xref: /openbmc/linux/drivers/spi/spi-pxa2xx.c (revision e481ff3f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4  * Copyright (C) 2013, 2021 Intel Corporation
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/bitops.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/err.h>
14 #include <linux/errno.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/gpio.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/ioport.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/of.h>
24 #include <linux/pci.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/property.h>
28 #include <linux/slab.h>
29 
30 #include <linux/spi/pxa2xx_spi.h>
31 #include <linux/spi/spi.h>
32 
33 #include "spi-pxa2xx.h"
34 
35 MODULE_AUTHOR("Stephen Street");
36 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
37 MODULE_LICENSE("GPL");
38 MODULE_ALIAS("platform:pxa2xx-spi");
39 
40 #define TIMOUT_DFLT		1000
41 
42 /*
43  * For testing SSCR1 changes that require SSP restart, basically
44  * everything except the service and interrupt enables, the PXA270 developer
45  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
46  * list, but the PXA255 developer manual says all bits without really meaning
47  * the service and interrupt enables.
48  */
49 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
50 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
51 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
52 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
53 				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
54 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
55 
56 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
57 				| QUARK_X1000_SSCR1_EFWR	\
58 				| QUARK_X1000_SSCR1_RFT		\
59 				| QUARK_X1000_SSCR1_TFT		\
60 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
61 
62 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
63 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
64 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
65 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
66 				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
67 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
68 
69 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
70 #define LPSS_CS_CONTROL_SW_MODE			BIT(0)
71 #define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
72 #define LPSS_CAPS_CS_EN_SHIFT			9
73 #define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
74 
75 #define LPSS_PRIV_CLOCK_GATE 0x38
76 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3
77 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3
78 
79 struct lpss_config {
80 	/* LPSS offset from drv_data->ioaddr */
81 	unsigned offset;
82 	/* Register offsets from drv_data->lpss_base or -1 */
83 	int reg_general;
84 	int reg_ssp;
85 	int reg_cs_ctrl;
86 	int reg_capabilities;
87 	/* FIFO thresholds */
88 	u32 rx_threshold;
89 	u32 tx_threshold_lo;
90 	u32 tx_threshold_hi;
91 	/* Chip select control */
92 	unsigned cs_sel_shift;
93 	unsigned cs_sel_mask;
94 	unsigned cs_num;
95 	/* Quirks */
96 	unsigned cs_clk_stays_gated : 1;
97 };
98 
99 /* Keep these sorted with enum pxa_ssp_type */
100 static const struct lpss_config lpss_platforms[] = {
101 	{	/* LPSS_LPT_SSP */
102 		.offset = 0x800,
103 		.reg_general = 0x08,
104 		.reg_ssp = 0x0c,
105 		.reg_cs_ctrl = 0x18,
106 		.reg_capabilities = -1,
107 		.rx_threshold = 64,
108 		.tx_threshold_lo = 160,
109 		.tx_threshold_hi = 224,
110 	},
111 	{	/* LPSS_BYT_SSP */
112 		.offset = 0x400,
113 		.reg_general = 0x08,
114 		.reg_ssp = 0x0c,
115 		.reg_cs_ctrl = 0x18,
116 		.reg_capabilities = -1,
117 		.rx_threshold = 64,
118 		.tx_threshold_lo = 160,
119 		.tx_threshold_hi = 224,
120 	},
121 	{	/* LPSS_BSW_SSP */
122 		.offset = 0x400,
123 		.reg_general = 0x08,
124 		.reg_ssp = 0x0c,
125 		.reg_cs_ctrl = 0x18,
126 		.reg_capabilities = -1,
127 		.rx_threshold = 64,
128 		.tx_threshold_lo = 160,
129 		.tx_threshold_hi = 224,
130 		.cs_sel_shift = 2,
131 		.cs_sel_mask = 1 << 2,
132 		.cs_num = 2,
133 	},
134 	{	/* LPSS_SPT_SSP */
135 		.offset = 0x200,
136 		.reg_general = -1,
137 		.reg_ssp = 0x20,
138 		.reg_cs_ctrl = 0x24,
139 		.reg_capabilities = -1,
140 		.rx_threshold = 1,
141 		.tx_threshold_lo = 32,
142 		.tx_threshold_hi = 56,
143 	},
144 	{	/* LPSS_BXT_SSP */
145 		.offset = 0x200,
146 		.reg_general = -1,
147 		.reg_ssp = 0x20,
148 		.reg_cs_ctrl = 0x24,
149 		.reg_capabilities = 0xfc,
150 		.rx_threshold = 1,
151 		.tx_threshold_lo = 16,
152 		.tx_threshold_hi = 48,
153 		.cs_sel_shift = 8,
154 		.cs_sel_mask = 3 << 8,
155 		.cs_clk_stays_gated = true,
156 	},
157 	{	/* LPSS_CNL_SSP */
158 		.offset = 0x200,
159 		.reg_general = -1,
160 		.reg_ssp = 0x20,
161 		.reg_cs_ctrl = 0x24,
162 		.reg_capabilities = 0xfc,
163 		.rx_threshold = 1,
164 		.tx_threshold_lo = 32,
165 		.tx_threshold_hi = 56,
166 		.cs_sel_shift = 8,
167 		.cs_sel_mask = 3 << 8,
168 		.cs_clk_stays_gated = true,
169 	},
170 };
171 
172 static inline const struct lpss_config
173 *lpss_get_config(const struct driver_data *drv_data)
174 {
175 	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
176 }
177 
178 static bool is_lpss_ssp(const struct driver_data *drv_data)
179 {
180 	switch (drv_data->ssp_type) {
181 	case LPSS_LPT_SSP:
182 	case LPSS_BYT_SSP:
183 	case LPSS_BSW_SSP:
184 	case LPSS_SPT_SSP:
185 	case LPSS_BXT_SSP:
186 	case LPSS_CNL_SSP:
187 		return true;
188 	default:
189 		return false;
190 	}
191 }
192 
193 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
194 {
195 	return drv_data->ssp_type == QUARK_X1000_SSP;
196 }
197 
198 static bool is_mmp2_ssp(const struct driver_data *drv_data)
199 {
200 	return drv_data->ssp_type == MMP2_SSP;
201 }
202 
203 static bool is_mrfld_ssp(const struct driver_data *drv_data)
204 {
205 	return drv_data->ssp_type == MRFLD_SSP;
206 }
207 
208 static void pxa2xx_spi_update(const struct driver_data *drv_data, u32 reg, u32 mask, u32 value)
209 {
210 	if ((pxa2xx_spi_read(drv_data, reg) & mask) != value)
211 		pxa2xx_spi_write(drv_data, reg, value & mask);
212 }
213 
214 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
215 {
216 	switch (drv_data->ssp_type) {
217 	case QUARK_X1000_SSP:
218 		return QUARK_X1000_SSCR1_CHANGE_MASK;
219 	case CE4100_SSP:
220 		return CE4100_SSCR1_CHANGE_MASK;
221 	default:
222 		return SSCR1_CHANGE_MASK;
223 	}
224 }
225 
226 static u32
227 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
228 {
229 	switch (drv_data->ssp_type) {
230 	case QUARK_X1000_SSP:
231 		return RX_THRESH_QUARK_X1000_DFLT;
232 	case CE4100_SSP:
233 		return RX_THRESH_CE4100_DFLT;
234 	default:
235 		return RX_THRESH_DFLT;
236 	}
237 }
238 
239 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
240 {
241 	u32 mask;
242 
243 	switch (drv_data->ssp_type) {
244 	case QUARK_X1000_SSP:
245 		mask = QUARK_X1000_SSSR_TFL_MASK;
246 		break;
247 	case CE4100_SSP:
248 		mask = CE4100_SSSR_TFL_MASK;
249 		break;
250 	default:
251 		mask = SSSR_TFL_MASK;
252 		break;
253 	}
254 
255 	return read_SSSR_bits(drv_data, mask) == mask;
256 }
257 
258 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
259 				     u32 *sccr1_reg)
260 {
261 	u32 mask;
262 
263 	switch (drv_data->ssp_type) {
264 	case QUARK_X1000_SSP:
265 		mask = QUARK_X1000_SSCR1_RFT;
266 		break;
267 	case CE4100_SSP:
268 		mask = CE4100_SSCR1_RFT;
269 		break;
270 	default:
271 		mask = SSCR1_RFT;
272 		break;
273 	}
274 	*sccr1_reg &= ~mask;
275 }
276 
277 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
278 				   u32 *sccr1_reg, u32 threshold)
279 {
280 	switch (drv_data->ssp_type) {
281 	case QUARK_X1000_SSP:
282 		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
283 		break;
284 	case CE4100_SSP:
285 		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
286 		break;
287 	default:
288 		*sccr1_reg |= SSCR1_RxTresh(threshold);
289 		break;
290 	}
291 }
292 
293 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
294 				  u32 clk_div, u8 bits)
295 {
296 	switch (drv_data->ssp_type) {
297 	case QUARK_X1000_SSP:
298 		return clk_div
299 			| QUARK_X1000_SSCR0_Motorola
300 			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits);
301 	default:
302 		return clk_div
303 			| SSCR0_Motorola
304 			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
305 			| (bits > 16 ? SSCR0_EDSS : 0);
306 	}
307 }
308 
309 /*
310  * Read and write LPSS SSP private registers. Caller must first check that
311  * is_lpss_ssp() returns true before these can be called.
312  */
313 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
314 {
315 	WARN_ON(!drv_data->lpss_base);
316 	return readl(drv_data->lpss_base + offset);
317 }
318 
319 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
320 				  unsigned offset, u32 value)
321 {
322 	WARN_ON(!drv_data->lpss_base);
323 	writel(value, drv_data->lpss_base + offset);
324 }
325 
326 /*
327  * lpss_ssp_setup - perform LPSS SSP specific setup
328  * @drv_data: pointer to the driver private data
329  *
330  * Perform LPSS SSP specific setup. This function must be called first if
331  * one is going to use LPSS SSP private registers.
332  */
333 static void lpss_ssp_setup(struct driver_data *drv_data)
334 {
335 	const struct lpss_config *config;
336 	u32 value;
337 
338 	config = lpss_get_config(drv_data);
339 	drv_data->lpss_base = drv_data->ssp->mmio_base + config->offset;
340 
341 	/* Enable software chip select control */
342 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
343 	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
344 	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
345 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
346 
347 	/* Enable multiblock DMA transfers */
348 	if (drv_data->controller_info->enable_dma) {
349 		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
350 
351 		if (config->reg_general >= 0) {
352 			value = __lpss_ssp_read_priv(drv_data,
353 						     config->reg_general);
354 			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
355 			__lpss_ssp_write_priv(drv_data,
356 					      config->reg_general, value);
357 		}
358 	}
359 }
360 
361 static void lpss_ssp_select_cs(struct spi_device *spi,
362 			       const struct lpss_config *config)
363 {
364 	struct driver_data *drv_data =
365 		spi_controller_get_devdata(spi->controller);
366 	u32 value, cs;
367 
368 	if (!config->cs_sel_mask)
369 		return;
370 
371 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
372 
373 	cs = spi->chip_select;
374 	cs <<= config->cs_sel_shift;
375 	if (cs != (value & config->cs_sel_mask)) {
376 		/*
377 		 * When switching another chip select output active the
378 		 * output must be selected first and wait 2 ssp_clk cycles
379 		 * before changing state to active. Otherwise a short
380 		 * glitch will occur on the previous chip select since
381 		 * output select is latched but state control is not.
382 		 */
383 		value &= ~config->cs_sel_mask;
384 		value |= cs;
385 		__lpss_ssp_write_priv(drv_data,
386 				      config->reg_cs_ctrl, value);
387 		ndelay(1000000000 /
388 		       (drv_data->controller->max_speed_hz / 2));
389 	}
390 }
391 
392 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
393 {
394 	struct driver_data *drv_data =
395 		spi_controller_get_devdata(spi->controller);
396 	const struct lpss_config *config;
397 	u32 value;
398 
399 	config = lpss_get_config(drv_data);
400 
401 	if (enable)
402 		lpss_ssp_select_cs(spi, config);
403 
404 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
405 	if (enable)
406 		value &= ~LPSS_CS_CONTROL_CS_HIGH;
407 	else
408 		value |= LPSS_CS_CONTROL_CS_HIGH;
409 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
410 	if (config->cs_clk_stays_gated) {
411 		u32 clkgate;
412 
413 		/*
414 		 * Changing CS alone when dynamic clock gating is on won't
415 		 * actually flip CS at that time. This ruins SPI transfers
416 		 * that specify delays, or have no data. Toggle the clock mode
417 		 * to force on briefly to poke the CS pin to move.
418 		 */
419 		clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE);
420 		value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) |
421 			LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON;
422 
423 		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value);
424 		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate);
425 	}
426 }
427 
428 static void cs_assert(struct spi_device *spi)
429 {
430 	struct chip_data *chip = spi_get_ctldata(spi);
431 	struct driver_data *drv_data =
432 		spi_controller_get_devdata(spi->controller);
433 
434 	if (drv_data->ssp_type == CE4100_SSP) {
435 		pxa2xx_spi_write(drv_data, SSSR, spi->chip_select);
436 		return;
437 	}
438 
439 	if (chip->cs_control) {
440 		chip->cs_control(PXA2XX_CS_ASSERT);
441 		return;
442 	}
443 
444 	if (is_lpss_ssp(drv_data))
445 		lpss_ssp_cs_control(spi, true);
446 }
447 
448 static void cs_deassert(struct spi_device *spi)
449 {
450 	struct chip_data *chip = spi_get_ctldata(spi);
451 	struct driver_data *drv_data =
452 		spi_controller_get_devdata(spi->controller);
453 	unsigned long timeout;
454 
455 	if (drv_data->ssp_type == CE4100_SSP)
456 		return;
457 
458 	/* Wait until SSP becomes idle before deasserting the CS */
459 	timeout = jiffies + msecs_to_jiffies(10);
460 	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
461 	       !time_after(jiffies, timeout))
462 		cpu_relax();
463 
464 	if (chip->cs_control) {
465 		chip->cs_control(PXA2XX_CS_DEASSERT);
466 		return;
467 	}
468 
469 	if (is_lpss_ssp(drv_data))
470 		lpss_ssp_cs_control(spi, false);
471 }
472 
473 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
474 {
475 	if (level)
476 		cs_deassert(spi);
477 	else
478 		cs_assert(spi);
479 }
480 
481 int pxa2xx_spi_flush(struct driver_data *drv_data)
482 {
483 	unsigned long limit = loops_per_jiffy << 1;
484 
485 	do {
486 		while (read_SSSR_bits(drv_data, SSSR_RNE))
487 			pxa2xx_spi_read(drv_data, SSDR);
488 	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
489 	write_SSSR_CS(drv_data, SSSR_ROR);
490 
491 	return limit;
492 }
493 
494 static void pxa2xx_spi_off(struct driver_data *drv_data)
495 {
496 	/* On MMP, disabling SSE seems to corrupt the Rx FIFO */
497 	if (is_mmp2_ssp(drv_data))
498 		return;
499 
500 	pxa_ssp_disable(drv_data->ssp);
501 }
502 
503 static int null_writer(struct driver_data *drv_data)
504 {
505 	u8 n_bytes = drv_data->n_bytes;
506 
507 	if (pxa2xx_spi_txfifo_full(drv_data)
508 		|| (drv_data->tx == drv_data->tx_end))
509 		return 0;
510 
511 	pxa2xx_spi_write(drv_data, SSDR, 0);
512 	drv_data->tx += n_bytes;
513 
514 	return 1;
515 }
516 
517 static int null_reader(struct driver_data *drv_data)
518 {
519 	u8 n_bytes = drv_data->n_bytes;
520 
521 	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
522 		pxa2xx_spi_read(drv_data, SSDR);
523 		drv_data->rx += n_bytes;
524 	}
525 
526 	return drv_data->rx == drv_data->rx_end;
527 }
528 
529 static int u8_writer(struct driver_data *drv_data)
530 {
531 	if (pxa2xx_spi_txfifo_full(drv_data)
532 		|| (drv_data->tx == drv_data->tx_end))
533 		return 0;
534 
535 	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
536 	++drv_data->tx;
537 
538 	return 1;
539 }
540 
541 static int u8_reader(struct driver_data *drv_data)
542 {
543 	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
544 		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
545 		++drv_data->rx;
546 	}
547 
548 	return drv_data->rx == drv_data->rx_end;
549 }
550 
551 static int u16_writer(struct driver_data *drv_data)
552 {
553 	if (pxa2xx_spi_txfifo_full(drv_data)
554 		|| (drv_data->tx == drv_data->tx_end))
555 		return 0;
556 
557 	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
558 	drv_data->tx += 2;
559 
560 	return 1;
561 }
562 
563 static int u16_reader(struct driver_data *drv_data)
564 {
565 	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
566 		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
567 		drv_data->rx += 2;
568 	}
569 
570 	return drv_data->rx == drv_data->rx_end;
571 }
572 
573 static int u32_writer(struct driver_data *drv_data)
574 {
575 	if (pxa2xx_spi_txfifo_full(drv_data)
576 		|| (drv_data->tx == drv_data->tx_end))
577 		return 0;
578 
579 	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
580 	drv_data->tx += 4;
581 
582 	return 1;
583 }
584 
585 static int u32_reader(struct driver_data *drv_data)
586 {
587 	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
588 		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
589 		drv_data->rx += 4;
590 	}
591 
592 	return drv_data->rx == drv_data->rx_end;
593 }
594 
595 static void reset_sccr1(struct driver_data *drv_data)
596 {
597 	struct chip_data *chip =
598 		spi_get_ctldata(drv_data->controller->cur_msg->spi);
599 	u32 sccr1_reg;
600 
601 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
602 	switch (drv_data->ssp_type) {
603 	case QUARK_X1000_SSP:
604 		sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
605 		break;
606 	case CE4100_SSP:
607 		sccr1_reg &= ~CE4100_SSCR1_RFT;
608 		break;
609 	default:
610 		sccr1_reg &= ~SSCR1_RFT;
611 		break;
612 	}
613 	sccr1_reg |= chip->threshold;
614 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
615 }
616 
617 static void int_stop_and_reset(struct driver_data *drv_data)
618 {
619 	/* Clear and disable interrupts */
620 	write_SSSR_CS(drv_data, drv_data->clear_sr);
621 	reset_sccr1(drv_data);
622 	if (pxa25x_ssp_comp(drv_data))
623 		return;
624 
625 	pxa2xx_spi_write(drv_data, SSTO, 0);
626 }
627 
628 static void int_error_stop(struct driver_data *drv_data, const char *msg, int err)
629 {
630 	int_stop_and_reset(drv_data);
631 	pxa2xx_spi_flush(drv_data);
632 	pxa2xx_spi_off(drv_data);
633 
634 	dev_err(drv_data->ssp->dev, "%s\n", msg);
635 
636 	drv_data->controller->cur_msg->status = err;
637 	spi_finalize_current_transfer(drv_data->controller);
638 }
639 
640 static void int_transfer_complete(struct driver_data *drv_data)
641 {
642 	int_stop_and_reset(drv_data);
643 
644 	spi_finalize_current_transfer(drv_data->controller);
645 }
646 
647 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
648 {
649 	u32 irq_status;
650 
651 	irq_status = read_SSSR_bits(drv_data, drv_data->mask_sr);
652 	if (!(pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE))
653 		irq_status &= ~SSSR_TFS;
654 
655 	if (irq_status & SSSR_ROR) {
656 		int_error_stop(drv_data, "interrupt_transfer: FIFO overrun", -EIO);
657 		return IRQ_HANDLED;
658 	}
659 
660 	if (irq_status & SSSR_TUR) {
661 		int_error_stop(drv_data, "interrupt_transfer: FIFO underrun", -EIO);
662 		return IRQ_HANDLED;
663 	}
664 
665 	if (irq_status & SSSR_TINT) {
666 		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
667 		if (drv_data->read(drv_data)) {
668 			int_transfer_complete(drv_data);
669 			return IRQ_HANDLED;
670 		}
671 	}
672 
673 	/* Drain Rx FIFO, Fill Tx FIFO and prevent overruns */
674 	do {
675 		if (drv_data->read(drv_data)) {
676 			int_transfer_complete(drv_data);
677 			return IRQ_HANDLED;
678 		}
679 	} while (drv_data->write(drv_data));
680 
681 	if (drv_data->read(drv_data)) {
682 		int_transfer_complete(drv_data);
683 		return IRQ_HANDLED;
684 	}
685 
686 	if (drv_data->tx == drv_data->tx_end) {
687 		u32 bytes_left;
688 		u32 sccr1_reg;
689 
690 		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
691 		sccr1_reg &= ~SSCR1_TIE;
692 
693 		/*
694 		 * PXA25x_SSP has no timeout, set up Rx threshold for
695 		 * the remaining Rx bytes.
696 		 */
697 		if (pxa25x_ssp_comp(drv_data)) {
698 			u32 rx_thre;
699 
700 			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
701 
702 			bytes_left = drv_data->rx_end - drv_data->rx;
703 			switch (drv_data->n_bytes) {
704 			case 4:
705 				bytes_left >>= 2;
706 				break;
707 			case 2:
708 				bytes_left >>= 1;
709 				break;
710 			}
711 
712 			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
713 			if (rx_thre > bytes_left)
714 				rx_thre = bytes_left;
715 
716 			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
717 		}
718 		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
719 	}
720 
721 	/* We did something */
722 	return IRQ_HANDLED;
723 }
724 
725 static void handle_bad_msg(struct driver_data *drv_data)
726 {
727 	pxa2xx_spi_off(drv_data);
728 	clear_SSCR1_bits(drv_data, drv_data->int_cr1);
729 	if (!pxa25x_ssp_comp(drv_data))
730 		pxa2xx_spi_write(drv_data, SSTO, 0);
731 	write_SSSR_CS(drv_data, drv_data->clear_sr);
732 
733 	dev_err(drv_data->ssp->dev, "bad message state in interrupt handler\n");
734 }
735 
736 static irqreturn_t ssp_int(int irq, void *dev_id)
737 {
738 	struct driver_data *drv_data = dev_id;
739 	u32 sccr1_reg;
740 	u32 mask = drv_data->mask_sr;
741 	u32 status;
742 
743 	/*
744 	 * The IRQ might be shared with other peripherals so we must first
745 	 * check that are we RPM suspended or not. If we are we assume that
746 	 * the IRQ was not for us (we shouldn't be RPM suspended when the
747 	 * interrupt is enabled).
748 	 */
749 	if (pm_runtime_suspended(drv_data->ssp->dev))
750 		return IRQ_NONE;
751 
752 	/*
753 	 * If the device is not yet in RPM suspended state and we get an
754 	 * interrupt that is meant for another device, check if status bits
755 	 * are all set to one. That means that the device is already
756 	 * powered off.
757 	 */
758 	status = pxa2xx_spi_read(drv_data, SSSR);
759 	if (status == ~0)
760 		return IRQ_NONE;
761 
762 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
763 
764 	/* Ignore possible writes if we don't need to write */
765 	if (!(sccr1_reg & SSCR1_TIE))
766 		mask &= ~SSSR_TFS;
767 
768 	/* Ignore RX timeout interrupt if it is disabled */
769 	if (!(sccr1_reg & SSCR1_TINTE))
770 		mask &= ~SSSR_TINT;
771 
772 	if (!(status & mask))
773 		return IRQ_NONE;
774 
775 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
776 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
777 
778 	if (!drv_data->controller->cur_msg) {
779 		handle_bad_msg(drv_data);
780 		/* Never fail */
781 		return IRQ_HANDLED;
782 	}
783 
784 	return drv_data->transfer_handler(drv_data);
785 }
786 
787 /*
788  * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
789  * input frequency by fractions of 2^24. It also has a divider by 5.
790  *
791  * There are formulas to get baud rate value for given input frequency and
792  * divider parameters, such as DDS_CLK_RATE and SCR:
793  *
794  * Fsys = 200MHz
795  *
796  * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
797  * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
798  *
799  * DDS_CLK_RATE either 2^n or 2^n / 5.
800  * SCR is in range 0 .. 255
801  *
802  * Divisor = 5^i * 2^j * 2 * k
803  *       i = [0, 1]      i = 1 iff j = 0 or j > 3
804  *       j = [0, 23]     j = 0 iff i = 1
805  *       k = [1, 256]
806  * Special case: j = 0, i = 1: Divisor = 2 / 5
807  *
808  * Accordingly to the specification the recommended values for DDS_CLK_RATE
809  * are:
810  *	Case 1:		2^n, n = [0, 23]
811  *	Case 2:		2^24 * 2 / 5 (0x666666)
812  *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
813  *
814  * In all cases the lowest possible value is better.
815  *
816  * The function calculates parameters for all cases and chooses the one closest
817  * to the asked baud rate.
818  */
819 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
820 {
821 	unsigned long xtal = 200000000;
822 	unsigned long fref = xtal / 2;		/* mandatory division by 2,
823 						   see (2) */
824 						/* case 3 */
825 	unsigned long fref1 = fref / 2;		/* case 1 */
826 	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
827 	unsigned long scale;
828 	unsigned long q, q1, q2;
829 	long r, r1, r2;
830 	u32 mul;
831 
832 	/* Case 1 */
833 
834 	/* Set initial value for DDS_CLK_RATE */
835 	mul = (1 << 24) >> 1;
836 
837 	/* Calculate initial quot */
838 	q1 = DIV_ROUND_UP(fref1, rate);
839 
840 	/* Scale q1 if it's too big */
841 	if (q1 > 256) {
842 		/* Scale q1 to range [1, 512] */
843 		scale = fls_long(q1 - 1);
844 		if (scale > 9) {
845 			q1 >>= scale - 9;
846 			mul >>= scale - 9;
847 		}
848 
849 		/* Round the result if we have a remainder */
850 		q1 += q1 & 1;
851 	}
852 
853 	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
854 	scale = __ffs(q1);
855 	q1 >>= scale;
856 	mul >>= scale;
857 
858 	/* Get the remainder */
859 	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
860 
861 	/* Case 2 */
862 
863 	q2 = DIV_ROUND_UP(fref2, rate);
864 	r2 = abs(fref2 / q2 - rate);
865 
866 	/*
867 	 * Choose the best between two: less remainder we have the better. We
868 	 * can't go case 2 if q2 is greater than 256 since SCR register can
869 	 * hold only values 0 .. 255.
870 	 */
871 	if (r2 >= r1 || q2 > 256) {
872 		/* case 1 is better */
873 		r = r1;
874 		q = q1;
875 	} else {
876 		/* case 2 is better */
877 		r = r2;
878 		q = q2;
879 		mul = (1 << 24) * 2 / 5;
880 	}
881 
882 	/* Check case 3 only if the divisor is big enough */
883 	if (fref / rate >= 80) {
884 		u64 fssp;
885 		u32 m;
886 
887 		/* Calculate initial quot */
888 		q1 = DIV_ROUND_UP(fref, rate);
889 		m = (1 << 24) / q1;
890 
891 		/* Get the remainder */
892 		fssp = (u64)fref * m;
893 		do_div(fssp, 1 << 24);
894 		r1 = abs(fssp - rate);
895 
896 		/* Choose this one if it suits better */
897 		if (r1 < r) {
898 			/* case 3 is better */
899 			q = 1;
900 			mul = m;
901 		}
902 	}
903 
904 	*dds = mul;
905 	return q - 1;
906 }
907 
908 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
909 {
910 	unsigned long ssp_clk = drv_data->controller->max_speed_hz;
911 	const struct ssp_device *ssp = drv_data->ssp;
912 
913 	rate = min_t(int, ssp_clk, rate);
914 
915 	/*
916 	 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
917 	 * that the SSP transmission rate can be greater than the device rate.
918 	 */
919 	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
920 		return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
921 	else
922 		return (DIV_ROUND_UP(ssp_clk, rate) - 1)  & 0xfff;
923 }
924 
925 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
926 					   int rate)
927 {
928 	struct chip_data *chip =
929 		spi_get_ctldata(drv_data->controller->cur_msg->spi);
930 	unsigned int clk_div;
931 
932 	switch (drv_data->ssp_type) {
933 	case QUARK_X1000_SSP:
934 		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
935 		break;
936 	default:
937 		clk_div = ssp_get_clk_div(drv_data, rate);
938 		break;
939 	}
940 	return clk_div << 8;
941 }
942 
943 static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
944 			       struct spi_device *spi,
945 			       struct spi_transfer *xfer)
946 {
947 	struct chip_data *chip = spi_get_ctldata(spi);
948 
949 	return chip->enable_dma &&
950 	       xfer->len <= MAX_DMA_LEN &&
951 	       xfer->len >= chip->dma_burst_size;
952 }
953 
954 static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
955 				   struct spi_device *spi,
956 				   struct spi_transfer *transfer)
957 {
958 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
959 	struct spi_message *message = controller->cur_msg;
960 	struct chip_data *chip = spi_get_ctldata(spi);
961 	u32 dma_thresh = chip->dma_threshold;
962 	u32 dma_burst = chip->dma_burst_size;
963 	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
964 	u32 clk_div;
965 	u8 bits;
966 	u32 speed;
967 	u32 cr0;
968 	u32 cr1;
969 	int err;
970 	int dma_mapped;
971 
972 	/* Check if we can DMA this transfer */
973 	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
974 
975 		/* Reject already-mapped transfers; PIO won't always work */
976 		if (message->is_dma_mapped
977 				|| transfer->rx_dma || transfer->tx_dma) {
978 			dev_err(&spi->dev,
979 				"Mapped transfer length of %u is greater than %d\n",
980 				transfer->len, MAX_DMA_LEN);
981 			return -EINVAL;
982 		}
983 
984 		/* Warn ... we force this to PIO mode */
985 		dev_warn_ratelimited(&spi->dev,
986 				     "DMA disabled for transfer length %u greater than %d\n",
987 				     transfer->len, MAX_DMA_LEN);
988 	}
989 
990 	/* Setup the transfer state based on the type of transfer */
991 	if (pxa2xx_spi_flush(drv_data) == 0) {
992 		dev_err(&spi->dev, "Flush failed\n");
993 		return -EIO;
994 	}
995 	drv_data->n_bytes = chip->n_bytes;
996 	drv_data->tx = (void *)transfer->tx_buf;
997 	drv_data->tx_end = drv_data->tx + transfer->len;
998 	drv_data->rx = transfer->rx_buf;
999 	drv_data->rx_end = drv_data->rx + transfer->len;
1000 	drv_data->write = drv_data->tx ? chip->write : null_writer;
1001 	drv_data->read = drv_data->rx ? chip->read : null_reader;
1002 
1003 	/* Change speed and bit per word on a per transfer */
1004 	bits = transfer->bits_per_word;
1005 	speed = transfer->speed_hz;
1006 
1007 	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
1008 
1009 	if (bits <= 8) {
1010 		drv_data->n_bytes = 1;
1011 		drv_data->read = drv_data->read != null_reader ?
1012 					u8_reader : null_reader;
1013 		drv_data->write = drv_data->write != null_writer ?
1014 					u8_writer : null_writer;
1015 	} else if (bits <= 16) {
1016 		drv_data->n_bytes = 2;
1017 		drv_data->read = drv_data->read != null_reader ?
1018 					u16_reader : null_reader;
1019 		drv_data->write = drv_data->write != null_writer ?
1020 					u16_writer : null_writer;
1021 	} else if (bits <= 32) {
1022 		drv_data->n_bytes = 4;
1023 		drv_data->read = drv_data->read != null_reader ?
1024 					u32_reader : null_reader;
1025 		drv_data->write = drv_data->write != null_writer ?
1026 					u32_writer : null_writer;
1027 	}
1028 	/*
1029 	 * If bits per word is changed in DMA mode, then must check
1030 	 * the thresholds and burst also.
1031 	 */
1032 	if (chip->enable_dma) {
1033 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1034 						spi,
1035 						bits, &dma_burst,
1036 						&dma_thresh))
1037 			dev_warn_ratelimited(&spi->dev,
1038 					     "DMA burst size reduced to match bits_per_word\n");
1039 	}
1040 
1041 	dma_mapped = controller->can_dma &&
1042 		     controller->can_dma(controller, spi, transfer) &&
1043 		     controller->cur_msg_mapped;
1044 	if (dma_mapped) {
1045 
1046 		/* Ensure we have the correct interrupt handler */
1047 		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1048 
1049 		err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1050 		if (err)
1051 			return err;
1052 
1053 		/* Clear status and start DMA engine */
1054 		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1055 		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1056 
1057 		pxa2xx_spi_dma_start(drv_data);
1058 	} else {
1059 		/* Ensure we have the correct interrupt handler	*/
1060 		drv_data->transfer_handler = interrupt_transfer;
1061 
1062 		/* Clear status  */
1063 		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1064 		write_SSSR_CS(drv_data, drv_data->clear_sr);
1065 	}
1066 
1067 	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1068 	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1069 	if (!pxa25x_ssp_comp(drv_data))
1070 		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1071 			controller->max_speed_hz
1072 				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1073 			dma_mapped ? "DMA" : "PIO");
1074 	else
1075 		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1076 			controller->max_speed_hz / 2
1077 				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1078 			dma_mapped ? "DMA" : "PIO");
1079 
1080 	if (is_lpss_ssp(drv_data)) {
1081 		pxa2xx_spi_update(drv_data, SSIRF, GENMASK(7, 0), chip->lpss_rx_threshold);
1082 		pxa2xx_spi_update(drv_data, SSITF, GENMASK(15, 0), chip->lpss_tx_threshold);
1083 	}
1084 
1085 	if (is_mrfld_ssp(drv_data)) {
1086 		u32 mask = SFIFOTT_RFT | SFIFOTT_TFT;
1087 		u32 thresh = 0;
1088 
1089 		thresh |= SFIFOTT_RxThresh(chip->lpss_rx_threshold);
1090 		thresh |= SFIFOTT_TxThresh(chip->lpss_tx_threshold);
1091 
1092 		pxa2xx_spi_update(drv_data, SFIFOTT, mask, thresh);
1093 	}
1094 
1095 	if (is_quark_x1000_ssp(drv_data))
1096 		pxa2xx_spi_update(drv_data, DDS_RATE, GENMASK(23, 0), chip->dds_rate);
1097 
1098 	/* Stop the SSP */
1099 	if (!is_mmp2_ssp(drv_data))
1100 		pxa_ssp_disable(drv_data->ssp);
1101 
1102 	if (!pxa25x_ssp_comp(drv_data))
1103 		pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1104 
1105 	/* First set CR1 without interrupt and service enables */
1106 	pxa2xx_spi_update(drv_data, SSCR1, change_mask, cr1);
1107 
1108 	/* See if we need to reload the configuration registers */
1109 	pxa2xx_spi_update(drv_data, SSCR0, GENMASK(31, 0), cr0);
1110 
1111 	/* Restart the SSP */
1112 	pxa_ssp_enable(drv_data->ssp);
1113 
1114 	if (is_mmp2_ssp(drv_data)) {
1115 		u8 tx_level = read_SSSR_bits(drv_data, SSSR_TFL_MASK) >> 8;
1116 
1117 		if (tx_level) {
1118 			/* On MMP2, flipping SSE doesn't to empty Tx FIFO. */
1119 			dev_warn(&spi->dev, "%u bytes of garbage in Tx FIFO!\n", tx_level);
1120 			if (tx_level > transfer->len)
1121 				tx_level = transfer->len;
1122 			drv_data->tx += tx_level;
1123 		}
1124 	}
1125 
1126 	if (spi_controller_is_slave(controller)) {
1127 		while (drv_data->write(drv_data))
1128 			;
1129 		if (drv_data->gpiod_ready) {
1130 			gpiod_set_value(drv_data->gpiod_ready, 1);
1131 			udelay(1);
1132 			gpiod_set_value(drv_data->gpiod_ready, 0);
1133 		}
1134 	}
1135 
1136 	/*
1137 	 * Release the data by enabling service requests and interrupts,
1138 	 * without changing any mode bits.
1139 	 */
1140 	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1141 
1142 	return 1;
1143 }
1144 
1145 static int pxa2xx_spi_slave_abort(struct spi_controller *controller)
1146 {
1147 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1148 
1149 	int_error_stop(drv_data, "transfer aborted", -EINTR);
1150 
1151 	return 0;
1152 }
1153 
1154 static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1155 				 struct spi_message *msg)
1156 {
1157 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1158 
1159 	/* Disable the SSP */
1160 	pxa2xx_spi_off(drv_data);
1161 	/* Clear and disable interrupts and service requests */
1162 	write_SSSR_CS(drv_data, drv_data->clear_sr);
1163 	clear_SSCR1_bits(drv_data, drv_data->int_cr1 | drv_data->dma_cr1);
1164 	if (!pxa25x_ssp_comp(drv_data))
1165 		pxa2xx_spi_write(drv_data, SSTO, 0);
1166 
1167 	/*
1168 	 * Stop the DMA if running. Note DMA callback handler may have unset
1169 	 * the dma_running already, which is fine as stopping is not needed
1170 	 * then but we shouldn't rely this flag for anything else than
1171 	 * stopping. For instance to differentiate between PIO and DMA
1172 	 * transfers.
1173 	 */
1174 	if (atomic_read(&drv_data->dma_running))
1175 		pxa2xx_spi_dma_stop(drv_data);
1176 }
1177 
1178 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1179 {
1180 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1181 
1182 	/* Disable the SSP now */
1183 	pxa2xx_spi_off(drv_data);
1184 
1185 	return 0;
1186 }
1187 
1188 static void cleanup_cs(struct spi_device *spi)
1189 {
1190 	if (!gpio_is_valid(spi->cs_gpio))
1191 		return;
1192 
1193 	gpio_free(spi->cs_gpio);
1194 	spi->cs_gpio = -ENOENT;
1195 }
1196 
1197 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1198 		    struct pxa2xx_spi_chip *chip_info)
1199 {
1200 	struct driver_data *drv_data = spi_controller_get_devdata(spi->controller);
1201 
1202 	if (chip == NULL)
1203 		return 0;
1204 
1205 	if (chip_info == NULL)
1206 		return 0;
1207 
1208 	if (drv_data->ssp_type == CE4100_SSP)
1209 		return 0;
1210 
1211 	/*
1212 	 * NOTE: setup() can be called multiple times, possibly with
1213 	 * different chip_info, release previously requested GPIO.
1214 	 */
1215 	cleanup_cs(spi);
1216 
1217 	/* If ->cs_control() is provided, ignore GPIO chip select */
1218 	if (chip_info->cs_control) {
1219 		chip->cs_control = chip_info->cs_control;
1220 		return 0;
1221 	}
1222 
1223 	if (gpio_is_valid(chip_info->gpio_cs)) {
1224 		int gpio = chip_info->gpio_cs;
1225 		int err;
1226 
1227 		err = gpio_request(gpio, "SPI_CS");
1228 		if (err) {
1229 			dev_err(&spi->dev, "failed to request chip select GPIO%d\n", gpio);
1230 			return err;
1231 		}
1232 
1233 		err = gpio_direction_output(gpio, !(spi->mode & SPI_CS_HIGH));
1234 		if (err) {
1235 			gpio_free(gpio);
1236 			return err;
1237 		}
1238 
1239 		spi->cs_gpio = gpio;
1240 	}
1241 
1242 	return 0;
1243 }
1244 
1245 static int setup(struct spi_device *spi)
1246 {
1247 	struct pxa2xx_spi_chip *chip_info;
1248 	struct chip_data *chip;
1249 	const struct lpss_config *config;
1250 	struct driver_data *drv_data =
1251 		spi_controller_get_devdata(spi->controller);
1252 	uint tx_thres, tx_hi_thres, rx_thres;
1253 	int err;
1254 
1255 	switch (drv_data->ssp_type) {
1256 	case QUARK_X1000_SSP:
1257 		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1258 		tx_hi_thres = 0;
1259 		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1260 		break;
1261 	case MRFLD_SSP:
1262 		tx_thres = TX_THRESH_MRFLD_DFLT;
1263 		tx_hi_thres = 0;
1264 		rx_thres = RX_THRESH_MRFLD_DFLT;
1265 		break;
1266 	case CE4100_SSP:
1267 		tx_thres = TX_THRESH_CE4100_DFLT;
1268 		tx_hi_thres = 0;
1269 		rx_thres = RX_THRESH_CE4100_DFLT;
1270 		break;
1271 	case LPSS_LPT_SSP:
1272 	case LPSS_BYT_SSP:
1273 	case LPSS_BSW_SSP:
1274 	case LPSS_SPT_SSP:
1275 	case LPSS_BXT_SSP:
1276 	case LPSS_CNL_SSP:
1277 		config = lpss_get_config(drv_data);
1278 		tx_thres = config->tx_threshold_lo;
1279 		tx_hi_thres = config->tx_threshold_hi;
1280 		rx_thres = config->rx_threshold;
1281 		break;
1282 	default:
1283 		tx_hi_thres = 0;
1284 		if (spi_controller_is_slave(drv_data->controller)) {
1285 			tx_thres = 1;
1286 			rx_thres = 2;
1287 		} else {
1288 			tx_thres = TX_THRESH_DFLT;
1289 			rx_thres = RX_THRESH_DFLT;
1290 		}
1291 		break;
1292 	}
1293 
1294 	/* Only allocate on the first setup */
1295 	chip = spi_get_ctldata(spi);
1296 	if (!chip) {
1297 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1298 		if (!chip)
1299 			return -ENOMEM;
1300 
1301 		if (drv_data->ssp_type == CE4100_SSP) {
1302 			if (spi->chip_select > 4) {
1303 				dev_err(&spi->dev,
1304 					"failed setup: cs number must not be > 4.\n");
1305 				kfree(chip);
1306 				return -EINVAL;
1307 			}
1308 		}
1309 		chip->enable_dma = drv_data->controller_info->enable_dma;
1310 		chip->timeout = TIMOUT_DFLT;
1311 	}
1312 
1313 	/*
1314 	 * Protocol drivers may change the chip settings, so...
1315 	 * if chip_info exists, use it.
1316 	 */
1317 	chip_info = spi->controller_data;
1318 
1319 	/* chip_info isn't always needed */
1320 	chip->cr1 = 0;
1321 	if (chip_info) {
1322 		if (chip_info->timeout)
1323 			chip->timeout = chip_info->timeout;
1324 		if (chip_info->tx_threshold)
1325 			tx_thres = chip_info->tx_threshold;
1326 		if (chip_info->tx_hi_threshold)
1327 			tx_hi_thres = chip_info->tx_hi_threshold;
1328 		if (chip_info->rx_threshold)
1329 			rx_thres = chip_info->rx_threshold;
1330 		chip->dma_threshold = 0;
1331 		if (chip_info->enable_loopback)
1332 			chip->cr1 = SSCR1_LBM;
1333 	}
1334 	if (spi_controller_is_slave(drv_data->controller)) {
1335 		chip->cr1 |= SSCR1_SCFR;
1336 		chip->cr1 |= SSCR1_SCLKDIR;
1337 		chip->cr1 |= SSCR1_SFRMDIR;
1338 		chip->cr1 |= SSCR1_SPH;
1339 	}
1340 
1341 	if (is_lpss_ssp(drv_data)) {
1342 		chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1343 		chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) |
1344 					  SSITF_TxHiThresh(tx_hi_thres);
1345 	}
1346 
1347 	if (is_mrfld_ssp(drv_data)) {
1348 		chip->lpss_rx_threshold = rx_thres;
1349 		chip->lpss_tx_threshold = tx_thres;
1350 	}
1351 
1352 	/*
1353 	 * Set DMA burst and threshold outside of chip_info path so that if
1354 	 * chip_info goes away after setting chip->enable_dma, the burst and
1355 	 * threshold can still respond to changes in bits_per_word.
1356 	 */
1357 	if (chip->enable_dma) {
1358 		/* Set up legal burst and threshold for DMA */
1359 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1360 						spi->bits_per_word,
1361 						&chip->dma_burst_size,
1362 						&chip->dma_threshold)) {
1363 			dev_warn(&spi->dev,
1364 				 "in setup: DMA burst size reduced to match bits_per_word\n");
1365 		}
1366 		dev_dbg(&spi->dev,
1367 			"in setup: DMA burst size set to %u\n",
1368 			chip->dma_burst_size);
1369 	}
1370 
1371 	switch (drv_data->ssp_type) {
1372 	case QUARK_X1000_SSP:
1373 		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1374 				   & QUARK_X1000_SSCR1_RFT)
1375 				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1376 				   & QUARK_X1000_SSCR1_TFT);
1377 		break;
1378 	case CE4100_SSP:
1379 		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1380 			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1381 		break;
1382 	default:
1383 		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1384 			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1385 		break;
1386 	}
1387 
1388 	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1389 	chip->cr1 |= ((spi->mode & SPI_CPHA) ? SSCR1_SPH : 0) |
1390 		     ((spi->mode & SPI_CPOL) ? SSCR1_SPO : 0);
1391 
1392 	if (spi->mode & SPI_LOOP)
1393 		chip->cr1 |= SSCR1_LBM;
1394 
1395 	if (spi->bits_per_word <= 8) {
1396 		chip->n_bytes = 1;
1397 		chip->read = u8_reader;
1398 		chip->write = u8_writer;
1399 	} else if (spi->bits_per_word <= 16) {
1400 		chip->n_bytes = 2;
1401 		chip->read = u16_reader;
1402 		chip->write = u16_writer;
1403 	} else if (spi->bits_per_word <= 32) {
1404 		chip->n_bytes = 4;
1405 		chip->read = u32_reader;
1406 		chip->write = u32_writer;
1407 	}
1408 
1409 	spi_set_ctldata(spi, chip);
1410 
1411 	if (drv_data->ssp_type == CE4100_SSP)
1412 		return 0;
1413 
1414 	err = setup_cs(spi, chip, chip_info);
1415 	if (err)
1416 		kfree(chip);
1417 
1418 	return err;
1419 }
1420 
1421 static void cleanup(struct spi_device *spi)
1422 {
1423 	struct chip_data *chip = spi_get_ctldata(spi);
1424 
1425 	cleanup_cs(spi);
1426 	kfree(chip);
1427 }
1428 
1429 #ifdef CONFIG_ACPI
1430 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1431 	{ "INT33C0", LPSS_LPT_SSP },
1432 	{ "INT33C1", LPSS_LPT_SSP },
1433 	{ "INT3430", LPSS_LPT_SSP },
1434 	{ "INT3431", LPSS_LPT_SSP },
1435 	{ "80860F0E", LPSS_BYT_SSP },
1436 	{ "8086228E", LPSS_BSW_SSP },
1437 	{ },
1438 };
1439 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1440 #endif
1441 
1442 /*
1443  * PCI IDs of compound devices that integrate both host controller and private
1444  * integrated DMA engine. Please note these are not used in module
1445  * autoloading and probing in this module but matching the LPSS SSP type.
1446  */
1447 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1448 	/* SPT-LP */
1449 	{ PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1450 	{ PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1451 	/* SPT-H */
1452 	{ PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1453 	{ PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1454 	/* KBL-H */
1455 	{ PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1456 	{ PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1457 	/* CML-V */
1458 	{ PCI_VDEVICE(INTEL, 0xa3a9), LPSS_SPT_SSP },
1459 	{ PCI_VDEVICE(INTEL, 0xa3aa), LPSS_SPT_SSP },
1460 	/* BXT A-Step */
1461 	{ PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1462 	{ PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1463 	{ PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1464 	/* BXT B-Step */
1465 	{ PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1466 	{ PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1467 	{ PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1468 	/* GLK */
1469 	{ PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1470 	{ PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1471 	{ PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1472 	/* ICL-LP */
1473 	{ PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP },
1474 	{ PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP },
1475 	{ PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP },
1476 	/* EHL */
1477 	{ PCI_VDEVICE(INTEL, 0x4b2a), LPSS_BXT_SSP },
1478 	{ PCI_VDEVICE(INTEL, 0x4b2b), LPSS_BXT_SSP },
1479 	{ PCI_VDEVICE(INTEL, 0x4b37), LPSS_BXT_SSP },
1480 	/* JSL */
1481 	{ PCI_VDEVICE(INTEL, 0x4daa), LPSS_CNL_SSP },
1482 	{ PCI_VDEVICE(INTEL, 0x4dab), LPSS_CNL_SSP },
1483 	{ PCI_VDEVICE(INTEL, 0x4dfb), LPSS_CNL_SSP },
1484 	/* TGL-H */
1485 	{ PCI_VDEVICE(INTEL, 0x43aa), LPSS_CNL_SSP },
1486 	{ PCI_VDEVICE(INTEL, 0x43ab), LPSS_CNL_SSP },
1487 	{ PCI_VDEVICE(INTEL, 0x43fb), LPSS_CNL_SSP },
1488 	{ PCI_VDEVICE(INTEL, 0x43fd), LPSS_CNL_SSP },
1489 	/* ADL-P */
1490 	{ PCI_VDEVICE(INTEL, 0x51aa), LPSS_CNL_SSP },
1491 	{ PCI_VDEVICE(INTEL, 0x51ab), LPSS_CNL_SSP },
1492 	{ PCI_VDEVICE(INTEL, 0x51fb), LPSS_CNL_SSP },
1493 	/* ADL-M */
1494 	{ PCI_VDEVICE(INTEL, 0x54aa), LPSS_CNL_SSP },
1495 	{ PCI_VDEVICE(INTEL, 0x54ab), LPSS_CNL_SSP },
1496 	{ PCI_VDEVICE(INTEL, 0x54fb), LPSS_CNL_SSP },
1497 	/* APL */
1498 	{ PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1499 	{ PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1500 	{ PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1501 	/* ADL-S */
1502 	{ PCI_VDEVICE(INTEL, 0x7aaa), LPSS_CNL_SSP },
1503 	{ PCI_VDEVICE(INTEL, 0x7aab), LPSS_CNL_SSP },
1504 	{ PCI_VDEVICE(INTEL, 0x7af9), LPSS_CNL_SSP },
1505 	{ PCI_VDEVICE(INTEL, 0x7afb), LPSS_CNL_SSP },
1506 	/* CNL-LP */
1507 	{ PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1508 	{ PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1509 	{ PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1510 	/* CNL-H */
1511 	{ PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1512 	{ PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1513 	{ PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1514 	/* CML-LP */
1515 	{ PCI_VDEVICE(INTEL, 0x02aa), LPSS_CNL_SSP },
1516 	{ PCI_VDEVICE(INTEL, 0x02ab), LPSS_CNL_SSP },
1517 	{ PCI_VDEVICE(INTEL, 0x02fb), LPSS_CNL_SSP },
1518 	/* CML-H */
1519 	{ PCI_VDEVICE(INTEL, 0x06aa), LPSS_CNL_SSP },
1520 	{ PCI_VDEVICE(INTEL, 0x06ab), LPSS_CNL_SSP },
1521 	{ PCI_VDEVICE(INTEL, 0x06fb), LPSS_CNL_SSP },
1522 	/* TGL-LP */
1523 	{ PCI_VDEVICE(INTEL, 0xa0aa), LPSS_CNL_SSP },
1524 	{ PCI_VDEVICE(INTEL, 0xa0ab), LPSS_CNL_SSP },
1525 	{ PCI_VDEVICE(INTEL, 0xa0de), LPSS_CNL_SSP },
1526 	{ PCI_VDEVICE(INTEL, 0xa0df), LPSS_CNL_SSP },
1527 	{ PCI_VDEVICE(INTEL, 0xa0fb), LPSS_CNL_SSP },
1528 	{ PCI_VDEVICE(INTEL, 0xa0fd), LPSS_CNL_SSP },
1529 	{ PCI_VDEVICE(INTEL, 0xa0fe), LPSS_CNL_SSP },
1530 	{ },
1531 };
1532 
1533 static const struct of_device_id pxa2xx_spi_of_match[] = {
1534 	{ .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1535 	{},
1536 };
1537 MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1538 
1539 #ifdef CONFIG_ACPI
1540 
1541 static int pxa2xx_spi_get_port_id(struct device *dev)
1542 {
1543 	struct acpi_device *adev;
1544 	unsigned int devid;
1545 	int port_id = -1;
1546 
1547 	adev = ACPI_COMPANION(dev);
1548 	if (adev && adev->pnp.unique_id &&
1549 	    !kstrtouint(adev->pnp.unique_id, 0, &devid))
1550 		port_id = devid;
1551 	return port_id;
1552 }
1553 
1554 #else /* !CONFIG_ACPI */
1555 
1556 static int pxa2xx_spi_get_port_id(struct device *dev)
1557 {
1558 	return -1;
1559 }
1560 
1561 #endif /* CONFIG_ACPI */
1562 
1563 
1564 #ifdef CONFIG_PCI
1565 
1566 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1567 {
1568 	return param == chan->device->dev;
1569 }
1570 
1571 #endif /* CONFIG_PCI */
1572 
1573 static struct pxa2xx_spi_controller *
1574 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1575 {
1576 	struct pxa2xx_spi_controller *pdata;
1577 	struct ssp_device *ssp;
1578 	struct resource *res;
1579 	struct device *parent = pdev->dev.parent;
1580 	struct pci_dev *pcidev = dev_is_pci(parent) ? to_pci_dev(parent) : NULL;
1581 	const struct pci_device_id *pcidev_id = NULL;
1582 	enum pxa_ssp_type type;
1583 	const void *match;
1584 
1585 	if (pcidev)
1586 		pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match, pcidev);
1587 
1588 	match = device_get_match_data(&pdev->dev);
1589 	if (match)
1590 		type = (enum pxa_ssp_type)match;
1591 	else if (pcidev_id)
1592 		type = (enum pxa_ssp_type)pcidev_id->driver_data;
1593 	else
1594 		return ERR_PTR(-EINVAL);
1595 
1596 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1597 	if (!pdata)
1598 		return ERR_PTR(-ENOMEM);
1599 
1600 	ssp = &pdata->ssp;
1601 
1602 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1603 	ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1604 	if (IS_ERR(ssp->mmio_base))
1605 		return ERR_CAST(ssp->mmio_base);
1606 
1607 	ssp->phys_base = res->start;
1608 
1609 #ifdef CONFIG_PCI
1610 	if (pcidev_id) {
1611 		pdata->tx_param = parent;
1612 		pdata->rx_param = parent;
1613 		pdata->dma_filter = pxa2xx_spi_idma_filter;
1614 	}
1615 #endif
1616 
1617 	ssp->clk = devm_clk_get(&pdev->dev, NULL);
1618 	if (IS_ERR(ssp->clk))
1619 		return ERR_CAST(ssp->clk);
1620 
1621 	ssp->irq = platform_get_irq(pdev, 0);
1622 	if (ssp->irq < 0)
1623 		return ERR_PTR(ssp->irq);
1624 
1625 	ssp->type = type;
1626 	ssp->dev = &pdev->dev;
1627 	ssp->port_id = pxa2xx_spi_get_port_id(&pdev->dev);
1628 
1629 	pdata->is_slave = device_property_read_bool(&pdev->dev, "spi-slave");
1630 	pdata->num_chipselect = 1;
1631 	pdata->enable_dma = true;
1632 	pdata->dma_burst_size = 1;
1633 
1634 	return pdata;
1635 }
1636 
1637 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1638 				      unsigned int cs)
1639 {
1640 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1641 
1642 	if (has_acpi_companion(drv_data->ssp->dev)) {
1643 		switch (drv_data->ssp_type) {
1644 		/*
1645 		 * For Atoms the ACPI DeviceSelection used by the Windows
1646 		 * driver starts from 1 instead of 0 so translate it here
1647 		 * to match what Linux expects.
1648 		 */
1649 		case LPSS_BYT_SSP:
1650 		case LPSS_BSW_SSP:
1651 			return cs - 1;
1652 
1653 		default:
1654 			break;
1655 		}
1656 	}
1657 
1658 	return cs;
1659 }
1660 
1661 static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi)
1662 {
1663 	return MAX_DMA_LEN;
1664 }
1665 
1666 static int pxa2xx_spi_probe(struct platform_device *pdev)
1667 {
1668 	struct device *dev = &pdev->dev;
1669 	struct pxa2xx_spi_controller *platform_info;
1670 	struct spi_controller *controller;
1671 	struct driver_data *drv_data;
1672 	struct ssp_device *ssp;
1673 	const struct lpss_config *config;
1674 	int status;
1675 	u32 tmp;
1676 
1677 	platform_info = dev_get_platdata(dev);
1678 	if (!platform_info) {
1679 		platform_info = pxa2xx_spi_init_pdata(pdev);
1680 		if (IS_ERR(platform_info)) {
1681 			dev_err(&pdev->dev, "missing platform data\n");
1682 			return PTR_ERR(platform_info);
1683 		}
1684 	}
1685 
1686 	ssp = pxa_ssp_request(pdev->id, pdev->name);
1687 	if (!ssp)
1688 		ssp = &platform_info->ssp;
1689 
1690 	if (!ssp->mmio_base) {
1691 		dev_err(&pdev->dev, "failed to get SSP\n");
1692 		return -ENODEV;
1693 	}
1694 
1695 	if (platform_info->is_slave)
1696 		controller = devm_spi_alloc_slave(dev, sizeof(*drv_data));
1697 	else
1698 		controller = devm_spi_alloc_master(dev, sizeof(*drv_data));
1699 
1700 	if (!controller) {
1701 		dev_err(&pdev->dev, "cannot alloc spi_controller\n");
1702 		status = -ENOMEM;
1703 		goto out_error_controller_alloc;
1704 	}
1705 	drv_data = spi_controller_get_devdata(controller);
1706 	drv_data->controller = controller;
1707 	drv_data->controller_info = platform_info;
1708 	drv_data->ssp = ssp;
1709 
1710 	controller->dev.of_node = dev->of_node;
1711 	controller->dev.fwnode = dev->fwnode;
1712 
1713 	/* The spi->mode bits understood by this driver: */
1714 	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1715 
1716 	controller->bus_num = ssp->port_id;
1717 	controller->dma_alignment = DMA_ALIGNMENT;
1718 	controller->cleanup = cleanup;
1719 	controller->setup = setup;
1720 	controller->set_cs = pxa2xx_spi_set_cs;
1721 	controller->transfer_one = pxa2xx_spi_transfer_one;
1722 	controller->slave_abort = pxa2xx_spi_slave_abort;
1723 	controller->handle_err = pxa2xx_spi_handle_err;
1724 	controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1725 	controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1726 	controller->auto_runtime_pm = true;
1727 	controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1728 
1729 	drv_data->ssp_type = ssp->type;
1730 
1731 	if (pxa25x_ssp_comp(drv_data)) {
1732 		switch (drv_data->ssp_type) {
1733 		case QUARK_X1000_SSP:
1734 			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1735 			break;
1736 		default:
1737 			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1738 			break;
1739 		}
1740 
1741 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1742 		drv_data->dma_cr1 = 0;
1743 		drv_data->clear_sr = SSSR_ROR;
1744 		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1745 	} else {
1746 		controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1747 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1748 		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1749 		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1750 		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1751 						| SSSR_ROR | SSSR_TUR;
1752 	}
1753 
1754 	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1755 			drv_data);
1756 	if (status < 0) {
1757 		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1758 		goto out_error_controller_alloc;
1759 	}
1760 
1761 	/* Setup DMA if requested */
1762 	if (platform_info->enable_dma) {
1763 		status = pxa2xx_spi_dma_setup(drv_data);
1764 		if (status) {
1765 			dev_warn(dev, "no DMA channels available, using PIO\n");
1766 			platform_info->enable_dma = false;
1767 		} else {
1768 			controller->can_dma = pxa2xx_spi_can_dma;
1769 			controller->max_dma_len = MAX_DMA_LEN;
1770 			controller->max_transfer_size =
1771 				pxa2xx_spi_max_dma_transfer_size;
1772 		}
1773 	}
1774 
1775 	/* Enable SOC clock */
1776 	status = clk_prepare_enable(ssp->clk);
1777 	if (status)
1778 		goto out_error_dma_irq_alloc;
1779 
1780 	controller->max_speed_hz = clk_get_rate(ssp->clk);
1781 	/*
1782 	 * Set minimum speed for all other platforms than Intel Quark which is
1783 	 * able do under 1 Hz transfers.
1784 	 */
1785 	if (!pxa25x_ssp_comp(drv_data))
1786 		controller->min_speed_hz =
1787 			DIV_ROUND_UP(controller->max_speed_hz, 4096);
1788 	else if (!is_quark_x1000_ssp(drv_data))
1789 		controller->min_speed_hz =
1790 			DIV_ROUND_UP(controller->max_speed_hz, 512);
1791 
1792 	pxa_ssp_disable(ssp);
1793 
1794 	/* Load default SSP configuration */
1795 	switch (drv_data->ssp_type) {
1796 	case QUARK_X1000_SSP:
1797 		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1798 		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1799 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1800 
1801 		/* Using the Motorola SPI protocol and use 8 bit frame */
1802 		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1803 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1804 		break;
1805 	case CE4100_SSP:
1806 		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1807 		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1808 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1809 		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1810 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1811 		break;
1812 	default:
1813 
1814 		if (spi_controller_is_slave(controller)) {
1815 			tmp = SSCR1_SCFR |
1816 			      SSCR1_SCLKDIR |
1817 			      SSCR1_SFRMDIR |
1818 			      SSCR1_RxTresh(2) |
1819 			      SSCR1_TxTresh(1) |
1820 			      SSCR1_SPH;
1821 		} else {
1822 			tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1823 			      SSCR1_TxTresh(TX_THRESH_DFLT);
1824 		}
1825 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1826 		tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1827 		if (!spi_controller_is_slave(controller))
1828 			tmp |= SSCR0_SCR(2);
1829 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1830 		break;
1831 	}
1832 
1833 	if (!pxa25x_ssp_comp(drv_data))
1834 		pxa2xx_spi_write(drv_data, SSTO, 0);
1835 
1836 	if (!is_quark_x1000_ssp(drv_data))
1837 		pxa2xx_spi_write(drv_data, SSPSP, 0);
1838 
1839 	if (is_lpss_ssp(drv_data)) {
1840 		lpss_ssp_setup(drv_data);
1841 		config = lpss_get_config(drv_data);
1842 		if (config->reg_capabilities >= 0) {
1843 			tmp = __lpss_ssp_read_priv(drv_data,
1844 						   config->reg_capabilities);
1845 			tmp &= LPSS_CAPS_CS_EN_MASK;
1846 			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1847 			platform_info->num_chipselect = ffz(tmp);
1848 		} else if (config->cs_num) {
1849 			platform_info->num_chipselect = config->cs_num;
1850 		}
1851 	}
1852 	controller->num_chipselect = platform_info->num_chipselect;
1853 	controller->use_gpio_descriptors = true;
1854 
1855 	if (platform_info->is_slave) {
1856 		drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1857 						"ready", GPIOD_OUT_LOW);
1858 		if (IS_ERR(drv_data->gpiod_ready)) {
1859 			status = PTR_ERR(drv_data->gpiod_ready);
1860 			goto out_error_clock_enabled;
1861 		}
1862 	}
1863 
1864 	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1865 	pm_runtime_use_autosuspend(&pdev->dev);
1866 	pm_runtime_set_active(&pdev->dev);
1867 	pm_runtime_enable(&pdev->dev);
1868 
1869 	/* Register with the SPI framework */
1870 	platform_set_drvdata(pdev, drv_data);
1871 	status = spi_register_controller(controller);
1872 	if (status) {
1873 		dev_err(&pdev->dev, "problem registering SPI controller\n");
1874 		goto out_error_pm_runtime_enabled;
1875 	}
1876 
1877 	return status;
1878 
1879 out_error_pm_runtime_enabled:
1880 	pm_runtime_disable(&pdev->dev);
1881 
1882 out_error_clock_enabled:
1883 	clk_disable_unprepare(ssp->clk);
1884 
1885 out_error_dma_irq_alloc:
1886 	pxa2xx_spi_dma_release(drv_data);
1887 	free_irq(ssp->irq, drv_data);
1888 
1889 out_error_controller_alloc:
1890 	pxa_ssp_free(ssp);
1891 	return status;
1892 }
1893 
1894 static int pxa2xx_spi_remove(struct platform_device *pdev)
1895 {
1896 	struct driver_data *drv_data = platform_get_drvdata(pdev);
1897 	struct ssp_device *ssp = drv_data->ssp;
1898 
1899 	pm_runtime_get_sync(&pdev->dev);
1900 
1901 	spi_unregister_controller(drv_data->controller);
1902 
1903 	/* Disable the SSP at the peripheral and SOC level */
1904 	pxa_ssp_disable(ssp);
1905 	clk_disable_unprepare(ssp->clk);
1906 
1907 	/* Release DMA */
1908 	if (drv_data->controller_info->enable_dma)
1909 		pxa2xx_spi_dma_release(drv_data);
1910 
1911 	pm_runtime_put_noidle(&pdev->dev);
1912 	pm_runtime_disable(&pdev->dev);
1913 
1914 	/* Release IRQ */
1915 	free_irq(ssp->irq, drv_data);
1916 
1917 	/* Release SSP */
1918 	pxa_ssp_free(ssp);
1919 
1920 	return 0;
1921 }
1922 
1923 #ifdef CONFIG_PM_SLEEP
1924 static int pxa2xx_spi_suspend(struct device *dev)
1925 {
1926 	struct driver_data *drv_data = dev_get_drvdata(dev);
1927 	struct ssp_device *ssp = drv_data->ssp;
1928 	int status;
1929 
1930 	status = spi_controller_suspend(drv_data->controller);
1931 	if (status)
1932 		return status;
1933 
1934 	pxa_ssp_disable(ssp);
1935 
1936 	if (!pm_runtime_suspended(dev))
1937 		clk_disable_unprepare(ssp->clk);
1938 
1939 	return 0;
1940 }
1941 
1942 static int pxa2xx_spi_resume(struct device *dev)
1943 {
1944 	struct driver_data *drv_data = dev_get_drvdata(dev);
1945 	struct ssp_device *ssp = drv_data->ssp;
1946 	int status;
1947 
1948 	/* Enable the SSP clock */
1949 	if (!pm_runtime_suspended(dev)) {
1950 		status = clk_prepare_enable(ssp->clk);
1951 		if (status)
1952 			return status;
1953 	}
1954 
1955 	/* Start the queue running */
1956 	return spi_controller_resume(drv_data->controller);
1957 }
1958 #endif
1959 
1960 #ifdef CONFIG_PM
1961 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1962 {
1963 	struct driver_data *drv_data = dev_get_drvdata(dev);
1964 
1965 	clk_disable_unprepare(drv_data->ssp->clk);
1966 	return 0;
1967 }
1968 
1969 static int pxa2xx_spi_runtime_resume(struct device *dev)
1970 {
1971 	struct driver_data *drv_data = dev_get_drvdata(dev);
1972 	int status;
1973 
1974 	status = clk_prepare_enable(drv_data->ssp->clk);
1975 	return status;
1976 }
1977 #endif
1978 
1979 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1980 	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1981 	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1982 			   pxa2xx_spi_runtime_resume, NULL)
1983 };
1984 
1985 static struct platform_driver driver = {
1986 	.driver = {
1987 		.name	= "pxa2xx-spi",
1988 		.pm	= &pxa2xx_spi_pm_ops,
1989 		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1990 		.of_match_table = of_match_ptr(pxa2xx_spi_of_match),
1991 	},
1992 	.probe = pxa2xx_spi_probe,
1993 	.remove = pxa2xx_spi_remove,
1994 };
1995 
1996 static int __init pxa2xx_spi_init(void)
1997 {
1998 	return platform_driver_register(&driver);
1999 }
2000 subsys_initcall(pxa2xx_spi_init);
2001 
2002 static void __exit pxa2xx_spi_exit(void)
2003 {
2004 	platform_driver_unregister(&driver);
2005 }
2006 module_exit(pxa2xx_spi_exit);
2007 
2008 MODULE_SOFTDEP("pre: dw_dmac");
2009