xref: /openbmc/linux/drivers/spi/spi-pxa2xx.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4  * Copyright (C) 2013, Intel Corporation
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/bitops.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/err.h>
13 #include <linux/errno.h>
14 #include <linux/gpio/consumer.h>
15 #include <linux/gpio.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/ioport.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/mod_devicetable.h>
22 #include <linux/of.h>
23 #include <linux/pci.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/property.h>
27 #include <linux/slab.h>
28 #include <linux/spi/pxa2xx_spi.h>
29 #include <linux/spi/spi.h>
30 
31 #include "spi-pxa2xx.h"
32 
33 MODULE_AUTHOR("Stephen Street");
34 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
35 MODULE_LICENSE("GPL");
36 MODULE_ALIAS("platform:pxa2xx-spi");
37 
38 #define TIMOUT_DFLT		1000
39 
40 /*
41  * for testing SSCR1 changes that require SSP restart, basically
42  * everything except the service and interrupt enables, the pxa270 developer
43  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
44  * list, but the PXA255 dev man says all bits without really meaning the
45  * service and interrupt enables
46  */
47 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
48 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
49 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
50 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
51 				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
52 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
53 
54 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
55 				| QUARK_X1000_SSCR1_EFWR	\
56 				| QUARK_X1000_SSCR1_RFT		\
57 				| QUARK_X1000_SSCR1_TFT		\
58 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
59 
60 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
61 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
62 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
63 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
64 				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
65 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
66 
67 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
68 #define LPSS_CS_CONTROL_SW_MODE			BIT(0)
69 #define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
70 #define LPSS_CAPS_CS_EN_SHIFT			9
71 #define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
72 
73 struct lpss_config {
74 	/* LPSS offset from drv_data->ioaddr */
75 	unsigned offset;
76 	/* Register offsets from drv_data->lpss_base or -1 */
77 	int reg_general;
78 	int reg_ssp;
79 	int reg_cs_ctrl;
80 	int reg_capabilities;
81 	/* FIFO thresholds */
82 	u32 rx_threshold;
83 	u32 tx_threshold_lo;
84 	u32 tx_threshold_hi;
85 	/* Chip select control */
86 	unsigned cs_sel_shift;
87 	unsigned cs_sel_mask;
88 	unsigned cs_num;
89 };
90 
91 /* Keep these sorted with enum pxa_ssp_type */
92 static const struct lpss_config lpss_platforms[] = {
93 	{	/* LPSS_LPT_SSP */
94 		.offset = 0x800,
95 		.reg_general = 0x08,
96 		.reg_ssp = 0x0c,
97 		.reg_cs_ctrl = 0x18,
98 		.reg_capabilities = -1,
99 		.rx_threshold = 64,
100 		.tx_threshold_lo = 160,
101 		.tx_threshold_hi = 224,
102 	},
103 	{	/* LPSS_BYT_SSP */
104 		.offset = 0x400,
105 		.reg_general = 0x08,
106 		.reg_ssp = 0x0c,
107 		.reg_cs_ctrl = 0x18,
108 		.reg_capabilities = -1,
109 		.rx_threshold = 64,
110 		.tx_threshold_lo = 160,
111 		.tx_threshold_hi = 224,
112 	},
113 	{	/* LPSS_BSW_SSP */
114 		.offset = 0x400,
115 		.reg_general = 0x08,
116 		.reg_ssp = 0x0c,
117 		.reg_cs_ctrl = 0x18,
118 		.reg_capabilities = -1,
119 		.rx_threshold = 64,
120 		.tx_threshold_lo = 160,
121 		.tx_threshold_hi = 224,
122 		.cs_sel_shift = 2,
123 		.cs_sel_mask = 1 << 2,
124 		.cs_num = 2,
125 	},
126 	{	/* LPSS_SPT_SSP */
127 		.offset = 0x200,
128 		.reg_general = -1,
129 		.reg_ssp = 0x20,
130 		.reg_cs_ctrl = 0x24,
131 		.reg_capabilities = -1,
132 		.rx_threshold = 1,
133 		.tx_threshold_lo = 32,
134 		.tx_threshold_hi = 56,
135 	},
136 	{	/* LPSS_BXT_SSP */
137 		.offset = 0x200,
138 		.reg_general = -1,
139 		.reg_ssp = 0x20,
140 		.reg_cs_ctrl = 0x24,
141 		.reg_capabilities = 0xfc,
142 		.rx_threshold = 1,
143 		.tx_threshold_lo = 16,
144 		.tx_threshold_hi = 48,
145 		.cs_sel_shift = 8,
146 		.cs_sel_mask = 3 << 8,
147 	},
148 	{	/* LPSS_CNL_SSP */
149 		.offset = 0x200,
150 		.reg_general = -1,
151 		.reg_ssp = 0x20,
152 		.reg_cs_ctrl = 0x24,
153 		.reg_capabilities = 0xfc,
154 		.rx_threshold = 1,
155 		.tx_threshold_lo = 32,
156 		.tx_threshold_hi = 56,
157 		.cs_sel_shift = 8,
158 		.cs_sel_mask = 3 << 8,
159 	},
160 };
161 
162 static inline const struct lpss_config
163 *lpss_get_config(const struct driver_data *drv_data)
164 {
165 	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
166 }
167 
168 static bool is_lpss_ssp(const struct driver_data *drv_data)
169 {
170 	switch (drv_data->ssp_type) {
171 	case LPSS_LPT_SSP:
172 	case LPSS_BYT_SSP:
173 	case LPSS_BSW_SSP:
174 	case LPSS_SPT_SSP:
175 	case LPSS_BXT_SSP:
176 	case LPSS_CNL_SSP:
177 		return true;
178 	default:
179 		return false;
180 	}
181 }
182 
183 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
184 {
185 	return drv_data->ssp_type == QUARK_X1000_SSP;
186 }
187 
188 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
189 {
190 	switch (drv_data->ssp_type) {
191 	case QUARK_X1000_SSP:
192 		return QUARK_X1000_SSCR1_CHANGE_MASK;
193 	case CE4100_SSP:
194 		return CE4100_SSCR1_CHANGE_MASK;
195 	default:
196 		return SSCR1_CHANGE_MASK;
197 	}
198 }
199 
200 static u32
201 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
202 {
203 	switch (drv_data->ssp_type) {
204 	case QUARK_X1000_SSP:
205 		return RX_THRESH_QUARK_X1000_DFLT;
206 	case CE4100_SSP:
207 		return RX_THRESH_CE4100_DFLT;
208 	default:
209 		return RX_THRESH_DFLT;
210 	}
211 }
212 
213 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
214 {
215 	u32 mask;
216 
217 	switch (drv_data->ssp_type) {
218 	case QUARK_X1000_SSP:
219 		mask = QUARK_X1000_SSSR_TFL_MASK;
220 		break;
221 	case CE4100_SSP:
222 		mask = CE4100_SSSR_TFL_MASK;
223 		break;
224 	default:
225 		mask = SSSR_TFL_MASK;
226 		break;
227 	}
228 
229 	return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
230 }
231 
232 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
233 				     u32 *sccr1_reg)
234 {
235 	u32 mask;
236 
237 	switch (drv_data->ssp_type) {
238 	case QUARK_X1000_SSP:
239 		mask = QUARK_X1000_SSCR1_RFT;
240 		break;
241 	case CE4100_SSP:
242 		mask = CE4100_SSCR1_RFT;
243 		break;
244 	default:
245 		mask = SSCR1_RFT;
246 		break;
247 	}
248 	*sccr1_reg &= ~mask;
249 }
250 
251 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
252 				   u32 *sccr1_reg, u32 threshold)
253 {
254 	switch (drv_data->ssp_type) {
255 	case QUARK_X1000_SSP:
256 		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
257 		break;
258 	case CE4100_SSP:
259 		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
260 		break;
261 	default:
262 		*sccr1_reg |= SSCR1_RxTresh(threshold);
263 		break;
264 	}
265 }
266 
267 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
268 				  u32 clk_div, u8 bits)
269 {
270 	switch (drv_data->ssp_type) {
271 	case QUARK_X1000_SSP:
272 		return clk_div
273 			| QUARK_X1000_SSCR0_Motorola
274 			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
275 			| SSCR0_SSE;
276 	default:
277 		return clk_div
278 			| SSCR0_Motorola
279 			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
280 			| SSCR0_SSE
281 			| (bits > 16 ? SSCR0_EDSS : 0);
282 	}
283 }
284 
285 /*
286  * Read and write LPSS SSP private registers. Caller must first check that
287  * is_lpss_ssp() returns true before these can be called.
288  */
289 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
290 {
291 	WARN_ON(!drv_data->lpss_base);
292 	return readl(drv_data->lpss_base + offset);
293 }
294 
295 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
296 				  unsigned offset, u32 value)
297 {
298 	WARN_ON(!drv_data->lpss_base);
299 	writel(value, drv_data->lpss_base + offset);
300 }
301 
302 /*
303  * lpss_ssp_setup - perform LPSS SSP specific setup
304  * @drv_data: pointer to the driver private data
305  *
306  * Perform LPSS SSP specific setup. This function must be called first if
307  * one is going to use LPSS SSP private registers.
308  */
309 static void lpss_ssp_setup(struct driver_data *drv_data)
310 {
311 	const struct lpss_config *config;
312 	u32 value;
313 
314 	config = lpss_get_config(drv_data);
315 	drv_data->lpss_base = drv_data->ioaddr + config->offset;
316 
317 	/* Enable software chip select control */
318 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
319 	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
320 	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
321 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
322 
323 	/* Enable multiblock DMA transfers */
324 	if (drv_data->controller_info->enable_dma) {
325 		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
326 
327 		if (config->reg_general >= 0) {
328 			value = __lpss_ssp_read_priv(drv_data,
329 						     config->reg_general);
330 			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
331 			__lpss_ssp_write_priv(drv_data,
332 					      config->reg_general, value);
333 		}
334 	}
335 }
336 
337 static void lpss_ssp_select_cs(struct spi_device *spi,
338 			       const struct lpss_config *config)
339 {
340 	struct driver_data *drv_data =
341 		spi_controller_get_devdata(spi->controller);
342 	u32 value, cs;
343 
344 	if (!config->cs_sel_mask)
345 		return;
346 
347 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
348 
349 	cs = spi->chip_select;
350 	cs <<= config->cs_sel_shift;
351 	if (cs != (value & config->cs_sel_mask)) {
352 		/*
353 		 * When switching another chip select output active the
354 		 * output must be selected first and wait 2 ssp_clk cycles
355 		 * before changing state to active. Otherwise a short
356 		 * glitch will occur on the previous chip select since
357 		 * output select is latched but state control is not.
358 		 */
359 		value &= ~config->cs_sel_mask;
360 		value |= cs;
361 		__lpss_ssp_write_priv(drv_data,
362 				      config->reg_cs_ctrl, value);
363 		ndelay(1000000000 /
364 		       (drv_data->controller->max_speed_hz / 2));
365 	}
366 }
367 
368 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
369 {
370 	struct driver_data *drv_data =
371 		spi_controller_get_devdata(spi->controller);
372 	const struct lpss_config *config;
373 	u32 value;
374 
375 	config = lpss_get_config(drv_data);
376 
377 	if (enable)
378 		lpss_ssp_select_cs(spi, config);
379 
380 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
381 	if (enable)
382 		value &= ~LPSS_CS_CONTROL_CS_HIGH;
383 	else
384 		value |= LPSS_CS_CONTROL_CS_HIGH;
385 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
386 }
387 
388 static void cs_assert(struct spi_device *spi)
389 {
390 	struct chip_data *chip = spi_get_ctldata(spi);
391 	struct driver_data *drv_data =
392 		spi_controller_get_devdata(spi->controller);
393 
394 	if (drv_data->ssp_type == CE4100_SSP) {
395 		pxa2xx_spi_write(drv_data, SSSR, chip->frm);
396 		return;
397 	}
398 
399 	if (chip->cs_control) {
400 		chip->cs_control(PXA2XX_CS_ASSERT);
401 		return;
402 	}
403 
404 	if (chip->gpiod_cs) {
405 		gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted);
406 		return;
407 	}
408 
409 	if (is_lpss_ssp(drv_data))
410 		lpss_ssp_cs_control(spi, true);
411 }
412 
413 static void cs_deassert(struct spi_device *spi)
414 {
415 	struct chip_data *chip = spi_get_ctldata(spi);
416 	struct driver_data *drv_data =
417 		spi_controller_get_devdata(spi->controller);
418 	unsigned long timeout;
419 
420 	if (drv_data->ssp_type == CE4100_SSP)
421 		return;
422 
423 	/* Wait until SSP becomes idle before deasserting the CS */
424 	timeout = jiffies + msecs_to_jiffies(10);
425 	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
426 	       !time_after(jiffies, timeout))
427 		cpu_relax();
428 
429 	if (chip->cs_control) {
430 		chip->cs_control(PXA2XX_CS_DEASSERT);
431 		return;
432 	}
433 
434 	if (chip->gpiod_cs) {
435 		gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted);
436 		return;
437 	}
438 
439 	if (is_lpss_ssp(drv_data))
440 		lpss_ssp_cs_control(spi, false);
441 }
442 
443 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
444 {
445 	if (level)
446 		cs_deassert(spi);
447 	else
448 		cs_assert(spi);
449 }
450 
451 int pxa2xx_spi_flush(struct driver_data *drv_data)
452 {
453 	unsigned long limit = loops_per_jiffy << 1;
454 
455 	do {
456 		while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
457 			pxa2xx_spi_read(drv_data, SSDR);
458 	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
459 	write_SSSR_CS(drv_data, SSSR_ROR);
460 
461 	return limit;
462 }
463 
464 static void pxa2xx_spi_off(struct driver_data *drv_data)
465 {
466 	/* On MMP, disabling SSE seems to corrupt the rx fifo */
467 	if (drv_data->ssp_type == MMP2_SSP)
468 		return;
469 
470 	pxa2xx_spi_write(drv_data, SSCR0,
471 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
472 }
473 
474 static int null_writer(struct driver_data *drv_data)
475 {
476 	u8 n_bytes = drv_data->n_bytes;
477 
478 	if (pxa2xx_spi_txfifo_full(drv_data)
479 		|| (drv_data->tx == drv_data->tx_end))
480 		return 0;
481 
482 	pxa2xx_spi_write(drv_data, SSDR, 0);
483 	drv_data->tx += n_bytes;
484 
485 	return 1;
486 }
487 
488 static int null_reader(struct driver_data *drv_data)
489 {
490 	u8 n_bytes = drv_data->n_bytes;
491 
492 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
493 	       && (drv_data->rx < drv_data->rx_end)) {
494 		pxa2xx_spi_read(drv_data, SSDR);
495 		drv_data->rx += n_bytes;
496 	}
497 
498 	return drv_data->rx == drv_data->rx_end;
499 }
500 
501 static int u8_writer(struct driver_data *drv_data)
502 {
503 	if (pxa2xx_spi_txfifo_full(drv_data)
504 		|| (drv_data->tx == drv_data->tx_end))
505 		return 0;
506 
507 	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
508 	++drv_data->tx;
509 
510 	return 1;
511 }
512 
513 static int u8_reader(struct driver_data *drv_data)
514 {
515 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
516 	       && (drv_data->rx < drv_data->rx_end)) {
517 		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
518 		++drv_data->rx;
519 	}
520 
521 	return drv_data->rx == drv_data->rx_end;
522 }
523 
524 static int u16_writer(struct driver_data *drv_data)
525 {
526 	if (pxa2xx_spi_txfifo_full(drv_data)
527 		|| (drv_data->tx == drv_data->tx_end))
528 		return 0;
529 
530 	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
531 	drv_data->tx += 2;
532 
533 	return 1;
534 }
535 
536 static int u16_reader(struct driver_data *drv_data)
537 {
538 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
539 	       && (drv_data->rx < drv_data->rx_end)) {
540 		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
541 		drv_data->rx += 2;
542 	}
543 
544 	return drv_data->rx == drv_data->rx_end;
545 }
546 
547 static int u32_writer(struct driver_data *drv_data)
548 {
549 	if (pxa2xx_spi_txfifo_full(drv_data)
550 		|| (drv_data->tx == drv_data->tx_end))
551 		return 0;
552 
553 	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
554 	drv_data->tx += 4;
555 
556 	return 1;
557 }
558 
559 static int u32_reader(struct driver_data *drv_data)
560 {
561 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
562 	       && (drv_data->rx < drv_data->rx_end)) {
563 		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
564 		drv_data->rx += 4;
565 	}
566 
567 	return drv_data->rx == drv_data->rx_end;
568 }
569 
570 static void reset_sccr1(struct driver_data *drv_data)
571 {
572 	struct chip_data *chip =
573 		spi_get_ctldata(drv_data->controller->cur_msg->spi);
574 	u32 sccr1_reg;
575 
576 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
577 	switch (drv_data->ssp_type) {
578 	case QUARK_X1000_SSP:
579 		sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
580 		break;
581 	case CE4100_SSP:
582 		sccr1_reg &= ~CE4100_SSCR1_RFT;
583 		break;
584 	default:
585 		sccr1_reg &= ~SSCR1_RFT;
586 		break;
587 	}
588 	sccr1_reg |= chip->threshold;
589 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
590 }
591 
592 static void int_error_stop(struct driver_data *drv_data, const char* msg)
593 {
594 	/* Stop and reset SSP */
595 	write_SSSR_CS(drv_data, drv_data->clear_sr);
596 	reset_sccr1(drv_data);
597 	if (!pxa25x_ssp_comp(drv_data))
598 		pxa2xx_spi_write(drv_data, SSTO, 0);
599 	pxa2xx_spi_flush(drv_data);
600 	pxa2xx_spi_off(drv_data);
601 
602 	dev_err(&drv_data->pdev->dev, "%s\n", msg);
603 
604 	drv_data->controller->cur_msg->status = -EIO;
605 	spi_finalize_current_transfer(drv_data->controller);
606 }
607 
608 static void int_transfer_complete(struct driver_data *drv_data)
609 {
610 	/* Clear and disable interrupts */
611 	write_SSSR_CS(drv_data, drv_data->clear_sr);
612 	reset_sccr1(drv_data);
613 	if (!pxa25x_ssp_comp(drv_data))
614 		pxa2xx_spi_write(drv_data, SSTO, 0);
615 
616 	spi_finalize_current_transfer(drv_data->controller);
617 }
618 
619 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
620 {
621 	u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
622 		       drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
623 
624 	u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
625 
626 	if (irq_status & SSSR_ROR) {
627 		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
628 		return IRQ_HANDLED;
629 	}
630 
631 	if (irq_status & SSSR_TUR) {
632 		int_error_stop(drv_data, "interrupt_transfer: fifo underrun");
633 		return IRQ_HANDLED;
634 	}
635 
636 	if (irq_status & SSSR_TINT) {
637 		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
638 		if (drv_data->read(drv_data)) {
639 			int_transfer_complete(drv_data);
640 			return IRQ_HANDLED;
641 		}
642 	}
643 
644 	/* Drain rx fifo, Fill tx fifo and prevent overruns */
645 	do {
646 		if (drv_data->read(drv_data)) {
647 			int_transfer_complete(drv_data);
648 			return IRQ_HANDLED;
649 		}
650 	} while (drv_data->write(drv_data));
651 
652 	if (drv_data->read(drv_data)) {
653 		int_transfer_complete(drv_data);
654 		return IRQ_HANDLED;
655 	}
656 
657 	if (drv_data->tx == drv_data->tx_end) {
658 		u32 bytes_left;
659 		u32 sccr1_reg;
660 
661 		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
662 		sccr1_reg &= ~SSCR1_TIE;
663 
664 		/*
665 		 * PXA25x_SSP has no timeout, set up rx threshould for the
666 		 * remaining RX bytes.
667 		 */
668 		if (pxa25x_ssp_comp(drv_data)) {
669 			u32 rx_thre;
670 
671 			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
672 
673 			bytes_left = drv_data->rx_end - drv_data->rx;
674 			switch (drv_data->n_bytes) {
675 			case 4:
676 				bytes_left >>= 2;
677 				break;
678 			case 2:
679 				bytes_left >>= 1;
680 				break;
681 			}
682 
683 			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
684 			if (rx_thre > bytes_left)
685 				rx_thre = bytes_left;
686 
687 			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
688 		}
689 		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
690 	}
691 
692 	/* We did something */
693 	return IRQ_HANDLED;
694 }
695 
696 static void handle_bad_msg(struct driver_data *drv_data)
697 {
698 	pxa2xx_spi_off(drv_data);
699 	pxa2xx_spi_write(drv_data, SSCR1,
700 			 pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1);
701 	if (!pxa25x_ssp_comp(drv_data))
702 		pxa2xx_spi_write(drv_data, SSTO, 0);
703 	write_SSSR_CS(drv_data, drv_data->clear_sr);
704 
705 	dev_err(&drv_data->pdev->dev,
706 		"bad message state in interrupt handler\n");
707 }
708 
709 static irqreturn_t ssp_int(int irq, void *dev_id)
710 {
711 	struct driver_data *drv_data = dev_id;
712 	u32 sccr1_reg;
713 	u32 mask = drv_data->mask_sr;
714 	u32 status;
715 
716 	/*
717 	 * The IRQ might be shared with other peripherals so we must first
718 	 * check that are we RPM suspended or not. If we are we assume that
719 	 * the IRQ was not for us (we shouldn't be RPM suspended when the
720 	 * interrupt is enabled).
721 	 */
722 	if (pm_runtime_suspended(&drv_data->pdev->dev))
723 		return IRQ_NONE;
724 
725 	/*
726 	 * If the device is not yet in RPM suspended state and we get an
727 	 * interrupt that is meant for another device, check if status bits
728 	 * are all set to one. That means that the device is already
729 	 * powered off.
730 	 */
731 	status = pxa2xx_spi_read(drv_data, SSSR);
732 	if (status == ~0)
733 		return IRQ_NONE;
734 
735 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
736 
737 	/* Ignore possible writes if we don't need to write */
738 	if (!(sccr1_reg & SSCR1_TIE))
739 		mask &= ~SSSR_TFS;
740 
741 	/* Ignore RX timeout interrupt if it is disabled */
742 	if (!(sccr1_reg & SSCR1_TINTE))
743 		mask &= ~SSSR_TINT;
744 
745 	if (!(status & mask))
746 		return IRQ_NONE;
747 
748 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
749 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
750 
751 	if (!drv_data->controller->cur_msg) {
752 		handle_bad_msg(drv_data);
753 		/* Never fail */
754 		return IRQ_HANDLED;
755 	}
756 
757 	return drv_data->transfer_handler(drv_data);
758 }
759 
760 /*
761  * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
762  * input frequency by fractions of 2^24. It also has a divider by 5.
763  *
764  * There are formulas to get baud rate value for given input frequency and
765  * divider parameters, such as DDS_CLK_RATE and SCR:
766  *
767  * Fsys = 200MHz
768  *
769  * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
770  * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
771  *
772  * DDS_CLK_RATE either 2^n or 2^n / 5.
773  * SCR is in range 0 .. 255
774  *
775  * Divisor = 5^i * 2^j * 2 * k
776  *       i = [0, 1]      i = 1 iff j = 0 or j > 3
777  *       j = [0, 23]     j = 0 iff i = 1
778  *       k = [1, 256]
779  * Special case: j = 0, i = 1: Divisor = 2 / 5
780  *
781  * Accordingly to the specification the recommended values for DDS_CLK_RATE
782  * are:
783  *	Case 1:		2^n, n = [0, 23]
784  *	Case 2:		2^24 * 2 / 5 (0x666666)
785  *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
786  *
787  * In all cases the lowest possible value is better.
788  *
789  * The function calculates parameters for all cases and chooses the one closest
790  * to the asked baud rate.
791  */
792 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
793 {
794 	unsigned long xtal = 200000000;
795 	unsigned long fref = xtal / 2;		/* mandatory division by 2,
796 						   see (2) */
797 						/* case 3 */
798 	unsigned long fref1 = fref / 2;		/* case 1 */
799 	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
800 	unsigned long scale;
801 	unsigned long q, q1, q2;
802 	long r, r1, r2;
803 	u32 mul;
804 
805 	/* Case 1 */
806 
807 	/* Set initial value for DDS_CLK_RATE */
808 	mul = (1 << 24) >> 1;
809 
810 	/* Calculate initial quot */
811 	q1 = DIV_ROUND_UP(fref1, rate);
812 
813 	/* Scale q1 if it's too big */
814 	if (q1 > 256) {
815 		/* Scale q1 to range [1, 512] */
816 		scale = fls_long(q1 - 1);
817 		if (scale > 9) {
818 			q1 >>= scale - 9;
819 			mul >>= scale - 9;
820 		}
821 
822 		/* Round the result if we have a remainder */
823 		q1 += q1 & 1;
824 	}
825 
826 	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
827 	scale = __ffs(q1);
828 	q1 >>= scale;
829 	mul >>= scale;
830 
831 	/* Get the remainder */
832 	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
833 
834 	/* Case 2 */
835 
836 	q2 = DIV_ROUND_UP(fref2, rate);
837 	r2 = abs(fref2 / q2 - rate);
838 
839 	/*
840 	 * Choose the best between two: less remainder we have the better. We
841 	 * can't go case 2 if q2 is greater than 256 since SCR register can
842 	 * hold only values 0 .. 255.
843 	 */
844 	if (r2 >= r1 || q2 > 256) {
845 		/* case 1 is better */
846 		r = r1;
847 		q = q1;
848 	} else {
849 		/* case 2 is better */
850 		r = r2;
851 		q = q2;
852 		mul = (1 << 24) * 2 / 5;
853 	}
854 
855 	/* Check case 3 only if the divisor is big enough */
856 	if (fref / rate >= 80) {
857 		u64 fssp;
858 		u32 m;
859 
860 		/* Calculate initial quot */
861 		q1 = DIV_ROUND_UP(fref, rate);
862 		m = (1 << 24) / q1;
863 
864 		/* Get the remainder */
865 		fssp = (u64)fref * m;
866 		do_div(fssp, 1 << 24);
867 		r1 = abs(fssp - rate);
868 
869 		/* Choose this one if it suits better */
870 		if (r1 < r) {
871 			/* case 3 is better */
872 			q = 1;
873 			mul = m;
874 		}
875 	}
876 
877 	*dds = mul;
878 	return q - 1;
879 }
880 
881 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
882 {
883 	unsigned long ssp_clk = drv_data->controller->max_speed_hz;
884 	const struct ssp_device *ssp = drv_data->ssp;
885 
886 	rate = min_t(int, ssp_clk, rate);
887 
888 	/*
889 	 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
890 	 * that the SSP transmission rate can be greater than the device rate
891 	 */
892 	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
893 		return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
894 	else
895 		return (DIV_ROUND_UP(ssp_clk, rate) - 1)  & 0xfff;
896 }
897 
898 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
899 					   int rate)
900 {
901 	struct chip_data *chip =
902 		spi_get_ctldata(drv_data->controller->cur_msg->spi);
903 	unsigned int clk_div;
904 
905 	switch (drv_data->ssp_type) {
906 	case QUARK_X1000_SSP:
907 		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
908 		break;
909 	default:
910 		clk_div = ssp_get_clk_div(drv_data, rate);
911 		break;
912 	}
913 	return clk_div << 8;
914 }
915 
916 static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
917 			       struct spi_device *spi,
918 			       struct spi_transfer *xfer)
919 {
920 	struct chip_data *chip = spi_get_ctldata(spi);
921 
922 	return chip->enable_dma &&
923 	       xfer->len <= MAX_DMA_LEN &&
924 	       xfer->len >= chip->dma_burst_size;
925 }
926 
927 static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
928 				   struct spi_device *spi,
929 				   struct spi_transfer *transfer)
930 {
931 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
932 	struct spi_message *message = controller->cur_msg;
933 	struct chip_data *chip = spi_get_ctldata(spi);
934 	u32 dma_thresh = chip->dma_threshold;
935 	u32 dma_burst = chip->dma_burst_size;
936 	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
937 	u32 clk_div;
938 	u8 bits;
939 	u32 speed;
940 	u32 cr0;
941 	u32 cr1;
942 	int err;
943 	int dma_mapped;
944 
945 	/* Check if we can DMA this transfer */
946 	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
947 
948 		/* reject already-mapped transfers; PIO won't always work */
949 		if (message->is_dma_mapped
950 				|| transfer->rx_dma || transfer->tx_dma) {
951 			dev_err(&spi->dev,
952 				"Mapped transfer length of %u is greater than %d\n",
953 				transfer->len, MAX_DMA_LEN);
954 			return -EINVAL;
955 		}
956 
957 		/* warn ... we force this to PIO mode */
958 		dev_warn_ratelimited(&spi->dev,
959 				     "DMA disabled for transfer length %ld greater than %d\n",
960 				     (long)transfer->len, MAX_DMA_LEN);
961 	}
962 
963 	/* Setup the transfer state based on the type of transfer */
964 	if (pxa2xx_spi_flush(drv_data) == 0) {
965 		dev_err(&spi->dev, "Flush failed\n");
966 		return -EIO;
967 	}
968 	drv_data->n_bytes = chip->n_bytes;
969 	drv_data->tx = (void *)transfer->tx_buf;
970 	drv_data->tx_end = drv_data->tx + transfer->len;
971 	drv_data->rx = transfer->rx_buf;
972 	drv_data->rx_end = drv_data->rx + transfer->len;
973 	drv_data->write = drv_data->tx ? chip->write : null_writer;
974 	drv_data->read = drv_data->rx ? chip->read : null_reader;
975 
976 	/* Change speed and bit per word on a per transfer */
977 	bits = transfer->bits_per_word;
978 	speed = transfer->speed_hz;
979 
980 	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
981 
982 	if (bits <= 8) {
983 		drv_data->n_bytes = 1;
984 		drv_data->read = drv_data->read != null_reader ?
985 					u8_reader : null_reader;
986 		drv_data->write = drv_data->write != null_writer ?
987 					u8_writer : null_writer;
988 	} else if (bits <= 16) {
989 		drv_data->n_bytes = 2;
990 		drv_data->read = drv_data->read != null_reader ?
991 					u16_reader : null_reader;
992 		drv_data->write = drv_data->write != null_writer ?
993 					u16_writer : null_writer;
994 	} else if (bits <= 32) {
995 		drv_data->n_bytes = 4;
996 		drv_data->read = drv_data->read != null_reader ?
997 					u32_reader : null_reader;
998 		drv_data->write = drv_data->write != null_writer ?
999 					u32_writer : null_writer;
1000 	}
1001 	/*
1002 	 * if bits/word is changed in dma mode, then must check the
1003 	 * thresholds and burst also
1004 	 */
1005 	if (chip->enable_dma) {
1006 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1007 						spi,
1008 						bits, &dma_burst,
1009 						&dma_thresh))
1010 			dev_warn_ratelimited(&spi->dev,
1011 					     "DMA burst size reduced to match bits_per_word\n");
1012 	}
1013 
1014 	dma_mapped = controller->can_dma &&
1015 		     controller->can_dma(controller, spi, transfer) &&
1016 		     controller->cur_msg_mapped;
1017 	if (dma_mapped) {
1018 
1019 		/* Ensure we have the correct interrupt handler */
1020 		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1021 
1022 		err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1023 		if (err)
1024 			return err;
1025 
1026 		/* Clear status and start DMA engine */
1027 		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1028 		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1029 
1030 		pxa2xx_spi_dma_start(drv_data);
1031 	} else {
1032 		/* Ensure we have the correct interrupt handler	*/
1033 		drv_data->transfer_handler = interrupt_transfer;
1034 
1035 		/* Clear status  */
1036 		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1037 		write_SSSR_CS(drv_data, drv_data->clear_sr);
1038 	}
1039 
1040 	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1041 	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1042 	if (!pxa25x_ssp_comp(drv_data))
1043 		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1044 			controller->max_speed_hz
1045 				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1046 			dma_mapped ? "DMA" : "PIO");
1047 	else
1048 		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1049 			controller->max_speed_hz / 2
1050 				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1051 			dma_mapped ? "DMA" : "PIO");
1052 
1053 	if (is_lpss_ssp(drv_data)) {
1054 		if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1055 		    != chip->lpss_rx_threshold)
1056 			pxa2xx_spi_write(drv_data, SSIRF,
1057 					 chip->lpss_rx_threshold);
1058 		if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1059 		    != chip->lpss_tx_threshold)
1060 			pxa2xx_spi_write(drv_data, SSITF,
1061 					 chip->lpss_tx_threshold);
1062 	}
1063 
1064 	if (is_quark_x1000_ssp(drv_data) &&
1065 	    (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1066 		pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1067 
1068 	/* see if we need to reload the config registers */
1069 	if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1070 	    || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1071 	    != (cr1 & change_mask)) {
1072 		/* stop the SSP, and update the other bits */
1073 		if (drv_data->ssp_type != MMP2_SSP)
1074 			pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1075 		if (!pxa25x_ssp_comp(drv_data))
1076 			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1077 		/* first set CR1 without interrupt and service enables */
1078 		pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1079 		/* restart the SSP */
1080 		pxa2xx_spi_write(drv_data, SSCR0, cr0);
1081 
1082 	} else {
1083 		if (!pxa25x_ssp_comp(drv_data))
1084 			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1085 	}
1086 
1087 	if (drv_data->ssp_type == MMP2_SSP) {
1088 		u8 tx_level = (pxa2xx_spi_read(drv_data, SSSR)
1089 					& SSSR_TFL_MASK) >> 8;
1090 
1091 		if (tx_level) {
1092 			/* On MMP2, flipping SSE doesn't to empty TXFIFO. */
1093 			dev_warn(&spi->dev, "%d bytes of garbage in TXFIFO!\n",
1094 								tx_level);
1095 			if (tx_level > transfer->len)
1096 				tx_level = transfer->len;
1097 			drv_data->tx += tx_level;
1098 		}
1099 	}
1100 
1101 	if (spi_controller_is_slave(controller)) {
1102 		while (drv_data->write(drv_data))
1103 			;
1104 		if (drv_data->gpiod_ready) {
1105 			gpiod_set_value(drv_data->gpiod_ready, 1);
1106 			udelay(1);
1107 			gpiod_set_value(drv_data->gpiod_ready, 0);
1108 		}
1109 	}
1110 
1111 	/*
1112 	 * Release the data by enabling service requests and interrupts,
1113 	 * without changing any mode bits
1114 	 */
1115 	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1116 
1117 	return 1;
1118 }
1119 
1120 static int pxa2xx_spi_slave_abort(struct spi_controller *controller)
1121 {
1122 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1123 
1124 	/* Stop and reset SSP */
1125 	write_SSSR_CS(drv_data, drv_data->clear_sr);
1126 	reset_sccr1(drv_data);
1127 	if (!pxa25x_ssp_comp(drv_data))
1128 		pxa2xx_spi_write(drv_data, SSTO, 0);
1129 	pxa2xx_spi_flush(drv_data);
1130 	pxa2xx_spi_off(drv_data);
1131 
1132 	dev_dbg(&drv_data->pdev->dev, "transfer aborted\n");
1133 
1134 	drv_data->controller->cur_msg->status = -EINTR;
1135 	spi_finalize_current_transfer(drv_data->controller);
1136 
1137 	return 0;
1138 }
1139 
1140 static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1141 				 struct spi_message *msg)
1142 {
1143 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1144 
1145 	/* Disable the SSP */
1146 	pxa2xx_spi_off(drv_data);
1147 	/* Clear and disable interrupts and service requests */
1148 	write_SSSR_CS(drv_data, drv_data->clear_sr);
1149 	pxa2xx_spi_write(drv_data, SSCR1,
1150 			 pxa2xx_spi_read(drv_data, SSCR1)
1151 			 & ~(drv_data->int_cr1 | drv_data->dma_cr1));
1152 	if (!pxa25x_ssp_comp(drv_data))
1153 		pxa2xx_spi_write(drv_data, SSTO, 0);
1154 
1155 	/*
1156 	 * Stop the DMA if running. Note DMA callback handler may have unset
1157 	 * the dma_running already, which is fine as stopping is not needed
1158 	 * then but we shouldn't rely this flag for anything else than
1159 	 * stopping. For instance to differentiate between PIO and DMA
1160 	 * transfers.
1161 	 */
1162 	if (atomic_read(&drv_data->dma_running))
1163 		pxa2xx_spi_dma_stop(drv_data);
1164 }
1165 
1166 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1167 {
1168 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1169 
1170 	/* Disable the SSP now */
1171 	pxa2xx_spi_off(drv_data);
1172 
1173 	return 0;
1174 }
1175 
1176 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1177 		    struct pxa2xx_spi_chip *chip_info)
1178 {
1179 	struct driver_data *drv_data =
1180 		spi_controller_get_devdata(spi->controller);
1181 	struct gpio_desc *gpiod;
1182 	int err = 0;
1183 
1184 	if (chip == NULL)
1185 		return 0;
1186 
1187 	if (drv_data->cs_gpiods) {
1188 		gpiod = drv_data->cs_gpiods[spi->chip_select];
1189 		if (gpiod) {
1190 			chip->gpiod_cs = gpiod;
1191 			chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1192 			gpiod_set_value(gpiod, chip->gpio_cs_inverted);
1193 		}
1194 
1195 		return 0;
1196 	}
1197 
1198 	if (chip_info == NULL)
1199 		return 0;
1200 
1201 	/* NOTE: setup() can be called multiple times, possibly with
1202 	 * different chip_info, release previously requested GPIO
1203 	 */
1204 	if (chip->gpiod_cs) {
1205 		gpiod_put(chip->gpiod_cs);
1206 		chip->gpiod_cs = NULL;
1207 	}
1208 
1209 	/* If (*cs_control) is provided, ignore GPIO chip select */
1210 	if (chip_info->cs_control) {
1211 		chip->cs_control = chip_info->cs_control;
1212 		return 0;
1213 	}
1214 
1215 	if (gpio_is_valid(chip_info->gpio_cs)) {
1216 		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1217 		if (err) {
1218 			dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1219 				chip_info->gpio_cs);
1220 			return err;
1221 		}
1222 
1223 		gpiod = gpio_to_desc(chip_info->gpio_cs);
1224 		chip->gpiod_cs = gpiod;
1225 		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1226 
1227 		err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted);
1228 	}
1229 
1230 	return err;
1231 }
1232 
1233 static int setup(struct spi_device *spi)
1234 {
1235 	struct pxa2xx_spi_chip *chip_info;
1236 	struct chip_data *chip;
1237 	const struct lpss_config *config;
1238 	struct driver_data *drv_data =
1239 		spi_controller_get_devdata(spi->controller);
1240 	uint tx_thres, tx_hi_thres, rx_thres;
1241 
1242 	switch (drv_data->ssp_type) {
1243 	case QUARK_X1000_SSP:
1244 		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1245 		tx_hi_thres = 0;
1246 		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1247 		break;
1248 	case CE4100_SSP:
1249 		tx_thres = TX_THRESH_CE4100_DFLT;
1250 		tx_hi_thres = 0;
1251 		rx_thres = RX_THRESH_CE4100_DFLT;
1252 		break;
1253 	case LPSS_LPT_SSP:
1254 	case LPSS_BYT_SSP:
1255 	case LPSS_BSW_SSP:
1256 	case LPSS_SPT_SSP:
1257 	case LPSS_BXT_SSP:
1258 	case LPSS_CNL_SSP:
1259 		config = lpss_get_config(drv_data);
1260 		tx_thres = config->tx_threshold_lo;
1261 		tx_hi_thres = config->tx_threshold_hi;
1262 		rx_thres = config->rx_threshold;
1263 		break;
1264 	default:
1265 		tx_hi_thres = 0;
1266 		if (spi_controller_is_slave(drv_data->controller)) {
1267 			tx_thres = 1;
1268 			rx_thres = 2;
1269 		} else {
1270 			tx_thres = TX_THRESH_DFLT;
1271 			rx_thres = RX_THRESH_DFLT;
1272 		}
1273 		break;
1274 	}
1275 
1276 	/* Only alloc on first setup */
1277 	chip = spi_get_ctldata(spi);
1278 	if (!chip) {
1279 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1280 		if (!chip)
1281 			return -ENOMEM;
1282 
1283 		if (drv_data->ssp_type == CE4100_SSP) {
1284 			if (spi->chip_select > 4) {
1285 				dev_err(&spi->dev,
1286 					"failed setup: cs number must not be > 4.\n");
1287 				kfree(chip);
1288 				return -EINVAL;
1289 			}
1290 
1291 			chip->frm = spi->chip_select;
1292 		}
1293 		chip->enable_dma = drv_data->controller_info->enable_dma;
1294 		chip->timeout = TIMOUT_DFLT;
1295 	}
1296 
1297 	/* protocol drivers may change the chip settings, so...
1298 	 * if chip_info exists, use it */
1299 	chip_info = spi->controller_data;
1300 
1301 	/* chip_info isn't always needed */
1302 	chip->cr1 = 0;
1303 	if (chip_info) {
1304 		if (chip_info->timeout)
1305 			chip->timeout = chip_info->timeout;
1306 		if (chip_info->tx_threshold)
1307 			tx_thres = chip_info->tx_threshold;
1308 		if (chip_info->tx_hi_threshold)
1309 			tx_hi_thres = chip_info->tx_hi_threshold;
1310 		if (chip_info->rx_threshold)
1311 			rx_thres = chip_info->rx_threshold;
1312 		chip->dma_threshold = 0;
1313 		if (chip_info->enable_loopback)
1314 			chip->cr1 = SSCR1_LBM;
1315 	}
1316 	if (spi_controller_is_slave(drv_data->controller)) {
1317 		chip->cr1 |= SSCR1_SCFR;
1318 		chip->cr1 |= SSCR1_SCLKDIR;
1319 		chip->cr1 |= SSCR1_SFRMDIR;
1320 		chip->cr1 |= SSCR1_SPH;
1321 	}
1322 
1323 	chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1324 	chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1325 				| SSITF_TxHiThresh(tx_hi_thres);
1326 
1327 	/* set dma burst and threshold outside of chip_info path so that if
1328 	 * chip_info goes away after setting chip->enable_dma, the
1329 	 * burst and threshold can still respond to changes in bits_per_word */
1330 	if (chip->enable_dma) {
1331 		/* set up legal burst and threshold for dma */
1332 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1333 						spi->bits_per_word,
1334 						&chip->dma_burst_size,
1335 						&chip->dma_threshold)) {
1336 			dev_warn(&spi->dev,
1337 				 "in setup: DMA burst size reduced to match bits_per_word\n");
1338 		}
1339 		dev_dbg(&spi->dev,
1340 			"in setup: DMA burst size set to %u\n",
1341 			chip->dma_burst_size);
1342 	}
1343 
1344 	switch (drv_data->ssp_type) {
1345 	case QUARK_X1000_SSP:
1346 		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1347 				   & QUARK_X1000_SSCR1_RFT)
1348 				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1349 				   & QUARK_X1000_SSCR1_TFT);
1350 		break;
1351 	case CE4100_SSP:
1352 		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1353 			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1354 		break;
1355 	default:
1356 		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1357 			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1358 		break;
1359 	}
1360 
1361 	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1362 	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1363 			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1364 
1365 	if (spi->mode & SPI_LOOP)
1366 		chip->cr1 |= SSCR1_LBM;
1367 
1368 	if (spi->bits_per_word <= 8) {
1369 		chip->n_bytes = 1;
1370 		chip->read = u8_reader;
1371 		chip->write = u8_writer;
1372 	} else if (spi->bits_per_word <= 16) {
1373 		chip->n_bytes = 2;
1374 		chip->read = u16_reader;
1375 		chip->write = u16_writer;
1376 	} else if (spi->bits_per_word <= 32) {
1377 		chip->n_bytes = 4;
1378 		chip->read = u32_reader;
1379 		chip->write = u32_writer;
1380 	}
1381 
1382 	spi_set_ctldata(spi, chip);
1383 
1384 	if (drv_data->ssp_type == CE4100_SSP)
1385 		return 0;
1386 
1387 	return setup_cs(spi, chip, chip_info);
1388 }
1389 
1390 static void cleanup(struct spi_device *spi)
1391 {
1392 	struct chip_data *chip = spi_get_ctldata(spi);
1393 	struct driver_data *drv_data =
1394 		spi_controller_get_devdata(spi->controller);
1395 
1396 	if (!chip)
1397 		return;
1398 
1399 	if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
1400 	    chip->gpiod_cs)
1401 		gpiod_put(chip->gpiod_cs);
1402 
1403 	kfree(chip);
1404 }
1405 
1406 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1407 	{ "INT33C0", LPSS_LPT_SSP },
1408 	{ "INT33C1", LPSS_LPT_SSP },
1409 	{ "INT3430", LPSS_LPT_SSP },
1410 	{ "INT3431", LPSS_LPT_SSP },
1411 	{ "80860F0E", LPSS_BYT_SSP },
1412 	{ "8086228E", LPSS_BSW_SSP },
1413 	{ },
1414 };
1415 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1416 
1417 /*
1418  * PCI IDs of compound devices that integrate both host controller and private
1419  * integrated DMA engine. Please note these are not used in module
1420  * autoloading and probing in this module but matching the LPSS SSP type.
1421  */
1422 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1423 	/* SPT-LP */
1424 	{ PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1425 	{ PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1426 	/* SPT-H */
1427 	{ PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1428 	{ PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1429 	/* KBL-H */
1430 	{ PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1431 	{ PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1432 	/* CML-V */
1433 	{ PCI_VDEVICE(INTEL, 0xa3a9), LPSS_SPT_SSP },
1434 	{ PCI_VDEVICE(INTEL, 0xa3aa), LPSS_SPT_SSP },
1435 	/* BXT A-Step */
1436 	{ PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1437 	{ PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1438 	{ PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1439 	/* BXT B-Step */
1440 	{ PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1441 	{ PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1442 	{ PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1443 	/* GLK */
1444 	{ PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1445 	{ PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1446 	{ PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1447 	/* ICL-LP */
1448 	{ PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP },
1449 	{ PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP },
1450 	{ PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP },
1451 	/* EHL */
1452 	{ PCI_VDEVICE(INTEL, 0x4b2a), LPSS_BXT_SSP },
1453 	{ PCI_VDEVICE(INTEL, 0x4b2b), LPSS_BXT_SSP },
1454 	{ PCI_VDEVICE(INTEL, 0x4b37), LPSS_BXT_SSP },
1455 	/* JSL */
1456 	{ PCI_VDEVICE(INTEL, 0x4daa), LPSS_CNL_SSP },
1457 	{ PCI_VDEVICE(INTEL, 0x4dab), LPSS_CNL_SSP },
1458 	{ PCI_VDEVICE(INTEL, 0x4dfb), LPSS_CNL_SSP },
1459 	/* APL */
1460 	{ PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1461 	{ PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1462 	{ PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1463 	/* CNL-LP */
1464 	{ PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1465 	{ PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1466 	{ PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1467 	/* CNL-H */
1468 	{ PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1469 	{ PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1470 	{ PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1471 	/* CML-LP */
1472 	{ PCI_VDEVICE(INTEL, 0x02aa), LPSS_CNL_SSP },
1473 	{ PCI_VDEVICE(INTEL, 0x02ab), LPSS_CNL_SSP },
1474 	{ PCI_VDEVICE(INTEL, 0x02fb), LPSS_CNL_SSP },
1475 	/* CML-H */
1476 	{ PCI_VDEVICE(INTEL, 0x06aa), LPSS_CNL_SSP },
1477 	{ PCI_VDEVICE(INTEL, 0x06ab), LPSS_CNL_SSP },
1478 	{ PCI_VDEVICE(INTEL, 0x06fb), LPSS_CNL_SSP },
1479 	/* TGL-LP */
1480 	{ PCI_VDEVICE(INTEL, 0xa0aa), LPSS_CNL_SSP },
1481 	{ PCI_VDEVICE(INTEL, 0xa0ab), LPSS_CNL_SSP },
1482 	{ PCI_VDEVICE(INTEL, 0xa0de), LPSS_CNL_SSP },
1483 	{ PCI_VDEVICE(INTEL, 0xa0df), LPSS_CNL_SSP },
1484 	{ PCI_VDEVICE(INTEL, 0xa0fb), LPSS_CNL_SSP },
1485 	{ PCI_VDEVICE(INTEL, 0xa0fd), LPSS_CNL_SSP },
1486 	{ PCI_VDEVICE(INTEL, 0xa0fe), LPSS_CNL_SSP },
1487 	{ },
1488 };
1489 
1490 static const struct of_device_id pxa2xx_spi_of_match[] = {
1491 	{ .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1492 	{},
1493 };
1494 MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1495 
1496 #ifdef CONFIG_ACPI
1497 
1498 static int pxa2xx_spi_get_port_id(struct device *dev)
1499 {
1500 	struct acpi_device *adev;
1501 	unsigned int devid;
1502 	int port_id = -1;
1503 
1504 	adev = ACPI_COMPANION(dev);
1505 	if (adev && adev->pnp.unique_id &&
1506 	    !kstrtouint(adev->pnp.unique_id, 0, &devid))
1507 		port_id = devid;
1508 	return port_id;
1509 }
1510 
1511 #else /* !CONFIG_ACPI */
1512 
1513 static int pxa2xx_spi_get_port_id(struct device *dev)
1514 {
1515 	return -1;
1516 }
1517 
1518 #endif /* CONFIG_ACPI */
1519 
1520 
1521 #ifdef CONFIG_PCI
1522 
1523 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1524 {
1525 	return param == chan->device->dev;
1526 }
1527 
1528 #endif /* CONFIG_PCI */
1529 
1530 static struct pxa2xx_spi_controller *
1531 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1532 {
1533 	struct pxa2xx_spi_controller *pdata;
1534 	struct ssp_device *ssp;
1535 	struct resource *res;
1536 	struct device *parent = pdev->dev.parent;
1537 	struct pci_dev *pcidev = dev_is_pci(parent) ? to_pci_dev(parent) : NULL;
1538 	const struct pci_device_id *pcidev_id = NULL;
1539 	enum pxa_ssp_type type;
1540 	const void *match;
1541 
1542 	if (pcidev)
1543 		pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match, pcidev);
1544 
1545 	match = device_get_match_data(&pdev->dev);
1546 	if (match)
1547 		type = (enum pxa_ssp_type)match;
1548 	else if (pcidev_id)
1549 		type = (enum pxa_ssp_type)pcidev_id->driver_data;
1550 	else
1551 		return NULL;
1552 
1553 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1554 	if (!pdata)
1555 		return NULL;
1556 
1557 	ssp = &pdata->ssp;
1558 
1559 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1560 	ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1561 	if (IS_ERR(ssp->mmio_base))
1562 		return NULL;
1563 
1564 	ssp->phys_base = res->start;
1565 
1566 #ifdef CONFIG_PCI
1567 	if (pcidev_id) {
1568 		pdata->tx_param = parent;
1569 		pdata->rx_param = parent;
1570 		pdata->dma_filter = pxa2xx_spi_idma_filter;
1571 	}
1572 #endif
1573 
1574 	ssp->clk = devm_clk_get(&pdev->dev, NULL);
1575 	if (IS_ERR(ssp->clk))
1576 		return NULL;
1577 
1578 	ssp->irq = platform_get_irq(pdev, 0);
1579 	if (ssp->irq < 0)
1580 		return NULL;
1581 
1582 	ssp->type = type;
1583 	ssp->dev = &pdev->dev;
1584 	ssp->port_id = pxa2xx_spi_get_port_id(&pdev->dev);
1585 
1586 	pdata->is_slave = device_property_read_bool(&pdev->dev, "spi-slave");
1587 	pdata->num_chipselect = 1;
1588 	pdata->enable_dma = true;
1589 	pdata->dma_burst_size = 1;
1590 
1591 	return pdata;
1592 }
1593 
1594 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1595 				      unsigned int cs)
1596 {
1597 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1598 
1599 	if (has_acpi_companion(&drv_data->pdev->dev)) {
1600 		switch (drv_data->ssp_type) {
1601 		/*
1602 		 * For Atoms the ACPI DeviceSelection used by the Windows
1603 		 * driver starts from 1 instead of 0 so translate it here
1604 		 * to match what Linux expects.
1605 		 */
1606 		case LPSS_BYT_SSP:
1607 		case LPSS_BSW_SSP:
1608 			return cs - 1;
1609 
1610 		default:
1611 			break;
1612 		}
1613 	}
1614 
1615 	return cs;
1616 }
1617 
1618 static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi)
1619 {
1620 	return MAX_DMA_LEN;
1621 }
1622 
1623 static int pxa2xx_spi_probe(struct platform_device *pdev)
1624 {
1625 	struct device *dev = &pdev->dev;
1626 	struct pxa2xx_spi_controller *platform_info;
1627 	struct spi_controller *controller;
1628 	struct driver_data *drv_data;
1629 	struct ssp_device *ssp;
1630 	const struct lpss_config *config;
1631 	int status, count;
1632 	u32 tmp;
1633 
1634 	platform_info = dev_get_platdata(dev);
1635 	if (!platform_info) {
1636 		platform_info = pxa2xx_spi_init_pdata(pdev);
1637 		if (!platform_info) {
1638 			dev_err(&pdev->dev, "missing platform data\n");
1639 			return -ENODEV;
1640 		}
1641 	}
1642 
1643 	ssp = pxa_ssp_request(pdev->id, pdev->name);
1644 	if (!ssp)
1645 		ssp = &platform_info->ssp;
1646 
1647 	if (!ssp->mmio_base) {
1648 		dev_err(&pdev->dev, "failed to get ssp\n");
1649 		return -ENODEV;
1650 	}
1651 
1652 	if (platform_info->is_slave)
1653 		controller = spi_alloc_slave(dev, sizeof(struct driver_data));
1654 	else
1655 		controller = spi_alloc_master(dev, sizeof(struct driver_data));
1656 
1657 	if (!controller) {
1658 		dev_err(&pdev->dev, "cannot alloc spi_controller\n");
1659 		pxa_ssp_free(ssp);
1660 		return -ENOMEM;
1661 	}
1662 	drv_data = spi_controller_get_devdata(controller);
1663 	drv_data->controller = controller;
1664 	drv_data->controller_info = platform_info;
1665 	drv_data->pdev = pdev;
1666 	drv_data->ssp = ssp;
1667 
1668 	controller->dev.of_node = pdev->dev.of_node;
1669 	/* the spi->mode bits understood by this driver: */
1670 	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1671 
1672 	controller->bus_num = ssp->port_id;
1673 	controller->dma_alignment = DMA_ALIGNMENT;
1674 	controller->cleanup = cleanup;
1675 	controller->setup = setup;
1676 	controller->set_cs = pxa2xx_spi_set_cs;
1677 	controller->transfer_one = pxa2xx_spi_transfer_one;
1678 	controller->slave_abort = pxa2xx_spi_slave_abort;
1679 	controller->handle_err = pxa2xx_spi_handle_err;
1680 	controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1681 	controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1682 	controller->auto_runtime_pm = true;
1683 	controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1684 
1685 	drv_data->ssp_type = ssp->type;
1686 
1687 	drv_data->ioaddr = ssp->mmio_base;
1688 	drv_data->ssdr_physical = ssp->phys_base + SSDR;
1689 	if (pxa25x_ssp_comp(drv_data)) {
1690 		switch (drv_data->ssp_type) {
1691 		case QUARK_X1000_SSP:
1692 			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1693 			break;
1694 		default:
1695 			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1696 			break;
1697 		}
1698 
1699 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1700 		drv_data->dma_cr1 = 0;
1701 		drv_data->clear_sr = SSSR_ROR;
1702 		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1703 	} else {
1704 		controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1705 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1706 		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1707 		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1708 		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1709 						| SSSR_ROR | SSSR_TUR;
1710 	}
1711 
1712 	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1713 			drv_data);
1714 	if (status < 0) {
1715 		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1716 		goto out_error_controller_alloc;
1717 	}
1718 
1719 	/* Setup DMA if requested */
1720 	if (platform_info->enable_dma) {
1721 		status = pxa2xx_spi_dma_setup(drv_data);
1722 		if (status) {
1723 			dev_warn(dev, "no DMA channels available, using PIO\n");
1724 			platform_info->enable_dma = false;
1725 		} else {
1726 			controller->can_dma = pxa2xx_spi_can_dma;
1727 			controller->max_dma_len = MAX_DMA_LEN;
1728 			controller->max_transfer_size =
1729 				pxa2xx_spi_max_dma_transfer_size;
1730 		}
1731 	}
1732 
1733 	/* Enable SOC clock */
1734 	status = clk_prepare_enable(ssp->clk);
1735 	if (status)
1736 		goto out_error_dma_irq_alloc;
1737 
1738 	controller->max_speed_hz = clk_get_rate(ssp->clk);
1739 	/*
1740 	 * Set minimum speed for all other platforms than Intel Quark which is
1741 	 * able do under 1 Hz transfers.
1742 	 */
1743 	if (!pxa25x_ssp_comp(drv_data))
1744 		controller->min_speed_hz =
1745 			DIV_ROUND_UP(controller->max_speed_hz, 4096);
1746 	else if (!is_quark_x1000_ssp(drv_data))
1747 		controller->min_speed_hz =
1748 			DIV_ROUND_UP(controller->max_speed_hz, 512);
1749 
1750 	/* Load default SSP configuration */
1751 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1752 	switch (drv_data->ssp_type) {
1753 	case QUARK_X1000_SSP:
1754 		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1755 		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1756 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1757 
1758 		/* using the Motorola SPI protocol and use 8 bit frame */
1759 		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1760 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1761 		break;
1762 	case CE4100_SSP:
1763 		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1764 		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1765 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1766 		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1767 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1768 		break;
1769 	default:
1770 
1771 		if (spi_controller_is_slave(controller)) {
1772 			tmp = SSCR1_SCFR |
1773 			      SSCR1_SCLKDIR |
1774 			      SSCR1_SFRMDIR |
1775 			      SSCR1_RxTresh(2) |
1776 			      SSCR1_TxTresh(1) |
1777 			      SSCR1_SPH;
1778 		} else {
1779 			tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1780 			      SSCR1_TxTresh(TX_THRESH_DFLT);
1781 		}
1782 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1783 		tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1784 		if (!spi_controller_is_slave(controller))
1785 			tmp |= SSCR0_SCR(2);
1786 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1787 		break;
1788 	}
1789 
1790 	if (!pxa25x_ssp_comp(drv_data))
1791 		pxa2xx_spi_write(drv_data, SSTO, 0);
1792 
1793 	if (!is_quark_x1000_ssp(drv_data))
1794 		pxa2xx_spi_write(drv_data, SSPSP, 0);
1795 
1796 	if (is_lpss_ssp(drv_data)) {
1797 		lpss_ssp_setup(drv_data);
1798 		config = lpss_get_config(drv_data);
1799 		if (config->reg_capabilities >= 0) {
1800 			tmp = __lpss_ssp_read_priv(drv_data,
1801 						   config->reg_capabilities);
1802 			tmp &= LPSS_CAPS_CS_EN_MASK;
1803 			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1804 			platform_info->num_chipselect = ffz(tmp);
1805 		} else if (config->cs_num) {
1806 			platform_info->num_chipselect = config->cs_num;
1807 		}
1808 	}
1809 	controller->num_chipselect = platform_info->num_chipselect;
1810 
1811 	count = gpiod_count(&pdev->dev, "cs");
1812 	if (count > 0) {
1813 		int i;
1814 
1815 		controller->num_chipselect = max_t(int, count,
1816 			controller->num_chipselect);
1817 
1818 		drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
1819 			controller->num_chipselect, sizeof(struct gpio_desc *),
1820 			GFP_KERNEL);
1821 		if (!drv_data->cs_gpiods) {
1822 			status = -ENOMEM;
1823 			goto out_error_clock_enabled;
1824 		}
1825 
1826 		for (i = 0; i < controller->num_chipselect; i++) {
1827 			struct gpio_desc *gpiod;
1828 
1829 			gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1830 			if (IS_ERR(gpiod)) {
1831 				/* Means use native chip select */
1832 				if (PTR_ERR(gpiod) == -ENOENT)
1833 					continue;
1834 
1835 				status = PTR_ERR(gpiod);
1836 				goto out_error_clock_enabled;
1837 			} else {
1838 				drv_data->cs_gpiods[i] = gpiod;
1839 			}
1840 		}
1841 	}
1842 
1843 	if (platform_info->is_slave) {
1844 		drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1845 						"ready", GPIOD_OUT_LOW);
1846 		if (IS_ERR(drv_data->gpiod_ready)) {
1847 			status = PTR_ERR(drv_data->gpiod_ready);
1848 			goto out_error_clock_enabled;
1849 		}
1850 	}
1851 
1852 	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1853 	pm_runtime_use_autosuspend(&pdev->dev);
1854 	pm_runtime_set_active(&pdev->dev);
1855 	pm_runtime_enable(&pdev->dev);
1856 
1857 	/* Register with the SPI framework */
1858 	platform_set_drvdata(pdev, drv_data);
1859 	status = devm_spi_register_controller(&pdev->dev, controller);
1860 	if (status != 0) {
1861 		dev_err(&pdev->dev, "problem registering spi controller\n");
1862 		goto out_error_pm_runtime_enabled;
1863 	}
1864 
1865 	return status;
1866 
1867 out_error_pm_runtime_enabled:
1868 	pm_runtime_put_noidle(&pdev->dev);
1869 	pm_runtime_disable(&pdev->dev);
1870 
1871 out_error_clock_enabled:
1872 	clk_disable_unprepare(ssp->clk);
1873 
1874 out_error_dma_irq_alloc:
1875 	pxa2xx_spi_dma_release(drv_data);
1876 	free_irq(ssp->irq, drv_data);
1877 
1878 out_error_controller_alloc:
1879 	spi_controller_put(controller);
1880 	pxa_ssp_free(ssp);
1881 	return status;
1882 }
1883 
1884 static int pxa2xx_spi_remove(struct platform_device *pdev)
1885 {
1886 	struct driver_data *drv_data = platform_get_drvdata(pdev);
1887 	struct ssp_device *ssp;
1888 
1889 	if (!drv_data)
1890 		return 0;
1891 	ssp = drv_data->ssp;
1892 
1893 	pm_runtime_get_sync(&pdev->dev);
1894 
1895 	/* Disable the SSP at the peripheral and SOC level */
1896 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1897 	clk_disable_unprepare(ssp->clk);
1898 
1899 	/* Release DMA */
1900 	if (drv_data->controller_info->enable_dma)
1901 		pxa2xx_spi_dma_release(drv_data);
1902 
1903 	pm_runtime_put_noidle(&pdev->dev);
1904 	pm_runtime_disable(&pdev->dev);
1905 
1906 	/* Release IRQ */
1907 	free_irq(ssp->irq, drv_data);
1908 
1909 	/* Release SSP */
1910 	pxa_ssp_free(ssp);
1911 
1912 	return 0;
1913 }
1914 
1915 #ifdef CONFIG_PM_SLEEP
1916 static int pxa2xx_spi_suspend(struct device *dev)
1917 {
1918 	struct driver_data *drv_data = dev_get_drvdata(dev);
1919 	struct ssp_device *ssp = drv_data->ssp;
1920 	int status;
1921 
1922 	status = spi_controller_suspend(drv_data->controller);
1923 	if (status != 0)
1924 		return status;
1925 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1926 
1927 	if (!pm_runtime_suspended(dev))
1928 		clk_disable_unprepare(ssp->clk);
1929 
1930 	return 0;
1931 }
1932 
1933 static int pxa2xx_spi_resume(struct device *dev)
1934 {
1935 	struct driver_data *drv_data = dev_get_drvdata(dev);
1936 	struct ssp_device *ssp = drv_data->ssp;
1937 	int status;
1938 
1939 	/* Enable the SSP clock */
1940 	if (!pm_runtime_suspended(dev)) {
1941 		status = clk_prepare_enable(ssp->clk);
1942 		if (status)
1943 			return status;
1944 	}
1945 
1946 	/* Start the queue running */
1947 	return spi_controller_resume(drv_data->controller);
1948 }
1949 #endif
1950 
1951 #ifdef CONFIG_PM
1952 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1953 {
1954 	struct driver_data *drv_data = dev_get_drvdata(dev);
1955 
1956 	clk_disable_unprepare(drv_data->ssp->clk);
1957 	return 0;
1958 }
1959 
1960 static int pxa2xx_spi_runtime_resume(struct device *dev)
1961 {
1962 	struct driver_data *drv_data = dev_get_drvdata(dev);
1963 	int status;
1964 
1965 	status = clk_prepare_enable(drv_data->ssp->clk);
1966 	return status;
1967 }
1968 #endif
1969 
1970 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1971 	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1972 	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1973 			   pxa2xx_spi_runtime_resume, NULL)
1974 };
1975 
1976 static struct platform_driver driver = {
1977 	.driver = {
1978 		.name	= "pxa2xx-spi",
1979 		.pm	= &pxa2xx_spi_pm_ops,
1980 		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1981 		.of_match_table = of_match_ptr(pxa2xx_spi_of_match),
1982 	},
1983 	.probe = pxa2xx_spi_probe,
1984 	.remove = pxa2xx_spi_remove,
1985 };
1986 
1987 static int __init pxa2xx_spi_init(void)
1988 {
1989 	return platform_driver_register(&driver);
1990 }
1991 subsys_initcall(pxa2xx_spi_init);
1992 
1993 static void __exit pxa2xx_spi_exit(void)
1994 {
1995 	platform_driver_unregister(&driver);
1996 }
1997 module_exit(pxa2xx_spi_exit);
1998 
1999 MODULE_SOFTDEP("pre: dw_dmac");
2000