1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs 4 * Copyright (C) 2013, 2021 Intel Corporation 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/bitops.h> 9 #include <linux/clk.h> 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/dmaengine.h> 13 #include <linux/err.h> 14 #include <linux/errno.h> 15 #include <linux/gpio/consumer.h> 16 #include <linux/gpio.h> 17 #include <linux/init.h> 18 #include <linux/interrupt.h> 19 #include <linux/ioport.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/of.h> 24 #include <linux/pci.h> 25 #include <linux/platform_device.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/property.h> 28 #include <linux/slab.h> 29 30 #include <linux/spi/pxa2xx_spi.h> 31 #include <linux/spi/spi.h> 32 33 #include "spi-pxa2xx.h" 34 35 MODULE_AUTHOR("Stephen Street"); 36 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller"); 37 MODULE_LICENSE("GPL"); 38 MODULE_ALIAS("platform:pxa2xx-spi"); 39 40 #define TIMOUT_DFLT 1000 41 42 /* 43 * For testing SSCR1 changes that require SSP restart, basically 44 * everything except the service and interrupt enables, the PXA270 developer 45 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this 46 * list, but the PXA255 developer manual says all bits without really meaning 47 * the service and interrupt enables. 48 */ 49 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \ 50 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \ 51 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \ 52 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \ 53 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \ 54 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) 55 56 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \ 57 | QUARK_X1000_SSCR1_EFWR \ 58 | QUARK_X1000_SSCR1_RFT \ 59 | QUARK_X1000_SSCR1_TFT \ 60 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) 61 62 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \ 63 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \ 64 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \ 65 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \ 66 | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \ 67 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) 68 69 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24) 70 #define LPSS_CS_CONTROL_SW_MODE BIT(0) 71 #define LPSS_CS_CONTROL_CS_HIGH BIT(1) 72 #define LPSS_CAPS_CS_EN_SHIFT 9 73 #define LPSS_CAPS_CS_EN_MASK (0xf << LPSS_CAPS_CS_EN_SHIFT) 74 75 #define LPSS_PRIV_CLOCK_GATE 0x38 76 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3 77 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3 78 79 struct lpss_config { 80 /* LPSS offset from drv_data->ioaddr */ 81 unsigned offset; 82 /* Register offsets from drv_data->lpss_base or -1 */ 83 int reg_general; 84 int reg_ssp; 85 int reg_cs_ctrl; 86 int reg_capabilities; 87 /* FIFO thresholds */ 88 u32 rx_threshold; 89 u32 tx_threshold_lo; 90 u32 tx_threshold_hi; 91 /* Chip select control */ 92 unsigned cs_sel_shift; 93 unsigned cs_sel_mask; 94 unsigned cs_num; 95 /* Quirks */ 96 unsigned cs_clk_stays_gated : 1; 97 }; 98 99 /* Keep these sorted with enum pxa_ssp_type */ 100 static const struct lpss_config lpss_platforms[] = { 101 { /* LPSS_LPT_SSP */ 102 .offset = 0x800, 103 .reg_general = 0x08, 104 .reg_ssp = 0x0c, 105 .reg_cs_ctrl = 0x18, 106 .reg_capabilities = -1, 107 .rx_threshold = 64, 108 .tx_threshold_lo = 160, 109 .tx_threshold_hi = 224, 110 }, 111 { /* LPSS_BYT_SSP */ 112 .offset = 0x400, 113 .reg_general = 0x08, 114 .reg_ssp = 0x0c, 115 .reg_cs_ctrl = 0x18, 116 .reg_capabilities = -1, 117 .rx_threshold = 64, 118 .tx_threshold_lo = 160, 119 .tx_threshold_hi = 224, 120 }, 121 { /* LPSS_BSW_SSP */ 122 .offset = 0x400, 123 .reg_general = 0x08, 124 .reg_ssp = 0x0c, 125 .reg_cs_ctrl = 0x18, 126 .reg_capabilities = -1, 127 .rx_threshold = 64, 128 .tx_threshold_lo = 160, 129 .tx_threshold_hi = 224, 130 .cs_sel_shift = 2, 131 .cs_sel_mask = 1 << 2, 132 .cs_num = 2, 133 }, 134 { /* LPSS_SPT_SSP */ 135 .offset = 0x200, 136 .reg_general = -1, 137 .reg_ssp = 0x20, 138 .reg_cs_ctrl = 0x24, 139 .reg_capabilities = -1, 140 .rx_threshold = 1, 141 .tx_threshold_lo = 32, 142 .tx_threshold_hi = 56, 143 }, 144 { /* LPSS_BXT_SSP */ 145 .offset = 0x200, 146 .reg_general = -1, 147 .reg_ssp = 0x20, 148 .reg_cs_ctrl = 0x24, 149 .reg_capabilities = 0xfc, 150 .rx_threshold = 1, 151 .tx_threshold_lo = 16, 152 .tx_threshold_hi = 48, 153 .cs_sel_shift = 8, 154 .cs_sel_mask = 3 << 8, 155 .cs_clk_stays_gated = true, 156 }, 157 { /* LPSS_CNL_SSP */ 158 .offset = 0x200, 159 .reg_general = -1, 160 .reg_ssp = 0x20, 161 .reg_cs_ctrl = 0x24, 162 .reg_capabilities = 0xfc, 163 .rx_threshold = 1, 164 .tx_threshold_lo = 32, 165 .tx_threshold_hi = 56, 166 .cs_sel_shift = 8, 167 .cs_sel_mask = 3 << 8, 168 .cs_clk_stays_gated = true, 169 }, 170 }; 171 172 static inline const struct lpss_config 173 *lpss_get_config(const struct driver_data *drv_data) 174 { 175 return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP]; 176 } 177 178 static bool is_lpss_ssp(const struct driver_data *drv_data) 179 { 180 switch (drv_data->ssp_type) { 181 case LPSS_LPT_SSP: 182 case LPSS_BYT_SSP: 183 case LPSS_BSW_SSP: 184 case LPSS_SPT_SSP: 185 case LPSS_BXT_SSP: 186 case LPSS_CNL_SSP: 187 return true; 188 default: 189 return false; 190 } 191 } 192 193 static bool is_quark_x1000_ssp(const struct driver_data *drv_data) 194 { 195 return drv_data->ssp_type == QUARK_X1000_SSP; 196 } 197 198 static bool is_mmp2_ssp(const struct driver_data *drv_data) 199 { 200 return drv_data->ssp_type == MMP2_SSP; 201 } 202 203 static bool is_mrfld_ssp(const struct driver_data *drv_data) 204 { 205 return drv_data->ssp_type == MRFLD_SSP; 206 } 207 208 static void pxa2xx_spi_update(const struct driver_data *drv_data, u32 reg, u32 mask, u32 value) 209 { 210 if ((pxa2xx_spi_read(drv_data, reg) & mask) != value) 211 pxa2xx_spi_write(drv_data, reg, value & mask); 212 } 213 214 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data) 215 { 216 switch (drv_data->ssp_type) { 217 case QUARK_X1000_SSP: 218 return QUARK_X1000_SSCR1_CHANGE_MASK; 219 case CE4100_SSP: 220 return CE4100_SSCR1_CHANGE_MASK; 221 default: 222 return SSCR1_CHANGE_MASK; 223 } 224 } 225 226 static u32 227 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data) 228 { 229 switch (drv_data->ssp_type) { 230 case QUARK_X1000_SSP: 231 return RX_THRESH_QUARK_X1000_DFLT; 232 case CE4100_SSP: 233 return RX_THRESH_CE4100_DFLT; 234 default: 235 return RX_THRESH_DFLT; 236 } 237 } 238 239 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data) 240 { 241 u32 mask; 242 243 switch (drv_data->ssp_type) { 244 case QUARK_X1000_SSP: 245 mask = QUARK_X1000_SSSR_TFL_MASK; 246 break; 247 case CE4100_SSP: 248 mask = CE4100_SSSR_TFL_MASK; 249 break; 250 default: 251 mask = SSSR_TFL_MASK; 252 break; 253 } 254 255 return read_SSSR_bits(drv_data, mask) == mask; 256 } 257 258 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data, 259 u32 *sccr1_reg) 260 { 261 u32 mask; 262 263 switch (drv_data->ssp_type) { 264 case QUARK_X1000_SSP: 265 mask = QUARK_X1000_SSCR1_RFT; 266 break; 267 case CE4100_SSP: 268 mask = CE4100_SSCR1_RFT; 269 break; 270 default: 271 mask = SSCR1_RFT; 272 break; 273 } 274 *sccr1_reg &= ~mask; 275 } 276 277 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data, 278 u32 *sccr1_reg, u32 threshold) 279 { 280 switch (drv_data->ssp_type) { 281 case QUARK_X1000_SSP: 282 *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold); 283 break; 284 case CE4100_SSP: 285 *sccr1_reg |= CE4100_SSCR1_RxTresh(threshold); 286 break; 287 default: 288 *sccr1_reg |= SSCR1_RxTresh(threshold); 289 break; 290 } 291 } 292 293 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data, 294 u32 clk_div, u8 bits) 295 { 296 switch (drv_data->ssp_type) { 297 case QUARK_X1000_SSP: 298 return clk_div 299 | QUARK_X1000_SSCR0_Motorola 300 | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits); 301 default: 302 return clk_div 303 | SSCR0_Motorola 304 | SSCR0_DataSize(bits > 16 ? bits - 16 : bits) 305 | (bits > 16 ? SSCR0_EDSS : 0); 306 } 307 } 308 309 /* 310 * Read and write LPSS SSP private registers. Caller must first check that 311 * is_lpss_ssp() returns true before these can be called. 312 */ 313 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset) 314 { 315 WARN_ON(!drv_data->lpss_base); 316 return readl(drv_data->lpss_base + offset); 317 } 318 319 static void __lpss_ssp_write_priv(struct driver_data *drv_data, 320 unsigned offset, u32 value) 321 { 322 WARN_ON(!drv_data->lpss_base); 323 writel(value, drv_data->lpss_base + offset); 324 } 325 326 /* 327 * lpss_ssp_setup - perform LPSS SSP specific setup 328 * @drv_data: pointer to the driver private data 329 * 330 * Perform LPSS SSP specific setup. This function must be called first if 331 * one is going to use LPSS SSP private registers. 332 */ 333 static void lpss_ssp_setup(struct driver_data *drv_data) 334 { 335 const struct lpss_config *config; 336 u32 value; 337 338 config = lpss_get_config(drv_data); 339 drv_data->lpss_base = drv_data->ssp->mmio_base + config->offset; 340 341 /* Enable software chip select control */ 342 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); 343 value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH); 344 value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH; 345 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value); 346 347 /* Enable multiblock DMA transfers */ 348 if (drv_data->controller_info->enable_dma) { 349 __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1); 350 351 if (config->reg_general >= 0) { 352 value = __lpss_ssp_read_priv(drv_data, 353 config->reg_general); 354 value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE; 355 __lpss_ssp_write_priv(drv_data, 356 config->reg_general, value); 357 } 358 } 359 } 360 361 static void lpss_ssp_select_cs(struct spi_device *spi, 362 const struct lpss_config *config) 363 { 364 struct driver_data *drv_data = 365 spi_controller_get_devdata(spi->controller); 366 u32 value, cs; 367 368 if (!config->cs_sel_mask) 369 return; 370 371 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); 372 373 cs = spi->chip_select; 374 cs <<= config->cs_sel_shift; 375 if (cs != (value & config->cs_sel_mask)) { 376 /* 377 * When switching another chip select output active the 378 * output must be selected first and wait 2 ssp_clk cycles 379 * before changing state to active. Otherwise a short 380 * glitch will occur on the previous chip select since 381 * output select is latched but state control is not. 382 */ 383 value &= ~config->cs_sel_mask; 384 value |= cs; 385 __lpss_ssp_write_priv(drv_data, 386 config->reg_cs_ctrl, value); 387 ndelay(1000000000 / 388 (drv_data->controller->max_speed_hz / 2)); 389 } 390 } 391 392 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable) 393 { 394 struct driver_data *drv_data = 395 spi_controller_get_devdata(spi->controller); 396 const struct lpss_config *config; 397 u32 value; 398 399 config = lpss_get_config(drv_data); 400 401 if (enable) 402 lpss_ssp_select_cs(spi, config); 403 404 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); 405 if (enable) 406 value &= ~LPSS_CS_CONTROL_CS_HIGH; 407 else 408 value |= LPSS_CS_CONTROL_CS_HIGH; 409 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value); 410 if (config->cs_clk_stays_gated) { 411 u32 clkgate; 412 413 /* 414 * Changing CS alone when dynamic clock gating is on won't 415 * actually flip CS at that time. This ruins SPI transfers 416 * that specify delays, or have no data. Toggle the clock mode 417 * to force on briefly to poke the CS pin to move. 418 */ 419 clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE); 420 value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) | 421 LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON; 422 423 __lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value); 424 __lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate); 425 } 426 } 427 428 static void cs_assert(struct spi_device *spi) 429 { 430 struct chip_data *chip = spi_get_ctldata(spi); 431 struct driver_data *drv_data = 432 spi_controller_get_devdata(spi->controller); 433 434 if (drv_data->ssp_type == CE4100_SSP) { 435 pxa2xx_spi_write(drv_data, SSSR, spi->chip_select); 436 return; 437 } 438 439 if (chip->cs_control) { 440 chip->cs_control(PXA2XX_CS_ASSERT); 441 return; 442 } 443 444 if (is_lpss_ssp(drv_data)) 445 lpss_ssp_cs_control(spi, true); 446 } 447 448 static void cs_deassert(struct spi_device *spi) 449 { 450 struct chip_data *chip = spi_get_ctldata(spi); 451 struct driver_data *drv_data = 452 spi_controller_get_devdata(spi->controller); 453 unsigned long timeout; 454 455 if (drv_data->ssp_type == CE4100_SSP) 456 return; 457 458 /* Wait until SSP becomes idle before deasserting the CS */ 459 timeout = jiffies + msecs_to_jiffies(10); 460 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY && 461 !time_after(jiffies, timeout)) 462 cpu_relax(); 463 464 if (chip->cs_control) { 465 chip->cs_control(PXA2XX_CS_DEASSERT); 466 return; 467 } 468 469 if (is_lpss_ssp(drv_data)) 470 lpss_ssp_cs_control(spi, false); 471 } 472 473 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level) 474 { 475 if (level) 476 cs_deassert(spi); 477 else 478 cs_assert(spi); 479 } 480 481 int pxa2xx_spi_flush(struct driver_data *drv_data) 482 { 483 unsigned long limit = loops_per_jiffy << 1; 484 485 do { 486 while (read_SSSR_bits(drv_data, SSSR_RNE)) 487 pxa2xx_spi_read(drv_data, SSDR); 488 } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit); 489 write_SSSR_CS(drv_data, SSSR_ROR); 490 491 return limit; 492 } 493 494 static void pxa2xx_spi_off(struct driver_data *drv_data) 495 { 496 /* On MMP, disabling SSE seems to corrupt the Rx FIFO */ 497 if (is_mmp2_ssp(drv_data)) 498 return; 499 500 pxa_ssp_disable(drv_data->ssp); 501 } 502 503 static int null_writer(struct driver_data *drv_data) 504 { 505 u8 n_bytes = drv_data->n_bytes; 506 507 if (pxa2xx_spi_txfifo_full(drv_data) 508 || (drv_data->tx == drv_data->tx_end)) 509 return 0; 510 511 pxa2xx_spi_write(drv_data, SSDR, 0); 512 drv_data->tx += n_bytes; 513 514 return 1; 515 } 516 517 static int null_reader(struct driver_data *drv_data) 518 { 519 u8 n_bytes = drv_data->n_bytes; 520 521 while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) { 522 pxa2xx_spi_read(drv_data, SSDR); 523 drv_data->rx += n_bytes; 524 } 525 526 return drv_data->rx == drv_data->rx_end; 527 } 528 529 static int u8_writer(struct driver_data *drv_data) 530 { 531 if (pxa2xx_spi_txfifo_full(drv_data) 532 || (drv_data->tx == drv_data->tx_end)) 533 return 0; 534 535 pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx)); 536 ++drv_data->tx; 537 538 return 1; 539 } 540 541 static int u8_reader(struct driver_data *drv_data) 542 { 543 while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) { 544 *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); 545 ++drv_data->rx; 546 } 547 548 return drv_data->rx == drv_data->rx_end; 549 } 550 551 static int u16_writer(struct driver_data *drv_data) 552 { 553 if (pxa2xx_spi_txfifo_full(drv_data) 554 || (drv_data->tx == drv_data->tx_end)) 555 return 0; 556 557 pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx)); 558 drv_data->tx += 2; 559 560 return 1; 561 } 562 563 static int u16_reader(struct driver_data *drv_data) 564 { 565 while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) { 566 *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); 567 drv_data->rx += 2; 568 } 569 570 return drv_data->rx == drv_data->rx_end; 571 } 572 573 static int u32_writer(struct driver_data *drv_data) 574 { 575 if (pxa2xx_spi_txfifo_full(drv_data) 576 || (drv_data->tx == drv_data->tx_end)) 577 return 0; 578 579 pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx)); 580 drv_data->tx += 4; 581 582 return 1; 583 } 584 585 static int u32_reader(struct driver_data *drv_data) 586 { 587 while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) { 588 *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); 589 drv_data->rx += 4; 590 } 591 592 return drv_data->rx == drv_data->rx_end; 593 } 594 595 static void reset_sccr1(struct driver_data *drv_data) 596 { 597 struct chip_data *chip = 598 spi_get_ctldata(drv_data->controller->cur_msg->spi); 599 u32 sccr1_reg; 600 601 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1; 602 switch (drv_data->ssp_type) { 603 case QUARK_X1000_SSP: 604 sccr1_reg &= ~QUARK_X1000_SSCR1_RFT; 605 break; 606 case CE4100_SSP: 607 sccr1_reg &= ~CE4100_SSCR1_RFT; 608 break; 609 default: 610 sccr1_reg &= ~SSCR1_RFT; 611 break; 612 } 613 sccr1_reg |= chip->threshold; 614 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); 615 } 616 617 static void int_stop_and_reset(struct driver_data *drv_data) 618 { 619 /* Clear and disable interrupts */ 620 write_SSSR_CS(drv_data, drv_data->clear_sr); 621 reset_sccr1(drv_data); 622 if (pxa25x_ssp_comp(drv_data)) 623 return; 624 625 pxa2xx_spi_write(drv_data, SSTO, 0); 626 } 627 628 static void int_error_stop(struct driver_data *drv_data, const char *msg, int err) 629 { 630 int_stop_and_reset(drv_data); 631 pxa2xx_spi_flush(drv_data); 632 pxa2xx_spi_off(drv_data); 633 634 dev_err(drv_data->ssp->dev, "%s\n", msg); 635 636 drv_data->controller->cur_msg->status = err; 637 spi_finalize_current_transfer(drv_data->controller); 638 } 639 640 static void int_transfer_complete(struct driver_data *drv_data) 641 { 642 int_stop_and_reset(drv_data); 643 644 spi_finalize_current_transfer(drv_data->controller); 645 } 646 647 static irqreturn_t interrupt_transfer(struct driver_data *drv_data) 648 { 649 u32 irq_status; 650 651 irq_status = read_SSSR_bits(drv_data, drv_data->mask_sr); 652 if (!(pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE)) 653 irq_status &= ~SSSR_TFS; 654 655 if (irq_status & SSSR_ROR) { 656 int_error_stop(drv_data, "interrupt_transfer: FIFO overrun", -EIO); 657 return IRQ_HANDLED; 658 } 659 660 if (irq_status & SSSR_TUR) { 661 int_error_stop(drv_data, "interrupt_transfer: FIFO underrun", -EIO); 662 return IRQ_HANDLED; 663 } 664 665 if (irq_status & SSSR_TINT) { 666 pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT); 667 if (drv_data->read(drv_data)) { 668 int_transfer_complete(drv_data); 669 return IRQ_HANDLED; 670 } 671 } 672 673 /* Drain Rx FIFO, Fill Tx FIFO and prevent overruns */ 674 do { 675 if (drv_data->read(drv_data)) { 676 int_transfer_complete(drv_data); 677 return IRQ_HANDLED; 678 } 679 } while (drv_data->write(drv_data)); 680 681 if (drv_data->read(drv_data)) { 682 int_transfer_complete(drv_data); 683 return IRQ_HANDLED; 684 } 685 686 if (drv_data->tx == drv_data->tx_end) { 687 u32 bytes_left; 688 u32 sccr1_reg; 689 690 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1); 691 sccr1_reg &= ~SSCR1_TIE; 692 693 /* 694 * PXA25x_SSP has no timeout, set up Rx threshold for 695 * the remaining Rx bytes. 696 */ 697 if (pxa25x_ssp_comp(drv_data)) { 698 u32 rx_thre; 699 700 pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg); 701 702 bytes_left = drv_data->rx_end - drv_data->rx; 703 switch (drv_data->n_bytes) { 704 case 4: 705 bytes_left >>= 2; 706 break; 707 case 2: 708 bytes_left >>= 1; 709 break; 710 } 711 712 rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data); 713 if (rx_thre > bytes_left) 714 rx_thre = bytes_left; 715 716 pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre); 717 } 718 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); 719 } 720 721 /* We did something */ 722 return IRQ_HANDLED; 723 } 724 725 static void handle_bad_msg(struct driver_data *drv_data) 726 { 727 pxa2xx_spi_off(drv_data); 728 clear_SSCR1_bits(drv_data, drv_data->int_cr1); 729 if (!pxa25x_ssp_comp(drv_data)) 730 pxa2xx_spi_write(drv_data, SSTO, 0); 731 write_SSSR_CS(drv_data, drv_data->clear_sr); 732 733 dev_err(drv_data->ssp->dev, "bad message state in interrupt handler\n"); 734 } 735 736 static irqreturn_t ssp_int(int irq, void *dev_id) 737 { 738 struct driver_data *drv_data = dev_id; 739 u32 sccr1_reg; 740 u32 mask = drv_data->mask_sr; 741 u32 status; 742 743 /* 744 * The IRQ might be shared with other peripherals so we must first 745 * check that are we RPM suspended or not. If we are we assume that 746 * the IRQ was not for us (we shouldn't be RPM suspended when the 747 * interrupt is enabled). 748 */ 749 if (pm_runtime_suspended(drv_data->ssp->dev)) 750 return IRQ_NONE; 751 752 /* 753 * If the device is not yet in RPM suspended state and we get an 754 * interrupt that is meant for another device, check if status bits 755 * are all set to one. That means that the device is already 756 * powered off. 757 */ 758 status = pxa2xx_spi_read(drv_data, SSSR); 759 if (status == ~0) 760 return IRQ_NONE; 761 762 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1); 763 764 /* Ignore possible writes if we don't need to write */ 765 if (!(sccr1_reg & SSCR1_TIE)) 766 mask &= ~SSSR_TFS; 767 768 /* Ignore RX timeout interrupt if it is disabled */ 769 if (!(sccr1_reg & SSCR1_TINTE)) 770 mask &= ~SSSR_TINT; 771 772 if (!(status & mask)) 773 return IRQ_NONE; 774 775 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1); 776 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); 777 778 if (!drv_data->controller->cur_msg) { 779 handle_bad_msg(drv_data); 780 /* Never fail */ 781 return IRQ_HANDLED; 782 } 783 784 return drv_data->transfer_handler(drv_data); 785 } 786 787 /* 788 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply 789 * input frequency by fractions of 2^24. It also has a divider by 5. 790 * 791 * There are formulas to get baud rate value for given input frequency and 792 * divider parameters, such as DDS_CLK_RATE and SCR: 793 * 794 * Fsys = 200MHz 795 * 796 * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1) 797 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2) 798 * 799 * DDS_CLK_RATE either 2^n or 2^n / 5. 800 * SCR is in range 0 .. 255 801 * 802 * Divisor = 5^i * 2^j * 2 * k 803 * i = [0, 1] i = 1 iff j = 0 or j > 3 804 * j = [0, 23] j = 0 iff i = 1 805 * k = [1, 256] 806 * Special case: j = 0, i = 1: Divisor = 2 / 5 807 * 808 * Accordingly to the specification the recommended values for DDS_CLK_RATE 809 * are: 810 * Case 1: 2^n, n = [0, 23] 811 * Case 2: 2^24 * 2 / 5 (0x666666) 812 * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333) 813 * 814 * In all cases the lowest possible value is better. 815 * 816 * The function calculates parameters for all cases and chooses the one closest 817 * to the asked baud rate. 818 */ 819 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds) 820 { 821 unsigned long xtal = 200000000; 822 unsigned long fref = xtal / 2; /* mandatory division by 2, 823 see (2) */ 824 /* case 3 */ 825 unsigned long fref1 = fref / 2; /* case 1 */ 826 unsigned long fref2 = fref * 2 / 5; /* case 2 */ 827 unsigned long scale; 828 unsigned long q, q1, q2; 829 long r, r1, r2; 830 u32 mul; 831 832 /* Case 1 */ 833 834 /* Set initial value for DDS_CLK_RATE */ 835 mul = (1 << 24) >> 1; 836 837 /* Calculate initial quot */ 838 q1 = DIV_ROUND_UP(fref1, rate); 839 840 /* Scale q1 if it's too big */ 841 if (q1 > 256) { 842 /* Scale q1 to range [1, 512] */ 843 scale = fls_long(q1 - 1); 844 if (scale > 9) { 845 q1 >>= scale - 9; 846 mul >>= scale - 9; 847 } 848 849 /* Round the result if we have a remainder */ 850 q1 += q1 & 1; 851 } 852 853 /* Decrease DDS_CLK_RATE as much as we can without loss in precision */ 854 scale = __ffs(q1); 855 q1 >>= scale; 856 mul >>= scale; 857 858 /* Get the remainder */ 859 r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate); 860 861 /* Case 2 */ 862 863 q2 = DIV_ROUND_UP(fref2, rate); 864 r2 = abs(fref2 / q2 - rate); 865 866 /* 867 * Choose the best between two: less remainder we have the better. We 868 * can't go case 2 if q2 is greater than 256 since SCR register can 869 * hold only values 0 .. 255. 870 */ 871 if (r2 >= r1 || q2 > 256) { 872 /* case 1 is better */ 873 r = r1; 874 q = q1; 875 } else { 876 /* case 2 is better */ 877 r = r2; 878 q = q2; 879 mul = (1 << 24) * 2 / 5; 880 } 881 882 /* Check case 3 only if the divisor is big enough */ 883 if (fref / rate >= 80) { 884 u64 fssp; 885 u32 m; 886 887 /* Calculate initial quot */ 888 q1 = DIV_ROUND_UP(fref, rate); 889 m = (1 << 24) / q1; 890 891 /* Get the remainder */ 892 fssp = (u64)fref * m; 893 do_div(fssp, 1 << 24); 894 r1 = abs(fssp - rate); 895 896 /* Choose this one if it suits better */ 897 if (r1 < r) { 898 /* case 3 is better */ 899 q = 1; 900 mul = m; 901 } 902 } 903 904 *dds = mul; 905 return q - 1; 906 } 907 908 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate) 909 { 910 unsigned long ssp_clk = drv_data->controller->max_speed_hz; 911 const struct ssp_device *ssp = drv_data->ssp; 912 913 rate = min_t(int, ssp_clk, rate); 914 915 /* 916 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding 917 * that the SSP transmission rate can be greater than the device rate. 918 */ 919 if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP) 920 return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff; 921 else 922 return (DIV_ROUND_UP(ssp_clk, rate) - 1) & 0xfff; 923 } 924 925 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data, 926 int rate) 927 { 928 struct chip_data *chip = 929 spi_get_ctldata(drv_data->controller->cur_msg->spi); 930 unsigned int clk_div; 931 932 switch (drv_data->ssp_type) { 933 case QUARK_X1000_SSP: 934 clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate); 935 break; 936 default: 937 clk_div = ssp_get_clk_div(drv_data, rate); 938 break; 939 } 940 return clk_div << 8; 941 } 942 943 static bool pxa2xx_spi_can_dma(struct spi_controller *controller, 944 struct spi_device *spi, 945 struct spi_transfer *xfer) 946 { 947 struct chip_data *chip = spi_get_ctldata(spi); 948 949 return chip->enable_dma && 950 xfer->len <= MAX_DMA_LEN && 951 xfer->len >= chip->dma_burst_size; 952 } 953 954 static int pxa2xx_spi_transfer_one(struct spi_controller *controller, 955 struct spi_device *spi, 956 struct spi_transfer *transfer) 957 { 958 struct driver_data *drv_data = spi_controller_get_devdata(controller); 959 struct spi_message *message = controller->cur_msg; 960 struct chip_data *chip = spi_get_ctldata(spi); 961 u32 dma_thresh = chip->dma_threshold; 962 u32 dma_burst = chip->dma_burst_size; 963 u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data); 964 u32 clk_div; 965 u8 bits; 966 u32 speed; 967 u32 cr0; 968 u32 cr1; 969 int err; 970 int dma_mapped; 971 972 /* Check if we can DMA this transfer */ 973 if (transfer->len > MAX_DMA_LEN && chip->enable_dma) { 974 975 /* Reject already-mapped transfers; PIO won't always work */ 976 if (message->is_dma_mapped 977 || transfer->rx_dma || transfer->tx_dma) { 978 dev_err(&spi->dev, 979 "Mapped transfer length of %u is greater than %d\n", 980 transfer->len, MAX_DMA_LEN); 981 return -EINVAL; 982 } 983 984 /* Warn ... we force this to PIO mode */ 985 dev_warn_ratelimited(&spi->dev, 986 "DMA disabled for transfer length %u greater than %d\n", 987 transfer->len, MAX_DMA_LEN); 988 } 989 990 /* Setup the transfer state based on the type of transfer */ 991 if (pxa2xx_spi_flush(drv_data) == 0) { 992 dev_err(&spi->dev, "Flush failed\n"); 993 return -EIO; 994 } 995 drv_data->n_bytes = chip->n_bytes; 996 drv_data->tx = (void *)transfer->tx_buf; 997 drv_data->tx_end = drv_data->tx + transfer->len; 998 drv_data->rx = transfer->rx_buf; 999 drv_data->rx_end = drv_data->rx + transfer->len; 1000 drv_data->write = drv_data->tx ? chip->write : null_writer; 1001 drv_data->read = drv_data->rx ? chip->read : null_reader; 1002 1003 /* Change speed and bit per word on a per transfer */ 1004 bits = transfer->bits_per_word; 1005 speed = transfer->speed_hz; 1006 1007 clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed); 1008 1009 if (bits <= 8) { 1010 drv_data->n_bytes = 1; 1011 drv_data->read = drv_data->read != null_reader ? 1012 u8_reader : null_reader; 1013 drv_data->write = drv_data->write != null_writer ? 1014 u8_writer : null_writer; 1015 } else if (bits <= 16) { 1016 drv_data->n_bytes = 2; 1017 drv_data->read = drv_data->read != null_reader ? 1018 u16_reader : null_reader; 1019 drv_data->write = drv_data->write != null_writer ? 1020 u16_writer : null_writer; 1021 } else if (bits <= 32) { 1022 drv_data->n_bytes = 4; 1023 drv_data->read = drv_data->read != null_reader ? 1024 u32_reader : null_reader; 1025 drv_data->write = drv_data->write != null_writer ? 1026 u32_writer : null_writer; 1027 } 1028 /* 1029 * If bits per word is changed in DMA mode, then must check 1030 * the thresholds and burst also. 1031 */ 1032 if (chip->enable_dma) { 1033 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, 1034 spi, 1035 bits, &dma_burst, 1036 &dma_thresh)) 1037 dev_warn_ratelimited(&spi->dev, 1038 "DMA burst size reduced to match bits_per_word\n"); 1039 } 1040 1041 dma_mapped = controller->can_dma && 1042 controller->can_dma(controller, spi, transfer) && 1043 controller->cur_msg_mapped; 1044 if (dma_mapped) { 1045 1046 /* Ensure we have the correct interrupt handler */ 1047 drv_data->transfer_handler = pxa2xx_spi_dma_transfer; 1048 1049 err = pxa2xx_spi_dma_prepare(drv_data, transfer); 1050 if (err) 1051 return err; 1052 1053 /* Clear status and start DMA engine */ 1054 cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1; 1055 pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr); 1056 1057 pxa2xx_spi_dma_start(drv_data); 1058 } else { 1059 /* Ensure we have the correct interrupt handler */ 1060 drv_data->transfer_handler = interrupt_transfer; 1061 1062 /* Clear status */ 1063 cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1; 1064 write_SSSR_CS(drv_data, drv_data->clear_sr); 1065 } 1066 1067 /* NOTE: PXA25x_SSP _could_ use external clocking ... */ 1068 cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits); 1069 if (!pxa25x_ssp_comp(drv_data)) 1070 dev_dbg(&spi->dev, "%u Hz actual, %s\n", 1071 controller->max_speed_hz 1072 / (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)), 1073 dma_mapped ? "DMA" : "PIO"); 1074 else 1075 dev_dbg(&spi->dev, "%u Hz actual, %s\n", 1076 controller->max_speed_hz / 2 1077 / (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)), 1078 dma_mapped ? "DMA" : "PIO"); 1079 1080 if (is_lpss_ssp(drv_data)) { 1081 pxa2xx_spi_update(drv_data, SSIRF, GENMASK(7, 0), chip->lpss_rx_threshold); 1082 pxa2xx_spi_update(drv_data, SSITF, GENMASK(15, 0), chip->lpss_tx_threshold); 1083 } 1084 1085 if (is_mrfld_ssp(drv_data)) { 1086 u32 mask = SFIFOTT_RFT | SFIFOTT_TFT; 1087 u32 thresh = 0; 1088 1089 thresh |= SFIFOTT_RxThresh(chip->lpss_rx_threshold); 1090 thresh |= SFIFOTT_TxThresh(chip->lpss_tx_threshold); 1091 1092 pxa2xx_spi_update(drv_data, SFIFOTT, mask, thresh); 1093 } 1094 1095 if (is_quark_x1000_ssp(drv_data)) 1096 pxa2xx_spi_update(drv_data, DDS_RATE, GENMASK(23, 0), chip->dds_rate); 1097 1098 /* Stop the SSP */ 1099 if (!is_mmp2_ssp(drv_data)) 1100 pxa_ssp_disable(drv_data->ssp); 1101 1102 if (!pxa25x_ssp_comp(drv_data)) 1103 pxa2xx_spi_write(drv_data, SSTO, chip->timeout); 1104 1105 /* First set CR1 without interrupt and service enables */ 1106 pxa2xx_spi_update(drv_data, SSCR1, change_mask, cr1); 1107 1108 /* See if we need to reload the configuration registers */ 1109 pxa2xx_spi_update(drv_data, SSCR0, GENMASK(31, 0), cr0); 1110 1111 /* Restart the SSP */ 1112 pxa_ssp_enable(drv_data->ssp); 1113 1114 if (is_mmp2_ssp(drv_data)) { 1115 u8 tx_level = read_SSSR_bits(drv_data, SSSR_TFL_MASK) >> 8; 1116 1117 if (tx_level) { 1118 /* On MMP2, flipping SSE doesn't to empty Tx FIFO. */ 1119 dev_warn(&spi->dev, "%u bytes of garbage in Tx FIFO!\n", tx_level); 1120 if (tx_level > transfer->len) 1121 tx_level = transfer->len; 1122 drv_data->tx += tx_level; 1123 } 1124 } 1125 1126 if (spi_controller_is_slave(controller)) { 1127 while (drv_data->write(drv_data)) 1128 ; 1129 if (drv_data->gpiod_ready) { 1130 gpiod_set_value(drv_data->gpiod_ready, 1); 1131 udelay(1); 1132 gpiod_set_value(drv_data->gpiod_ready, 0); 1133 } 1134 } 1135 1136 /* 1137 * Release the data by enabling service requests and interrupts, 1138 * without changing any mode bits. 1139 */ 1140 pxa2xx_spi_write(drv_data, SSCR1, cr1); 1141 1142 return 1; 1143 } 1144 1145 static int pxa2xx_spi_slave_abort(struct spi_controller *controller) 1146 { 1147 struct driver_data *drv_data = spi_controller_get_devdata(controller); 1148 1149 int_error_stop(drv_data, "transfer aborted", -EINTR); 1150 1151 return 0; 1152 } 1153 1154 static void pxa2xx_spi_handle_err(struct spi_controller *controller, 1155 struct spi_message *msg) 1156 { 1157 struct driver_data *drv_data = spi_controller_get_devdata(controller); 1158 1159 /* Disable the SSP */ 1160 pxa2xx_spi_off(drv_data); 1161 /* Clear and disable interrupts and service requests */ 1162 write_SSSR_CS(drv_data, drv_data->clear_sr); 1163 clear_SSCR1_bits(drv_data, drv_data->int_cr1 | drv_data->dma_cr1); 1164 if (!pxa25x_ssp_comp(drv_data)) 1165 pxa2xx_spi_write(drv_data, SSTO, 0); 1166 1167 /* 1168 * Stop the DMA if running. Note DMA callback handler may have unset 1169 * the dma_running already, which is fine as stopping is not needed 1170 * then but we shouldn't rely this flag for anything else than 1171 * stopping. For instance to differentiate between PIO and DMA 1172 * transfers. 1173 */ 1174 if (atomic_read(&drv_data->dma_running)) 1175 pxa2xx_spi_dma_stop(drv_data); 1176 } 1177 1178 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller) 1179 { 1180 struct driver_data *drv_data = spi_controller_get_devdata(controller); 1181 1182 /* Disable the SSP now */ 1183 pxa2xx_spi_off(drv_data); 1184 1185 return 0; 1186 } 1187 1188 static void cleanup_cs(struct spi_device *spi) 1189 { 1190 if (!gpio_is_valid(spi->cs_gpio)) 1191 return; 1192 1193 gpio_free(spi->cs_gpio); 1194 spi->cs_gpio = -ENOENT; 1195 } 1196 1197 static int setup_cs(struct spi_device *spi, struct chip_data *chip, 1198 struct pxa2xx_spi_chip *chip_info) 1199 { 1200 struct driver_data *drv_data = spi_controller_get_devdata(spi->controller); 1201 1202 if (chip == NULL) 1203 return 0; 1204 1205 if (chip_info == NULL) 1206 return 0; 1207 1208 if (drv_data->ssp_type == CE4100_SSP) 1209 return 0; 1210 1211 /* 1212 * NOTE: setup() can be called multiple times, possibly with 1213 * different chip_info, release previously requested GPIO. 1214 */ 1215 cleanup_cs(spi); 1216 1217 /* If ->cs_control() is provided, ignore GPIO chip select */ 1218 if (chip_info->cs_control) { 1219 chip->cs_control = chip_info->cs_control; 1220 return 0; 1221 } 1222 1223 if (gpio_is_valid(chip_info->gpio_cs)) { 1224 int gpio = chip_info->gpio_cs; 1225 int err; 1226 1227 err = gpio_request(gpio, "SPI_CS"); 1228 if (err) { 1229 dev_err(&spi->dev, "failed to request chip select GPIO%d\n", gpio); 1230 return err; 1231 } 1232 1233 err = gpio_direction_output(gpio, !(spi->mode & SPI_CS_HIGH)); 1234 if (err) { 1235 gpio_free(gpio); 1236 return err; 1237 } 1238 1239 spi->cs_gpio = gpio; 1240 } 1241 1242 return 0; 1243 } 1244 1245 static int setup(struct spi_device *spi) 1246 { 1247 struct pxa2xx_spi_chip *chip_info; 1248 struct chip_data *chip; 1249 const struct lpss_config *config; 1250 struct driver_data *drv_data = 1251 spi_controller_get_devdata(spi->controller); 1252 uint tx_thres, tx_hi_thres, rx_thres; 1253 int err; 1254 1255 switch (drv_data->ssp_type) { 1256 case QUARK_X1000_SSP: 1257 tx_thres = TX_THRESH_QUARK_X1000_DFLT; 1258 tx_hi_thres = 0; 1259 rx_thres = RX_THRESH_QUARK_X1000_DFLT; 1260 break; 1261 case MRFLD_SSP: 1262 tx_thres = TX_THRESH_MRFLD_DFLT; 1263 tx_hi_thres = 0; 1264 rx_thres = RX_THRESH_MRFLD_DFLT; 1265 break; 1266 case CE4100_SSP: 1267 tx_thres = TX_THRESH_CE4100_DFLT; 1268 tx_hi_thres = 0; 1269 rx_thres = RX_THRESH_CE4100_DFLT; 1270 break; 1271 case LPSS_LPT_SSP: 1272 case LPSS_BYT_SSP: 1273 case LPSS_BSW_SSP: 1274 case LPSS_SPT_SSP: 1275 case LPSS_BXT_SSP: 1276 case LPSS_CNL_SSP: 1277 config = lpss_get_config(drv_data); 1278 tx_thres = config->tx_threshold_lo; 1279 tx_hi_thres = config->tx_threshold_hi; 1280 rx_thres = config->rx_threshold; 1281 break; 1282 default: 1283 tx_hi_thres = 0; 1284 if (spi_controller_is_slave(drv_data->controller)) { 1285 tx_thres = 1; 1286 rx_thres = 2; 1287 } else { 1288 tx_thres = TX_THRESH_DFLT; 1289 rx_thres = RX_THRESH_DFLT; 1290 } 1291 break; 1292 } 1293 1294 /* Only allocate on the first setup */ 1295 chip = spi_get_ctldata(spi); 1296 if (!chip) { 1297 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); 1298 if (!chip) 1299 return -ENOMEM; 1300 1301 if (drv_data->ssp_type == CE4100_SSP) { 1302 if (spi->chip_select > 4) { 1303 dev_err(&spi->dev, 1304 "failed setup: cs number must not be > 4.\n"); 1305 kfree(chip); 1306 return -EINVAL; 1307 } 1308 } 1309 chip->enable_dma = drv_data->controller_info->enable_dma; 1310 chip->timeout = TIMOUT_DFLT; 1311 } 1312 1313 /* 1314 * Protocol drivers may change the chip settings, so... 1315 * if chip_info exists, use it. 1316 */ 1317 chip_info = spi->controller_data; 1318 1319 /* chip_info isn't always needed */ 1320 chip->cr1 = 0; 1321 if (chip_info) { 1322 if (chip_info->timeout) 1323 chip->timeout = chip_info->timeout; 1324 if (chip_info->tx_threshold) 1325 tx_thres = chip_info->tx_threshold; 1326 if (chip_info->tx_hi_threshold) 1327 tx_hi_thres = chip_info->tx_hi_threshold; 1328 if (chip_info->rx_threshold) 1329 rx_thres = chip_info->rx_threshold; 1330 chip->dma_threshold = 0; 1331 if (chip_info->enable_loopback) 1332 chip->cr1 = SSCR1_LBM; 1333 } 1334 if (spi_controller_is_slave(drv_data->controller)) { 1335 chip->cr1 |= SSCR1_SCFR; 1336 chip->cr1 |= SSCR1_SCLKDIR; 1337 chip->cr1 |= SSCR1_SFRMDIR; 1338 chip->cr1 |= SSCR1_SPH; 1339 } 1340 1341 if (is_lpss_ssp(drv_data)) { 1342 chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres); 1343 chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) | 1344 SSITF_TxHiThresh(tx_hi_thres); 1345 } 1346 1347 if (is_mrfld_ssp(drv_data)) { 1348 chip->lpss_rx_threshold = rx_thres; 1349 chip->lpss_tx_threshold = tx_thres; 1350 } 1351 1352 /* 1353 * Set DMA burst and threshold outside of chip_info path so that if 1354 * chip_info goes away after setting chip->enable_dma, the burst and 1355 * threshold can still respond to changes in bits_per_word. 1356 */ 1357 if (chip->enable_dma) { 1358 /* Set up legal burst and threshold for DMA */ 1359 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi, 1360 spi->bits_per_word, 1361 &chip->dma_burst_size, 1362 &chip->dma_threshold)) { 1363 dev_warn(&spi->dev, 1364 "in setup: DMA burst size reduced to match bits_per_word\n"); 1365 } 1366 dev_dbg(&spi->dev, 1367 "in setup: DMA burst size set to %u\n", 1368 chip->dma_burst_size); 1369 } 1370 1371 switch (drv_data->ssp_type) { 1372 case QUARK_X1000_SSP: 1373 chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres) 1374 & QUARK_X1000_SSCR1_RFT) 1375 | (QUARK_X1000_SSCR1_TxTresh(tx_thres) 1376 & QUARK_X1000_SSCR1_TFT); 1377 break; 1378 case CE4100_SSP: 1379 chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) | 1380 (CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT); 1381 break; 1382 default: 1383 chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) | 1384 (SSCR1_TxTresh(tx_thres) & SSCR1_TFT); 1385 break; 1386 } 1387 1388 chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH); 1389 chip->cr1 |= ((spi->mode & SPI_CPHA) ? SSCR1_SPH : 0) | 1390 ((spi->mode & SPI_CPOL) ? SSCR1_SPO : 0); 1391 1392 if (spi->mode & SPI_LOOP) 1393 chip->cr1 |= SSCR1_LBM; 1394 1395 if (spi->bits_per_word <= 8) { 1396 chip->n_bytes = 1; 1397 chip->read = u8_reader; 1398 chip->write = u8_writer; 1399 } else if (spi->bits_per_word <= 16) { 1400 chip->n_bytes = 2; 1401 chip->read = u16_reader; 1402 chip->write = u16_writer; 1403 } else if (spi->bits_per_word <= 32) { 1404 chip->n_bytes = 4; 1405 chip->read = u32_reader; 1406 chip->write = u32_writer; 1407 } 1408 1409 spi_set_ctldata(spi, chip); 1410 1411 if (drv_data->ssp_type == CE4100_SSP) 1412 return 0; 1413 1414 err = setup_cs(spi, chip, chip_info); 1415 if (err) 1416 kfree(chip); 1417 1418 return err; 1419 } 1420 1421 static void cleanup(struct spi_device *spi) 1422 { 1423 struct chip_data *chip = spi_get_ctldata(spi); 1424 1425 cleanup_cs(spi); 1426 kfree(chip); 1427 } 1428 1429 #ifdef CONFIG_ACPI 1430 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = { 1431 { "INT33C0", LPSS_LPT_SSP }, 1432 { "INT33C1", LPSS_LPT_SSP }, 1433 { "INT3430", LPSS_LPT_SSP }, 1434 { "INT3431", LPSS_LPT_SSP }, 1435 { "80860F0E", LPSS_BYT_SSP }, 1436 { "8086228E", LPSS_BSW_SSP }, 1437 { }, 1438 }; 1439 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match); 1440 #endif 1441 1442 /* 1443 * PCI IDs of compound devices that integrate both host controller and private 1444 * integrated DMA engine. Please note these are not used in module 1445 * autoloading and probing in this module but matching the LPSS SSP type. 1446 */ 1447 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = { 1448 /* SPT-LP */ 1449 { PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP }, 1450 { PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP }, 1451 /* SPT-H */ 1452 { PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP }, 1453 { PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP }, 1454 /* KBL-H */ 1455 { PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP }, 1456 { PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP }, 1457 /* CML-V */ 1458 { PCI_VDEVICE(INTEL, 0xa3a9), LPSS_SPT_SSP }, 1459 { PCI_VDEVICE(INTEL, 0xa3aa), LPSS_SPT_SSP }, 1460 /* BXT A-Step */ 1461 { PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP }, 1462 { PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP }, 1463 { PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP }, 1464 /* BXT B-Step */ 1465 { PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP }, 1466 { PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP }, 1467 { PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP }, 1468 /* GLK */ 1469 { PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP }, 1470 { PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP }, 1471 { PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP }, 1472 /* ICL-LP */ 1473 { PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP }, 1474 { PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP }, 1475 { PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP }, 1476 /* EHL */ 1477 { PCI_VDEVICE(INTEL, 0x4b2a), LPSS_BXT_SSP }, 1478 { PCI_VDEVICE(INTEL, 0x4b2b), LPSS_BXT_SSP }, 1479 { PCI_VDEVICE(INTEL, 0x4b37), LPSS_BXT_SSP }, 1480 /* JSL */ 1481 { PCI_VDEVICE(INTEL, 0x4daa), LPSS_CNL_SSP }, 1482 { PCI_VDEVICE(INTEL, 0x4dab), LPSS_CNL_SSP }, 1483 { PCI_VDEVICE(INTEL, 0x4dfb), LPSS_CNL_SSP }, 1484 /* TGL-H */ 1485 { PCI_VDEVICE(INTEL, 0x43aa), LPSS_CNL_SSP }, 1486 { PCI_VDEVICE(INTEL, 0x43ab), LPSS_CNL_SSP }, 1487 { PCI_VDEVICE(INTEL, 0x43fb), LPSS_CNL_SSP }, 1488 { PCI_VDEVICE(INTEL, 0x43fd), LPSS_CNL_SSP }, 1489 /* ADL-P */ 1490 { PCI_VDEVICE(INTEL, 0x51aa), LPSS_CNL_SSP }, 1491 { PCI_VDEVICE(INTEL, 0x51ab), LPSS_CNL_SSP }, 1492 { PCI_VDEVICE(INTEL, 0x51fb), LPSS_CNL_SSP }, 1493 /* ADL-M */ 1494 { PCI_VDEVICE(INTEL, 0x54aa), LPSS_CNL_SSP }, 1495 { PCI_VDEVICE(INTEL, 0x54ab), LPSS_CNL_SSP }, 1496 { PCI_VDEVICE(INTEL, 0x54fb), LPSS_CNL_SSP }, 1497 /* APL */ 1498 { PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP }, 1499 { PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP }, 1500 { PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP }, 1501 /* ADL-S */ 1502 { PCI_VDEVICE(INTEL, 0x7aaa), LPSS_CNL_SSP }, 1503 { PCI_VDEVICE(INTEL, 0x7aab), LPSS_CNL_SSP }, 1504 { PCI_VDEVICE(INTEL, 0x7af9), LPSS_CNL_SSP }, 1505 { PCI_VDEVICE(INTEL, 0x7afb), LPSS_CNL_SSP }, 1506 /* CNL-LP */ 1507 { PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP }, 1508 { PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP }, 1509 { PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP }, 1510 /* CNL-H */ 1511 { PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP }, 1512 { PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP }, 1513 { PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP }, 1514 /* CML-LP */ 1515 { PCI_VDEVICE(INTEL, 0x02aa), LPSS_CNL_SSP }, 1516 { PCI_VDEVICE(INTEL, 0x02ab), LPSS_CNL_SSP }, 1517 { PCI_VDEVICE(INTEL, 0x02fb), LPSS_CNL_SSP }, 1518 /* CML-H */ 1519 { PCI_VDEVICE(INTEL, 0x06aa), LPSS_CNL_SSP }, 1520 { PCI_VDEVICE(INTEL, 0x06ab), LPSS_CNL_SSP }, 1521 { PCI_VDEVICE(INTEL, 0x06fb), LPSS_CNL_SSP }, 1522 /* TGL-LP */ 1523 { PCI_VDEVICE(INTEL, 0xa0aa), LPSS_CNL_SSP }, 1524 { PCI_VDEVICE(INTEL, 0xa0ab), LPSS_CNL_SSP }, 1525 { PCI_VDEVICE(INTEL, 0xa0de), LPSS_CNL_SSP }, 1526 { PCI_VDEVICE(INTEL, 0xa0df), LPSS_CNL_SSP }, 1527 { PCI_VDEVICE(INTEL, 0xa0fb), LPSS_CNL_SSP }, 1528 { PCI_VDEVICE(INTEL, 0xa0fd), LPSS_CNL_SSP }, 1529 { PCI_VDEVICE(INTEL, 0xa0fe), LPSS_CNL_SSP }, 1530 { }, 1531 }; 1532 1533 static const struct of_device_id pxa2xx_spi_of_match[] = { 1534 { .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP }, 1535 {}, 1536 }; 1537 MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match); 1538 1539 #ifdef CONFIG_ACPI 1540 1541 static int pxa2xx_spi_get_port_id(struct device *dev) 1542 { 1543 struct acpi_device *adev; 1544 unsigned int devid; 1545 int port_id = -1; 1546 1547 adev = ACPI_COMPANION(dev); 1548 if (adev && adev->pnp.unique_id && 1549 !kstrtouint(adev->pnp.unique_id, 0, &devid)) 1550 port_id = devid; 1551 return port_id; 1552 } 1553 1554 #else /* !CONFIG_ACPI */ 1555 1556 static int pxa2xx_spi_get_port_id(struct device *dev) 1557 { 1558 return -1; 1559 } 1560 1561 #endif /* CONFIG_ACPI */ 1562 1563 1564 #ifdef CONFIG_PCI 1565 1566 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param) 1567 { 1568 return param == chan->device->dev; 1569 } 1570 1571 #endif /* CONFIG_PCI */ 1572 1573 static struct pxa2xx_spi_controller * 1574 pxa2xx_spi_init_pdata(struct platform_device *pdev) 1575 { 1576 struct pxa2xx_spi_controller *pdata; 1577 struct ssp_device *ssp; 1578 struct resource *res; 1579 struct device *parent = pdev->dev.parent; 1580 struct pci_dev *pcidev = dev_is_pci(parent) ? to_pci_dev(parent) : NULL; 1581 const struct pci_device_id *pcidev_id = NULL; 1582 enum pxa_ssp_type type; 1583 const void *match; 1584 1585 if (pcidev) 1586 pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match, pcidev); 1587 1588 match = device_get_match_data(&pdev->dev); 1589 if (match) 1590 type = (enum pxa_ssp_type)match; 1591 else if (pcidev_id) 1592 type = (enum pxa_ssp_type)pcidev_id->driver_data; 1593 else 1594 return ERR_PTR(-EINVAL); 1595 1596 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); 1597 if (!pdata) 1598 return ERR_PTR(-ENOMEM); 1599 1600 ssp = &pdata->ssp; 1601 1602 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1603 ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res); 1604 if (IS_ERR(ssp->mmio_base)) 1605 return ERR_CAST(ssp->mmio_base); 1606 1607 ssp->phys_base = res->start; 1608 1609 #ifdef CONFIG_PCI 1610 if (pcidev_id) { 1611 pdata->tx_param = parent; 1612 pdata->rx_param = parent; 1613 pdata->dma_filter = pxa2xx_spi_idma_filter; 1614 } 1615 #endif 1616 1617 ssp->clk = devm_clk_get(&pdev->dev, NULL); 1618 if (IS_ERR(ssp->clk)) 1619 return ERR_CAST(ssp->clk); 1620 1621 ssp->irq = platform_get_irq(pdev, 0); 1622 if (ssp->irq < 0) 1623 return ERR_PTR(ssp->irq); 1624 1625 ssp->type = type; 1626 ssp->dev = &pdev->dev; 1627 ssp->port_id = pxa2xx_spi_get_port_id(&pdev->dev); 1628 1629 pdata->is_slave = device_property_read_bool(&pdev->dev, "spi-slave"); 1630 pdata->num_chipselect = 1; 1631 pdata->enable_dma = true; 1632 pdata->dma_burst_size = 1; 1633 1634 return pdata; 1635 } 1636 1637 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller, 1638 unsigned int cs) 1639 { 1640 struct driver_data *drv_data = spi_controller_get_devdata(controller); 1641 1642 if (has_acpi_companion(drv_data->ssp->dev)) { 1643 switch (drv_data->ssp_type) { 1644 /* 1645 * For Atoms the ACPI DeviceSelection used by the Windows 1646 * driver starts from 1 instead of 0 so translate it here 1647 * to match what Linux expects. 1648 */ 1649 case LPSS_BYT_SSP: 1650 case LPSS_BSW_SSP: 1651 return cs - 1; 1652 1653 default: 1654 break; 1655 } 1656 } 1657 1658 return cs; 1659 } 1660 1661 static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi) 1662 { 1663 return MAX_DMA_LEN; 1664 } 1665 1666 static int pxa2xx_spi_probe(struct platform_device *pdev) 1667 { 1668 struct device *dev = &pdev->dev; 1669 struct pxa2xx_spi_controller *platform_info; 1670 struct spi_controller *controller; 1671 struct driver_data *drv_data; 1672 struct ssp_device *ssp; 1673 const struct lpss_config *config; 1674 int status; 1675 u32 tmp; 1676 1677 platform_info = dev_get_platdata(dev); 1678 if (!platform_info) { 1679 platform_info = pxa2xx_spi_init_pdata(pdev); 1680 if (IS_ERR(platform_info)) { 1681 dev_err(&pdev->dev, "missing platform data\n"); 1682 return PTR_ERR(platform_info); 1683 } 1684 } 1685 1686 ssp = pxa_ssp_request(pdev->id, pdev->name); 1687 if (!ssp) 1688 ssp = &platform_info->ssp; 1689 1690 if (!ssp->mmio_base) { 1691 dev_err(&pdev->dev, "failed to get SSP\n"); 1692 return -ENODEV; 1693 } 1694 1695 if (platform_info->is_slave) 1696 controller = devm_spi_alloc_slave(dev, sizeof(*drv_data)); 1697 else 1698 controller = devm_spi_alloc_master(dev, sizeof(*drv_data)); 1699 1700 if (!controller) { 1701 dev_err(&pdev->dev, "cannot alloc spi_controller\n"); 1702 status = -ENOMEM; 1703 goto out_error_controller_alloc; 1704 } 1705 drv_data = spi_controller_get_devdata(controller); 1706 drv_data->controller = controller; 1707 drv_data->controller_info = platform_info; 1708 drv_data->ssp = ssp; 1709 1710 controller->dev.of_node = dev->of_node; 1711 controller->dev.fwnode = dev->fwnode; 1712 1713 /* The spi->mode bits understood by this driver: */ 1714 controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP; 1715 1716 controller->bus_num = ssp->port_id; 1717 controller->dma_alignment = DMA_ALIGNMENT; 1718 controller->cleanup = cleanup; 1719 controller->setup = setup; 1720 controller->set_cs = pxa2xx_spi_set_cs; 1721 controller->transfer_one = pxa2xx_spi_transfer_one; 1722 controller->slave_abort = pxa2xx_spi_slave_abort; 1723 controller->handle_err = pxa2xx_spi_handle_err; 1724 controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer; 1725 controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs; 1726 controller->auto_runtime_pm = true; 1727 controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX; 1728 1729 drv_data->ssp_type = ssp->type; 1730 1731 if (pxa25x_ssp_comp(drv_data)) { 1732 switch (drv_data->ssp_type) { 1733 case QUARK_X1000_SSP: 1734 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 1735 break; 1736 default: 1737 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); 1738 break; 1739 } 1740 1741 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE; 1742 drv_data->dma_cr1 = 0; 1743 drv_data->clear_sr = SSSR_ROR; 1744 drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR; 1745 } else { 1746 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 1747 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE; 1748 drv_data->dma_cr1 = DEFAULT_DMA_CR1; 1749 drv_data->clear_sr = SSSR_ROR | SSSR_TINT; 1750 drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS 1751 | SSSR_ROR | SSSR_TUR; 1752 } 1753 1754 status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev), 1755 drv_data); 1756 if (status < 0) { 1757 dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq); 1758 goto out_error_controller_alloc; 1759 } 1760 1761 /* Setup DMA if requested */ 1762 if (platform_info->enable_dma) { 1763 status = pxa2xx_spi_dma_setup(drv_data); 1764 if (status) { 1765 dev_warn(dev, "no DMA channels available, using PIO\n"); 1766 platform_info->enable_dma = false; 1767 } else { 1768 controller->can_dma = pxa2xx_spi_can_dma; 1769 controller->max_dma_len = MAX_DMA_LEN; 1770 controller->max_transfer_size = 1771 pxa2xx_spi_max_dma_transfer_size; 1772 } 1773 } 1774 1775 /* Enable SOC clock */ 1776 status = clk_prepare_enable(ssp->clk); 1777 if (status) 1778 goto out_error_dma_irq_alloc; 1779 1780 controller->max_speed_hz = clk_get_rate(ssp->clk); 1781 /* 1782 * Set minimum speed for all other platforms than Intel Quark which is 1783 * able do under 1 Hz transfers. 1784 */ 1785 if (!pxa25x_ssp_comp(drv_data)) 1786 controller->min_speed_hz = 1787 DIV_ROUND_UP(controller->max_speed_hz, 4096); 1788 else if (!is_quark_x1000_ssp(drv_data)) 1789 controller->min_speed_hz = 1790 DIV_ROUND_UP(controller->max_speed_hz, 512); 1791 1792 pxa_ssp_disable(ssp); 1793 1794 /* Load default SSP configuration */ 1795 switch (drv_data->ssp_type) { 1796 case QUARK_X1000_SSP: 1797 tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) | 1798 QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT); 1799 pxa2xx_spi_write(drv_data, SSCR1, tmp); 1800 1801 /* Using the Motorola SPI protocol and use 8 bit frame */ 1802 tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8); 1803 pxa2xx_spi_write(drv_data, SSCR0, tmp); 1804 break; 1805 case CE4100_SSP: 1806 tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) | 1807 CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT); 1808 pxa2xx_spi_write(drv_data, SSCR1, tmp); 1809 tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8); 1810 pxa2xx_spi_write(drv_data, SSCR0, tmp); 1811 break; 1812 default: 1813 1814 if (spi_controller_is_slave(controller)) { 1815 tmp = SSCR1_SCFR | 1816 SSCR1_SCLKDIR | 1817 SSCR1_SFRMDIR | 1818 SSCR1_RxTresh(2) | 1819 SSCR1_TxTresh(1) | 1820 SSCR1_SPH; 1821 } else { 1822 tmp = SSCR1_RxTresh(RX_THRESH_DFLT) | 1823 SSCR1_TxTresh(TX_THRESH_DFLT); 1824 } 1825 pxa2xx_spi_write(drv_data, SSCR1, tmp); 1826 tmp = SSCR0_Motorola | SSCR0_DataSize(8); 1827 if (!spi_controller_is_slave(controller)) 1828 tmp |= SSCR0_SCR(2); 1829 pxa2xx_spi_write(drv_data, SSCR0, tmp); 1830 break; 1831 } 1832 1833 if (!pxa25x_ssp_comp(drv_data)) 1834 pxa2xx_spi_write(drv_data, SSTO, 0); 1835 1836 if (!is_quark_x1000_ssp(drv_data)) 1837 pxa2xx_spi_write(drv_data, SSPSP, 0); 1838 1839 if (is_lpss_ssp(drv_data)) { 1840 lpss_ssp_setup(drv_data); 1841 config = lpss_get_config(drv_data); 1842 if (config->reg_capabilities >= 0) { 1843 tmp = __lpss_ssp_read_priv(drv_data, 1844 config->reg_capabilities); 1845 tmp &= LPSS_CAPS_CS_EN_MASK; 1846 tmp >>= LPSS_CAPS_CS_EN_SHIFT; 1847 platform_info->num_chipselect = ffz(tmp); 1848 } else if (config->cs_num) { 1849 platform_info->num_chipselect = config->cs_num; 1850 } 1851 } 1852 controller->num_chipselect = platform_info->num_chipselect; 1853 controller->use_gpio_descriptors = true; 1854 1855 if (platform_info->is_slave) { 1856 drv_data->gpiod_ready = devm_gpiod_get_optional(dev, 1857 "ready", GPIOD_OUT_LOW); 1858 if (IS_ERR(drv_data->gpiod_ready)) { 1859 status = PTR_ERR(drv_data->gpiod_ready); 1860 goto out_error_clock_enabled; 1861 } 1862 } 1863 1864 pm_runtime_set_autosuspend_delay(&pdev->dev, 50); 1865 pm_runtime_use_autosuspend(&pdev->dev); 1866 pm_runtime_set_active(&pdev->dev); 1867 pm_runtime_enable(&pdev->dev); 1868 1869 /* Register with the SPI framework */ 1870 platform_set_drvdata(pdev, drv_data); 1871 status = spi_register_controller(controller); 1872 if (status) { 1873 dev_err(&pdev->dev, "problem registering SPI controller\n"); 1874 goto out_error_pm_runtime_enabled; 1875 } 1876 1877 return status; 1878 1879 out_error_pm_runtime_enabled: 1880 pm_runtime_disable(&pdev->dev); 1881 1882 out_error_clock_enabled: 1883 clk_disable_unprepare(ssp->clk); 1884 1885 out_error_dma_irq_alloc: 1886 pxa2xx_spi_dma_release(drv_data); 1887 free_irq(ssp->irq, drv_data); 1888 1889 out_error_controller_alloc: 1890 pxa_ssp_free(ssp); 1891 return status; 1892 } 1893 1894 static int pxa2xx_spi_remove(struct platform_device *pdev) 1895 { 1896 struct driver_data *drv_data = platform_get_drvdata(pdev); 1897 struct ssp_device *ssp = drv_data->ssp; 1898 1899 pm_runtime_get_sync(&pdev->dev); 1900 1901 spi_unregister_controller(drv_data->controller); 1902 1903 /* Disable the SSP at the peripheral and SOC level */ 1904 pxa_ssp_disable(ssp); 1905 clk_disable_unprepare(ssp->clk); 1906 1907 /* Release DMA */ 1908 if (drv_data->controller_info->enable_dma) 1909 pxa2xx_spi_dma_release(drv_data); 1910 1911 pm_runtime_put_noidle(&pdev->dev); 1912 pm_runtime_disable(&pdev->dev); 1913 1914 /* Release IRQ */ 1915 free_irq(ssp->irq, drv_data); 1916 1917 /* Release SSP */ 1918 pxa_ssp_free(ssp); 1919 1920 return 0; 1921 } 1922 1923 #ifdef CONFIG_PM_SLEEP 1924 static int pxa2xx_spi_suspend(struct device *dev) 1925 { 1926 struct driver_data *drv_data = dev_get_drvdata(dev); 1927 struct ssp_device *ssp = drv_data->ssp; 1928 int status; 1929 1930 status = spi_controller_suspend(drv_data->controller); 1931 if (status) 1932 return status; 1933 1934 pxa_ssp_disable(ssp); 1935 1936 if (!pm_runtime_suspended(dev)) 1937 clk_disable_unprepare(ssp->clk); 1938 1939 return 0; 1940 } 1941 1942 static int pxa2xx_spi_resume(struct device *dev) 1943 { 1944 struct driver_data *drv_data = dev_get_drvdata(dev); 1945 struct ssp_device *ssp = drv_data->ssp; 1946 int status; 1947 1948 /* Enable the SSP clock */ 1949 if (!pm_runtime_suspended(dev)) { 1950 status = clk_prepare_enable(ssp->clk); 1951 if (status) 1952 return status; 1953 } 1954 1955 /* Start the queue running */ 1956 return spi_controller_resume(drv_data->controller); 1957 } 1958 #endif 1959 1960 #ifdef CONFIG_PM 1961 static int pxa2xx_spi_runtime_suspend(struct device *dev) 1962 { 1963 struct driver_data *drv_data = dev_get_drvdata(dev); 1964 1965 clk_disable_unprepare(drv_data->ssp->clk); 1966 return 0; 1967 } 1968 1969 static int pxa2xx_spi_runtime_resume(struct device *dev) 1970 { 1971 struct driver_data *drv_data = dev_get_drvdata(dev); 1972 int status; 1973 1974 status = clk_prepare_enable(drv_data->ssp->clk); 1975 return status; 1976 } 1977 #endif 1978 1979 static const struct dev_pm_ops pxa2xx_spi_pm_ops = { 1980 SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume) 1981 SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend, 1982 pxa2xx_spi_runtime_resume, NULL) 1983 }; 1984 1985 static struct platform_driver driver = { 1986 .driver = { 1987 .name = "pxa2xx-spi", 1988 .pm = &pxa2xx_spi_pm_ops, 1989 .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match), 1990 .of_match_table = of_match_ptr(pxa2xx_spi_of_match), 1991 }, 1992 .probe = pxa2xx_spi_probe, 1993 .remove = pxa2xx_spi_remove, 1994 }; 1995 1996 static int __init pxa2xx_spi_init(void) 1997 { 1998 return platform_driver_register(&driver); 1999 } 2000 subsys_initcall(pxa2xx_spi_init); 2001 2002 static void __exit pxa2xx_spi_exit(void) 2003 { 2004 platform_driver_unregister(&driver); 2005 } 2006 module_exit(pxa2xx_spi_exit); 2007 2008 MODULE_SOFTDEP("pre: dw_dmac"); 2009