xref: /openbmc/linux/drivers/spi/spi-pxa2xx.c (revision dd21bfa4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4  * Copyright (C) 2013, 2021 Intel Corporation
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/bitops.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/err.h>
14 #include <linux/errno.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/gpio.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/ioport.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/of.h>
24 #include <linux/pci.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/property.h>
28 #include <linux/slab.h>
29 
30 #include <linux/spi/pxa2xx_spi.h>
31 #include <linux/spi/spi.h>
32 
33 #include "spi-pxa2xx.h"
34 
35 MODULE_AUTHOR("Stephen Street");
36 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
37 MODULE_LICENSE("GPL");
38 MODULE_ALIAS("platform:pxa2xx-spi");
39 
40 #define TIMOUT_DFLT		1000
41 
42 /*
43  * For testing SSCR1 changes that require SSP restart, basically
44  * everything except the service and interrupt enables, the PXA270 developer
45  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
46  * list, but the PXA255 developer manual says all bits without really meaning
47  * the service and interrupt enables.
48  */
49 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
50 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
51 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
52 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
53 				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
54 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
55 
56 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
57 				| QUARK_X1000_SSCR1_EFWR	\
58 				| QUARK_X1000_SSCR1_RFT		\
59 				| QUARK_X1000_SSCR1_TFT		\
60 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
61 
62 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
63 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
64 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
65 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
66 				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
67 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
68 
69 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
70 #define LPSS_CS_CONTROL_SW_MODE			BIT(0)
71 #define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
72 #define LPSS_CAPS_CS_EN_SHIFT			9
73 #define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
74 
75 #define LPSS_PRIV_CLOCK_GATE 0x38
76 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3
77 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3
78 
79 struct lpss_config {
80 	/* LPSS offset from drv_data->ioaddr */
81 	unsigned offset;
82 	/* Register offsets from drv_data->lpss_base or -1 */
83 	int reg_general;
84 	int reg_ssp;
85 	int reg_cs_ctrl;
86 	int reg_capabilities;
87 	/* FIFO thresholds */
88 	u32 rx_threshold;
89 	u32 tx_threshold_lo;
90 	u32 tx_threshold_hi;
91 	/* Chip select control */
92 	unsigned cs_sel_shift;
93 	unsigned cs_sel_mask;
94 	unsigned cs_num;
95 	/* Quirks */
96 	unsigned cs_clk_stays_gated : 1;
97 };
98 
99 /* Keep these sorted with enum pxa_ssp_type */
100 static const struct lpss_config lpss_platforms[] = {
101 	{	/* LPSS_LPT_SSP */
102 		.offset = 0x800,
103 		.reg_general = 0x08,
104 		.reg_ssp = 0x0c,
105 		.reg_cs_ctrl = 0x18,
106 		.reg_capabilities = -1,
107 		.rx_threshold = 64,
108 		.tx_threshold_lo = 160,
109 		.tx_threshold_hi = 224,
110 	},
111 	{	/* LPSS_BYT_SSP */
112 		.offset = 0x400,
113 		.reg_general = 0x08,
114 		.reg_ssp = 0x0c,
115 		.reg_cs_ctrl = 0x18,
116 		.reg_capabilities = -1,
117 		.rx_threshold = 64,
118 		.tx_threshold_lo = 160,
119 		.tx_threshold_hi = 224,
120 	},
121 	{	/* LPSS_BSW_SSP */
122 		.offset = 0x400,
123 		.reg_general = 0x08,
124 		.reg_ssp = 0x0c,
125 		.reg_cs_ctrl = 0x18,
126 		.reg_capabilities = -1,
127 		.rx_threshold = 64,
128 		.tx_threshold_lo = 160,
129 		.tx_threshold_hi = 224,
130 		.cs_sel_shift = 2,
131 		.cs_sel_mask = 1 << 2,
132 		.cs_num = 2,
133 	},
134 	{	/* LPSS_SPT_SSP */
135 		.offset = 0x200,
136 		.reg_general = -1,
137 		.reg_ssp = 0x20,
138 		.reg_cs_ctrl = 0x24,
139 		.reg_capabilities = -1,
140 		.rx_threshold = 1,
141 		.tx_threshold_lo = 32,
142 		.tx_threshold_hi = 56,
143 	},
144 	{	/* LPSS_BXT_SSP */
145 		.offset = 0x200,
146 		.reg_general = -1,
147 		.reg_ssp = 0x20,
148 		.reg_cs_ctrl = 0x24,
149 		.reg_capabilities = 0xfc,
150 		.rx_threshold = 1,
151 		.tx_threshold_lo = 16,
152 		.tx_threshold_hi = 48,
153 		.cs_sel_shift = 8,
154 		.cs_sel_mask = 3 << 8,
155 		.cs_clk_stays_gated = true,
156 	},
157 	{	/* LPSS_CNL_SSP */
158 		.offset = 0x200,
159 		.reg_general = -1,
160 		.reg_ssp = 0x20,
161 		.reg_cs_ctrl = 0x24,
162 		.reg_capabilities = 0xfc,
163 		.rx_threshold = 1,
164 		.tx_threshold_lo = 32,
165 		.tx_threshold_hi = 56,
166 		.cs_sel_shift = 8,
167 		.cs_sel_mask = 3 << 8,
168 		.cs_clk_stays_gated = true,
169 	},
170 };
171 
172 static inline const struct lpss_config
173 *lpss_get_config(const struct driver_data *drv_data)
174 {
175 	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
176 }
177 
178 static bool is_lpss_ssp(const struct driver_data *drv_data)
179 {
180 	switch (drv_data->ssp_type) {
181 	case LPSS_LPT_SSP:
182 	case LPSS_BYT_SSP:
183 	case LPSS_BSW_SSP:
184 	case LPSS_SPT_SSP:
185 	case LPSS_BXT_SSP:
186 	case LPSS_CNL_SSP:
187 		return true;
188 	default:
189 		return false;
190 	}
191 }
192 
193 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
194 {
195 	return drv_data->ssp_type == QUARK_X1000_SSP;
196 }
197 
198 static bool is_mmp2_ssp(const struct driver_data *drv_data)
199 {
200 	return drv_data->ssp_type == MMP2_SSP;
201 }
202 
203 static bool is_mrfld_ssp(const struct driver_data *drv_data)
204 {
205 	return drv_data->ssp_type == MRFLD_SSP;
206 }
207 
208 static void pxa2xx_spi_update(const struct driver_data *drv_data, u32 reg, u32 mask, u32 value)
209 {
210 	if ((pxa2xx_spi_read(drv_data, reg) & mask) != value)
211 		pxa2xx_spi_write(drv_data, reg, value & mask);
212 }
213 
214 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
215 {
216 	switch (drv_data->ssp_type) {
217 	case QUARK_X1000_SSP:
218 		return QUARK_X1000_SSCR1_CHANGE_MASK;
219 	case CE4100_SSP:
220 		return CE4100_SSCR1_CHANGE_MASK;
221 	default:
222 		return SSCR1_CHANGE_MASK;
223 	}
224 }
225 
226 static u32
227 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
228 {
229 	switch (drv_data->ssp_type) {
230 	case QUARK_X1000_SSP:
231 		return RX_THRESH_QUARK_X1000_DFLT;
232 	case CE4100_SSP:
233 		return RX_THRESH_CE4100_DFLT;
234 	default:
235 		return RX_THRESH_DFLT;
236 	}
237 }
238 
239 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
240 {
241 	u32 mask;
242 
243 	switch (drv_data->ssp_type) {
244 	case QUARK_X1000_SSP:
245 		mask = QUARK_X1000_SSSR_TFL_MASK;
246 		break;
247 	case CE4100_SSP:
248 		mask = CE4100_SSSR_TFL_MASK;
249 		break;
250 	default:
251 		mask = SSSR_TFL_MASK;
252 		break;
253 	}
254 
255 	return read_SSSR_bits(drv_data, mask) == mask;
256 }
257 
258 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
259 				     u32 *sccr1_reg)
260 {
261 	u32 mask;
262 
263 	switch (drv_data->ssp_type) {
264 	case QUARK_X1000_SSP:
265 		mask = QUARK_X1000_SSCR1_RFT;
266 		break;
267 	case CE4100_SSP:
268 		mask = CE4100_SSCR1_RFT;
269 		break;
270 	default:
271 		mask = SSCR1_RFT;
272 		break;
273 	}
274 	*sccr1_reg &= ~mask;
275 }
276 
277 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
278 				   u32 *sccr1_reg, u32 threshold)
279 {
280 	switch (drv_data->ssp_type) {
281 	case QUARK_X1000_SSP:
282 		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
283 		break;
284 	case CE4100_SSP:
285 		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
286 		break;
287 	default:
288 		*sccr1_reg |= SSCR1_RxTresh(threshold);
289 		break;
290 	}
291 }
292 
293 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
294 				  u32 clk_div, u8 bits)
295 {
296 	switch (drv_data->ssp_type) {
297 	case QUARK_X1000_SSP:
298 		return clk_div
299 			| QUARK_X1000_SSCR0_Motorola
300 			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits);
301 	default:
302 		return clk_div
303 			| SSCR0_Motorola
304 			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
305 			| (bits > 16 ? SSCR0_EDSS : 0);
306 	}
307 }
308 
309 /*
310  * Read and write LPSS SSP private registers. Caller must first check that
311  * is_lpss_ssp() returns true before these can be called.
312  */
313 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
314 {
315 	WARN_ON(!drv_data->lpss_base);
316 	return readl(drv_data->lpss_base + offset);
317 }
318 
319 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
320 				  unsigned offset, u32 value)
321 {
322 	WARN_ON(!drv_data->lpss_base);
323 	writel(value, drv_data->lpss_base + offset);
324 }
325 
326 /*
327  * lpss_ssp_setup - perform LPSS SSP specific setup
328  * @drv_data: pointer to the driver private data
329  *
330  * Perform LPSS SSP specific setup. This function must be called first if
331  * one is going to use LPSS SSP private registers.
332  */
333 static void lpss_ssp_setup(struct driver_data *drv_data)
334 {
335 	const struct lpss_config *config;
336 	u32 value;
337 
338 	config = lpss_get_config(drv_data);
339 	drv_data->lpss_base = drv_data->ssp->mmio_base + config->offset;
340 
341 	/* Enable software chip select control */
342 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
343 	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
344 	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
345 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
346 
347 	/* Enable multiblock DMA transfers */
348 	if (drv_data->controller_info->enable_dma) {
349 		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
350 
351 		if (config->reg_general >= 0) {
352 			value = __lpss_ssp_read_priv(drv_data,
353 						     config->reg_general);
354 			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
355 			__lpss_ssp_write_priv(drv_data,
356 					      config->reg_general, value);
357 		}
358 	}
359 }
360 
361 static void lpss_ssp_select_cs(struct spi_device *spi,
362 			       const struct lpss_config *config)
363 {
364 	struct driver_data *drv_data =
365 		spi_controller_get_devdata(spi->controller);
366 	u32 value, cs;
367 
368 	if (!config->cs_sel_mask)
369 		return;
370 
371 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
372 
373 	cs = spi->chip_select;
374 	cs <<= config->cs_sel_shift;
375 	if (cs != (value & config->cs_sel_mask)) {
376 		/*
377 		 * When switching another chip select output active the
378 		 * output must be selected first and wait 2 ssp_clk cycles
379 		 * before changing state to active. Otherwise a short
380 		 * glitch will occur on the previous chip select since
381 		 * output select is latched but state control is not.
382 		 */
383 		value &= ~config->cs_sel_mask;
384 		value |= cs;
385 		__lpss_ssp_write_priv(drv_data,
386 				      config->reg_cs_ctrl, value);
387 		ndelay(1000000000 /
388 		       (drv_data->controller->max_speed_hz / 2));
389 	}
390 }
391 
392 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
393 {
394 	struct driver_data *drv_data =
395 		spi_controller_get_devdata(spi->controller);
396 	const struct lpss_config *config;
397 	u32 value;
398 
399 	config = lpss_get_config(drv_data);
400 
401 	if (enable)
402 		lpss_ssp_select_cs(spi, config);
403 
404 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
405 	if (enable)
406 		value &= ~LPSS_CS_CONTROL_CS_HIGH;
407 	else
408 		value |= LPSS_CS_CONTROL_CS_HIGH;
409 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
410 	if (config->cs_clk_stays_gated) {
411 		u32 clkgate;
412 
413 		/*
414 		 * Changing CS alone when dynamic clock gating is on won't
415 		 * actually flip CS at that time. This ruins SPI transfers
416 		 * that specify delays, or have no data. Toggle the clock mode
417 		 * to force on briefly to poke the CS pin to move.
418 		 */
419 		clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE);
420 		value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) |
421 			LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON;
422 
423 		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value);
424 		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate);
425 	}
426 }
427 
428 static void cs_assert(struct spi_device *spi)
429 {
430 	struct driver_data *drv_data =
431 		spi_controller_get_devdata(spi->controller);
432 
433 	if (drv_data->ssp_type == CE4100_SSP) {
434 		pxa2xx_spi_write(drv_data, SSSR, spi->chip_select);
435 		return;
436 	}
437 
438 	if (is_lpss_ssp(drv_data))
439 		lpss_ssp_cs_control(spi, true);
440 }
441 
442 static void cs_deassert(struct spi_device *spi)
443 {
444 	struct driver_data *drv_data =
445 		spi_controller_get_devdata(spi->controller);
446 	unsigned long timeout;
447 
448 	if (drv_data->ssp_type == CE4100_SSP)
449 		return;
450 
451 	/* Wait until SSP becomes idle before deasserting the CS */
452 	timeout = jiffies + msecs_to_jiffies(10);
453 	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
454 	       !time_after(jiffies, timeout))
455 		cpu_relax();
456 
457 	if (is_lpss_ssp(drv_data))
458 		lpss_ssp_cs_control(spi, false);
459 }
460 
461 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
462 {
463 	if (level)
464 		cs_deassert(spi);
465 	else
466 		cs_assert(spi);
467 }
468 
469 int pxa2xx_spi_flush(struct driver_data *drv_data)
470 {
471 	unsigned long limit = loops_per_jiffy << 1;
472 
473 	do {
474 		while (read_SSSR_bits(drv_data, SSSR_RNE))
475 			pxa2xx_spi_read(drv_data, SSDR);
476 	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
477 	write_SSSR_CS(drv_data, SSSR_ROR);
478 
479 	return limit;
480 }
481 
482 static void pxa2xx_spi_off(struct driver_data *drv_data)
483 {
484 	/* On MMP, disabling SSE seems to corrupt the Rx FIFO */
485 	if (is_mmp2_ssp(drv_data))
486 		return;
487 
488 	pxa_ssp_disable(drv_data->ssp);
489 }
490 
491 static int null_writer(struct driver_data *drv_data)
492 {
493 	u8 n_bytes = drv_data->n_bytes;
494 
495 	if (pxa2xx_spi_txfifo_full(drv_data)
496 		|| (drv_data->tx == drv_data->tx_end))
497 		return 0;
498 
499 	pxa2xx_spi_write(drv_data, SSDR, 0);
500 	drv_data->tx += n_bytes;
501 
502 	return 1;
503 }
504 
505 static int null_reader(struct driver_data *drv_data)
506 {
507 	u8 n_bytes = drv_data->n_bytes;
508 
509 	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
510 		pxa2xx_spi_read(drv_data, SSDR);
511 		drv_data->rx += n_bytes;
512 	}
513 
514 	return drv_data->rx == drv_data->rx_end;
515 }
516 
517 static int u8_writer(struct driver_data *drv_data)
518 {
519 	if (pxa2xx_spi_txfifo_full(drv_data)
520 		|| (drv_data->tx == drv_data->tx_end))
521 		return 0;
522 
523 	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
524 	++drv_data->tx;
525 
526 	return 1;
527 }
528 
529 static int u8_reader(struct driver_data *drv_data)
530 {
531 	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
532 		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
533 		++drv_data->rx;
534 	}
535 
536 	return drv_data->rx == drv_data->rx_end;
537 }
538 
539 static int u16_writer(struct driver_data *drv_data)
540 {
541 	if (pxa2xx_spi_txfifo_full(drv_data)
542 		|| (drv_data->tx == drv_data->tx_end))
543 		return 0;
544 
545 	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
546 	drv_data->tx += 2;
547 
548 	return 1;
549 }
550 
551 static int u16_reader(struct driver_data *drv_data)
552 {
553 	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
554 		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
555 		drv_data->rx += 2;
556 	}
557 
558 	return drv_data->rx == drv_data->rx_end;
559 }
560 
561 static int u32_writer(struct driver_data *drv_data)
562 {
563 	if (pxa2xx_spi_txfifo_full(drv_data)
564 		|| (drv_data->tx == drv_data->tx_end))
565 		return 0;
566 
567 	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
568 	drv_data->tx += 4;
569 
570 	return 1;
571 }
572 
573 static int u32_reader(struct driver_data *drv_data)
574 {
575 	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
576 		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
577 		drv_data->rx += 4;
578 	}
579 
580 	return drv_data->rx == drv_data->rx_end;
581 }
582 
583 static void reset_sccr1(struct driver_data *drv_data)
584 {
585 	u32 mask = drv_data->int_cr1 | drv_data->dma_cr1, threshold;
586 	struct chip_data *chip;
587 
588 	if (drv_data->controller->cur_msg) {
589 		chip = spi_get_ctldata(drv_data->controller->cur_msg->spi);
590 		threshold = chip->threshold;
591 	} else {
592 		threshold = 0;
593 	}
594 
595 	switch (drv_data->ssp_type) {
596 	case QUARK_X1000_SSP:
597 		mask |= QUARK_X1000_SSCR1_RFT;
598 		break;
599 	case CE4100_SSP:
600 		mask |= CE4100_SSCR1_RFT;
601 		break;
602 	default:
603 		mask |= SSCR1_RFT;
604 		break;
605 	}
606 
607 	pxa2xx_spi_update(drv_data, SSCR1, mask, threshold);
608 }
609 
610 static void int_stop_and_reset(struct driver_data *drv_data)
611 {
612 	/* Clear and disable interrupts */
613 	write_SSSR_CS(drv_data, drv_data->clear_sr);
614 	reset_sccr1(drv_data);
615 	if (pxa25x_ssp_comp(drv_data))
616 		return;
617 
618 	pxa2xx_spi_write(drv_data, SSTO, 0);
619 }
620 
621 static void int_error_stop(struct driver_data *drv_data, const char *msg, int err)
622 {
623 	int_stop_and_reset(drv_data);
624 	pxa2xx_spi_flush(drv_data);
625 	pxa2xx_spi_off(drv_data);
626 
627 	dev_err(drv_data->ssp->dev, "%s\n", msg);
628 
629 	drv_data->controller->cur_msg->status = err;
630 	spi_finalize_current_transfer(drv_data->controller);
631 }
632 
633 static void int_transfer_complete(struct driver_data *drv_data)
634 {
635 	int_stop_and_reset(drv_data);
636 
637 	spi_finalize_current_transfer(drv_data->controller);
638 }
639 
640 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
641 {
642 	u32 irq_status;
643 
644 	irq_status = read_SSSR_bits(drv_data, drv_data->mask_sr);
645 	if (!(pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE))
646 		irq_status &= ~SSSR_TFS;
647 
648 	if (irq_status & SSSR_ROR) {
649 		int_error_stop(drv_data, "interrupt_transfer: FIFO overrun", -EIO);
650 		return IRQ_HANDLED;
651 	}
652 
653 	if (irq_status & SSSR_TUR) {
654 		int_error_stop(drv_data, "interrupt_transfer: FIFO underrun", -EIO);
655 		return IRQ_HANDLED;
656 	}
657 
658 	if (irq_status & SSSR_TINT) {
659 		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
660 		if (drv_data->read(drv_data)) {
661 			int_transfer_complete(drv_data);
662 			return IRQ_HANDLED;
663 		}
664 	}
665 
666 	/* Drain Rx FIFO, Fill Tx FIFO and prevent overruns */
667 	do {
668 		if (drv_data->read(drv_data)) {
669 			int_transfer_complete(drv_data);
670 			return IRQ_HANDLED;
671 		}
672 	} while (drv_data->write(drv_data));
673 
674 	if (drv_data->read(drv_data)) {
675 		int_transfer_complete(drv_data);
676 		return IRQ_HANDLED;
677 	}
678 
679 	if (drv_data->tx == drv_data->tx_end) {
680 		u32 bytes_left;
681 		u32 sccr1_reg;
682 
683 		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
684 		sccr1_reg &= ~SSCR1_TIE;
685 
686 		/*
687 		 * PXA25x_SSP has no timeout, set up Rx threshold for
688 		 * the remaining Rx bytes.
689 		 */
690 		if (pxa25x_ssp_comp(drv_data)) {
691 			u32 rx_thre;
692 
693 			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
694 
695 			bytes_left = drv_data->rx_end - drv_data->rx;
696 			switch (drv_data->n_bytes) {
697 			case 4:
698 				bytes_left >>= 2;
699 				break;
700 			case 2:
701 				bytes_left >>= 1;
702 				break;
703 			}
704 
705 			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
706 			if (rx_thre > bytes_left)
707 				rx_thre = bytes_left;
708 
709 			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
710 		}
711 		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
712 	}
713 
714 	/* We did something */
715 	return IRQ_HANDLED;
716 }
717 
718 static void handle_bad_msg(struct driver_data *drv_data)
719 {
720 	int_stop_and_reset(drv_data);
721 	pxa2xx_spi_off(drv_data);
722 
723 	dev_err(drv_data->ssp->dev, "bad message state in interrupt handler\n");
724 }
725 
726 static irqreturn_t ssp_int(int irq, void *dev_id)
727 {
728 	struct driver_data *drv_data = dev_id;
729 	u32 sccr1_reg;
730 	u32 mask = drv_data->mask_sr;
731 	u32 status;
732 
733 	/*
734 	 * The IRQ might be shared with other peripherals so we must first
735 	 * check that are we RPM suspended or not. If we are we assume that
736 	 * the IRQ was not for us (we shouldn't be RPM suspended when the
737 	 * interrupt is enabled).
738 	 */
739 	if (pm_runtime_suspended(drv_data->ssp->dev))
740 		return IRQ_NONE;
741 
742 	/*
743 	 * If the device is not yet in RPM suspended state and we get an
744 	 * interrupt that is meant for another device, check if status bits
745 	 * are all set to one. That means that the device is already
746 	 * powered off.
747 	 */
748 	status = pxa2xx_spi_read(drv_data, SSSR);
749 	if (status == ~0)
750 		return IRQ_NONE;
751 
752 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
753 
754 	/* Ignore possible writes if we don't need to write */
755 	if (!(sccr1_reg & SSCR1_TIE))
756 		mask &= ~SSSR_TFS;
757 
758 	/* Ignore RX timeout interrupt if it is disabled */
759 	if (!(sccr1_reg & SSCR1_TINTE))
760 		mask &= ~SSSR_TINT;
761 
762 	if (!(status & mask))
763 		return IRQ_NONE;
764 
765 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
766 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
767 
768 	if (!drv_data->controller->cur_msg) {
769 		handle_bad_msg(drv_data);
770 		/* Never fail */
771 		return IRQ_HANDLED;
772 	}
773 
774 	return drv_data->transfer_handler(drv_data);
775 }
776 
777 /*
778  * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
779  * input frequency by fractions of 2^24. It also has a divider by 5.
780  *
781  * There are formulas to get baud rate value for given input frequency and
782  * divider parameters, such as DDS_CLK_RATE and SCR:
783  *
784  * Fsys = 200MHz
785  *
786  * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
787  * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
788  *
789  * DDS_CLK_RATE either 2^n or 2^n / 5.
790  * SCR is in range 0 .. 255
791  *
792  * Divisor = 5^i * 2^j * 2 * k
793  *       i = [0, 1]      i = 1 iff j = 0 or j > 3
794  *       j = [0, 23]     j = 0 iff i = 1
795  *       k = [1, 256]
796  * Special case: j = 0, i = 1: Divisor = 2 / 5
797  *
798  * Accordingly to the specification the recommended values for DDS_CLK_RATE
799  * are:
800  *	Case 1:		2^n, n = [0, 23]
801  *	Case 2:		2^24 * 2 / 5 (0x666666)
802  *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
803  *
804  * In all cases the lowest possible value is better.
805  *
806  * The function calculates parameters for all cases and chooses the one closest
807  * to the asked baud rate.
808  */
809 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
810 {
811 	unsigned long xtal = 200000000;
812 	unsigned long fref = xtal / 2;		/* mandatory division by 2,
813 						   see (2) */
814 						/* case 3 */
815 	unsigned long fref1 = fref / 2;		/* case 1 */
816 	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
817 	unsigned long scale;
818 	unsigned long q, q1, q2;
819 	long r, r1, r2;
820 	u32 mul;
821 
822 	/* Case 1 */
823 
824 	/* Set initial value for DDS_CLK_RATE */
825 	mul = (1 << 24) >> 1;
826 
827 	/* Calculate initial quot */
828 	q1 = DIV_ROUND_UP(fref1, rate);
829 
830 	/* Scale q1 if it's too big */
831 	if (q1 > 256) {
832 		/* Scale q1 to range [1, 512] */
833 		scale = fls_long(q1 - 1);
834 		if (scale > 9) {
835 			q1 >>= scale - 9;
836 			mul >>= scale - 9;
837 		}
838 
839 		/* Round the result if we have a remainder */
840 		q1 += q1 & 1;
841 	}
842 
843 	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
844 	scale = __ffs(q1);
845 	q1 >>= scale;
846 	mul >>= scale;
847 
848 	/* Get the remainder */
849 	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
850 
851 	/* Case 2 */
852 
853 	q2 = DIV_ROUND_UP(fref2, rate);
854 	r2 = abs(fref2 / q2 - rate);
855 
856 	/*
857 	 * Choose the best between two: less remainder we have the better. We
858 	 * can't go case 2 if q2 is greater than 256 since SCR register can
859 	 * hold only values 0 .. 255.
860 	 */
861 	if (r2 >= r1 || q2 > 256) {
862 		/* case 1 is better */
863 		r = r1;
864 		q = q1;
865 	} else {
866 		/* case 2 is better */
867 		r = r2;
868 		q = q2;
869 		mul = (1 << 24) * 2 / 5;
870 	}
871 
872 	/* Check case 3 only if the divisor is big enough */
873 	if (fref / rate >= 80) {
874 		u64 fssp;
875 		u32 m;
876 
877 		/* Calculate initial quot */
878 		q1 = DIV_ROUND_UP(fref, rate);
879 		m = (1 << 24) / q1;
880 
881 		/* Get the remainder */
882 		fssp = (u64)fref * m;
883 		do_div(fssp, 1 << 24);
884 		r1 = abs(fssp - rate);
885 
886 		/* Choose this one if it suits better */
887 		if (r1 < r) {
888 			/* case 3 is better */
889 			q = 1;
890 			mul = m;
891 		}
892 	}
893 
894 	*dds = mul;
895 	return q - 1;
896 }
897 
898 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
899 {
900 	unsigned long ssp_clk = drv_data->controller->max_speed_hz;
901 	const struct ssp_device *ssp = drv_data->ssp;
902 
903 	rate = min_t(int, ssp_clk, rate);
904 
905 	/*
906 	 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
907 	 * that the SSP transmission rate can be greater than the device rate.
908 	 */
909 	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
910 		return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
911 	else
912 		return (DIV_ROUND_UP(ssp_clk, rate) - 1)  & 0xfff;
913 }
914 
915 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
916 					   int rate)
917 {
918 	struct chip_data *chip =
919 		spi_get_ctldata(drv_data->controller->cur_msg->spi);
920 	unsigned int clk_div;
921 
922 	switch (drv_data->ssp_type) {
923 	case QUARK_X1000_SSP:
924 		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
925 		break;
926 	default:
927 		clk_div = ssp_get_clk_div(drv_data, rate);
928 		break;
929 	}
930 	return clk_div << 8;
931 }
932 
933 static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
934 			       struct spi_device *spi,
935 			       struct spi_transfer *xfer)
936 {
937 	struct chip_data *chip = spi_get_ctldata(spi);
938 
939 	return chip->enable_dma &&
940 	       xfer->len <= MAX_DMA_LEN &&
941 	       xfer->len >= chip->dma_burst_size;
942 }
943 
944 static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
945 				   struct spi_device *spi,
946 				   struct spi_transfer *transfer)
947 {
948 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
949 	struct spi_message *message = controller->cur_msg;
950 	struct chip_data *chip = spi_get_ctldata(spi);
951 	u32 dma_thresh = chip->dma_threshold;
952 	u32 dma_burst = chip->dma_burst_size;
953 	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
954 	u32 clk_div;
955 	u8 bits;
956 	u32 speed;
957 	u32 cr0;
958 	u32 cr1;
959 	int err;
960 	int dma_mapped;
961 
962 	/* Check if we can DMA this transfer */
963 	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
964 
965 		/* Reject already-mapped transfers; PIO won't always work */
966 		if (message->is_dma_mapped
967 				|| transfer->rx_dma || transfer->tx_dma) {
968 			dev_err(&spi->dev,
969 				"Mapped transfer length of %u is greater than %d\n",
970 				transfer->len, MAX_DMA_LEN);
971 			return -EINVAL;
972 		}
973 
974 		/* Warn ... we force this to PIO mode */
975 		dev_warn_ratelimited(&spi->dev,
976 				     "DMA disabled for transfer length %u greater than %d\n",
977 				     transfer->len, MAX_DMA_LEN);
978 	}
979 
980 	/* Setup the transfer state based on the type of transfer */
981 	if (pxa2xx_spi_flush(drv_data) == 0) {
982 		dev_err(&spi->dev, "Flush failed\n");
983 		return -EIO;
984 	}
985 	drv_data->tx = (void *)transfer->tx_buf;
986 	drv_data->tx_end = drv_data->tx + transfer->len;
987 	drv_data->rx = transfer->rx_buf;
988 	drv_data->rx_end = drv_data->rx + transfer->len;
989 
990 	/* Change speed and bit per word on a per transfer */
991 	bits = transfer->bits_per_word;
992 	speed = transfer->speed_hz;
993 
994 	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
995 
996 	if (bits <= 8) {
997 		drv_data->n_bytes = 1;
998 		drv_data->read = drv_data->rx ? u8_reader : null_reader;
999 		drv_data->write = drv_data->tx ? u8_writer : null_writer;
1000 	} else if (bits <= 16) {
1001 		drv_data->n_bytes = 2;
1002 		drv_data->read = drv_data->rx ? u16_reader : null_reader;
1003 		drv_data->write = drv_data->tx ? u16_writer : null_writer;
1004 	} else if (bits <= 32) {
1005 		drv_data->n_bytes = 4;
1006 		drv_data->read = drv_data->rx ? u32_reader : null_reader;
1007 		drv_data->write = drv_data->tx ? u32_writer : null_writer;
1008 	}
1009 	/*
1010 	 * If bits per word is changed in DMA mode, then must check
1011 	 * the thresholds and burst also.
1012 	 */
1013 	if (chip->enable_dma) {
1014 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1015 						spi,
1016 						bits, &dma_burst,
1017 						&dma_thresh))
1018 			dev_warn_ratelimited(&spi->dev,
1019 					     "DMA burst size reduced to match bits_per_word\n");
1020 	}
1021 
1022 	dma_mapped = controller->can_dma &&
1023 		     controller->can_dma(controller, spi, transfer) &&
1024 		     controller->cur_msg_mapped;
1025 	if (dma_mapped) {
1026 
1027 		/* Ensure we have the correct interrupt handler */
1028 		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1029 
1030 		err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1031 		if (err)
1032 			return err;
1033 
1034 		/* Clear status and start DMA engine */
1035 		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1036 		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1037 
1038 		pxa2xx_spi_dma_start(drv_data);
1039 	} else {
1040 		/* Ensure we have the correct interrupt handler	*/
1041 		drv_data->transfer_handler = interrupt_transfer;
1042 
1043 		/* Clear status  */
1044 		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1045 		write_SSSR_CS(drv_data, drv_data->clear_sr);
1046 	}
1047 
1048 	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1049 	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1050 	if (!pxa25x_ssp_comp(drv_data))
1051 		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1052 			controller->max_speed_hz
1053 				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1054 			dma_mapped ? "DMA" : "PIO");
1055 	else
1056 		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1057 			controller->max_speed_hz / 2
1058 				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1059 			dma_mapped ? "DMA" : "PIO");
1060 
1061 	if (is_lpss_ssp(drv_data)) {
1062 		pxa2xx_spi_update(drv_data, SSIRF, GENMASK(7, 0), chip->lpss_rx_threshold);
1063 		pxa2xx_spi_update(drv_data, SSITF, GENMASK(15, 0), chip->lpss_tx_threshold);
1064 	}
1065 
1066 	if (is_mrfld_ssp(drv_data)) {
1067 		u32 mask = SFIFOTT_RFT | SFIFOTT_TFT;
1068 		u32 thresh = 0;
1069 
1070 		thresh |= SFIFOTT_RxThresh(chip->lpss_rx_threshold);
1071 		thresh |= SFIFOTT_TxThresh(chip->lpss_tx_threshold);
1072 
1073 		pxa2xx_spi_update(drv_data, SFIFOTT, mask, thresh);
1074 	}
1075 
1076 	if (is_quark_x1000_ssp(drv_data))
1077 		pxa2xx_spi_update(drv_data, DDS_RATE, GENMASK(23, 0), chip->dds_rate);
1078 
1079 	/* Stop the SSP */
1080 	if (!is_mmp2_ssp(drv_data))
1081 		pxa_ssp_disable(drv_data->ssp);
1082 
1083 	if (!pxa25x_ssp_comp(drv_data))
1084 		pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1085 
1086 	/* First set CR1 without interrupt and service enables */
1087 	pxa2xx_spi_update(drv_data, SSCR1, change_mask, cr1);
1088 
1089 	/* See if we need to reload the configuration registers */
1090 	pxa2xx_spi_update(drv_data, SSCR0, GENMASK(31, 0), cr0);
1091 
1092 	/* Restart the SSP */
1093 	pxa_ssp_enable(drv_data->ssp);
1094 
1095 	if (is_mmp2_ssp(drv_data)) {
1096 		u8 tx_level = read_SSSR_bits(drv_data, SSSR_TFL_MASK) >> 8;
1097 
1098 		if (tx_level) {
1099 			/* On MMP2, flipping SSE doesn't to empty Tx FIFO. */
1100 			dev_warn(&spi->dev, "%u bytes of garbage in Tx FIFO!\n", tx_level);
1101 			if (tx_level > transfer->len)
1102 				tx_level = transfer->len;
1103 			drv_data->tx += tx_level;
1104 		}
1105 	}
1106 
1107 	if (spi_controller_is_slave(controller)) {
1108 		while (drv_data->write(drv_data))
1109 			;
1110 		if (drv_data->gpiod_ready) {
1111 			gpiod_set_value(drv_data->gpiod_ready, 1);
1112 			udelay(1);
1113 			gpiod_set_value(drv_data->gpiod_ready, 0);
1114 		}
1115 	}
1116 
1117 	/*
1118 	 * Release the data by enabling service requests and interrupts,
1119 	 * without changing any mode bits.
1120 	 */
1121 	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1122 
1123 	return 1;
1124 }
1125 
1126 static int pxa2xx_spi_slave_abort(struct spi_controller *controller)
1127 {
1128 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1129 
1130 	int_error_stop(drv_data, "transfer aborted", -EINTR);
1131 
1132 	return 0;
1133 }
1134 
1135 static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1136 				 struct spi_message *msg)
1137 {
1138 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1139 
1140 	int_stop_and_reset(drv_data);
1141 
1142 	/* Disable the SSP */
1143 	pxa2xx_spi_off(drv_data);
1144 
1145 	/*
1146 	 * Stop the DMA if running. Note DMA callback handler may have unset
1147 	 * the dma_running already, which is fine as stopping is not needed
1148 	 * then but we shouldn't rely this flag for anything else than
1149 	 * stopping. For instance to differentiate between PIO and DMA
1150 	 * transfers.
1151 	 */
1152 	if (atomic_read(&drv_data->dma_running))
1153 		pxa2xx_spi_dma_stop(drv_data);
1154 }
1155 
1156 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1157 {
1158 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1159 
1160 	/* Disable the SSP now */
1161 	pxa2xx_spi_off(drv_data);
1162 
1163 	return 0;
1164 }
1165 
1166 static void cleanup_cs(struct spi_device *spi)
1167 {
1168 	if (!gpio_is_valid(spi->cs_gpio))
1169 		return;
1170 
1171 	gpio_free(spi->cs_gpio);
1172 	spi->cs_gpio = -ENOENT;
1173 }
1174 
1175 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1176 		    struct pxa2xx_spi_chip *chip_info)
1177 {
1178 	struct driver_data *drv_data = spi_controller_get_devdata(spi->controller);
1179 
1180 	if (chip == NULL)
1181 		return 0;
1182 
1183 	if (chip_info == NULL)
1184 		return 0;
1185 
1186 	if (drv_data->ssp_type == CE4100_SSP)
1187 		return 0;
1188 
1189 	/*
1190 	 * NOTE: setup() can be called multiple times, possibly with
1191 	 * different chip_info, release previously requested GPIO.
1192 	 */
1193 	cleanup_cs(spi);
1194 
1195 	if (gpio_is_valid(chip_info->gpio_cs)) {
1196 		int gpio = chip_info->gpio_cs;
1197 		int err;
1198 
1199 		err = gpio_request(gpio, "SPI_CS");
1200 		if (err) {
1201 			dev_err(&spi->dev, "failed to request chip select GPIO%d\n", gpio);
1202 			return err;
1203 		}
1204 
1205 		err = gpio_direction_output(gpio, !(spi->mode & SPI_CS_HIGH));
1206 		if (err) {
1207 			gpio_free(gpio);
1208 			return err;
1209 		}
1210 
1211 		spi->cs_gpio = gpio;
1212 	}
1213 
1214 	return 0;
1215 }
1216 
1217 static int setup(struct spi_device *spi)
1218 {
1219 	struct pxa2xx_spi_chip *chip_info;
1220 	struct chip_data *chip;
1221 	const struct lpss_config *config;
1222 	struct driver_data *drv_data =
1223 		spi_controller_get_devdata(spi->controller);
1224 	uint tx_thres, tx_hi_thres, rx_thres;
1225 	int err;
1226 
1227 	switch (drv_data->ssp_type) {
1228 	case QUARK_X1000_SSP:
1229 		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1230 		tx_hi_thres = 0;
1231 		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1232 		break;
1233 	case MRFLD_SSP:
1234 		tx_thres = TX_THRESH_MRFLD_DFLT;
1235 		tx_hi_thres = 0;
1236 		rx_thres = RX_THRESH_MRFLD_DFLT;
1237 		break;
1238 	case CE4100_SSP:
1239 		tx_thres = TX_THRESH_CE4100_DFLT;
1240 		tx_hi_thres = 0;
1241 		rx_thres = RX_THRESH_CE4100_DFLT;
1242 		break;
1243 	case LPSS_LPT_SSP:
1244 	case LPSS_BYT_SSP:
1245 	case LPSS_BSW_SSP:
1246 	case LPSS_SPT_SSP:
1247 	case LPSS_BXT_SSP:
1248 	case LPSS_CNL_SSP:
1249 		config = lpss_get_config(drv_data);
1250 		tx_thres = config->tx_threshold_lo;
1251 		tx_hi_thres = config->tx_threshold_hi;
1252 		rx_thres = config->rx_threshold;
1253 		break;
1254 	default:
1255 		tx_hi_thres = 0;
1256 		if (spi_controller_is_slave(drv_data->controller)) {
1257 			tx_thres = 1;
1258 			rx_thres = 2;
1259 		} else {
1260 			tx_thres = TX_THRESH_DFLT;
1261 			rx_thres = RX_THRESH_DFLT;
1262 		}
1263 		break;
1264 	}
1265 
1266 	/* Only allocate on the first setup */
1267 	chip = spi_get_ctldata(spi);
1268 	if (!chip) {
1269 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1270 		if (!chip)
1271 			return -ENOMEM;
1272 
1273 		if (drv_data->ssp_type == CE4100_SSP) {
1274 			if (spi->chip_select > 4) {
1275 				dev_err(&spi->dev,
1276 					"failed setup: cs number must not be > 4.\n");
1277 				kfree(chip);
1278 				return -EINVAL;
1279 			}
1280 		}
1281 		chip->enable_dma = drv_data->controller_info->enable_dma;
1282 		chip->timeout = TIMOUT_DFLT;
1283 	}
1284 
1285 	/*
1286 	 * Protocol drivers may change the chip settings, so...
1287 	 * if chip_info exists, use it.
1288 	 */
1289 	chip_info = spi->controller_data;
1290 
1291 	/* chip_info isn't always needed */
1292 	if (chip_info) {
1293 		if (chip_info->timeout)
1294 			chip->timeout = chip_info->timeout;
1295 		if (chip_info->tx_threshold)
1296 			tx_thres = chip_info->tx_threshold;
1297 		if (chip_info->tx_hi_threshold)
1298 			tx_hi_thres = chip_info->tx_hi_threshold;
1299 		if (chip_info->rx_threshold)
1300 			rx_thres = chip_info->rx_threshold;
1301 		chip->dma_threshold = 0;
1302 	}
1303 
1304 	chip->cr1 = 0;
1305 	if (spi_controller_is_slave(drv_data->controller)) {
1306 		chip->cr1 |= SSCR1_SCFR;
1307 		chip->cr1 |= SSCR1_SCLKDIR;
1308 		chip->cr1 |= SSCR1_SFRMDIR;
1309 		chip->cr1 |= SSCR1_SPH;
1310 	}
1311 
1312 	if (is_lpss_ssp(drv_data)) {
1313 		chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1314 		chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) |
1315 					  SSITF_TxHiThresh(tx_hi_thres);
1316 	}
1317 
1318 	if (is_mrfld_ssp(drv_data)) {
1319 		chip->lpss_rx_threshold = rx_thres;
1320 		chip->lpss_tx_threshold = tx_thres;
1321 	}
1322 
1323 	/*
1324 	 * Set DMA burst and threshold outside of chip_info path so that if
1325 	 * chip_info goes away after setting chip->enable_dma, the burst and
1326 	 * threshold can still respond to changes in bits_per_word.
1327 	 */
1328 	if (chip->enable_dma) {
1329 		/* Set up legal burst and threshold for DMA */
1330 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1331 						spi->bits_per_word,
1332 						&chip->dma_burst_size,
1333 						&chip->dma_threshold)) {
1334 			dev_warn(&spi->dev,
1335 				 "in setup: DMA burst size reduced to match bits_per_word\n");
1336 		}
1337 		dev_dbg(&spi->dev,
1338 			"in setup: DMA burst size set to %u\n",
1339 			chip->dma_burst_size);
1340 	}
1341 
1342 	switch (drv_data->ssp_type) {
1343 	case QUARK_X1000_SSP:
1344 		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1345 				   & QUARK_X1000_SSCR1_RFT)
1346 				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1347 				   & QUARK_X1000_SSCR1_TFT);
1348 		break;
1349 	case CE4100_SSP:
1350 		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1351 			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1352 		break;
1353 	default:
1354 		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1355 			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1356 		break;
1357 	}
1358 
1359 	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1360 	chip->cr1 |= ((spi->mode & SPI_CPHA) ? SSCR1_SPH : 0) |
1361 		     ((spi->mode & SPI_CPOL) ? SSCR1_SPO : 0);
1362 
1363 	if (spi->mode & SPI_LOOP)
1364 		chip->cr1 |= SSCR1_LBM;
1365 
1366 	spi_set_ctldata(spi, chip);
1367 
1368 	if (drv_data->ssp_type == CE4100_SSP)
1369 		return 0;
1370 
1371 	err = setup_cs(spi, chip, chip_info);
1372 	if (err)
1373 		kfree(chip);
1374 
1375 	return err;
1376 }
1377 
1378 static void cleanup(struct spi_device *spi)
1379 {
1380 	struct chip_data *chip = spi_get_ctldata(spi);
1381 
1382 	cleanup_cs(spi);
1383 	kfree(chip);
1384 }
1385 
1386 #ifdef CONFIG_ACPI
1387 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1388 	{ "INT33C0", LPSS_LPT_SSP },
1389 	{ "INT33C1", LPSS_LPT_SSP },
1390 	{ "INT3430", LPSS_LPT_SSP },
1391 	{ "INT3431", LPSS_LPT_SSP },
1392 	{ "80860F0E", LPSS_BYT_SSP },
1393 	{ "8086228E", LPSS_BSW_SSP },
1394 	{ },
1395 };
1396 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1397 #endif
1398 
1399 /*
1400  * PCI IDs of compound devices that integrate both host controller and private
1401  * integrated DMA engine. Please note these are not used in module
1402  * autoloading and probing in this module but matching the LPSS SSP type.
1403  */
1404 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1405 	/* SPT-LP */
1406 	{ PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1407 	{ PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1408 	/* SPT-H */
1409 	{ PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1410 	{ PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1411 	/* KBL-H */
1412 	{ PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1413 	{ PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1414 	/* CML-V */
1415 	{ PCI_VDEVICE(INTEL, 0xa3a9), LPSS_SPT_SSP },
1416 	{ PCI_VDEVICE(INTEL, 0xa3aa), LPSS_SPT_SSP },
1417 	/* BXT A-Step */
1418 	{ PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1419 	{ PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1420 	{ PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1421 	/* BXT B-Step */
1422 	{ PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1423 	{ PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1424 	{ PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1425 	/* GLK */
1426 	{ PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1427 	{ PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1428 	{ PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1429 	/* ICL-LP */
1430 	{ PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP },
1431 	{ PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP },
1432 	{ PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP },
1433 	/* EHL */
1434 	{ PCI_VDEVICE(INTEL, 0x4b2a), LPSS_BXT_SSP },
1435 	{ PCI_VDEVICE(INTEL, 0x4b2b), LPSS_BXT_SSP },
1436 	{ PCI_VDEVICE(INTEL, 0x4b37), LPSS_BXT_SSP },
1437 	/* JSL */
1438 	{ PCI_VDEVICE(INTEL, 0x4daa), LPSS_CNL_SSP },
1439 	{ PCI_VDEVICE(INTEL, 0x4dab), LPSS_CNL_SSP },
1440 	{ PCI_VDEVICE(INTEL, 0x4dfb), LPSS_CNL_SSP },
1441 	/* TGL-H */
1442 	{ PCI_VDEVICE(INTEL, 0x43aa), LPSS_CNL_SSP },
1443 	{ PCI_VDEVICE(INTEL, 0x43ab), LPSS_CNL_SSP },
1444 	{ PCI_VDEVICE(INTEL, 0x43fb), LPSS_CNL_SSP },
1445 	{ PCI_VDEVICE(INTEL, 0x43fd), LPSS_CNL_SSP },
1446 	/* ADL-P */
1447 	{ PCI_VDEVICE(INTEL, 0x51aa), LPSS_CNL_SSP },
1448 	{ PCI_VDEVICE(INTEL, 0x51ab), LPSS_CNL_SSP },
1449 	{ PCI_VDEVICE(INTEL, 0x51fb), LPSS_CNL_SSP },
1450 	/* ADL-M */
1451 	{ PCI_VDEVICE(INTEL, 0x54aa), LPSS_CNL_SSP },
1452 	{ PCI_VDEVICE(INTEL, 0x54ab), LPSS_CNL_SSP },
1453 	{ PCI_VDEVICE(INTEL, 0x54fb), LPSS_CNL_SSP },
1454 	/* APL */
1455 	{ PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1456 	{ PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1457 	{ PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1458 	/* ADL-S */
1459 	{ PCI_VDEVICE(INTEL, 0x7aaa), LPSS_CNL_SSP },
1460 	{ PCI_VDEVICE(INTEL, 0x7aab), LPSS_CNL_SSP },
1461 	{ PCI_VDEVICE(INTEL, 0x7af9), LPSS_CNL_SSP },
1462 	{ PCI_VDEVICE(INTEL, 0x7afb), LPSS_CNL_SSP },
1463 	/* CNL-LP */
1464 	{ PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1465 	{ PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1466 	{ PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1467 	/* CNL-H */
1468 	{ PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1469 	{ PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1470 	{ PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1471 	/* CML-LP */
1472 	{ PCI_VDEVICE(INTEL, 0x02aa), LPSS_CNL_SSP },
1473 	{ PCI_VDEVICE(INTEL, 0x02ab), LPSS_CNL_SSP },
1474 	{ PCI_VDEVICE(INTEL, 0x02fb), LPSS_CNL_SSP },
1475 	/* CML-H */
1476 	{ PCI_VDEVICE(INTEL, 0x06aa), LPSS_CNL_SSP },
1477 	{ PCI_VDEVICE(INTEL, 0x06ab), LPSS_CNL_SSP },
1478 	{ PCI_VDEVICE(INTEL, 0x06fb), LPSS_CNL_SSP },
1479 	/* TGL-LP */
1480 	{ PCI_VDEVICE(INTEL, 0xa0aa), LPSS_CNL_SSP },
1481 	{ PCI_VDEVICE(INTEL, 0xa0ab), LPSS_CNL_SSP },
1482 	{ PCI_VDEVICE(INTEL, 0xa0de), LPSS_CNL_SSP },
1483 	{ PCI_VDEVICE(INTEL, 0xa0df), LPSS_CNL_SSP },
1484 	{ PCI_VDEVICE(INTEL, 0xa0fb), LPSS_CNL_SSP },
1485 	{ PCI_VDEVICE(INTEL, 0xa0fd), LPSS_CNL_SSP },
1486 	{ PCI_VDEVICE(INTEL, 0xa0fe), LPSS_CNL_SSP },
1487 	{ },
1488 };
1489 
1490 static const struct of_device_id pxa2xx_spi_of_match[] = {
1491 	{ .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1492 	{},
1493 };
1494 MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1495 
1496 #ifdef CONFIG_ACPI
1497 
1498 static int pxa2xx_spi_get_port_id(struct device *dev)
1499 {
1500 	struct acpi_device *adev;
1501 	unsigned int devid;
1502 	int port_id = -1;
1503 
1504 	adev = ACPI_COMPANION(dev);
1505 	if (adev && adev->pnp.unique_id &&
1506 	    !kstrtouint(adev->pnp.unique_id, 0, &devid))
1507 		port_id = devid;
1508 	return port_id;
1509 }
1510 
1511 #else /* !CONFIG_ACPI */
1512 
1513 static int pxa2xx_spi_get_port_id(struct device *dev)
1514 {
1515 	return -1;
1516 }
1517 
1518 #endif /* CONFIG_ACPI */
1519 
1520 
1521 #ifdef CONFIG_PCI
1522 
1523 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1524 {
1525 	return param == chan->device->dev;
1526 }
1527 
1528 #endif /* CONFIG_PCI */
1529 
1530 static struct pxa2xx_spi_controller *
1531 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1532 {
1533 	struct pxa2xx_spi_controller *pdata;
1534 	struct ssp_device *ssp;
1535 	struct resource *res;
1536 	struct device *parent = pdev->dev.parent;
1537 	struct pci_dev *pcidev = dev_is_pci(parent) ? to_pci_dev(parent) : NULL;
1538 	const struct pci_device_id *pcidev_id = NULL;
1539 	enum pxa_ssp_type type;
1540 	const void *match;
1541 
1542 	if (pcidev)
1543 		pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match, pcidev);
1544 
1545 	match = device_get_match_data(&pdev->dev);
1546 	if (match)
1547 		type = (enum pxa_ssp_type)match;
1548 	else if (pcidev_id)
1549 		type = (enum pxa_ssp_type)pcidev_id->driver_data;
1550 	else
1551 		return ERR_PTR(-EINVAL);
1552 
1553 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1554 	if (!pdata)
1555 		return ERR_PTR(-ENOMEM);
1556 
1557 	ssp = &pdata->ssp;
1558 
1559 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1560 	ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1561 	if (IS_ERR(ssp->mmio_base))
1562 		return ERR_CAST(ssp->mmio_base);
1563 
1564 	ssp->phys_base = res->start;
1565 
1566 #ifdef CONFIG_PCI
1567 	if (pcidev_id) {
1568 		pdata->tx_param = parent;
1569 		pdata->rx_param = parent;
1570 		pdata->dma_filter = pxa2xx_spi_idma_filter;
1571 	}
1572 #endif
1573 
1574 	ssp->clk = devm_clk_get(&pdev->dev, NULL);
1575 	if (IS_ERR(ssp->clk))
1576 		return ERR_CAST(ssp->clk);
1577 
1578 	ssp->irq = platform_get_irq(pdev, 0);
1579 	if (ssp->irq < 0)
1580 		return ERR_PTR(ssp->irq);
1581 
1582 	ssp->type = type;
1583 	ssp->dev = &pdev->dev;
1584 	ssp->port_id = pxa2xx_spi_get_port_id(&pdev->dev);
1585 
1586 	pdata->is_slave = device_property_read_bool(&pdev->dev, "spi-slave");
1587 	pdata->num_chipselect = 1;
1588 	pdata->enable_dma = true;
1589 	pdata->dma_burst_size = 1;
1590 
1591 	return pdata;
1592 }
1593 
1594 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1595 				      unsigned int cs)
1596 {
1597 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1598 
1599 	if (has_acpi_companion(drv_data->ssp->dev)) {
1600 		switch (drv_data->ssp_type) {
1601 		/*
1602 		 * For Atoms the ACPI DeviceSelection used by the Windows
1603 		 * driver starts from 1 instead of 0 so translate it here
1604 		 * to match what Linux expects.
1605 		 */
1606 		case LPSS_BYT_SSP:
1607 		case LPSS_BSW_SSP:
1608 			return cs - 1;
1609 
1610 		default:
1611 			break;
1612 		}
1613 	}
1614 
1615 	return cs;
1616 }
1617 
1618 static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi)
1619 {
1620 	return MAX_DMA_LEN;
1621 }
1622 
1623 static int pxa2xx_spi_probe(struct platform_device *pdev)
1624 {
1625 	struct device *dev = &pdev->dev;
1626 	struct pxa2xx_spi_controller *platform_info;
1627 	struct spi_controller *controller;
1628 	struct driver_data *drv_data;
1629 	struct ssp_device *ssp;
1630 	const struct lpss_config *config;
1631 	int status;
1632 	u32 tmp;
1633 
1634 	platform_info = dev_get_platdata(dev);
1635 	if (!platform_info) {
1636 		platform_info = pxa2xx_spi_init_pdata(pdev);
1637 		if (IS_ERR(platform_info)) {
1638 			dev_err(&pdev->dev, "missing platform data\n");
1639 			return PTR_ERR(platform_info);
1640 		}
1641 	}
1642 
1643 	ssp = pxa_ssp_request(pdev->id, pdev->name);
1644 	if (!ssp)
1645 		ssp = &platform_info->ssp;
1646 
1647 	if (!ssp->mmio_base) {
1648 		dev_err(&pdev->dev, "failed to get SSP\n");
1649 		return -ENODEV;
1650 	}
1651 
1652 	if (platform_info->is_slave)
1653 		controller = devm_spi_alloc_slave(dev, sizeof(*drv_data));
1654 	else
1655 		controller = devm_spi_alloc_master(dev, sizeof(*drv_data));
1656 
1657 	if (!controller) {
1658 		dev_err(&pdev->dev, "cannot alloc spi_controller\n");
1659 		status = -ENOMEM;
1660 		goto out_error_controller_alloc;
1661 	}
1662 	drv_data = spi_controller_get_devdata(controller);
1663 	drv_data->controller = controller;
1664 	drv_data->controller_info = platform_info;
1665 	drv_data->ssp = ssp;
1666 
1667 	device_set_node(&controller->dev, dev_fwnode(dev));
1668 
1669 	/* The spi->mode bits understood by this driver: */
1670 	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1671 
1672 	controller->bus_num = ssp->port_id;
1673 	controller->dma_alignment = DMA_ALIGNMENT;
1674 	controller->cleanup = cleanup;
1675 	controller->setup = setup;
1676 	controller->set_cs = pxa2xx_spi_set_cs;
1677 	controller->transfer_one = pxa2xx_spi_transfer_one;
1678 	controller->slave_abort = pxa2xx_spi_slave_abort;
1679 	controller->handle_err = pxa2xx_spi_handle_err;
1680 	controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1681 	controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1682 	controller->auto_runtime_pm = true;
1683 	controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1684 
1685 	drv_data->ssp_type = ssp->type;
1686 
1687 	if (pxa25x_ssp_comp(drv_data)) {
1688 		switch (drv_data->ssp_type) {
1689 		case QUARK_X1000_SSP:
1690 			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1691 			break;
1692 		default:
1693 			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1694 			break;
1695 		}
1696 
1697 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1698 		drv_data->dma_cr1 = 0;
1699 		drv_data->clear_sr = SSSR_ROR;
1700 		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1701 	} else {
1702 		controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1703 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1704 		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1705 		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1706 		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1707 						| SSSR_ROR | SSSR_TUR;
1708 	}
1709 
1710 	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1711 			drv_data);
1712 	if (status < 0) {
1713 		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1714 		goto out_error_controller_alloc;
1715 	}
1716 
1717 	/* Setup DMA if requested */
1718 	if (platform_info->enable_dma) {
1719 		status = pxa2xx_spi_dma_setup(drv_data);
1720 		if (status) {
1721 			dev_warn(dev, "no DMA channels available, using PIO\n");
1722 			platform_info->enable_dma = false;
1723 		} else {
1724 			controller->can_dma = pxa2xx_spi_can_dma;
1725 			controller->max_dma_len = MAX_DMA_LEN;
1726 			controller->max_transfer_size =
1727 				pxa2xx_spi_max_dma_transfer_size;
1728 		}
1729 	}
1730 
1731 	/* Enable SOC clock */
1732 	status = clk_prepare_enable(ssp->clk);
1733 	if (status)
1734 		goto out_error_dma_irq_alloc;
1735 
1736 	controller->max_speed_hz = clk_get_rate(ssp->clk);
1737 	/*
1738 	 * Set minimum speed for all other platforms than Intel Quark which is
1739 	 * able do under 1 Hz transfers.
1740 	 */
1741 	if (!pxa25x_ssp_comp(drv_data))
1742 		controller->min_speed_hz =
1743 			DIV_ROUND_UP(controller->max_speed_hz, 4096);
1744 	else if (!is_quark_x1000_ssp(drv_data))
1745 		controller->min_speed_hz =
1746 			DIV_ROUND_UP(controller->max_speed_hz, 512);
1747 
1748 	pxa_ssp_disable(ssp);
1749 
1750 	/* Load default SSP configuration */
1751 	switch (drv_data->ssp_type) {
1752 	case QUARK_X1000_SSP:
1753 		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1754 		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1755 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1756 
1757 		/* Using the Motorola SPI protocol and use 8 bit frame */
1758 		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1759 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1760 		break;
1761 	case CE4100_SSP:
1762 		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1763 		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1764 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1765 		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1766 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1767 		break;
1768 	default:
1769 
1770 		if (spi_controller_is_slave(controller)) {
1771 			tmp = SSCR1_SCFR |
1772 			      SSCR1_SCLKDIR |
1773 			      SSCR1_SFRMDIR |
1774 			      SSCR1_RxTresh(2) |
1775 			      SSCR1_TxTresh(1) |
1776 			      SSCR1_SPH;
1777 		} else {
1778 			tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1779 			      SSCR1_TxTresh(TX_THRESH_DFLT);
1780 		}
1781 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1782 		tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1783 		if (!spi_controller_is_slave(controller))
1784 			tmp |= SSCR0_SCR(2);
1785 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1786 		break;
1787 	}
1788 
1789 	if (!pxa25x_ssp_comp(drv_data))
1790 		pxa2xx_spi_write(drv_data, SSTO, 0);
1791 
1792 	if (!is_quark_x1000_ssp(drv_data))
1793 		pxa2xx_spi_write(drv_data, SSPSP, 0);
1794 
1795 	if (is_lpss_ssp(drv_data)) {
1796 		lpss_ssp_setup(drv_data);
1797 		config = lpss_get_config(drv_data);
1798 		if (config->reg_capabilities >= 0) {
1799 			tmp = __lpss_ssp_read_priv(drv_data,
1800 						   config->reg_capabilities);
1801 			tmp &= LPSS_CAPS_CS_EN_MASK;
1802 			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1803 			platform_info->num_chipselect = ffz(tmp);
1804 		} else if (config->cs_num) {
1805 			platform_info->num_chipselect = config->cs_num;
1806 		}
1807 	}
1808 	controller->num_chipselect = platform_info->num_chipselect;
1809 	controller->use_gpio_descriptors = true;
1810 
1811 	if (platform_info->is_slave) {
1812 		drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1813 						"ready", GPIOD_OUT_LOW);
1814 		if (IS_ERR(drv_data->gpiod_ready)) {
1815 			status = PTR_ERR(drv_data->gpiod_ready);
1816 			goto out_error_clock_enabled;
1817 		}
1818 	}
1819 
1820 	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1821 	pm_runtime_use_autosuspend(&pdev->dev);
1822 	pm_runtime_set_active(&pdev->dev);
1823 	pm_runtime_enable(&pdev->dev);
1824 
1825 	/* Register with the SPI framework */
1826 	platform_set_drvdata(pdev, drv_data);
1827 	status = spi_register_controller(controller);
1828 	if (status) {
1829 		dev_err(&pdev->dev, "problem registering SPI controller\n");
1830 		goto out_error_pm_runtime_enabled;
1831 	}
1832 
1833 	return status;
1834 
1835 out_error_pm_runtime_enabled:
1836 	pm_runtime_disable(&pdev->dev);
1837 
1838 out_error_clock_enabled:
1839 	clk_disable_unprepare(ssp->clk);
1840 
1841 out_error_dma_irq_alloc:
1842 	pxa2xx_spi_dma_release(drv_data);
1843 	free_irq(ssp->irq, drv_data);
1844 
1845 out_error_controller_alloc:
1846 	pxa_ssp_free(ssp);
1847 	return status;
1848 }
1849 
1850 static int pxa2xx_spi_remove(struct platform_device *pdev)
1851 {
1852 	struct driver_data *drv_data = platform_get_drvdata(pdev);
1853 	struct ssp_device *ssp = drv_data->ssp;
1854 
1855 	pm_runtime_get_sync(&pdev->dev);
1856 
1857 	spi_unregister_controller(drv_data->controller);
1858 
1859 	/* Disable the SSP at the peripheral and SOC level */
1860 	pxa_ssp_disable(ssp);
1861 	clk_disable_unprepare(ssp->clk);
1862 
1863 	/* Release DMA */
1864 	if (drv_data->controller_info->enable_dma)
1865 		pxa2xx_spi_dma_release(drv_data);
1866 
1867 	pm_runtime_put_noidle(&pdev->dev);
1868 	pm_runtime_disable(&pdev->dev);
1869 
1870 	/* Release IRQ */
1871 	free_irq(ssp->irq, drv_data);
1872 
1873 	/* Release SSP */
1874 	pxa_ssp_free(ssp);
1875 
1876 	return 0;
1877 }
1878 
1879 #ifdef CONFIG_PM_SLEEP
1880 static int pxa2xx_spi_suspend(struct device *dev)
1881 {
1882 	struct driver_data *drv_data = dev_get_drvdata(dev);
1883 	struct ssp_device *ssp = drv_data->ssp;
1884 	int status;
1885 
1886 	status = spi_controller_suspend(drv_data->controller);
1887 	if (status)
1888 		return status;
1889 
1890 	pxa_ssp_disable(ssp);
1891 
1892 	if (!pm_runtime_suspended(dev))
1893 		clk_disable_unprepare(ssp->clk);
1894 
1895 	return 0;
1896 }
1897 
1898 static int pxa2xx_spi_resume(struct device *dev)
1899 {
1900 	struct driver_data *drv_data = dev_get_drvdata(dev);
1901 	struct ssp_device *ssp = drv_data->ssp;
1902 	int status;
1903 
1904 	/* Enable the SSP clock */
1905 	if (!pm_runtime_suspended(dev)) {
1906 		status = clk_prepare_enable(ssp->clk);
1907 		if (status)
1908 			return status;
1909 	}
1910 
1911 	/* Start the queue running */
1912 	return spi_controller_resume(drv_data->controller);
1913 }
1914 #endif
1915 
1916 #ifdef CONFIG_PM
1917 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1918 {
1919 	struct driver_data *drv_data = dev_get_drvdata(dev);
1920 
1921 	clk_disable_unprepare(drv_data->ssp->clk);
1922 	return 0;
1923 }
1924 
1925 static int pxa2xx_spi_runtime_resume(struct device *dev)
1926 {
1927 	struct driver_data *drv_data = dev_get_drvdata(dev);
1928 	int status;
1929 
1930 	status = clk_prepare_enable(drv_data->ssp->clk);
1931 	return status;
1932 }
1933 #endif
1934 
1935 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1936 	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1937 	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1938 			   pxa2xx_spi_runtime_resume, NULL)
1939 };
1940 
1941 static struct platform_driver driver = {
1942 	.driver = {
1943 		.name	= "pxa2xx-spi",
1944 		.pm	= &pxa2xx_spi_pm_ops,
1945 		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1946 		.of_match_table = of_match_ptr(pxa2xx_spi_of_match),
1947 	},
1948 	.probe = pxa2xx_spi_probe,
1949 	.remove = pxa2xx_spi_remove,
1950 };
1951 
1952 static int __init pxa2xx_spi_init(void)
1953 {
1954 	return platform_driver_register(&driver);
1955 }
1956 subsys_initcall(pxa2xx_spi_init);
1957 
1958 static void __exit pxa2xx_spi_exit(void)
1959 {
1960 	platform_driver_unregister(&driver);
1961 }
1962 module_exit(pxa2xx_spi_exit);
1963 
1964 MODULE_SOFTDEP("pre: dw_dmac");
1965