xref: /openbmc/linux/drivers/spi/spi-pxa2xx.c (revision e23feb16)
1 /*
2  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
3  * Copyright (C) 2013, Intel Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  */
19 
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/ioport.h>
24 #include <linux/errno.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
27 #include <linux/platform_device.h>
28 #include <linux/spi/pxa2xx_spi.h>
29 #include <linux/spi/spi.h>
30 #include <linux/workqueue.h>
31 #include <linux/delay.h>
32 #include <linux/gpio.h>
33 #include <linux/slab.h>
34 #include <linux/clk.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/acpi.h>
37 
38 #include <asm/io.h>
39 #include <asm/irq.h>
40 #include <asm/delay.h>
41 
42 #include "spi-pxa2xx.h"
43 
44 MODULE_AUTHOR("Stephen Street");
45 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
46 MODULE_LICENSE("GPL");
47 MODULE_ALIAS("platform:pxa2xx-spi");
48 
49 #define MAX_BUSES 3
50 
51 #define TIMOUT_DFLT		1000
52 
53 /*
54  * for testing SSCR1 changes that require SSP restart, basically
55  * everything except the service and interrupt enables, the pxa270 developer
56  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
57  * list, but the PXA255 dev man says all bits without really meaning the
58  * service and interrupt enables
59  */
60 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
61 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
62 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
63 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
64 				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
65 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
66 
67 #define LPSS_RX_THRESH_DFLT	64
68 #define LPSS_TX_LOTHRESH_DFLT	160
69 #define LPSS_TX_HITHRESH_DFLT	224
70 
71 /* Offset from drv_data->lpss_base */
72 #define GENERAL_REG		0x08
73 #define GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
74 #define SSP_REG			0x0c
75 #define SPI_CS_CONTROL		0x18
76 #define SPI_CS_CONTROL_SW_MODE	BIT(0)
77 #define SPI_CS_CONTROL_CS_HIGH	BIT(1)
78 
79 static bool is_lpss_ssp(const struct driver_data *drv_data)
80 {
81 	return drv_data->ssp_type == LPSS_SSP;
82 }
83 
84 /*
85  * Read and write LPSS SSP private registers. Caller must first check that
86  * is_lpss_ssp() returns true before these can be called.
87  */
88 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
89 {
90 	WARN_ON(!drv_data->lpss_base);
91 	return readl(drv_data->lpss_base + offset);
92 }
93 
94 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
95 				  unsigned offset, u32 value)
96 {
97 	WARN_ON(!drv_data->lpss_base);
98 	writel(value, drv_data->lpss_base + offset);
99 }
100 
101 /*
102  * lpss_ssp_setup - perform LPSS SSP specific setup
103  * @drv_data: pointer to the driver private data
104  *
105  * Perform LPSS SSP specific setup. This function must be called first if
106  * one is going to use LPSS SSP private registers.
107  */
108 static void lpss_ssp_setup(struct driver_data *drv_data)
109 {
110 	unsigned offset = 0x400;
111 	u32 value, orig;
112 
113 	if (!is_lpss_ssp(drv_data))
114 		return;
115 
116 	/*
117 	 * Perform auto-detection of the LPSS SSP private registers. They
118 	 * can be either at 1k or 2k offset from the base address.
119 	 */
120 	orig = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
121 
122 	value = orig | SPI_CS_CONTROL_SW_MODE;
123 	writel(value, drv_data->ioaddr + offset + SPI_CS_CONTROL);
124 	value = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
125 	if (value != (orig | SPI_CS_CONTROL_SW_MODE)) {
126 		offset = 0x800;
127 		goto detection_done;
128 	}
129 
130 	value &= ~SPI_CS_CONTROL_SW_MODE;
131 	writel(value, drv_data->ioaddr + offset + SPI_CS_CONTROL);
132 	value = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
133 	if (value != orig) {
134 		offset = 0x800;
135 		goto detection_done;
136 	}
137 
138 detection_done:
139 	/* Now set the LPSS base */
140 	drv_data->lpss_base = drv_data->ioaddr + offset;
141 
142 	/* Enable software chip select control */
143 	value = SPI_CS_CONTROL_SW_MODE | SPI_CS_CONTROL_CS_HIGH;
144 	__lpss_ssp_write_priv(drv_data, SPI_CS_CONTROL, value);
145 
146 	/* Enable multiblock DMA transfers */
147 	if (drv_data->master_info->enable_dma) {
148 		__lpss_ssp_write_priv(drv_data, SSP_REG, 1);
149 
150 		value = __lpss_ssp_read_priv(drv_data, GENERAL_REG);
151 		value |= GENERAL_REG_RXTO_HOLDOFF_DISABLE;
152 		__lpss_ssp_write_priv(drv_data, GENERAL_REG, value);
153 	}
154 }
155 
156 static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable)
157 {
158 	u32 value;
159 
160 	if (!is_lpss_ssp(drv_data))
161 		return;
162 
163 	value = __lpss_ssp_read_priv(drv_data, SPI_CS_CONTROL);
164 	if (enable)
165 		value &= ~SPI_CS_CONTROL_CS_HIGH;
166 	else
167 		value |= SPI_CS_CONTROL_CS_HIGH;
168 	__lpss_ssp_write_priv(drv_data, SPI_CS_CONTROL, value);
169 }
170 
171 static void cs_assert(struct driver_data *drv_data)
172 {
173 	struct chip_data *chip = drv_data->cur_chip;
174 
175 	if (drv_data->ssp_type == CE4100_SSP) {
176 		write_SSSR(drv_data->cur_chip->frm, drv_data->ioaddr);
177 		return;
178 	}
179 
180 	if (chip->cs_control) {
181 		chip->cs_control(PXA2XX_CS_ASSERT);
182 		return;
183 	}
184 
185 	if (gpio_is_valid(chip->gpio_cs)) {
186 		gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
187 		return;
188 	}
189 
190 	lpss_ssp_cs_control(drv_data, true);
191 }
192 
193 static void cs_deassert(struct driver_data *drv_data)
194 {
195 	struct chip_data *chip = drv_data->cur_chip;
196 
197 	if (drv_data->ssp_type == CE4100_SSP)
198 		return;
199 
200 	if (chip->cs_control) {
201 		chip->cs_control(PXA2XX_CS_DEASSERT);
202 		return;
203 	}
204 
205 	if (gpio_is_valid(chip->gpio_cs)) {
206 		gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
207 		return;
208 	}
209 
210 	lpss_ssp_cs_control(drv_data, false);
211 }
212 
213 int pxa2xx_spi_flush(struct driver_data *drv_data)
214 {
215 	unsigned long limit = loops_per_jiffy << 1;
216 
217 	void __iomem *reg = drv_data->ioaddr;
218 
219 	do {
220 		while (read_SSSR(reg) & SSSR_RNE) {
221 			read_SSDR(reg);
222 		}
223 	} while ((read_SSSR(reg) & SSSR_BSY) && --limit);
224 	write_SSSR_CS(drv_data, SSSR_ROR);
225 
226 	return limit;
227 }
228 
229 static int null_writer(struct driver_data *drv_data)
230 {
231 	void __iomem *reg = drv_data->ioaddr;
232 	u8 n_bytes = drv_data->n_bytes;
233 
234 	if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
235 		|| (drv_data->tx == drv_data->tx_end))
236 		return 0;
237 
238 	write_SSDR(0, reg);
239 	drv_data->tx += n_bytes;
240 
241 	return 1;
242 }
243 
244 static int null_reader(struct driver_data *drv_data)
245 {
246 	void __iomem *reg = drv_data->ioaddr;
247 	u8 n_bytes = drv_data->n_bytes;
248 
249 	while ((read_SSSR(reg) & SSSR_RNE)
250 		&& (drv_data->rx < drv_data->rx_end)) {
251 		read_SSDR(reg);
252 		drv_data->rx += n_bytes;
253 	}
254 
255 	return drv_data->rx == drv_data->rx_end;
256 }
257 
258 static int u8_writer(struct driver_data *drv_data)
259 {
260 	void __iomem *reg = drv_data->ioaddr;
261 
262 	if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
263 		|| (drv_data->tx == drv_data->tx_end))
264 		return 0;
265 
266 	write_SSDR(*(u8 *)(drv_data->tx), reg);
267 	++drv_data->tx;
268 
269 	return 1;
270 }
271 
272 static int u8_reader(struct driver_data *drv_data)
273 {
274 	void __iomem *reg = drv_data->ioaddr;
275 
276 	while ((read_SSSR(reg) & SSSR_RNE)
277 		&& (drv_data->rx < drv_data->rx_end)) {
278 		*(u8 *)(drv_data->rx) = read_SSDR(reg);
279 		++drv_data->rx;
280 	}
281 
282 	return drv_data->rx == drv_data->rx_end;
283 }
284 
285 static int u16_writer(struct driver_data *drv_data)
286 {
287 	void __iomem *reg = drv_data->ioaddr;
288 
289 	if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
290 		|| (drv_data->tx == drv_data->tx_end))
291 		return 0;
292 
293 	write_SSDR(*(u16 *)(drv_data->tx), reg);
294 	drv_data->tx += 2;
295 
296 	return 1;
297 }
298 
299 static int u16_reader(struct driver_data *drv_data)
300 {
301 	void __iomem *reg = drv_data->ioaddr;
302 
303 	while ((read_SSSR(reg) & SSSR_RNE)
304 		&& (drv_data->rx < drv_data->rx_end)) {
305 		*(u16 *)(drv_data->rx) = read_SSDR(reg);
306 		drv_data->rx += 2;
307 	}
308 
309 	return drv_data->rx == drv_data->rx_end;
310 }
311 
312 static int u32_writer(struct driver_data *drv_data)
313 {
314 	void __iomem *reg = drv_data->ioaddr;
315 
316 	if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
317 		|| (drv_data->tx == drv_data->tx_end))
318 		return 0;
319 
320 	write_SSDR(*(u32 *)(drv_data->tx), reg);
321 	drv_data->tx += 4;
322 
323 	return 1;
324 }
325 
326 static int u32_reader(struct driver_data *drv_data)
327 {
328 	void __iomem *reg = drv_data->ioaddr;
329 
330 	while ((read_SSSR(reg) & SSSR_RNE)
331 		&& (drv_data->rx < drv_data->rx_end)) {
332 		*(u32 *)(drv_data->rx) = read_SSDR(reg);
333 		drv_data->rx += 4;
334 	}
335 
336 	return drv_data->rx == drv_data->rx_end;
337 }
338 
339 void *pxa2xx_spi_next_transfer(struct driver_data *drv_data)
340 {
341 	struct spi_message *msg = drv_data->cur_msg;
342 	struct spi_transfer *trans = drv_data->cur_transfer;
343 
344 	/* Move to next transfer */
345 	if (trans->transfer_list.next != &msg->transfers) {
346 		drv_data->cur_transfer =
347 			list_entry(trans->transfer_list.next,
348 					struct spi_transfer,
349 					transfer_list);
350 		return RUNNING_STATE;
351 	} else
352 		return DONE_STATE;
353 }
354 
355 /* caller already set message->status; dma and pio irqs are blocked */
356 static void giveback(struct driver_data *drv_data)
357 {
358 	struct spi_transfer* last_transfer;
359 	struct spi_message *msg;
360 
361 	msg = drv_data->cur_msg;
362 	drv_data->cur_msg = NULL;
363 	drv_data->cur_transfer = NULL;
364 
365 	last_transfer = list_entry(msg->transfers.prev,
366 					struct spi_transfer,
367 					transfer_list);
368 
369 	/* Delay if requested before any change in chip select */
370 	if (last_transfer->delay_usecs)
371 		udelay(last_transfer->delay_usecs);
372 
373 	/* Drop chip select UNLESS cs_change is true or we are returning
374 	 * a message with an error, or next message is for another chip
375 	 */
376 	if (!last_transfer->cs_change)
377 		cs_deassert(drv_data);
378 	else {
379 		struct spi_message *next_msg;
380 
381 		/* Holding of cs was hinted, but we need to make sure
382 		 * the next message is for the same chip.  Don't waste
383 		 * time with the following tests unless this was hinted.
384 		 *
385 		 * We cannot postpone this until pump_messages, because
386 		 * after calling msg->complete (below) the driver that
387 		 * sent the current message could be unloaded, which
388 		 * could invalidate the cs_control() callback...
389 		 */
390 
391 		/* get a pointer to the next message, if any */
392 		next_msg = spi_get_next_queued_message(drv_data->master);
393 
394 		/* see if the next and current messages point
395 		 * to the same chip
396 		 */
397 		if (next_msg && next_msg->spi != msg->spi)
398 			next_msg = NULL;
399 		if (!next_msg || msg->state == ERROR_STATE)
400 			cs_deassert(drv_data);
401 	}
402 
403 	spi_finalize_current_message(drv_data->master);
404 	drv_data->cur_chip = NULL;
405 }
406 
407 static void reset_sccr1(struct driver_data *drv_data)
408 {
409 	void __iomem *reg = drv_data->ioaddr;
410 	struct chip_data *chip = drv_data->cur_chip;
411 	u32 sccr1_reg;
412 
413 	sccr1_reg = read_SSCR1(reg) & ~drv_data->int_cr1;
414 	sccr1_reg &= ~SSCR1_RFT;
415 	sccr1_reg |= chip->threshold;
416 	write_SSCR1(sccr1_reg, reg);
417 }
418 
419 static void int_error_stop(struct driver_data *drv_data, const char* msg)
420 {
421 	void __iomem *reg = drv_data->ioaddr;
422 
423 	/* Stop and reset SSP */
424 	write_SSSR_CS(drv_data, drv_data->clear_sr);
425 	reset_sccr1(drv_data);
426 	if (!pxa25x_ssp_comp(drv_data))
427 		write_SSTO(0, reg);
428 	pxa2xx_spi_flush(drv_data);
429 	write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
430 
431 	dev_err(&drv_data->pdev->dev, "%s\n", msg);
432 
433 	drv_data->cur_msg->state = ERROR_STATE;
434 	tasklet_schedule(&drv_data->pump_transfers);
435 }
436 
437 static void int_transfer_complete(struct driver_data *drv_data)
438 {
439 	void __iomem *reg = drv_data->ioaddr;
440 
441 	/* Stop SSP */
442 	write_SSSR_CS(drv_data, drv_data->clear_sr);
443 	reset_sccr1(drv_data);
444 	if (!pxa25x_ssp_comp(drv_data))
445 		write_SSTO(0, reg);
446 
447 	/* Update total byte transferred return count actual bytes read */
448 	drv_data->cur_msg->actual_length += drv_data->len -
449 				(drv_data->rx_end - drv_data->rx);
450 
451 	/* Transfer delays and chip select release are
452 	 * handled in pump_transfers or giveback
453 	 */
454 
455 	/* Move to next transfer */
456 	drv_data->cur_msg->state = pxa2xx_spi_next_transfer(drv_data);
457 
458 	/* Schedule transfer tasklet */
459 	tasklet_schedule(&drv_data->pump_transfers);
460 }
461 
462 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
463 {
464 	void __iomem *reg = drv_data->ioaddr;
465 
466 	u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
467 			drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
468 
469 	u32 irq_status = read_SSSR(reg) & irq_mask;
470 
471 	if (irq_status & SSSR_ROR) {
472 		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
473 		return IRQ_HANDLED;
474 	}
475 
476 	if (irq_status & SSSR_TINT) {
477 		write_SSSR(SSSR_TINT, reg);
478 		if (drv_data->read(drv_data)) {
479 			int_transfer_complete(drv_data);
480 			return IRQ_HANDLED;
481 		}
482 	}
483 
484 	/* Drain rx fifo, Fill tx fifo and prevent overruns */
485 	do {
486 		if (drv_data->read(drv_data)) {
487 			int_transfer_complete(drv_data);
488 			return IRQ_HANDLED;
489 		}
490 	} while (drv_data->write(drv_data));
491 
492 	if (drv_data->read(drv_data)) {
493 		int_transfer_complete(drv_data);
494 		return IRQ_HANDLED;
495 	}
496 
497 	if (drv_data->tx == drv_data->tx_end) {
498 		u32 bytes_left;
499 		u32 sccr1_reg;
500 
501 		sccr1_reg = read_SSCR1(reg);
502 		sccr1_reg &= ~SSCR1_TIE;
503 
504 		/*
505 		 * PXA25x_SSP has no timeout, set up rx threshould for the
506 		 * remaining RX bytes.
507 		 */
508 		if (pxa25x_ssp_comp(drv_data)) {
509 
510 			sccr1_reg &= ~SSCR1_RFT;
511 
512 			bytes_left = drv_data->rx_end - drv_data->rx;
513 			switch (drv_data->n_bytes) {
514 			case 4:
515 				bytes_left >>= 1;
516 			case 2:
517 				bytes_left >>= 1;
518 			}
519 
520 			if (bytes_left > RX_THRESH_DFLT)
521 				bytes_left = RX_THRESH_DFLT;
522 
523 			sccr1_reg |= SSCR1_RxTresh(bytes_left);
524 		}
525 		write_SSCR1(sccr1_reg, reg);
526 	}
527 
528 	/* We did something */
529 	return IRQ_HANDLED;
530 }
531 
532 static irqreturn_t ssp_int(int irq, void *dev_id)
533 {
534 	struct driver_data *drv_data = dev_id;
535 	void __iomem *reg = drv_data->ioaddr;
536 	u32 sccr1_reg;
537 	u32 mask = drv_data->mask_sr;
538 	u32 status;
539 
540 	/*
541 	 * The IRQ might be shared with other peripherals so we must first
542 	 * check that are we RPM suspended or not. If we are we assume that
543 	 * the IRQ was not for us (we shouldn't be RPM suspended when the
544 	 * interrupt is enabled).
545 	 */
546 	if (pm_runtime_suspended(&drv_data->pdev->dev))
547 		return IRQ_NONE;
548 
549 	/*
550 	 * If the device is not yet in RPM suspended state and we get an
551 	 * interrupt that is meant for another device, check if status bits
552 	 * are all set to one. That means that the device is already
553 	 * powered off.
554 	 */
555 	status = read_SSSR(reg);
556 	if (status == ~0)
557 		return IRQ_NONE;
558 
559 	sccr1_reg = read_SSCR1(reg);
560 
561 	/* Ignore possible writes if we don't need to write */
562 	if (!(sccr1_reg & SSCR1_TIE))
563 		mask &= ~SSSR_TFS;
564 
565 	if (!(status & mask))
566 		return IRQ_NONE;
567 
568 	if (!drv_data->cur_msg) {
569 
570 		write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
571 		write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
572 		if (!pxa25x_ssp_comp(drv_data))
573 			write_SSTO(0, reg);
574 		write_SSSR_CS(drv_data, drv_data->clear_sr);
575 
576 		dev_err(&drv_data->pdev->dev, "bad message state "
577 			"in interrupt handler\n");
578 
579 		/* Never fail */
580 		return IRQ_HANDLED;
581 	}
582 
583 	return drv_data->transfer_handler(drv_data);
584 }
585 
586 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
587 {
588 	unsigned long ssp_clk = drv_data->max_clk_rate;
589 	const struct ssp_device *ssp = drv_data->ssp;
590 
591 	rate = min_t(int, ssp_clk, rate);
592 
593 	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
594 		return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
595 	else
596 		return ((ssp_clk / rate - 1) & 0xfff) << 8;
597 }
598 
599 static void pump_transfers(unsigned long data)
600 {
601 	struct driver_data *drv_data = (struct driver_data *)data;
602 	struct spi_message *message = NULL;
603 	struct spi_transfer *transfer = NULL;
604 	struct spi_transfer *previous = NULL;
605 	struct chip_data *chip = NULL;
606 	void __iomem *reg = drv_data->ioaddr;
607 	u32 clk_div = 0;
608 	u8 bits = 0;
609 	u32 speed = 0;
610 	u32 cr0;
611 	u32 cr1;
612 	u32 dma_thresh = drv_data->cur_chip->dma_threshold;
613 	u32 dma_burst = drv_data->cur_chip->dma_burst_size;
614 
615 	/* Get current state information */
616 	message = drv_data->cur_msg;
617 	transfer = drv_data->cur_transfer;
618 	chip = drv_data->cur_chip;
619 
620 	/* Handle for abort */
621 	if (message->state == ERROR_STATE) {
622 		message->status = -EIO;
623 		giveback(drv_data);
624 		return;
625 	}
626 
627 	/* Handle end of message */
628 	if (message->state == DONE_STATE) {
629 		message->status = 0;
630 		giveback(drv_data);
631 		return;
632 	}
633 
634 	/* Delay if requested at end of transfer before CS change */
635 	if (message->state == RUNNING_STATE) {
636 		previous = list_entry(transfer->transfer_list.prev,
637 					struct spi_transfer,
638 					transfer_list);
639 		if (previous->delay_usecs)
640 			udelay(previous->delay_usecs);
641 
642 		/* Drop chip select only if cs_change is requested */
643 		if (previous->cs_change)
644 			cs_deassert(drv_data);
645 	}
646 
647 	/* Check if we can DMA this transfer */
648 	if (!pxa2xx_spi_dma_is_possible(transfer->len) && chip->enable_dma) {
649 
650 		/* reject already-mapped transfers; PIO won't always work */
651 		if (message->is_dma_mapped
652 				|| transfer->rx_dma || transfer->tx_dma) {
653 			dev_err(&drv_data->pdev->dev,
654 				"pump_transfers: mapped transfer length "
655 				"of %u is greater than %d\n",
656 				transfer->len, MAX_DMA_LEN);
657 			message->status = -EINVAL;
658 			giveback(drv_data);
659 			return;
660 		}
661 
662 		/* warn ... we force this to PIO mode */
663 		if (printk_ratelimit())
664 			dev_warn(&message->spi->dev, "pump_transfers: "
665 				"DMA disabled for transfer length %ld "
666 				"greater than %d\n",
667 				(long)drv_data->len, MAX_DMA_LEN);
668 	}
669 
670 	/* Setup the transfer state based on the type of transfer */
671 	if (pxa2xx_spi_flush(drv_data) == 0) {
672 		dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
673 		message->status = -EIO;
674 		giveback(drv_data);
675 		return;
676 	}
677 	drv_data->n_bytes = chip->n_bytes;
678 	drv_data->tx = (void *)transfer->tx_buf;
679 	drv_data->tx_end = drv_data->tx + transfer->len;
680 	drv_data->rx = transfer->rx_buf;
681 	drv_data->rx_end = drv_data->rx + transfer->len;
682 	drv_data->rx_dma = transfer->rx_dma;
683 	drv_data->tx_dma = transfer->tx_dma;
684 	drv_data->len = transfer->len;
685 	drv_data->write = drv_data->tx ? chip->write : null_writer;
686 	drv_data->read = drv_data->rx ? chip->read : null_reader;
687 
688 	/* Change speed and bit per word on a per transfer */
689 	cr0 = chip->cr0;
690 	if (transfer->speed_hz || transfer->bits_per_word) {
691 
692 		bits = chip->bits_per_word;
693 		speed = chip->speed_hz;
694 
695 		if (transfer->speed_hz)
696 			speed = transfer->speed_hz;
697 
698 		if (transfer->bits_per_word)
699 			bits = transfer->bits_per_word;
700 
701 		clk_div = ssp_get_clk_div(drv_data, speed);
702 
703 		if (bits <= 8) {
704 			drv_data->n_bytes = 1;
705 			drv_data->read = drv_data->read != null_reader ?
706 						u8_reader : null_reader;
707 			drv_data->write = drv_data->write != null_writer ?
708 						u8_writer : null_writer;
709 		} else if (bits <= 16) {
710 			drv_data->n_bytes = 2;
711 			drv_data->read = drv_data->read != null_reader ?
712 						u16_reader : null_reader;
713 			drv_data->write = drv_data->write != null_writer ?
714 						u16_writer : null_writer;
715 		} else if (bits <= 32) {
716 			drv_data->n_bytes = 4;
717 			drv_data->read = drv_data->read != null_reader ?
718 						u32_reader : null_reader;
719 			drv_data->write = drv_data->write != null_writer ?
720 						u32_writer : null_writer;
721 		}
722 		/* if bits/word is changed in dma mode, then must check the
723 		 * thresholds and burst also */
724 		if (chip->enable_dma) {
725 			if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
726 							message->spi,
727 							bits, &dma_burst,
728 							&dma_thresh))
729 				if (printk_ratelimit())
730 					dev_warn(&message->spi->dev,
731 						"pump_transfers: "
732 						"DMA burst size reduced to "
733 						"match bits_per_word\n");
734 		}
735 
736 		cr0 = clk_div
737 			| SSCR0_Motorola
738 			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
739 			| SSCR0_SSE
740 			| (bits > 16 ? SSCR0_EDSS : 0);
741 	}
742 
743 	message->state = RUNNING_STATE;
744 
745 	drv_data->dma_mapped = 0;
746 	if (pxa2xx_spi_dma_is_possible(drv_data->len))
747 		drv_data->dma_mapped = pxa2xx_spi_map_dma_buffers(drv_data);
748 	if (drv_data->dma_mapped) {
749 
750 		/* Ensure we have the correct interrupt handler */
751 		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
752 
753 		pxa2xx_spi_dma_prepare(drv_data, dma_burst);
754 
755 		/* Clear status and start DMA engine */
756 		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
757 		write_SSSR(drv_data->clear_sr, reg);
758 
759 		pxa2xx_spi_dma_start(drv_data);
760 	} else {
761 		/* Ensure we have the correct interrupt handler	*/
762 		drv_data->transfer_handler = interrupt_transfer;
763 
764 		/* Clear status  */
765 		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
766 		write_SSSR_CS(drv_data, drv_data->clear_sr);
767 	}
768 
769 	if (is_lpss_ssp(drv_data)) {
770 		if ((read_SSIRF(reg) & 0xff) != chip->lpss_rx_threshold)
771 			write_SSIRF(chip->lpss_rx_threshold, reg);
772 		if ((read_SSITF(reg) & 0xffff) != chip->lpss_tx_threshold)
773 			write_SSITF(chip->lpss_tx_threshold, reg);
774 	}
775 
776 	/* see if we need to reload the config registers */
777 	if ((read_SSCR0(reg) != cr0)
778 		|| (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
779 			(cr1 & SSCR1_CHANGE_MASK)) {
780 
781 		/* stop the SSP, and update the other bits */
782 		write_SSCR0(cr0 & ~SSCR0_SSE, reg);
783 		if (!pxa25x_ssp_comp(drv_data))
784 			write_SSTO(chip->timeout, reg);
785 		/* first set CR1 without interrupt and service enables */
786 		write_SSCR1(cr1 & SSCR1_CHANGE_MASK, reg);
787 		/* restart the SSP */
788 		write_SSCR0(cr0, reg);
789 
790 	} else {
791 		if (!pxa25x_ssp_comp(drv_data))
792 			write_SSTO(chip->timeout, reg);
793 	}
794 
795 	cs_assert(drv_data);
796 
797 	/* after chip select, release the data by enabling service
798 	 * requests and interrupts, without changing any mode bits */
799 	write_SSCR1(cr1, reg);
800 }
801 
802 static int pxa2xx_spi_transfer_one_message(struct spi_master *master,
803 					   struct spi_message *msg)
804 {
805 	struct driver_data *drv_data = spi_master_get_devdata(master);
806 
807 	drv_data->cur_msg = msg;
808 	/* Initial message state*/
809 	drv_data->cur_msg->state = START_STATE;
810 	drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
811 						struct spi_transfer,
812 						transfer_list);
813 
814 	/* prepare to setup the SSP, in pump_transfers, using the per
815 	 * chip configuration */
816 	drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
817 
818 	/* Mark as busy and launch transfers */
819 	tasklet_schedule(&drv_data->pump_transfers);
820 	return 0;
821 }
822 
823 static int pxa2xx_spi_unprepare_transfer(struct spi_master *master)
824 {
825 	struct driver_data *drv_data = spi_master_get_devdata(master);
826 
827 	/* Disable the SSP now */
828 	write_SSCR0(read_SSCR0(drv_data->ioaddr) & ~SSCR0_SSE,
829 		    drv_data->ioaddr);
830 
831 	return 0;
832 }
833 
834 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
835 		    struct pxa2xx_spi_chip *chip_info)
836 {
837 	int err = 0;
838 
839 	if (chip == NULL || chip_info == NULL)
840 		return 0;
841 
842 	/* NOTE: setup() can be called multiple times, possibly with
843 	 * different chip_info, release previously requested GPIO
844 	 */
845 	if (gpio_is_valid(chip->gpio_cs))
846 		gpio_free(chip->gpio_cs);
847 
848 	/* If (*cs_control) is provided, ignore GPIO chip select */
849 	if (chip_info->cs_control) {
850 		chip->cs_control = chip_info->cs_control;
851 		return 0;
852 	}
853 
854 	if (gpio_is_valid(chip_info->gpio_cs)) {
855 		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
856 		if (err) {
857 			dev_err(&spi->dev, "failed to request chip select "
858 					"GPIO%d\n", chip_info->gpio_cs);
859 			return err;
860 		}
861 
862 		chip->gpio_cs = chip_info->gpio_cs;
863 		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
864 
865 		err = gpio_direction_output(chip->gpio_cs,
866 					!chip->gpio_cs_inverted);
867 	}
868 
869 	return err;
870 }
871 
872 static int setup(struct spi_device *spi)
873 {
874 	struct pxa2xx_spi_chip *chip_info = NULL;
875 	struct chip_data *chip;
876 	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
877 	unsigned int clk_div;
878 	uint tx_thres, tx_hi_thres, rx_thres;
879 
880 	if (is_lpss_ssp(drv_data)) {
881 		tx_thres = LPSS_TX_LOTHRESH_DFLT;
882 		tx_hi_thres = LPSS_TX_HITHRESH_DFLT;
883 		rx_thres = LPSS_RX_THRESH_DFLT;
884 	} else {
885 		tx_thres = TX_THRESH_DFLT;
886 		tx_hi_thres = 0;
887 		rx_thres = RX_THRESH_DFLT;
888 	}
889 
890 	/* Only alloc on first setup */
891 	chip = spi_get_ctldata(spi);
892 	if (!chip) {
893 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
894 		if (!chip) {
895 			dev_err(&spi->dev,
896 				"failed setup: can't allocate chip data\n");
897 			return -ENOMEM;
898 		}
899 
900 		if (drv_data->ssp_type == CE4100_SSP) {
901 			if (spi->chip_select > 4) {
902 				dev_err(&spi->dev, "failed setup: "
903 				"cs number must not be > 4.\n");
904 				kfree(chip);
905 				return -EINVAL;
906 			}
907 
908 			chip->frm = spi->chip_select;
909 		} else
910 			chip->gpio_cs = -1;
911 		chip->enable_dma = 0;
912 		chip->timeout = TIMOUT_DFLT;
913 	}
914 
915 	/* protocol drivers may change the chip settings, so...
916 	 * if chip_info exists, use it */
917 	chip_info = spi->controller_data;
918 
919 	/* chip_info isn't always needed */
920 	chip->cr1 = 0;
921 	if (chip_info) {
922 		if (chip_info->timeout)
923 			chip->timeout = chip_info->timeout;
924 		if (chip_info->tx_threshold)
925 			tx_thres = chip_info->tx_threshold;
926 		if (chip_info->tx_hi_threshold)
927 			tx_hi_thres = chip_info->tx_hi_threshold;
928 		if (chip_info->rx_threshold)
929 			rx_thres = chip_info->rx_threshold;
930 		chip->enable_dma = drv_data->master_info->enable_dma;
931 		chip->dma_threshold = 0;
932 		if (chip_info->enable_loopback)
933 			chip->cr1 = SSCR1_LBM;
934 	} else if (ACPI_HANDLE(&spi->dev)) {
935 		/*
936 		 * Slave devices enumerated from ACPI namespace don't
937 		 * usually have chip_info but we still might want to use
938 		 * DMA with them.
939 		 */
940 		chip->enable_dma = drv_data->master_info->enable_dma;
941 	}
942 
943 	chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
944 			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
945 
946 	chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
947 	chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
948 				| SSITF_TxHiThresh(tx_hi_thres);
949 
950 	/* set dma burst and threshold outside of chip_info path so that if
951 	 * chip_info goes away after setting chip->enable_dma, the
952 	 * burst and threshold can still respond to changes in bits_per_word */
953 	if (chip->enable_dma) {
954 		/* set up legal burst and threshold for dma */
955 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
956 						spi->bits_per_word,
957 						&chip->dma_burst_size,
958 						&chip->dma_threshold)) {
959 			dev_warn(&spi->dev, "in setup: DMA burst size reduced "
960 					"to match bits_per_word\n");
961 		}
962 	}
963 
964 	clk_div = ssp_get_clk_div(drv_data, spi->max_speed_hz);
965 	chip->speed_hz = spi->max_speed_hz;
966 
967 	chip->cr0 = clk_div
968 			| SSCR0_Motorola
969 			| SSCR0_DataSize(spi->bits_per_word > 16 ?
970 				spi->bits_per_word - 16 : spi->bits_per_word)
971 			| SSCR0_SSE
972 			| (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
973 	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
974 	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
975 			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
976 
977 	if (spi->mode & SPI_LOOP)
978 		chip->cr1 |= SSCR1_LBM;
979 
980 	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
981 	if (!pxa25x_ssp_comp(drv_data))
982 		dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
983 			drv_data->max_clk_rate
984 				/ (1 + ((chip->cr0 & SSCR0_SCR(0xfff)) >> 8)),
985 			chip->enable_dma ? "DMA" : "PIO");
986 	else
987 		dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
988 			drv_data->max_clk_rate / 2
989 				/ (1 + ((chip->cr0 & SSCR0_SCR(0x0ff)) >> 8)),
990 			chip->enable_dma ? "DMA" : "PIO");
991 
992 	if (spi->bits_per_word <= 8) {
993 		chip->n_bytes = 1;
994 		chip->read = u8_reader;
995 		chip->write = u8_writer;
996 	} else if (spi->bits_per_word <= 16) {
997 		chip->n_bytes = 2;
998 		chip->read = u16_reader;
999 		chip->write = u16_writer;
1000 	} else if (spi->bits_per_word <= 32) {
1001 		chip->cr0 |= SSCR0_EDSS;
1002 		chip->n_bytes = 4;
1003 		chip->read = u32_reader;
1004 		chip->write = u32_writer;
1005 	}
1006 	chip->bits_per_word = spi->bits_per_word;
1007 
1008 	spi_set_ctldata(spi, chip);
1009 
1010 	if (drv_data->ssp_type == CE4100_SSP)
1011 		return 0;
1012 
1013 	return setup_cs(spi, chip, chip_info);
1014 }
1015 
1016 static void cleanup(struct spi_device *spi)
1017 {
1018 	struct chip_data *chip = spi_get_ctldata(spi);
1019 	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1020 
1021 	if (!chip)
1022 		return;
1023 
1024 	if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs))
1025 		gpio_free(chip->gpio_cs);
1026 
1027 	kfree(chip);
1028 }
1029 
1030 #ifdef CONFIG_ACPI
1031 static struct pxa2xx_spi_master *
1032 pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
1033 {
1034 	struct pxa2xx_spi_master *pdata;
1035 	struct acpi_device *adev;
1036 	struct ssp_device *ssp;
1037 	struct resource *res;
1038 	int devid;
1039 
1040 	if (!ACPI_HANDLE(&pdev->dev) ||
1041 	    acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
1042 		return NULL;
1043 
1044 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1045 	if (!pdata) {
1046 		dev_err(&pdev->dev,
1047 			"failed to allocate memory for platform data\n");
1048 		return NULL;
1049 	}
1050 
1051 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1052 	if (!res)
1053 		return NULL;
1054 
1055 	ssp = &pdata->ssp;
1056 
1057 	ssp->phys_base = res->start;
1058 	ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1059 	if (IS_ERR(ssp->mmio_base))
1060 		return NULL;
1061 
1062 	ssp->clk = devm_clk_get(&pdev->dev, NULL);
1063 	ssp->irq = platform_get_irq(pdev, 0);
1064 	ssp->type = LPSS_SSP;
1065 	ssp->pdev = pdev;
1066 
1067 	ssp->port_id = -1;
1068 	if (adev->pnp.unique_id && !kstrtoint(adev->pnp.unique_id, 0, &devid))
1069 		ssp->port_id = devid;
1070 
1071 	pdata->num_chipselect = 1;
1072 	pdata->enable_dma = true;
1073 
1074 	return pdata;
1075 }
1076 
1077 static struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1078 	{ "INT33C0", 0 },
1079 	{ "INT33C1", 0 },
1080 	{ "80860F0E", 0 },
1081 	{ },
1082 };
1083 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1084 #else
1085 static inline struct pxa2xx_spi_master *
1086 pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
1087 {
1088 	return NULL;
1089 }
1090 #endif
1091 
1092 static int pxa2xx_spi_probe(struct platform_device *pdev)
1093 {
1094 	struct device *dev = &pdev->dev;
1095 	struct pxa2xx_spi_master *platform_info;
1096 	struct spi_master *master;
1097 	struct driver_data *drv_data;
1098 	struct ssp_device *ssp;
1099 	int status;
1100 
1101 	platform_info = dev_get_platdata(dev);
1102 	if (!platform_info) {
1103 		platform_info = pxa2xx_spi_acpi_get_pdata(pdev);
1104 		if (!platform_info) {
1105 			dev_err(&pdev->dev, "missing platform data\n");
1106 			return -ENODEV;
1107 		}
1108 	}
1109 
1110 	ssp = pxa_ssp_request(pdev->id, pdev->name);
1111 	if (!ssp)
1112 		ssp = &platform_info->ssp;
1113 
1114 	if (!ssp->mmio_base) {
1115 		dev_err(&pdev->dev, "failed to get ssp\n");
1116 		return -ENODEV;
1117 	}
1118 
1119 	/* Allocate master with space for drv_data and null dma buffer */
1120 	master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
1121 	if (!master) {
1122 		dev_err(&pdev->dev, "cannot alloc spi_master\n");
1123 		pxa_ssp_free(ssp);
1124 		return -ENOMEM;
1125 	}
1126 	drv_data = spi_master_get_devdata(master);
1127 	drv_data->master = master;
1128 	drv_data->master_info = platform_info;
1129 	drv_data->pdev = pdev;
1130 	drv_data->ssp = ssp;
1131 
1132 	master->dev.parent = &pdev->dev;
1133 	master->dev.of_node = pdev->dev.of_node;
1134 	/* the spi->mode bits understood by this driver: */
1135 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1136 
1137 	master->bus_num = ssp->port_id;
1138 	master->num_chipselect = platform_info->num_chipselect;
1139 	master->dma_alignment = DMA_ALIGNMENT;
1140 	master->cleanup = cleanup;
1141 	master->setup = setup;
1142 	master->transfer_one_message = pxa2xx_spi_transfer_one_message;
1143 	master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1144 	master->auto_runtime_pm = true;
1145 
1146 	drv_data->ssp_type = ssp->type;
1147 	drv_data->null_dma_buf = (u32 *)PTR_ALIGN(&drv_data[1], DMA_ALIGNMENT);
1148 
1149 	drv_data->ioaddr = ssp->mmio_base;
1150 	drv_data->ssdr_physical = ssp->phys_base + SSDR;
1151 	if (pxa25x_ssp_comp(drv_data)) {
1152 		master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1153 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1154 		drv_data->dma_cr1 = 0;
1155 		drv_data->clear_sr = SSSR_ROR;
1156 		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1157 	} else {
1158 		master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1159 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1160 		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1161 		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1162 		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1163 	}
1164 
1165 	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1166 			drv_data);
1167 	if (status < 0) {
1168 		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1169 		goto out_error_master_alloc;
1170 	}
1171 
1172 	/* Setup DMA if requested */
1173 	drv_data->tx_channel = -1;
1174 	drv_data->rx_channel = -1;
1175 	if (platform_info->enable_dma) {
1176 		status = pxa2xx_spi_dma_setup(drv_data);
1177 		if (status) {
1178 			dev_dbg(dev, "no DMA channels available, using PIO\n");
1179 			platform_info->enable_dma = false;
1180 		}
1181 	}
1182 
1183 	/* Enable SOC clock */
1184 	clk_prepare_enable(ssp->clk);
1185 
1186 	drv_data->max_clk_rate = clk_get_rate(ssp->clk);
1187 
1188 	/* Load default SSP configuration */
1189 	write_SSCR0(0, drv_data->ioaddr);
1190 	write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT) |
1191 				SSCR1_TxTresh(TX_THRESH_DFLT),
1192 				drv_data->ioaddr);
1193 	write_SSCR0(SSCR0_SCR(2)
1194 			| SSCR0_Motorola
1195 			| SSCR0_DataSize(8),
1196 			drv_data->ioaddr);
1197 	if (!pxa25x_ssp_comp(drv_data))
1198 		write_SSTO(0, drv_data->ioaddr);
1199 	write_SSPSP(0, drv_data->ioaddr);
1200 
1201 	lpss_ssp_setup(drv_data);
1202 
1203 	tasklet_init(&drv_data->pump_transfers, pump_transfers,
1204 		     (unsigned long)drv_data);
1205 
1206 	/* Register with the SPI framework */
1207 	platform_set_drvdata(pdev, drv_data);
1208 	status = spi_register_master(master);
1209 	if (status != 0) {
1210 		dev_err(&pdev->dev, "problem registering spi master\n");
1211 		goto out_error_clock_enabled;
1212 	}
1213 
1214 	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1215 	pm_runtime_use_autosuspend(&pdev->dev);
1216 	pm_runtime_set_active(&pdev->dev);
1217 	pm_runtime_enable(&pdev->dev);
1218 
1219 	return status;
1220 
1221 out_error_clock_enabled:
1222 	clk_disable_unprepare(ssp->clk);
1223 	pxa2xx_spi_dma_release(drv_data);
1224 	free_irq(ssp->irq, drv_data);
1225 
1226 out_error_master_alloc:
1227 	spi_master_put(master);
1228 	pxa_ssp_free(ssp);
1229 	return status;
1230 }
1231 
1232 static int pxa2xx_spi_remove(struct platform_device *pdev)
1233 {
1234 	struct driver_data *drv_data = platform_get_drvdata(pdev);
1235 	struct ssp_device *ssp;
1236 
1237 	if (!drv_data)
1238 		return 0;
1239 	ssp = drv_data->ssp;
1240 
1241 	pm_runtime_get_sync(&pdev->dev);
1242 
1243 	/* Disable the SSP at the peripheral and SOC level */
1244 	write_SSCR0(0, drv_data->ioaddr);
1245 	clk_disable_unprepare(ssp->clk);
1246 
1247 	/* Release DMA */
1248 	if (drv_data->master_info->enable_dma)
1249 		pxa2xx_spi_dma_release(drv_data);
1250 
1251 	pm_runtime_put_noidle(&pdev->dev);
1252 	pm_runtime_disable(&pdev->dev);
1253 
1254 	/* Release IRQ */
1255 	free_irq(ssp->irq, drv_data);
1256 
1257 	/* Release SSP */
1258 	pxa_ssp_free(ssp);
1259 
1260 	/* Disconnect from the SPI framework */
1261 	spi_unregister_master(drv_data->master);
1262 
1263 	return 0;
1264 }
1265 
1266 static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1267 {
1268 	int status = 0;
1269 
1270 	if ((status = pxa2xx_spi_remove(pdev)) != 0)
1271 		dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1272 }
1273 
1274 #ifdef CONFIG_PM
1275 static int pxa2xx_spi_suspend(struct device *dev)
1276 {
1277 	struct driver_data *drv_data = dev_get_drvdata(dev);
1278 	struct ssp_device *ssp = drv_data->ssp;
1279 	int status = 0;
1280 
1281 	status = spi_master_suspend(drv_data->master);
1282 	if (status != 0)
1283 		return status;
1284 	write_SSCR0(0, drv_data->ioaddr);
1285 	clk_disable_unprepare(ssp->clk);
1286 
1287 	return 0;
1288 }
1289 
1290 static int pxa2xx_spi_resume(struct device *dev)
1291 {
1292 	struct driver_data *drv_data = dev_get_drvdata(dev);
1293 	struct ssp_device *ssp = drv_data->ssp;
1294 	int status = 0;
1295 
1296 	pxa2xx_spi_dma_resume(drv_data);
1297 
1298 	/* Enable the SSP clock */
1299 	clk_prepare_enable(ssp->clk);
1300 
1301 	/* Start the queue running */
1302 	status = spi_master_resume(drv_data->master);
1303 	if (status != 0) {
1304 		dev_err(dev, "problem starting queue (%d)\n", status);
1305 		return status;
1306 	}
1307 
1308 	return 0;
1309 }
1310 #endif
1311 
1312 #ifdef CONFIG_PM_RUNTIME
1313 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1314 {
1315 	struct driver_data *drv_data = dev_get_drvdata(dev);
1316 
1317 	clk_disable_unprepare(drv_data->ssp->clk);
1318 	return 0;
1319 }
1320 
1321 static int pxa2xx_spi_runtime_resume(struct device *dev)
1322 {
1323 	struct driver_data *drv_data = dev_get_drvdata(dev);
1324 
1325 	clk_prepare_enable(drv_data->ssp->clk);
1326 	return 0;
1327 }
1328 #endif
1329 
1330 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1331 	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1332 	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1333 			   pxa2xx_spi_runtime_resume, NULL)
1334 };
1335 
1336 static struct platform_driver driver = {
1337 	.driver = {
1338 		.name	= "pxa2xx-spi",
1339 		.owner	= THIS_MODULE,
1340 		.pm	= &pxa2xx_spi_pm_ops,
1341 		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1342 	},
1343 	.probe = pxa2xx_spi_probe,
1344 	.remove = pxa2xx_spi_remove,
1345 	.shutdown = pxa2xx_spi_shutdown,
1346 };
1347 
1348 static int __init pxa2xx_spi_init(void)
1349 {
1350 	return platform_driver_register(&driver);
1351 }
1352 subsys_initcall(pxa2xx_spi_init);
1353 
1354 static void __exit pxa2xx_spi_exit(void)
1355 {
1356 	platform_driver_unregister(&driver);
1357 }
1358 module_exit(pxa2xx_spi_exit);
1359