
1290 	 * if chip_info exists, use it */
1291 	chip_info = spi->controller_data;
1292 
1293 	/* chip_info isn't always needed */
1294 	chip->cr1 = 0;
1295 	if (chip_info) {
1296 		if (chip_info->timeout)
1297 			chip->timeout = chip_info->timeout;
1298 		if (chip_info->tx_threshold)
1299 			tx_thres = chip_info->tx_threshold;
1300 		if (chip_info->tx_hi_threshold)
1301 			tx_hi_thres = chip_info->tx_hi_threshold;
1302 		if (chip_info->rx_threshold)
1303 			rx_thres = chip_info->rx_threshold;
1304 		chip->dma_threshold = 0;
1305 		if (chip_info->enable_loopback)
1306 			chip->cr1 = SSCR1_LBM;
1307 	}
1308 	if (spi_controller_is_slave(drv_data->controller)) {
1309 		chip->cr1 |= SSCR1_SCFR;
1310 		chip->cr1 |= SSCR1_SCLKDIR;
1311 		chip->cr1 |= SSCR1_SFRMDIR;
1312 		chip->cr1 |= SSCR1_SPH;
1313 	}
1314 
1315 	chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1316 	chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1317 				| SSITF_TxHiThresh(tx_hi_thres);
1318 
1319 	/* set dma burst and threshold outside of chip_info path so that if
1320 	 * chip_info goes away after setting chip->enable_dma, the
1321 	 * burst and threshold can still respond to changes in bits_per_word */
1322 	if (chip->enable_dma) {
1323 		/* set up legal burst and threshold for dma */
1324 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1325 						spi->bits_per_word,
1326 						&chip->dma_burst_size,
1327 						&chip->dma_threshold)) {
1328 			dev_warn(&spi->dev,
1329 				 "in setup: DMA burst size reduced to match bits_per_word\n");
1330 		}
1331 		dev_dbg(&spi->dev,
1332 			"in setup: DMA burst size set to %u\n",
1333 			chip->dma_burst_size);
1334 	}
1335 
1336 	switch (drv_data->ssp_type) {
1337 	case QUARK_X1000_SSP:
1338 		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1339 				   & QUARK_X1000_SSCR1_RFT)
1340 				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1341 				   & QUARK_X1000_SSCR1_TFT);
1342 		break;
1343 	case CE4100_SSP:
1344 		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1345 			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1346 		break;
1347 	default:
1348 		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1349 			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1350 		break;
1351 	}
1352 
1353 	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1354 	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1355 			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1356 
1357 	if (spi->mode & SPI_LOOP)
1358 		chip->cr1 |= SSCR1_LBM;
1359 
1360 	if (spi->bits_per_word <= 8) {
1361 		chip->n_bytes = 1;
1362 		chip->read = u8_reader;
1363 		chip->write = u8_writer;
1364 	} else if (spi->bits_per_word <= 16) {
1365 		chip->n_bytes = 2;
1366 		chip->read = u16_reader;
1367 		chip->write = u16_writer;
1368 	} else if (spi->bits_per_word <= 32) {
1369 		chip->n_bytes = 4;
1370 		chip->read = u32_reader;
1371 		chip->write = u32_writer;
1372 	}
1373 
1374 	spi_set_ctldata(spi, chip);
1375 
1376 	if (drv_data->ssp_type == CE4100_SSP)
1377 		return 0;
1378 
1379 	return setup_cs(spi, chip, chip_info);
1380 }
1381 
1382 static void cleanup(struct spi_device *spi)
1383 {
1384 	struct chip_data *chip = spi_get_ctldata(spi);
1385 	struct driver_data *drv_data =
1386 		spi_controller_get_devdata(spi->controller);
1387 
1388 	if (!chip)
1389 		return;
1390 
1391 	if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
1392 	    chip->gpiod_cs)
1393 		gpiod_put(chip->gpiod_cs);
1394 
1395 	kfree(chip);
1396 }
1397 
1398 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1399 	{ "INT33C0", LPSS_LPT_SSP },
1400 	{ "INT33C1", LPSS_LPT_SSP },
1401 	{ "INT3430", LPSS_LPT_SSP },
1402 	{ "INT3431", LPSS_LPT_SSP },
1403 	{ "80860F0E", LPSS_BYT_SSP },
1404 	{ "8086228E", LPSS_BSW_SSP },
1405 	{ },
1406 };
1407 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1408 
1409 /*
1410  * PCI IDs of compound devices that integrate both host controller and private
1411  * integrated DMA engine. Please note these are not used in module
1412  * autoloading and probing in this module but matching the LPSS SSP type.
1413  */
1414 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1415 	/* SPT-LP */
1416 	{ PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1417 	{ PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1418 	/* SPT-H */
1419 	{ PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1420 	{ PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1421 	/* KBL-H */
1422 	{ PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1423 	{ PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1424 	/* BXT A-Step */
1425 	{ PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1426 	{ PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1427 	{ PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1428 	/* BXT B-Step */
1429 	{ PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1430 	{ PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1431 	{ PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1432 	/* GLK */
1433 	{ PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1434 	{ PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1435 	{ PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1436 	/* ICL-LP */
1437 	{ PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP },
1438 	{ PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP },
1439 	{ PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP },
1440 	/* EHL */
1441 	{ PCI_VDEVICE(INTEL, 0x4b2a), LPSS_BXT_SSP },
1442 	{ PCI_VDEVICE(INTEL, 0x4b2b), LPSS_BXT_SSP },
1443 	{ PCI_VDEVICE(INTEL, 0x4b37), LPSS_BXT_SSP },
1444 	/* APL */
1445 	{ PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1446 	{ PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1447 	{ PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1448 	/* CNL-LP */
1449 	{ PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1450 	{ PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1451 	{ PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1452 	/* CNL-H */
1453 	{ PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1454 	{ PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1455 	{ PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1456 	/* CML-LP */
1457 	{ PCI_VDEVICE(INTEL, 0x02aa), LPSS_CNL_SSP },
1458 	{ PCI_VDEVICE(INTEL, 0x02ab), LPSS_CNL_SSP },
1459 	{ PCI_VDEVICE(INTEL, 0x02fb), LPSS_CNL_SSP },
1460 	/* TGL-LP */
1461 	{ PCI_VDEVICE(INTEL, 0xa0aa), LPSS_CNL_SSP },
1462 	{ PCI_VDEVICE(INTEL, 0xa0ab), LPSS_CNL_SSP },
1463 	{ PCI_VDEVICE(INTEL, 0xa0de), LPSS_CNL_SSP },
1464 	{ PCI_VDEVICE(INTEL, 0xa0df), LPSS_CNL_SSP },
1465 	{ PCI_VDEVICE(INTEL, 0xa0fb), LPSS_CNL_SSP },
1466 	{ PCI_VDEVICE(INTEL, 0xa0fd), LPSS_CNL_SSP },
1467 	{ PCI_VDEVICE(INTEL, 0xa0fe), LPSS_CNL_SSP },
1468 	{ },
1469 };
1470 
1471 static const struct of_device_id pxa2xx_spi_of_match[] = {
1472 	{ .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1473 	{},
1474 };
1475 MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1476 
1477 #ifdef CONFIG_ACPI
1478 
1479 static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1480 {
1481 	unsigned int devid;
1482 	int port_id = -1;
1483 
1484 	if (adev && adev->pnp.unique_id &&
1485 	    !kstrtouint(adev->pnp.unique_id, 0, &devid))
1486 		port_id = devid;
1487 	return port_id;
1488 }
1489 
1490 #else /* !CONFIG_ACPI */
1491 
1492 static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1493 {
1494 	return -1;
1495 }
1496 
1497 #endif /* CONFIG_ACPI */
1498 
1499 
1500 #ifdef CONFIG_PCI
1501 
1502 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1503 {
1504 	return param == chan->device->dev;
1505 }
1506 
1507 #endif /* CONFIG_PCI */
1508 
1509 static struct pxa2xx_spi_controller *
1510 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1511 {
1512 	struct pxa2xx_spi_controller *pdata;
1513 	struct acpi_device *adev;
1514 	struct ssp_device *ssp;
1515 	struct resource *res;
1516 	const struct acpi_device_id *adev_id = NULL;
1517 	const struct pci_device_id *pcidev_id = NULL;
1518 	const struct of_device_id *of_id = NULL;
1519 	enum pxa_ssp_type type;
1520 
1521 	adev = ACPI_COMPANION(&pdev->dev);
1522 
1523 	if (pdev->dev.of_node)
1524 		of_id = of_match_device(pdev->dev.driver->of_match_table,
1525 					&pdev->dev);
1526 	else if (dev_is_pci(pdev->dev.parent))
1527 		pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match,
1528 					 to_pci_dev(pdev->dev.parent));
1529 	else if (adev)
1530 		adev_id = acpi_match_device(pdev->dev.driver->acpi_match_table,
1531 					    &pdev->dev);
1532 	else
1533 		return NULL;
1534 
1535 	if (adev_id)
1536 		type = (enum pxa_ssp_type)adev_id->driver_data;
1537 	else if (pcidev_id)
1538 		type = (enum pxa_ssp_type)pcidev_id->driver_data;
1539 	else if (of_id)
1540 		type = (enum pxa_ssp_type)of_id->data;
1541 	else
1542 		return NULL;
1543 
1544 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1545 	if (!pdata)
1546 		return NULL;
1547 
1548 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1549 	if (!res)
1550 		return NULL;
1551 
1552 	ssp = &pdata->ssp;
1553 
1554 	ssp->phys_base = res->start;
1555 	ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1556 	if (IS_ERR(ssp->mmio_base))
1557 		return NULL;
1558 
1559 #ifdef CONFIG_PCI
1560 	if (pcidev_id) {
1561 		pdata->tx_param = pdev->dev.parent;
1562 		pdata->rx_param = pdev->dev.parent;
1563 		pdata->dma_filter = pxa2xx_spi_idma_filter;
1564 	}
1565 #endif
1566 
1567 	ssp->clk = devm_clk_get(&pdev->dev, NULL);
1568 	ssp->irq = platform_get_irq(pdev, 0);
1569 	ssp->type = type;
1570 	ssp->pdev = pdev;
1571 	ssp->port_id = pxa2xx_spi_get_port_id(adev);
1572 
1573 	pdata->is_slave = of_property_read_bool(pdev->dev.of_node, "spi-slave");
1574 	pdata->num_chipselect = 1;
1575 	pdata->enable_dma = true;
1576 	pdata->dma_burst_size = 1;
1577 
1578 	return pdata;
1579 }
1580 
1581 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1582 				      unsigned int cs)
1583 {
1584 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1585 
1586 	if (has_acpi_companion(&drv_data->pdev->dev)) {
1587 		switch (drv_data->ssp_type) {
1588 		/*
1589 		 * For Atoms the ACPI DeviceSelection used by the Windows
1590 		 * driver starts from 1 instead of 0 so translate it here
1591 		 * to match what Linux expects.
1592 		 */
1593 		case LPSS_BYT_SSP:
1594 		case LPSS_BSW_SSP:
1595 			return cs - 1;
1596 
1597 		default:
1598 			break;
1599 		}
1600 	}
1601 
1602 	return cs;
1603 }
1604 
1605 static int pxa2xx_spi_probe(struct platform_device *pdev)
1606 {
1607 	struct device *dev = &pdev->dev;
1608 	struct pxa2xx_spi_controller *platform_info;
1609 	struct spi_controller *controller;
1610 	struct driver_data *drv_data;
1611 	struct ssp_device *ssp;
1612 	const struct lpss_config *config;
1613 	int status, count;
1614 	u32 tmp;
1615 
1616 	platform_info = dev_get_platdata(dev);
1617 	if (!platform_info) {
1618 		platform_info = pxa2xx_spi_init_pdata(pdev);
1619 		if (!platform_info) {
1620 			dev_err(&pdev->dev, "missing platform data\n");
1621 			return -ENODEV;
1622 		}
1623 	}
1624 
1625 	ssp = pxa_ssp_request(pdev->id, pdev->name);
1626 	if (!ssp)
1627 		ssp = &platform_info->ssp;
1628 
1629 	if (!ssp->mmio_base) {
1630 		dev_err(&pdev->dev, "failed to get ssp\n");
1631 		return -ENODEV;
1632 	}
1633 
1634 	if (platform_info->is_slave)
1635 		controller = spi_alloc_slave(dev, sizeof(struct driver_data));
1636 	else
1637 		controller = spi_alloc_master(dev, sizeof(struct driver_data));
1638 
1639 	if (!controller) {
1640 		dev_err(&pdev->dev, "cannot alloc spi_controller\n");
1641 		pxa_ssp_free(ssp);
1642 		return -ENOMEM;
1643 	}
1644 	drv_data = spi_controller_get_devdata(controller);
1645 	drv_data->controller = controller;
1646 	drv_data->controller_info = platform_info;
1647 	drv_data->pdev = pdev;
1648 	drv_data->ssp = ssp;
1649 
1650 	controller->dev.of_node = pdev->dev.of_node;
1651 	/* the spi->mode bits understood by this driver: */
1652 	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1653 
1654 	controller->bus_num = ssp->port_id;
1655 	controller->dma_alignment = DMA_ALIGNMENT;
1656 	controller->cleanup = cleanup;
1657 	controller->setup = setup;
1658 	controller->set_cs = pxa2xx_spi_set_cs;
1659 	controller->transfer_one = pxa2xx_spi_transfer_one;
1660 	controller->slave_abort = pxa2xx_spi_slave_abort;
1661 	controller->handle_err = pxa2xx_spi_handle_err;
1662 	controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1663 	controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1664 	controller->auto_runtime_pm = true;
1665 	controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1666 
1667 	drv_data->ssp_type = ssp->type;
1668 
1669 	drv_data->ioaddr = ssp->mmio_base;
1670 	drv_data->ssdr_physical = ssp->phys_base + SSDR;
1671 	if (pxa25x_ssp_comp(drv_data)) {
1672 		switch (drv_data->ssp_type) {
1673 		case QUARK_X1000_SSP:
1674 			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1675 			break;
1676 		default:
1677 			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1678 			break;
1679 		}
1680 
1681 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1682 		drv_data->dma_cr1 = 0;
1683 		drv_data->clear_sr = SSSR_ROR;
1684 		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1685 	} else {
1686 		controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1687 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1688 		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1689 		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1690 		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1691 						| SSSR_ROR | SSSR_TUR;
1692 	}
1693 
1694 	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1695 			drv_data);
1696 	if (status < 0) {
1697 		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1698 		goto out_error_controller_alloc;
1699 	}
1700 
1701 	/* Setup DMA if requested */
1702 	if (platform_info->enable_dma) {
1703 		status = pxa2xx_spi_dma_setup(drv_data);
1704 		if (status) {
1705 			dev_warn(dev, "no DMA channels available, using PIO\n");
1706 			platform_info->enable_dma = false;
1707 		} else {
1708 			controller->can_dma = pxa2xx_spi_can_dma;
1709 			controller->max_dma_len = MAX_DMA_LEN;
1710 		}
1711 	}
1712 
1713 	/* Enable SOC clock */
1714 	status = clk_prepare_enable(ssp->clk);
1715 	if (status)
1716 		goto out_error_dma_irq_alloc;
1717 
1718 	controller->max_speed_hz = clk_get_rate(ssp->clk);
1719 	/*
1720 	 * Set minimum speed for all other platforms than Intel Quark which is
1721 	 * able do under 1 Hz transfers.
1722 	 */
1723 	if (!pxa25x_ssp_comp(drv_data))
1724 		controller->min_speed_hz =
1725 			DIV_ROUND_UP(controller->max_speed_hz, 4096);
1726 	else if (!is_quark_x1000_ssp(drv_data))
1727 		controller->min_speed_hz =
1728 			DIV_ROUND_UP(controller->max_speed_hz, 512);
1729 
1730 	/* Load default SSP configuration */
1731 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1732 	switch (drv_data->ssp_type) {
1733 	case QUARK_X1000_SSP:
1734 		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1735 		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1736 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1737 
1738 		/* using the Motorola SPI protocol and use 8 bit frame */
1739 		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1740 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1741 		break;
1742 	case CE4100_SSP:
1743 		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1744 		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1745 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1746 		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1747 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1748 		break;
1749 	default:
1750 
1751 		if (spi_controller_is_slave(controller)) {
1752 			tmp = SSCR1_SCFR |
1753 			      SSCR1_SCLKDIR |
1754 			      SSCR1_SFRMDIR |
1755 			      SSCR1_RxTresh(2) |
1756 			      SSCR1_TxTresh(1) |
1757 			      SSCR1_SPH;
1758 		} else {
1759 			tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1760 			      SSCR1_TxTresh(TX_THRESH_DFLT);
1761 		}
1762 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1763 		tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1764 		if (!spi_controller_is_slave(controller))
1765 			tmp |= SSCR0_SCR(2);
1766 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1767 		break;
1768 	}
1769 
1770 	if (!pxa25x_ssp_comp(drv_data))
1771 		pxa2xx_spi_write(drv_data, SSTO, 0);
1772 
1773 	if (!is_quark_x1000_ssp(drv_data))
1774 		pxa2xx_spi_write(drv_data, SSPSP, 0);
1775 
1776 	if (is_lpss_ssp(drv_data)) {
1777 		lpss_ssp_setup(drv_data);
1778 		config = lpss_get_config(drv_data);
1779 		if (config->reg_capabilities >= 0) {
1780 			tmp = __lpss_ssp_read_priv(drv_data,
1781 						   config->reg_capabilities);
1782 			tmp &= LPSS_CAPS_CS_EN_MASK;
1783 			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1784 			platform_info->num_chipselect = ffz(tmp);
1785 		} else if (config->cs_num) {
1786 			platform_info->num_chipselect = config->cs_num;
1787 		}
1788 	}
1789 	controller->num_chipselect = platform_info->num_chipselect;
1790 
1791 	count = gpiod_count(&pdev->dev, "cs");
1792 	if (count > 0) {
1793 		int i;
1794 
1795 		controller->num_chipselect = max_t(int, count,
1796 			controller->num_chipselect);
1797 
1798 		drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
1799 			controller->num_chipselect, sizeof(struct gpio_desc *),
1800 			GFP_KERNEL);
1801 		if (!drv_data->cs_gpiods) {
1802 			status = -ENOMEM;
1803 			goto out_error_clock_enabled;
1804 		}
1805 
1806 		for (i = 0; i < controller->num_chipselect; i++) {
1807 			struct gpio_desc *gpiod;
1808 
1809 			gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1810 			if (IS_ERR(gpiod)) {
1811 				/* Means use native chip select */
1812 				if (PTR_ERR(gpiod) == -ENOENT)
1813 					continue;
1814 
1815 				status = PTR_ERR(gpiod);
1816 				goto out_error_clock_enabled;
1817 			} else {
1818 				drv_data->cs_gpiods[i] = gpiod;
1819 			}
1820 		}
1821 	}
1822 
1823 	if (platform_info->is_slave) {
1824 		drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1825 						"ready", GPIOD_OUT_LOW);
1826 		if (IS_ERR(drv_data->gpiod_ready)) {
1827 			status = PTR_ERR(drv_data->gpiod_ready);
1828 			goto out_error_clock_enabled;
1829 		}
1830 	}
1831 
1832 	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1833 	pm_runtime_use_autosuspend(&pdev->dev);
1834 	pm_runtime_set_active(&pdev->dev);
1835 	pm_runtime_enable(&pdev->dev);
1836 
1837 	/* Register with the SPI framework */
1838 	platform_set_drvdata(pdev, drv_data);
1839 	status = devm_spi_register_controller(&pdev->dev, controller);
1840 	if (status != 0) {
1841 		dev_err(&pdev->dev, "problem registering spi controller\n");
1842 		goto out_error_pm_runtime_enabled;
1843 	}
1844 
1845 	return status;
1846 
1847 out_error_pm_runtime_enabled:
1848 	pm_runtime_put_noidle(&pdev->dev);
1849 	pm_runtime_disable(&pdev->dev);
1850 
1851 out_error_clock_enabled:
1852 	clk_disable_unprepare(ssp->clk);
1853 
1854 out_error_dma_irq_alloc:
1855 	pxa2xx_spi_dma_release(drv_data);
1856 	free_irq(ssp->irq, drv_data);
1857 
1858 out_error_controller_alloc:
1859 	spi_controller_put(controller);
1860 	pxa_ssp_free(ssp);
1861 	return status;
1862 }
1863 
1864 static int pxa2xx_spi_remove(struct platform_device *pdev)
1865 {
1866 	struct driver_data *drv_data = platform_get_drvdata(pdev);
1867 	struct ssp_device *ssp;
1868 
1869 	if (!drv_data)
1870 		return 0;
1871 	ssp = drv_data->ssp;
1872 
1873 	pm_runtime_get_sync(&pdev->dev);
1874 
1875 	/* Disable the SSP at the peripheral and SOC level */
1876 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1877 	clk_disable_unprepare(ssp->clk);
1878 
1879 	/* Release DMA */
1880 	if (drv_data->controller_info->enable_dma)
1881 		pxa2xx_spi_dma_release(drv_data);
1882 
1883 	pm_runtime_put_noidle(&pdev->dev);
1884 	pm_runtime_disable(&pdev->dev);
1885 
1886 	/* Release IRQ */
1887 	free_irq(ssp->irq, drv_data);
1888 
1889 	/* Release SSP */
1890 	pxa_ssp_free(ssp);
1891 
1892 	return 0;
1893 }
1894 
1895 #ifdef CONFIG_PM_SLEEP
1896 static int pxa2xx_spi_suspend(struct device *dev)
1897 {
1898 	struct driver_data *drv_data = dev_get_drvdata(dev);
1899 	struct ssp_device *ssp = drv_data->ssp;
1900 	int status;
1901 
1902 	status = spi_controller_suspend(drv_data->controller);
1903 	if (status != 0)
1904 		return status;
1905 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1906 
1907 	if (!pm_runtime_suspended(dev))
1908 		clk_disable_unprepare(ssp->clk);
1909 
1910 	return 0;
1911 }
1912 
1913 static int pxa2xx_spi_resume(struct device *dev)
1914 {
1915 	struct driver_data *drv_data = dev_get_drvdata(dev);
1916 	struct ssp_device *ssp = drv_data->ssp;
1917 	int status;
1918 
1919 	/* Enable the SSP clock */
1920 	if (!pm_runtime_suspended(dev)) {
1921 		status = clk_prepare_enable(ssp->clk);
1922 		if (status)
1923 			return status;
1924 	}
1925 
1926 	/* Start the queue running */
1927 	return spi_controller_resume(drv_data->controller);
1928 }
1929 #endif
1930 
1931 #ifdef CONFIG_PM
1932 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1933 {
1934 	struct driver_data *drv_data = dev_get_drvdata(dev);
1935 
1936 	clk_disable_unprepare(drv_data->ssp->clk);
1937 	return 0;
1938 }
1939 
1940 static int pxa2xx_spi_runtime_resume(struct device *dev)
1941 {
1942 	struct driver_data *drv_data = dev_get_drvdata(dev);
1943 	int status;
1944 
1945 	status = clk_prepare_enable(drv_data->ssp->clk);
1946 	return status;
1947 }
1948 #endif
1949 
1950 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1951 	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1952 	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1953 			   pxa2xx_spi_runtime_resume, NULL)
1954 };
1955 
1956 static struct platform_driver driver = {
1957 	.driver = {
1958 		.name	= "pxa2xx-spi",
1959 		.pm	= &pxa2xx_spi_pm_ops,
1960 		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1961 		.of_match_table = of_match_ptr(pxa2xx_spi_of_match),
1962 	},
1963 	.probe = pxa2xx_spi_probe,
1964 	.remove = pxa2xx_spi_remove,
1965 };
1966 
1967 static int __init pxa2xx_spi_init(void)
1968 {
1969 	return platform_driver_register(&driver);
1970 }
1971 subsys_initcall(pxa2xx_spi_init);
1972 
1973 static void __exit pxa2xx_spi_exit(void)
1974 {
1975 	platform_driver_unregister(&driver);
1976 }
1977 module_exit(pxa2xx_spi_exit);
1978 
1979 MODULE_SOFTDEP("pre: dw_dmac");
1980