xref: /openbmc/linux/drivers/spi/spi-pxa2xx.c (revision d2ba09c1)
1 /*
2  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
3  * Copyright (C) 2013, Intel Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/bitops.h>
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/device.h>
20 #include <linux/ioport.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/interrupt.h>
24 #include <linux/kernel.h>
25 #include <linux/pci.h>
26 #include <linux/platform_device.h>
27 #include <linux/spi/pxa2xx_spi.h>
28 #include <linux/spi/spi.h>
29 #include <linux/delay.h>
30 #include <linux/gpio.h>
31 #include <linux/gpio/consumer.h>
32 #include <linux/slab.h>
33 #include <linux/clk.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/acpi.h>
36 
37 #include "spi-pxa2xx.h"
38 
39 MODULE_AUTHOR("Stephen Street");
40 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
41 MODULE_LICENSE("GPL");
42 MODULE_ALIAS("platform:pxa2xx-spi");
43 
44 #define TIMOUT_DFLT		1000
45 
46 /*
47  * for testing SSCR1 changes that require SSP restart, basically
48  * everything except the service and interrupt enables, the pxa270 developer
49  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
50  * list, but the PXA255 dev man says all bits without really meaning the
51  * service and interrupt enables
52  */
53 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
54 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
55 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
56 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
57 				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
58 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
59 
60 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
61 				| QUARK_X1000_SSCR1_EFWR	\
62 				| QUARK_X1000_SSCR1_RFT		\
63 				| QUARK_X1000_SSCR1_TFT		\
64 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
65 
66 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
67 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
68 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
69 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
70 				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
71 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
72 
73 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
74 #define LPSS_CS_CONTROL_SW_MODE			BIT(0)
75 #define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
76 #define LPSS_CAPS_CS_EN_SHIFT			9
77 #define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
78 
79 struct lpss_config {
80 	/* LPSS offset from drv_data->ioaddr */
81 	unsigned offset;
82 	/* Register offsets from drv_data->lpss_base or -1 */
83 	int reg_general;
84 	int reg_ssp;
85 	int reg_cs_ctrl;
86 	int reg_capabilities;
87 	/* FIFO thresholds */
88 	u32 rx_threshold;
89 	u32 tx_threshold_lo;
90 	u32 tx_threshold_hi;
91 	/* Chip select control */
92 	unsigned cs_sel_shift;
93 	unsigned cs_sel_mask;
94 	unsigned cs_num;
95 };
96 
97 /* Keep these sorted with enum pxa_ssp_type */
98 static const struct lpss_config lpss_platforms[] = {
99 	{	/* LPSS_LPT_SSP */
100 		.offset = 0x800,
101 		.reg_general = 0x08,
102 		.reg_ssp = 0x0c,
103 		.reg_cs_ctrl = 0x18,
104 		.reg_capabilities = -1,
105 		.rx_threshold = 64,
106 		.tx_threshold_lo = 160,
107 		.tx_threshold_hi = 224,
108 	},
109 	{	/* LPSS_BYT_SSP */
110 		.offset = 0x400,
111 		.reg_general = 0x08,
112 		.reg_ssp = 0x0c,
113 		.reg_cs_ctrl = 0x18,
114 		.reg_capabilities = -1,
115 		.rx_threshold = 64,
116 		.tx_threshold_lo = 160,
117 		.tx_threshold_hi = 224,
118 	},
119 	{	/* LPSS_BSW_SSP */
120 		.offset = 0x400,
121 		.reg_general = 0x08,
122 		.reg_ssp = 0x0c,
123 		.reg_cs_ctrl = 0x18,
124 		.reg_capabilities = -1,
125 		.rx_threshold = 64,
126 		.tx_threshold_lo = 160,
127 		.tx_threshold_hi = 224,
128 		.cs_sel_shift = 2,
129 		.cs_sel_mask = 1 << 2,
130 		.cs_num = 2,
131 	},
132 	{	/* LPSS_SPT_SSP */
133 		.offset = 0x200,
134 		.reg_general = -1,
135 		.reg_ssp = 0x20,
136 		.reg_cs_ctrl = 0x24,
137 		.reg_capabilities = -1,
138 		.rx_threshold = 1,
139 		.tx_threshold_lo = 32,
140 		.tx_threshold_hi = 56,
141 	},
142 	{	/* LPSS_BXT_SSP */
143 		.offset = 0x200,
144 		.reg_general = -1,
145 		.reg_ssp = 0x20,
146 		.reg_cs_ctrl = 0x24,
147 		.reg_capabilities = 0xfc,
148 		.rx_threshold = 1,
149 		.tx_threshold_lo = 16,
150 		.tx_threshold_hi = 48,
151 		.cs_sel_shift = 8,
152 		.cs_sel_mask = 3 << 8,
153 	},
154 	{	/* LPSS_CNL_SSP */
155 		.offset = 0x200,
156 		.reg_general = -1,
157 		.reg_ssp = 0x20,
158 		.reg_cs_ctrl = 0x24,
159 		.reg_capabilities = 0xfc,
160 		.rx_threshold = 1,
161 		.tx_threshold_lo = 32,
162 		.tx_threshold_hi = 56,
163 		.cs_sel_shift = 8,
164 		.cs_sel_mask = 3 << 8,
165 	},
166 };
167 
168 static inline const struct lpss_config
169 *lpss_get_config(const struct driver_data *drv_data)
170 {
171 	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
172 }
173 
174 static bool is_lpss_ssp(const struct driver_data *drv_data)
175 {
176 	switch (drv_data->ssp_type) {
177 	case LPSS_LPT_SSP:
178 	case LPSS_BYT_SSP:
179 	case LPSS_BSW_SSP:
180 	case LPSS_SPT_SSP:
181 	case LPSS_BXT_SSP:
182 	case LPSS_CNL_SSP:
183 		return true;
184 	default:
185 		return false;
186 	}
187 }
188 
189 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
190 {
191 	return drv_data->ssp_type == QUARK_X1000_SSP;
192 }
193 
194 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
195 {
196 	switch (drv_data->ssp_type) {
197 	case QUARK_X1000_SSP:
198 		return QUARK_X1000_SSCR1_CHANGE_MASK;
199 	case CE4100_SSP:
200 		return CE4100_SSCR1_CHANGE_MASK;
201 	default:
202 		return SSCR1_CHANGE_MASK;
203 	}
204 }
205 
206 static u32
207 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
208 {
209 	switch (drv_data->ssp_type) {
210 	case QUARK_X1000_SSP:
211 		return RX_THRESH_QUARK_X1000_DFLT;
212 	case CE4100_SSP:
213 		return RX_THRESH_CE4100_DFLT;
214 	default:
215 		return RX_THRESH_DFLT;
216 	}
217 }
218 
219 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
220 {
221 	u32 mask;
222 
223 	switch (drv_data->ssp_type) {
224 	case QUARK_X1000_SSP:
225 		mask = QUARK_X1000_SSSR_TFL_MASK;
226 		break;
227 	case CE4100_SSP:
228 		mask = CE4100_SSSR_TFL_MASK;
229 		break;
230 	default:
231 		mask = SSSR_TFL_MASK;
232 		break;
233 	}
234 
235 	return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
236 }
237 
238 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
239 				     u32 *sccr1_reg)
240 {
241 	u32 mask;
242 
243 	switch (drv_data->ssp_type) {
244 	case QUARK_X1000_SSP:
245 		mask = QUARK_X1000_SSCR1_RFT;
246 		break;
247 	case CE4100_SSP:
248 		mask = CE4100_SSCR1_RFT;
249 		break;
250 	default:
251 		mask = SSCR1_RFT;
252 		break;
253 	}
254 	*sccr1_reg &= ~mask;
255 }
256 
257 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
258 				   u32 *sccr1_reg, u32 threshold)
259 {
260 	switch (drv_data->ssp_type) {
261 	case QUARK_X1000_SSP:
262 		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
263 		break;
264 	case CE4100_SSP:
265 		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
266 		break;
267 	default:
268 		*sccr1_reg |= SSCR1_RxTresh(threshold);
269 		break;
270 	}
271 }
272 
273 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
274 				  u32 clk_div, u8 bits)
275 {
276 	switch (drv_data->ssp_type) {
277 	case QUARK_X1000_SSP:
278 		return clk_div
279 			| QUARK_X1000_SSCR0_Motorola
280 			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
281 			| SSCR0_SSE;
282 	default:
283 		return clk_div
284 			| SSCR0_Motorola
285 			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
286 			| SSCR0_SSE
287 			| (bits > 16 ? SSCR0_EDSS : 0);
288 	}
289 }
290 
291 /*
292  * Read and write LPSS SSP private registers. Caller must first check that
293  * is_lpss_ssp() returns true before these can be called.
294  */
295 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
296 {
297 	WARN_ON(!drv_data->lpss_base);
298 	return readl(drv_data->lpss_base + offset);
299 }
300 
301 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
302 				  unsigned offset, u32 value)
303 {
304 	WARN_ON(!drv_data->lpss_base);
305 	writel(value, drv_data->lpss_base + offset);
306 }
307 
308 /*
309  * lpss_ssp_setup - perform LPSS SSP specific setup
310  * @drv_data: pointer to the driver private data
311  *
312  * Perform LPSS SSP specific setup. This function must be called first if
313  * one is going to use LPSS SSP private registers.
314  */
315 static void lpss_ssp_setup(struct driver_data *drv_data)
316 {
317 	const struct lpss_config *config;
318 	u32 value;
319 
320 	config = lpss_get_config(drv_data);
321 	drv_data->lpss_base = drv_data->ioaddr + config->offset;
322 
323 	/* Enable software chip select control */
324 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
325 	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
326 	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
327 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
328 
329 	/* Enable multiblock DMA transfers */
330 	if (drv_data->master_info->enable_dma) {
331 		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
332 
333 		if (config->reg_general >= 0) {
334 			value = __lpss_ssp_read_priv(drv_data,
335 						     config->reg_general);
336 			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
337 			__lpss_ssp_write_priv(drv_data,
338 					      config->reg_general, value);
339 		}
340 	}
341 }
342 
343 static void lpss_ssp_select_cs(struct driver_data *drv_data,
344 			       const struct lpss_config *config)
345 {
346 	u32 value, cs;
347 
348 	if (!config->cs_sel_mask)
349 		return;
350 
351 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
352 
353 	cs = drv_data->master->cur_msg->spi->chip_select;
354 	cs <<= config->cs_sel_shift;
355 	if (cs != (value & config->cs_sel_mask)) {
356 		/*
357 		 * When switching another chip select output active the
358 		 * output must be selected first and wait 2 ssp_clk cycles
359 		 * before changing state to active. Otherwise a short
360 		 * glitch will occur on the previous chip select since
361 		 * output select is latched but state control is not.
362 		 */
363 		value &= ~config->cs_sel_mask;
364 		value |= cs;
365 		__lpss_ssp_write_priv(drv_data,
366 				      config->reg_cs_ctrl, value);
367 		ndelay(1000000000 /
368 		       (drv_data->master->max_speed_hz / 2));
369 	}
370 }
371 
372 static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable)
373 {
374 	const struct lpss_config *config;
375 	u32 value;
376 
377 	config = lpss_get_config(drv_data);
378 
379 	if (enable)
380 		lpss_ssp_select_cs(drv_data, config);
381 
382 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
383 	if (enable)
384 		value &= ~LPSS_CS_CONTROL_CS_HIGH;
385 	else
386 		value |= LPSS_CS_CONTROL_CS_HIGH;
387 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
388 }
389 
390 static void cs_assert(struct driver_data *drv_data)
391 {
392 	struct chip_data *chip =
393 		spi_get_ctldata(drv_data->master->cur_msg->spi);
394 
395 	if (drv_data->ssp_type == CE4100_SSP) {
396 		pxa2xx_spi_write(drv_data, SSSR, chip->frm);
397 		return;
398 	}
399 
400 	if (chip->cs_control) {
401 		chip->cs_control(PXA2XX_CS_ASSERT);
402 		return;
403 	}
404 
405 	if (chip->gpiod_cs) {
406 		gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted);
407 		return;
408 	}
409 
410 	if (is_lpss_ssp(drv_data))
411 		lpss_ssp_cs_control(drv_data, true);
412 }
413 
414 static void cs_deassert(struct driver_data *drv_data)
415 {
416 	struct chip_data *chip =
417 		spi_get_ctldata(drv_data->master->cur_msg->spi);
418 	unsigned long timeout;
419 
420 	if (drv_data->ssp_type == CE4100_SSP)
421 		return;
422 
423 	/* Wait until SSP becomes idle before deasserting the CS */
424 	timeout = jiffies + msecs_to_jiffies(10);
425 	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
426 	       !time_after(jiffies, timeout))
427 		cpu_relax();
428 
429 	if (chip->cs_control) {
430 		chip->cs_control(PXA2XX_CS_DEASSERT);
431 		return;
432 	}
433 
434 	if (chip->gpiod_cs) {
435 		gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted);
436 		return;
437 	}
438 
439 	if (is_lpss_ssp(drv_data))
440 		lpss_ssp_cs_control(drv_data, false);
441 }
442 
443 int pxa2xx_spi_flush(struct driver_data *drv_data)
444 {
445 	unsigned long limit = loops_per_jiffy << 1;
446 
447 	do {
448 		while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
449 			pxa2xx_spi_read(drv_data, SSDR);
450 	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
451 	write_SSSR_CS(drv_data, SSSR_ROR);
452 
453 	return limit;
454 }
455 
456 static int null_writer(struct driver_data *drv_data)
457 {
458 	u8 n_bytes = drv_data->n_bytes;
459 
460 	if (pxa2xx_spi_txfifo_full(drv_data)
461 		|| (drv_data->tx == drv_data->tx_end))
462 		return 0;
463 
464 	pxa2xx_spi_write(drv_data, SSDR, 0);
465 	drv_data->tx += n_bytes;
466 
467 	return 1;
468 }
469 
470 static int null_reader(struct driver_data *drv_data)
471 {
472 	u8 n_bytes = drv_data->n_bytes;
473 
474 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
475 	       && (drv_data->rx < drv_data->rx_end)) {
476 		pxa2xx_spi_read(drv_data, SSDR);
477 		drv_data->rx += n_bytes;
478 	}
479 
480 	return drv_data->rx == drv_data->rx_end;
481 }
482 
483 static int u8_writer(struct driver_data *drv_data)
484 {
485 	if (pxa2xx_spi_txfifo_full(drv_data)
486 		|| (drv_data->tx == drv_data->tx_end))
487 		return 0;
488 
489 	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
490 	++drv_data->tx;
491 
492 	return 1;
493 }
494 
495 static int u8_reader(struct driver_data *drv_data)
496 {
497 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
498 	       && (drv_data->rx < drv_data->rx_end)) {
499 		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
500 		++drv_data->rx;
501 	}
502 
503 	return drv_data->rx == drv_data->rx_end;
504 }
505 
506 static int u16_writer(struct driver_data *drv_data)
507 {
508 	if (pxa2xx_spi_txfifo_full(drv_data)
509 		|| (drv_data->tx == drv_data->tx_end))
510 		return 0;
511 
512 	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
513 	drv_data->tx += 2;
514 
515 	return 1;
516 }
517 
518 static int u16_reader(struct driver_data *drv_data)
519 {
520 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
521 	       && (drv_data->rx < drv_data->rx_end)) {
522 		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
523 		drv_data->rx += 2;
524 	}
525 
526 	return drv_data->rx == drv_data->rx_end;
527 }
528 
529 static int u32_writer(struct driver_data *drv_data)
530 {
531 	if (pxa2xx_spi_txfifo_full(drv_data)
532 		|| (drv_data->tx == drv_data->tx_end))
533 		return 0;
534 
535 	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
536 	drv_data->tx += 4;
537 
538 	return 1;
539 }
540 
541 static int u32_reader(struct driver_data *drv_data)
542 {
543 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
544 	       && (drv_data->rx < drv_data->rx_end)) {
545 		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
546 		drv_data->rx += 4;
547 	}
548 
549 	return drv_data->rx == drv_data->rx_end;
550 }
551 
552 void *pxa2xx_spi_next_transfer(struct driver_data *drv_data)
553 {
554 	struct spi_message *msg = drv_data->master->cur_msg;
555 	struct spi_transfer *trans = drv_data->cur_transfer;
556 
557 	/* Move to next transfer */
558 	if (trans->transfer_list.next != &msg->transfers) {
559 		drv_data->cur_transfer =
560 			list_entry(trans->transfer_list.next,
561 					struct spi_transfer,
562 					transfer_list);
563 		return RUNNING_STATE;
564 	} else
565 		return DONE_STATE;
566 }
567 
568 /* caller already set message->status; dma and pio irqs are blocked */
569 static void giveback(struct driver_data *drv_data)
570 {
571 	struct spi_transfer* last_transfer;
572 	struct spi_message *msg;
573 
574 	msg = drv_data->master->cur_msg;
575 	drv_data->cur_transfer = NULL;
576 
577 	last_transfer = list_last_entry(&msg->transfers, struct spi_transfer,
578 					transfer_list);
579 
580 	/* Delay if requested before any change in chip select */
581 	if (last_transfer->delay_usecs)
582 		udelay(last_transfer->delay_usecs);
583 
584 	/* Drop chip select UNLESS cs_change is true or we are returning
585 	 * a message with an error, or next message is for another chip
586 	 */
587 	if (!last_transfer->cs_change)
588 		cs_deassert(drv_data);
589 	else {
590 		struct spi_message *next_msg;
591 
592 		/* Holding of cs was hinted, but we need to make sure
593 		 * the next message is for the same chip.  Don't waste
594 		 * time with the following tests unless this was hinted.
595 		 *
596 		 * We cannot postpone this until pump_messages, because
597 		 * after calling msg->complete (below) the driver that
598 		 * sent the current message could be unloaded, which
599 		 * could invalidate the cs_control() callback...
600 		 */
601 
602 		/* get a pointer to the next message, if any */
603 		next_msg = spi_get_next_queued_message(drv_data->master);
604 
605 		/* see if the next and current messages point
606 		 * to the same chip
607 		 */
608 		if ((next_msg && next_msg->spi != msg->spi) ||
609 		    msg->state == ERROR_STATE)
610 			cs_deassert(drv_data);
611 	}
612 
613 	spi_finalize_current_message(drv_data->master);
614 }
615 
616 static void reset_sccr1(struct driver_data *drv_data)
617 {
618 	struct chip_data *chip =
619 		spi_get_ctldata(drv_data->master->cur_msg->spi);
620 	u32 sccr1_reg;
621 
622 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
623 	switch (drv_data->ssp_type) {
624 	case QUARK_X1000_SSP:
625 		sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
626 		break;
627 	case CE4100_SSP:
628 		sccr1_reg &= ~CE4100_SSCR1_RFT;
629 		break;
630 	default:
631 		sccr1_reg &= ~SSCR1_RFT;
632 		break;
633 	}
634 	sccr1_reg |= chip->threshold;
635 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
636 }
637 
638 static void int_error_stop(struct driver_data *drv_data, const char* msg)
639 {
640 	/* Stop and reset SSP */
641 	write_SSSR_CS(drv_data, drv_data->clear_sr);
642 	reset_sccr1(drv_data);
643 	if (!pxa25x_ssp_comp(drv_data))
644 		pxa2xx_spi_write(drv_data, SSTO, 0);
645 	pxa2xx_spi_flush(drv_data);
646 	pxa2xx_spi_write(drv_data, SSCR0,
647 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
648 
649 	dev_err(&drv_data->pdev->dev, "%s\n", msg);
650 
651 	drv_data->master->cur_msg->state = ERROR_STATE;
652 	tasklet_schedule(&drv_data->pump_transfers);
653 }
654 
655 static void int_transfer_complete(struct driver_data *drv_data)
656 {
657 	/* Clear and disable interrupts */
658 	write_SSSR_CS(drv_data, drv_data->clear_sr);
659 	reset_sccr1(drv_data);
660 	if (!pxa25x_ssp_comp(drv_data))
661 		pxa2xx_spi_write(drv_data, SSTO, 0);
662 
663 	/* Update total byte transferred return count actual bytes read */
664 	drv_data->master->cur_msg->actual_length += drv_data->len -
665 				(drv_data->rx_end - drv_data->rx);
666 
667 	/* Transfer delays and chip select release are
668 	 * handled in pump_transfers or giveback
669 	 */
670 
671 	/* Move to next transfer */
672 	drv_data->master->cur_msg->state = pxa2xx_spi_next_transfer(drv_data);
673 
674 	/* Schedule transfer tasklet */
675 	tasklet_schedule(&drv_data->pump_transfers);
676 }
677 
678 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
679 {
680 	u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
681 		       drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
682 
683 	u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
684 
685 	if (irq_status & SSSR_ROR) {
686 		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
687 		return IRQ_HANDLED;
688 	}
689 
690 	if (irq_status & SSSR_TINT) {
691 		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
692 		if (drv_data->read(drv_data)) {
693 			int_transfer_complete(drv_data);
694 			return IRQ_HANDLED;
695 		}
696 	}
697 
698 	/* Drain rx fifo, Fill tx fifo and prevent overruns */
699 	do {
700 		if (drv_data->read(drv_data)) {
701 			int_transfer_complete(drv_data);
702 			return IRQ_HANDLED;
703 		}
704 	} while (drv_data->write(drv_data));
705 
706 	if (drv_data->read(drv_data)) {
707 		int_transfer_complete(drv_data);
708 		return IRQ_HANDLED;
709 	}
710 
711 	if (drv_data->tx == drv_data->tx_end) {
712 		u32 bytes_left;
713 		u32 sccr1_reg;
714 
715 		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
716 		sccr1_reg &= ~SSCR1_TIE;
717 
718 		/*
719 		 * PXA25x_SSP has no timeout, set up rx threshould for the
720 		 * remaining RX bytes.
721 		 */
722 		if (pxa25x_ssp_comp(drv_data)) {
723 			u32 rx_thre;
724 
725 			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
726 
727 			bytes_left = drv_data->rx_end - drv_data->rx;
728 			switch (drv_data->n_bytes) {
729 			case 4:
730 				bytes_left >>= 1;
731 			case 2:
732 				bytes_left >>= 1;
733 			}
734 
735 			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
736 			if (rx_thre > bytes_left)
737 				rx_thre = bytes_left;
738 
739 			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
740 		}
741 		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
742 	}
743 
744 	/* We did something */
745 	return IRQ_HANDLED;
746 }
747 
748 static void handle_bad_msg(struct driver_data *drv_data)
749 {
750 	pxa2xx_spi_write(drv_data, SSCR0,
751 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
752 	pxa2xx_spi_write(drv_data, SSCR1,
753 			 pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1);
754 	if (!pxa25x_ssp_comp(drv_data))
755 		pxa2xx_spi_write(drv_data, SSTO, 0);
756 	write_SSSR_CS(drv_data, drv_data->clear_sr);
757 
758 	dev_err(&drv_data->pdev->dev,
759 		"bad message state in interrupt handler\n");
760 }
761 
762 static irqreturn_t ssp_int(int irq, void *dev_id)
763 {
764 	struct driver_data *drv_data = dev_id;
765 	u32 sccr1_reg;
766 	u32 mask = drv_data->mask_sr;
767 	u32 status;
768 
769 	/*
770 	 * The IRQ might be shared with other peripherals so we must first
771 	 * check that are we RPM suspended or not. If we are we assume that
772 	 * the IRQ was not for us (we shouldn't be RPM suspended when the
773 	 * interrupt is enabled).
774 	 */
775 	if (pm_runtime_suspended(&drv_data->pdev->dev))
776 		return IRQ_NONE;
777 
778 	/*
779 	 * If the device is not yet in RPM suspended state and we get an
780 	 * interrupt that is meant for another device, check if status bits
781 	 * are all set to one. That means that the device is already
782 	 * powered off.
783 	 */
784 	status = pxa2xx_spi_read(drv_data, SSSR);
785 	if (status == ~0)
786 		return IRQ_NONE;
787 
788 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
789 
790 	/* Ignore possible writes if we don't need to write */
791 	if (!(sccr1_reg & SSCR1_TIE))
792 		mask &= ~SSSR_TFS;
793 
794 	/* Ignore RX timeout interrupt if it is disabled */
795 	if (!(sccr1_reg & SSCR1_TINTE))
796 		mask &= ~SSSR_TINT;
797 
798 	if (!(status & mask))
799 		return IRQ_NONE;
800 
801 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
802 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
803 
804 	if (!drv_data->master->cur_msg) {
805 		handle_bad_msg(drv_data);
806 		/* Never fail */
807 		return IRQ_HANDLED;
808 	}
809 
810 	return drv_data->transfer_handler(drv_data);
811 }
812 
813 /*
814  * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
815  * input frequency by fractions of 2^24. It also has a divider by 5.
816  *
817  * There are formulas to get baud rate value for given input frequency and
818  * divider parameters, such as DDS_CLK_RATE and SCR:
819  *
820  * Fsys = 200MHz
821  *
822  * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
823  * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
824  *
825  * DDS_CLK_RATE either 2^n or 2^n / 5.
826  * SCR is in range 0 .. 255
827  *
828  * Divisor = 5^i * 2^j * 2 * k
829  *       i = [0, 1]      i = 1 iff j = 0 or j > 3
830  *       j = [0, 23]     j = 0 iff i = 1
831  *       k = [1, 256]
832  * Special case: j = 0, i = 1: Divisor = 2 / 5
833  *
834  * Accordingly to the specification the recommended values for DDS_CLK_RATE
835  * are:
836  *	Case 1:		2^n, n = [0, 23]
837  *	Case 2:		2^24 * 2 / 5 (0x666666)
838  *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
839  *
840  * In all cases the lowest possible value is better.
841  *
842  * The function calculates parameters for all cases and chooses the one closest
843  * to the asked baud rate.
844  */
845 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
846 {
847 	unsigned long xtal = 200000000;
848 	unsigned long fref = xtal / 2;		/* mandatory division by 2,
849 						   see (2) */
850 						/* case 3 */
851 	unsigned long fref1 = fref / 2;		/* case 1 */
852 	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
853 	unsigned long scale;
854 	unsigned long q, q1, q2;
855 	long r, r1, r2;
856 	u32 mul;
857 
858 	/* Case 1 */
859 
860 	/* Set initial value for DDS_CLK_RATE */
861 	mul = (1 << 24) >> 1;
862 
863 	/* Calculate initial quot */
864 	q1 = DIV_ROUND_UP(fref1, rate);
865 
866 	/* Scale q1 if it's too big */
867 	if (q1 > 256) {
868 		/* Scale q1 to range [1, 512] */
869 		scale = fls_long(q1 - 1);
870 		if (scale > 9) {
871 			q1 >>= scale - 9;
872 			mul >>= scale - 9;
873 		}
874 
875 		/* Round the result if we have a remainder */
876 		q1 += q1 & 1;
877 	}
878 
879 	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
880 	scale = __ffs(q1);
881 	q1 >>= scale;
882 	mul >>= scale;
883 
884 	/* Get the remainder */
885 	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
886 
887 	/* Case 2 */
888 
889 	q2 = DIV_ROUND_UP(fref2, rate);
890 	r2 = abs(fref2 / q2 - rate);
891 
892 	/*
893 	 * Choose the best between two: less remainder we have the better. We
894 	 * can't go case 2 if q2 is greater than 256 since SCR register can
895 	 * hold only values 0 .. 255.
896 	 */
897 	if (r2 >= r1 || q2 > 256) {
898 		/* case 1 is better */
899 		r = r1;
900 		q = q1;
901 	} else {
902 		/* case 2 is better */
903 		r = r2;
904 		q = q2;
905 		mul = (1 << 24) * 2 / 5;
906 	}
907 
908 	/* Check case 3 only if the divisor is big enough */
909 	if (fref / rate >= 80) {
910 		u64 fssp;
911 		u32 m;
912 
913 		/* Calculate initial quot */
914 		q1 = DIV_ROUND_UP(fref, rate);
915 		m = (1 << 24) / q1;
916 
917 		/* Get the remainder */
918 		fssp = (u64)fref * m;
919 		do_div(fssp, 1 << 24);
920 		r1 = abs(fssp - rate);
921 
922 		/* Choose this one if it suits better */
923 		if (r1 < r) {
924 			/* case 3 is better */
925 			q = 1;
926 			mul = m;
927 		}
928 	}
929 
930 	*dds = mul;
931 	return q - 1;
932 }
933 
934 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
935 {
936 	unsigned long ssp_clk = drv_data->master->max_speed_hz;
937 	const struct ssp_device *ssp = drv_data->ssp;
938 
939 	rate = min_t(int, ssp_clk, rate);
940 
941 	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
942 		return (ssp_clk / (2 * rate) - 1) & 0xff;
943 	else
944 		return (ssp_clk / rate - 1) & 0xfff;
945 }
946 
947 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
948 					   int rate)
949 {
950 	struct chip_data *chip =
951 		spi_get_ctldata(drv_data->master->cur_msg->spi);
952 	unsigned int clk_div;
953 
954 	switch (drv_data->ssp_type) {
955 	case QUARK_X1000_SSP:
956 		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
957 		break;
958 	default:
959 		clk_div = ssp_get_clk_div(drv_data, rate);
960 		break;
961 	}
962 	return clk_div << 8;
963 }
964 
965 static bool pxa2xx_spi_can_dma(struct spi_controller *master,
966 			       struct spi_device *spi,
967 			       struct spi_transfer *xfer)
968 {
969 	struct chip_data *chip = spi_get_ctldata(spi);
970 
971 	return chip->enable_dma &&
972 	       xfer->len <= MAX_DMA_LEN &&
973 	       xfer->len >= chip->dma_burst_size;
974 }
975 
976 static void pump_transfers(unsigned long data)
977 {
978 	struct driver_data *drv_data = (struct driver_data *)data;
979 	struct spi_controller *master = drv_data->master;
980 	struct spi_message *message = master->cur_msg;
981 	struct chip_data *chip = spi_get_ctldata(message->spi);
982 	u32 dma_thresh = chip->dma_threshold;
983 	u32 dma_burst = chip->dma_burst_size;
984 	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
985 	struct spi_transfer *transfer;
986 	struct spi_transfer *previous;
987 	u32 clk_div;
988 	u8 bits;
989 	u32 speed;
990 	u32 cr0;
991 	u32 cr1;
992 	int err;
993 	int dma_mapped;
994 
995 	/* Get current state information */
996 	transfer = drv_data->cur_transfer;
997 
998 	/* Handle for abort */
999 	if (message->state == ERROR_STATE) {
1000 		message->status = -EIO;
1001 		giveback(drv_data);
1002 		return;
1003 	}
1004 
1005 	/* Handle end of message */
1006 	if (message->state == DONE_STATE) {
1007 		message->status = 0;
1008 		giveback(drv_data);
1009 		return;
1010 	}
1011 
1012 	/* Delay if requested at end of transfer before CS change */
1013 	if (message->state == RUNNING_STATE) {
1014 		previous = list_entry(transfer->transfer_list.prev,
1015 					struct spi_transfer,
1016 					transfer_list);
1017 		if (previous->delay_usecs)
1018 			udelay(previous->delay_usecs);
1019 
1020 		/* Drop chip select only if cs_change is requested */
1021 		if (previous->cs_change)
1022 			cs_deassert(drv_data);
1023 	}
1024 
1025 	/* Check if we can DMA this transfer */
1026 	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
1027 
1028 		/* reject already-mapped transfers; PIO won't always work */
1029 		if (message->is_dma_mapped
1030 				|| transfer->rx_dma || transfer->tx_dma) {
1031 			dev_err(&drv_data->pdev->dev,
1032 				"pump_transfers: mapped transfer length of "
1033 				"%u is greater than %d\n",
1034 				transfer->len, MAX_DMA_LEN);
1035 			message->status = -EINVAL;
1036 			giveback(drv_data);
1037 			return;
1038 		}
1039 
1040 		/* warn ... we force this to PIO mode */
1041 		dev_warn_ratelimited(&message->spi->dev,
1042 				     "pump_transfers: DMA disabled for transfer length %ld "
1043 				     "greater than %d\n",
1044 				     (long)drv_data->len, MAX_DMA_LEN);
1045 	}
1046 
1047 	/* Setup the transfer state based on the type of transfer */
1048 	if (pxa2xx_spi_flush(drv_data) == 0) {
1049 		dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
1050 		message->status = -EIO;
1051 		giveback(drv_data);
1052 		return;
1053 	}
1054 	drv_data->n_bytes = chip->n_bytes;
1055 	drv_data->tx = (void *)transfer->tx_buf;
1056 	drv_data->tx_end = drv_data->tx + transfer->len;
1057 	drv_data->rx = transfer->rx_buf;
1058 	drv_data->rx_end = drv_data->rx + transfer->len;
1059 	drv_data->len = transfer->len;
1060 	drv_data->write = drv_data->tx ? chip->write : null_writer;
1061 	drv_data->read = drv_data->rx ? chip->read : null_reader;
1062 
1063 	/* Change speed and bit per word on a per transfer */
1064 	bits = transfer->bits_per_word;
1065 	speed = transfer->speed_hz;
1066 
1067 	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
1068 
1069 	if (bits <= 8) {
1070 		drv_data->n_bytes = 1;
1071 		drv_data->read = drv_data->read != null_reader ?
1072 					u8_reader : null_reader;
1073 		drv_data->write = drv_data->write != null_writer ?
1074 					u8_writer : null_writer;
1075 	} else if (bits <= 16) {
1076 		drv_data->n_bytes = 2;
1077 		drv_data->read = drv_data->read != null_reader ?
1078 					u16_reader : null_reader;
1079 		drv_data->write = drv_data->write != null_writer ?
1080 					u16_writer : null_writer;
1081 	} else if (bits <= 32) {
1082 		drv_data->n_bytes = 4;
1083 		drv_data->read = drv_data->read != null_reader ?
1084 					u32_reader : null_reader;
1085 		drv_data->write = drv_data->write != null_writer ?
1086 					u32_writer : null_writer;
1087 	}
1088 	/*
1089 	 * if bits/word is changed in dma mode, then must check the
1090 	 * thresholds and burst also
1091 	 */
1092 	if (chip->enable_dma) {
1093 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1094 						message->spi,
1095 						bits, &dma_burst,
1096 						&dma_thresh))
1097 			dev_warn_ratelimited(&message->spi->dev,
1098 					     "pump_transfers: DMA burst size reduced to match bits_per_word\n");
1099 	}
1100 
1101 	message->state = RUNNING_STATE;
1102 
1103 	dma_mapped = master->can_dma &&
1104 		     master->can_dma(master, message->spi, transfer) &&
1105 		     master->cur_msg_mapped;
1106 	if (dma_mapped) {
1107 
1108 		/* Ensure we have the correct interrupt handler */
1109 		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1110 
1111 		err = pxa2xx_spi_dma_prepare(drv_data, dma_burst);
1112 		if (err) {
1113 			message->status = err;
1114 			giveback(drv_data);
1115 			return;
1116 		}
1117 
1118 		/* Clear status and start DMA engine */
1119 		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1120 		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1121 
1122 		pxa2xx_spi_dma_start(drv_data);
1123 	} else {
1124 		/* Ensure we have the correct interrupt handler	*/
1125 		drv_data->transfer_handler = interrupt_transfer;
1126 
1127 		/* Clear status  */
1128 		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1129 		write_SSSR_CS(drv_data, drv_data->clear_sr);
1130 	}
1131 
1132 	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1133 	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1134 	if (!pxa25x_ssp_comp(drv_data))
1135 		dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1136 			master->max_speed_hz
1137 				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1138 			dma_mapped ? "DMA" : "PIO");
1139 	else
1140 		dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1141 			master->max_speed_hz / 2
1142 				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1143 			dma_mapped ? "DMA" : "PIO");
1144 
1145 	if (is_lpss_ssp(drv_data)) {
1146 		if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1147 		    != chip->lpss_rx_threshold)
1148 			pxa2xx_spi_write(drv_data, SSIRF,
1149 					 chip->lpss_rx_threshold);
1150 		if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1151 		    != chip->lpss_tx_threshold)
1152 			pxa2xx_spi_write(drv_data, SSITF,
1153 					 chip->lpss_tx_threshold);
1154 	}
1155 
1156 	if (is_quark_x1000_ssp(drv_data) &&
1157 	    (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1158 		pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1159 
1160 	/* see if we need to reload the config registers */
1161 	if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1162 	    || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1163 	    != (cr1 & change_mask)) {
1164 		/* stop the SSP, and update the other bits */
1165 		pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1166 		if (!pxa25x_ssp_comp(drv_data))
1167 			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1168 		/* first set CR1 without interrupt and service enables */
1169 		pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1170 		/* restart the SSP */
1171 		pxa2xx_spi_write(drv_data, SSCR0, cr0);
1172 
1173 	} else {
1174 		if (!pxa25x_ssp_comp(drv_data))
1175 			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1176 	}
1177 
1178 	cs_assert(drv_data);
1179 
1180 	/* after chip select, release the data by enabling service
1181 	 * requests and interrupts, without changing any mode bits */
1182 	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1183 }
1184 
1185 static int pxa2xx_spi_transfer_one_message(struct spi_controller *master,
1186 					   struct spi_message *msg)
1187 {
1188 	struct driver_data *drv_data = spi_controller_get_devdata(master);
1189 
1190 	/* Initial message state*/
1191 	msg->state = START_STATE;
1192 	drv_data->cur_transfer = list_entry(msg->transfers.next,
1193 						struct spi_transfer,
1194 						transfer_list);
1195 
1196 	/* Mark as busy and launch transfers */
1197 	tasklet_schedule(&drv_data->pump_transfers);
1198 	return 0;
1199 }
1200 
1201 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *master)
1202 {
1203 	struct driver_data *drv_data = spi_controller_get_devdata(master);
1204 
1205 	/* Disable the SSP now */
1206 	pxa2xx_spi_write(drv_data, SSCR0,
1207 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1208 
1209 	return 0;
1210 }
1211 
1212 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1213 		    struct pxa2xx_spi_chip *chip_info)
1214 {
1215 	struct driver_data *drv_data =
1216 		spi_controller_get_devdata(spi->controller);
1217 	struct gpio_desc *gpiod;
1218 	int err = 0;
1219 
1220 	if (chip == NULL)
1221 		return 0;
1222 
1223 	if (drv_data->cs_gpiods) {
1224 		gpiod = drv_data->cs_gpiods[spi->chip_select];
1225 		if (gpiod) {
1226 			chip->gpiod_cs = gpiod;
1227 			chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1228 			gpiod_set_value(gpiod, chip->gpio_cs_inverted);
1229 		}
1230 
1231 		return 0;
1232 	}
1233 
1234 	if (chip_info == NULL)
1235 		return 0;
1236 
1237 	/* NOTE: setup() can be called multiple times, possibly with
1238 	 * different chip_info, release previously requested GPIO
1239 	 */
1240 	if (chip->gpiod_cs) {
1241 		gpiod_put(chip->gpiod_cs);
1242 		chip->gpiod_cs = NULL;
1243 	}
1244 
1245 	/* If (*cs_control) is provided, ignore GPIO chip select */
1246 	if (chip_info->cs_control) {
1247 		chip->cs_control = chip_info->cs_control;
1248 		return 0;
1249 	}
1250 
1251 	if (gpio_is_valid(chip_info->gpio_cs)) {
1252 		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1253 		if (err) {
1254 			dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1255 				chip_info->gpio_cs);
1256 			return err;
1257 		}
1258 
1259 		gpiod = gpio_to_desc(chip_info->gpio_cs);
1260 		chip->gpiod_cs = gpiod;
1261 		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1262 
1263 		err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted);
1264 	}
1265 
1266 	return err;
1267 }
1268 
1269 static int setup(struct spi_device *spi)
1270 {
1271 	struct pxa2xx_spi_chip *chip_info;
1272 	struct chip_data *chip;
1273 	const struct lpss_config *config;
1274 	struct driver_data *drv_data =
1275 		spi_controller_get_devdata(spi->controller);
1276 	uint tx_thres, tx_hi_thres, rx_thres;
1277 
1278 	switch (drv_data->ssp_type) {
1279 	case QUARK_X1000_SSP:
1280 		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1281 		tx_hi_thres = 0;
1282 		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1283 		break;
1284 	case CE4100_SSP:
1285 		tx_thres = TX_THRESH_CE4100_DFLT;
1286 		tx_hi_thres = 0;
1287 		rx_thres = RX_THRESH_CE4100_DFLT;
1288 		break;
1289 	case LPSS_LPT_SSP:
1290 	case LPSS_BYT_SSP:
1291 	case LPSS_BSW_SSP:
1292 	case LPSS_SPT_SSP:
1293 	case LPSS_BXT_SSP:
1294 	case LPSS_CNL_SSP:
1295 		config = lpss_get_config(drv_data);
1296 		tx_thres = config->tx_threshold_lo;
1297 		tx_hi_thres = config->tx_threshold_hi;
1298 		rx_thres = config->rx_threshold;
1299 		break;
1300 	default:
1301 		tx_thres = TX_THRESH_DFLT;
1302 		tx_hi_thres = 0;
1303 		rx_thres = RX_THRESH_DFLT;
1304 		break;
1305 	}
1306 
1307 	/* Only alloc on first setup */
1308 	chip = spi_get_ctldata(spi);
1309 	if (!chip) {
1310 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1311 		if (!chip)
1312 			return -ENOMEM;
1313 
1314 		if (drv_data->ssp_type == CE4100_SSP) {
1315 			if (spi->chip_select > 4) {
1316 				dev_err(&spi->dev,
1317 					"failed setup: cs number must not be > 4.\n");
1318 				kfree(chip);
1319 				return -EINVAL;
1320 			}
1321 
1322 			chip->frm = spi->chip_select;
1323 		}
1324 		chip->enable_dma = drv_data->master_info->enable_dma;
1325 		chip->timeout = TIMOUT_DFLT;
1326 	}
1327 
1328 	/* protocol drivers may change the chip settings, so...
1329 	 * if chip_info exists, use it */
1330 	chip_info = spi->controller_data;
1331 
1332 	/* chip_info isn't always needed */
1333 	chip->cr1 = 0;
1334 	if (chip_info) {
1335 		if (chip_info->timeout)
1336 			chip->timeout = chip_info->timeout;
1337 		if (chip_info->tx_threshold)
1338 			tx_thres = chip_info->tx_threshold;
1339 		if (chip_info->tx_hi_threshold)
1340 			tx_hi_thres = chip_info->tx_hi_threshold;
1341 		if (chip_info->rx_threshold)
1342 			rx_thres = chip_info->rx_threshold;
1343 		chip->dma_threshold = 0;
1344 		if (chip_info->enable_loopback)
1345 			chip->cr1 = SSCR1_LBM;
1346 	}
1347 
1348 	chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1349 	chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1350 				| SSITF_TxHiThresh(tx_hi_thres);
1351 
1352 	/* set dma burst and threshold outside of chip_info path so that if
1353 	 * chip_info goes away after setting chip->enable_dma, the
1354 	 * burst and threshold can still respond to changes in bits_per_word */
1355 	if (chip->enable_dma) {
1356 		/* set up legal burst and threshold for dma */
1357 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1358 						spi->bits_per_word,
1359 						&chip->dma_burst_size,
1360 						&chip->dma_threshold)) {
1361 			dev_warn(&spi->dev,
1362 				 "in setup: DMA burst size reduced to match bits_per_word\n");
1363 		}
1364 	}
1365 
1366 	switch (drv_data->ssp_type) {
1367 	case QUARK_X1000_SSP:
1368 		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1369 				   & QUARK_X1000_SSCR1_RFT)
1370 				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1371 				   & QUARK_X1000_SSCR1_TFT);
1372 		break;
1373 	case CE4100_SSP:
1374 		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1375 			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1376 		break;
1377 	default:
1378 		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1379 			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1380 		break;
1381 	}
1382 
1383 	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1384 	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1385 			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1386 
1387 	if (spi->mode & SPI_LOOP)
1388 		chip->cr1 |= SSCR1_LBM;
1389 
1390 	if (spi->bits_per_word <= 8) {
1391 		chip->n_bytes = 1;
1392 		chip->read = u8_reader;
1393 		chip->write = u8_writer;
1394 	} else if (spi->bits_per_word <= 16) {
1395 		chip->n_bytes = 2;
1396 		chip->read = u16_reader;
1397 		chip->write = u16_writer;
1398 	} else if (spi->bits_per_word <= 32) {
1399 		chip->n_bytes = 4;
1400 		chip->read = u32_reader;
1401 		chip->write = u32_writer;
1402 	}
1403 
1404 	spi_set_ctldata(spi, chip);
1405 
1406 	if (drv_data->ssp_type == CE4100_SSP)
1407 		return 0;
1408 
1409 	return setup_cs(spi, chip, chip_info);
1410 }
1411 
1412 static void cleanup(struct spi_device *spi)
1413 {
1414 	struct chip_data *chip = spi_get_ctldata(spi);
1415 	struct driver_data *drv_data =
1416 		spi_controller_get_devdata(spi->controller);
1417 
1418 	if (!chip)
1419 		return;
1420 
1421 	if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
1422 	    chip->gpiod_cs)
1423 		gpiod_put(chip->gpiod_cs);
1424 
1425 	kfree(chip);
1426 }
1427 
1428 #ifdef CONFIG_PCI
1429 #ifdef CONFIG_ACPI
1430 
1431 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1432 	{ "INT33C0", LPSS_LPT_SSP },
1433 	{ "INT33C1", LPSS_LPT_SSP },
1434 	{ "INT3430", LPSS_LPT_SSP },
1435 	{ "INT3431", LPSS_LPT_SSP },
1436 	{ "80860F0E", LPSS_BYT_SSP },
1437 	{ "8086228E", LPSS_BSW_SSP },
1438 	{ },
1439 };
1440 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1441 
1442 static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1443 {
1444 	unsigned int devid;
1445 	int port_id = -1;
1446 
1447 	if (adev && adev->pnp.unique_id &&
1448 	    !kstrtouint(adev->pnp.unique_id, 0, &devid))
1449 		port_id = devid;
1450 	return port_id;
1451 }
1452 #else /* !CONFIG_ACPI */
1453 static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1454 {
1455 	return -1;
1456 }
1457 #endif
1458 
1459 /*
1460  * PCI IDs of compound devices that integrate both host controller and private
1461  * integrated DMA engine. Please note these are not used in module
1462  * autoloading and probing in this module but matching the LPSS SSP type.
1463  */
1464 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1465 	/* SPT-LP */
1466 	{ PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1467 	{ PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1468 	/* SPT-H */
1469 	{ PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1470 	{ PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1471 	/* KBL-H */
1472 	{ PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1473 	{ PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1474 	/* BXT A-Step */
1475 	{ PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1476 	{ PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1477 	{ PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1478 	/* BXT B-Step */
1479 	{ PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1480 	{ PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1481 	{ PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1482 	/* GLK */
1483 	{ PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1484 	{ PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1485 	{ PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1486 	/* APL */
1487 	{ PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1488 	{ PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1489 	{ PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1490 	/* CNL-LP */
1491 	{ PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1492 	{ PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1493 	{ PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1494 	/* CNL-H */
1495 	{ PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1496 	{ PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1497 	{ PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1498 	{ },
1499 };
1500 
1501 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1502 {
1503 	struct device *dev = param;
1504 
1505 	if (dev != chan->device->dev->parent)
1506 		return false;
1507 
1508 	return true;
1509 }
1510 
1511 static struct pxa2xx_spi_master *
1512 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1513 {
1514 	struct pxa2xx_spi_master *pdata;
1515 	struct acpi_device *adev;
1516 	struct ssp_device *ssp;
1517 	struct resource *res;
1518 	const struct acpi_device_id *adev_id = NULL;
1519 	const struct pci_device_id *pcidev_id = NULL;
1520 	int type;
1521 
1522 	adev = ACPI_COMPANION(&pdev->dev);
1523 
1524 	if (dev_is_pci(pdev->dev.parent))
1525 		pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match,
1526 					 to_pci_dev(pdev->dev.parent));
1527 	else if (adev)
1528 		adev_id = acpi_match_device(pdev->dev.driver->acpi_match_table,
1529 					    &pdev->dev);
1530 	else
1531 		return NULL;
1532 
1533 	if (adev_id)
1534 		type = (int)adev_id->driver_data;
1535 	else if (pcidev_id)
1536 		type = (int)pcidev_id->driver_data;
1537 	else
1538 		return NULL;
1539 
1540 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1541 	if (!pdata)
1542 		return NULL;
1543 
1544 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1545 	if (!res)
1546 		return NULL;
1547 
1548 	ssp = &pdata->ssp;
1549 
1550 	ssp->phys_base = res->start;
1551 	ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1552 	if (IS_ERR(ssp->mmio_base))
1553 		return NULL;
1554 
1555 	if (pcidev_id) {
1556 		pdata->tx_param = pdev->dev.parent;
1557 		pdata->rx_param = pdev->dev.parent;
1558 		pdata->dma_filter = pxa2xx_spi_idma_filter;
1559 	}
1560 
1561 	ssp->clk = devm_clk_get(&pdev->dev, NULL);
1562 	ssp->irq = platform_get_irq(pdev, 0);
1563 	ssp->type = type;
1564 	ssp->pdev = pdev;
1565 	ssp->port_id = pxa2xx_spi_get_port_id(adev);
1566 
1567 	pdata->num_chipselect = 1;
1568 	pdata->enable_dma = true;
1569 
1570 	return pdata;
1571 }
1572 
1573 #else /* !CONFIG_PCI */
1574 static inline struct pxa2xx_spi_master *
1575 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1576 {
1577 	return NULL;
1578 }
1579 #endif
1580 
1581 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *master,
1582 				      unsigned int cs)
1583 {
1584 	struct driver_data *drv_data = spi_controller_get_devdata(master);
1585 
1586 	if (has_acpi_companion(&drv_data->pdev->dev)) {
1587 		switch (drv_data->ssp_type) {
1588 		/*
1589 		 * For Atoms the ACPI DeviceSelection used by the Windows
1590 		 * driver starts from 1 instead of 0 so translate it here
1591 		 * to match what Linux expects.
1592 		 */
1593 		case LPSS_BYT_SSP:
1594 		case LPSS_BSW_SSP:
1595 			return cs - 1;
1596 
1597 		default:
1598 			break;
1599 		}
1600 	}
1601 
1602 	return cs;
1603 }
1604 
1605 static int pxa2xx_spi_probe(struct platform_device *pdev)
1606 {
1607 	struct device *dev = &pdev->dev;
1608 	struct pxa2xx_spi_master *platform_info;
1609 	struct spi_controller *master;
1610 	struct driver_data *drv_data;
1611 	struct ssp_device *ssp;
1612 	const struct lpss_config *config;
1613 	int status, count;
1614 	u32 tmp;
1615 
1616 	platform_info = dev_get_platdata(dev);
1617 	if (!platform_info) {
1618 		platform_info = pxa2xx_spi_init_pdata(pdev);
1619 		if (!platform_info) {
1620 			dev_err(&pdev->dev, "missing platform data\n");
1621 			return -ENODEV;
1622 		}
1623 	}
1624 
1625 	ssp = pxa_ssp_request(pdev->id, pdev->name);
1626 	if (!ssp)
1627 		ssp = &platform_info->ssp;
1628 
1629 	if (!ssp->mmio_base) {
1630 		dev_err(&pdev->dev, "failed to get ssp\n");
1631 		return -ENODEV;
1632 	}
1633 
1634 	master = spi_alloc_master(dev, sizeof(struct driver_data));
1635 	if (!master) {
1636 		dev_err(&pdev->dev, "cannot alloc spi_master\n");
1637 		pxa_ssp_free(ssp);
1638 		return -ENOMEM;
1639 	}
1640 	drv_data = spi_controller_get_devdata(master);
1641 	drv_data->master = master;
1642 	drv_data->master_info = platform_info;
1643 	drv_data->pdev = pdev;
1644 	drv_data->ssp = ssp;
1645 
1646 	master->dev.of_node = pdev->dev.of_node;
1647 	/* the spi->mode bits understood by this driver: */
1648 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1649 
1650 	master->bus_num = ssp->port_id;
1651 	master->dma_alignment = DMA_ALIGNMENT;
1652 	master->cleanup = cleanup;
1653 	master->setup = setup;
1654 	master->transfer_one_message = pxa2xx_spi_transfer_one_message;
1655 	master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1656 	master->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1657 	master->auto_runtime_pm = true;
1658 	master->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1659 
1660 	drv_data->ssp_type = ssp->type;
1661 
1662 	drv_data->ioaddr = ssp->mmio_base;
1663 	drv_data->ssdr_physical = ssp->phys_base + SSDR;
1664 	if (pxa25x_ssp_comp(drv_data)) {
1665 		switch (drv_data->ssp_type) {
1666 		case QUARK_X1000_SSP:
1667 			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1668 			break;
1669 		default:
1670 			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1671 			break;
1672 		}
1673 
1674 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1675 		drv_data->dma_cr1 = 0;
1676 		drv_data->clear_sr = SSSR_ROR;
1677 		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1678 	} else {
1679 		master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1680 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1681 		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1682 		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1683 		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1684 	}
1685 
1686 	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1687 			drv_data);
1688 	if (status < 0) {
1689 		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1690 		goto out_error_master_alloc;
1691 	}
1692 
1693 	/* Setup DMA if requested */
1694 	if (platform_info->enable_dma) {
1695 		status = pxa2xx_spi_dma_setup(drv_data);
1696 		if (status) {
1697 			dev_dbg(dev, "no DMA channels available, using PIO\n");
1698 			platform_info->enable_dma = false;
1699 		} else {
1700 			master->can_dma = pxa2xx_spi_can_dma;
1701 		}
1702 	}
1703 
1704 	/* Enable SOC clock */
1705 	clk_prepare_enable(ssp->clk);
1706 
1707 	master->max_speed_hz = clk_get_rate(ssp->clk);
1708 
1709 	/* Load default SSP configuration */
1710 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1711 	switch (drv_data->ssp_type) {
1712 	case QUARK_X1000_SSP:
1713 		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1714 		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1715 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1716 
1717 		/* using the Motorola SPI protocol and use 8 bit frame */
1718 		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1719 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1720 		break;
1721 	case CE4100_SSP:
1722 		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1723 		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1724 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1725 		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1726 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1727 		break;
1728 	default:
1729 		tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1730 		      SSCR1_TxTresh(TX_THRESH_DFLT);
1731 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1732 		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1733 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1734 		break;
1735 	}
1736 
1737 	if (!pxa25x_ssp_comp(drv_data))
1738 		pxa2xx_spi_write(drv_data, SSTO, 0);
1739 
1740 	if (!is_quark_x1000_ssp(drv_data))
1741 		pxa2xx_spi_write(drv_data, SSPSP, 0);
1742 
1743 	if (is_lpss_ssp(drv_data)) {
1744 		lpss_ssp_setup(drv_data);
1745 		config = lpss_get_config(drv_data);
1746 		if (config->reg_capabilities >= 0) {
1747 			tmp = __lpss_ssp_read_priv(drv_data,
1748 						   config->reg_capabilities);
1749 			tmp &= LPSS_CAPS_CS_EN_MASK;
1750 			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1751 			platform_info->num_chipselect = ffz(tmp);
1752 		} else if (config->cs_num) {
1753 			platform_info->num_chipselect = config->cs_num;
1754 		}
1755 	}
1756 	master->num_chipselect = platform_info->num_chipselect;
1757 
1758 	count = gpiod_count(&pdev->dev, "cs");
1759 	if (count > 0) {
1760 		int i;
1761 
1762 		master->num_chipselect = max_t(int, count,
1763 			master->num_chipselect);
1764 
1765 		drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
1766 			master->num_chipselect, sizeof(struct gpio_desc *),
1767 			GFP_KERNEL);
1768 		if (!drv_data->cs_gpiods) {
1769 			status = -ENOMEM;
1770 			goto out_error_clock_enabled;
1771 		}
1772 
1773 		for (i = 0; i < master->num_chipselect; i++) {
1774 			struct gpio_desc *gpiod;
1775 
1776 			gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1777 			if (IS_ERR(gpiod)) {
1778 				/* Means use native chip select */
1779 				if (PTR_ERR(gpiod) == -ENOENT)
1780 					continue;
1781 
1782 				status = (int)PTR_ERR(gpiod);
1783 				goto out_error_clock_enabled;
1784 			} else {
1785 				drv_data->cs_gpiods[i] = gpiod;
1786 			}
1787 		}
1788 	}
1789 
1790 	tasklet_init(&drv_data->pump_transfers, pump_transfers,
1791 		     (unsigned long)drv_data);
1792 
1793 	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1794 	pm_runtime_use_autosuspend(&pdev->dev);
1795 	pm_runtime_set_active(&pdev->dev);
1796 	pm_runtime_enable(&pdev->dev);
1797 
1798 	/* Register with the SPI framework */
1799 	platform_set_drvdata(pdev, drv_data);
1800 	status = devm_spi_register_controller(&pdev->dev, master);
1801 	if (status != 0) {
1802 		dev_err(&pdev->dev, "problem registering spi master\n");
1803 		goto out_error_clock_enabled;
1804 	}
1805 
1806 	return status;
1807 
1808 out_error_clock_enabled:
1809 	pm_runtime_put_noidle(&pdev->dev);
1810 	pm_runtime_disable(&pdev->dev);
1811 	clk_disable_unprepare(ssp->clk);
1812 	pxa2xx_spi_dma_release(drv_data);
1813 	free_irq(ssp->irq, drv_data);
1814 
1815 out_error_master_alloc:
1816 	spi_controller_put(master);
1817 	pxa_ssp_free(ssp);
1818 	return status;
1819 }
1820 
1821 static int pxa2xx_spi_remove(struct platform_device *pdev)
1822 {
1823 	struct driver_data *drv_data = platform_get_drvdata(pdev);
1824 	struct ssp_device *ssp;
1825 
1826 	if (!drv_data)
1827 		return 0;
1828 	ssp = drv_data->ssp;
1829 
1830 	pm_runtime_get_sync(&pdev->dev);
1831 
1832 	/* Disable the SSP at the peripheral and SOC level */
1833 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1834 	clk_disable_unprepare(ssp->clk);
1835 
1836 	/* Release DMA */
1837 	if (drv_data->master_info->enable_dma)
1838 		pxa2xx_spi_dma_release(drv_data);
1839 
1840 	pm_runtime_put_noidle(&pdev->dev);
1841 	pm_runtime_disable(&pdev->dev);
1842 
1843 	/* Release IRQ */
1844 	free_irq(ssp->irq, drv_data);
1845 
1846 	/* Release SSP */
1847 	pxa_ssp_free(ssp);
1848 
1849 	return 0;
1850 }
1851 
1852 static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1853 {
1854 	int status = 0;
1855 
1856 	if ((status = pxa2xx_spi_remove(pdev)) != 0)
1857 		dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1858 }
1859 
1860 #ifdef CONFIG_PM_SLEEP
1861 static int pxa2xx_spi_suspend(struct device *dev)
1862 {
1863 	struct driver_data *drv_data = dev_get_drvdata(dev);
1864 	struct ssp_device *ssp = drv_data->ssp;
1865 	int status;
1866 
1867 	status = spi_controller_suspend(drv_data->master);
1868 	if (status != 0)
1869 		return status;
1870 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1871 
1872 	if (!pm_runtime_suspended(dev))
1873 		clk_disable_unprepare(ssp->clk);
1874 
1875 	return 0;
1876 }
1877 
1878 static int pxa2xx_spi_resume(struct device *dev)
1879 {
1880 	struct driver_data *drv_data = dev_get_drvdata(dev);
1881 	struct ssp_device *ssp = drv_data->ssp;
1882 	int status;
1883 
1884 	/* Enable the SSP clock */
1885 	if (!pm_runtime_suspended(dev))
1886 		clk_prepare_enable(ssp->clk);
1887 
1888 	/* Restore LPSS private register bits */
1889 	if (is_lpss_ssp(drv_data))
1890 		lpss_ssp_setup(drv_data);
1891 
1892 	/* Start the queue running */
1893 	status = spi_controller_resume(drv_data->master);
1894 	if (status != 0) {
1895 		dev_err(dev, "problem starting queue (%d)\n", status);
1896 		return status;
1897 	}
1898 
1899 	return 0;
1900 }
1901 #endif
1902 
1903 #ifdef CONFIG_PM
1904 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1905 {
1906 	struct driver_data *drv_data = dev_get_drvdata(dev);
1907 
1908 	clk_disable_unprepare(drv_data->ssp->clk);
1909 	return 0;
1910 }
1911 
1912 static int pxa2xx_spi_runtime_resume(struct device *dev)
1913 {
1914 	struct driver_data *drv_data = dev_get_drvdata(dev);
1915 
1916 	clk_prepare_enable(drv_data->ssp->clk);
1917 	return 0;
1918 }
1919 #endif
1920 
1921 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1922 	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1923 	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1924 			   pxa2xx_spi_runtime_resume, NULL)
1925 };
1926 
1927 static struct platform_driver driver = {
1928 	.driver = {
1929 		.name	= "pxa2xx-spi",
1930 		.pm	= &pxa2xx_spi_pm_ops,
1931 		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1932 	},
1933 	.probe = pxa2xx_spi_probe,
1934 	.remove = pxa2xx_spi_remove,
1935 	.shutdown = pxa2xx_spi_shutdown,
1936 };
1937 
1938 static int __init pxa2xx_spi_init(void)
1939 {
1940 	return platform_driver_register(&driver);
1941 }
1942 subsys_initcall(pxa2xx_spi_init);
1943 
1944 static void __exit pxa2xx_spi_exit(void)
1945 {
1946 	platform_driver_unregister(&driver);
1947 }
1948 module_exit(pxa2xx_spi_exit);
1949