xref: /openbmc/linux/drivers/spi/spi-pxa2xx.c (revision d0b73b48)
1 /*
2  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  */
18 
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/ioport.h>
23 #include <linux/errno.h>
24 #include <linux/interrupt.h>
25 #include <linux/platform_device.h>
26 #include <linux/spi/pxa2xx_spi.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/spi/spi.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/gpio.h>
32 #include <linux/slab.h>
33 
34 #include <asm/io.h>
35 #include <asm/irq.h>
36 #include <asm/delay.h>
37 
38 
39 MODULE_AUTHOR("Stephen Street");
40 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
41 MODULE_LICENSE("GPL");
42 MODULE_ALIAS("platform:pxa2xx-spi");
43 
44 #define MAX_BUSES 3
45 
46 #define TIMOUT_DFLT		1000
47 
48 #define DMA_INT_MASK		(DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
49 #define RESET_DMA_CHANNEL	(DCSR_NODESC | DMA_INT_MASK)
50 #define IS_DMA_ALIGNED(x)	((((u32)(x)) & 0x07) == 0)
51 #define MAX_DMA_LEN		8191
52 #define DMA_ALIGNMENT		8
53 
54 /*
55  * for testing SSCR1 changes that require SSP restart, basically
56  * everything except the service and interrupt enables, the pxa270 developer
57  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
58  * list, but the PXA255 dev man says all bits without really meaning the
59  * service and interrupt enables
60  */
61 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
62 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
63 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
64 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
65 				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
66 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
67 
68 #define DEFINE_SSP_REG(reg, off) \
69 static inline u32 read_##reg(void const __iomem *p) \
70 { return __raw_readl(p + (off)); } \
71 \
72 static inline void write_##reg(u32 v, void __iomem *p) \
73 { __raw_writel(v, p + (off)); }
74 
75 DEFINE_SSP_REG(SSCR0, 0x00)
76 DEFINE_SSP_REG(SSCR1, 0x04)
77 DEFINE_SSP_REG(SSSR, 0x08)
78 DEFINE_SSP_REG(SSITR, 0x0c)
79 DEFINE_SSP_REG(SSDR, 0x10)
80 DEFINE_SSP_REG(SSTO, 0x28)
81 DEFINE_SSP_REG(SSPSP, 0x2c)
82 
83 #define START_STATE ((void*)0)
84 #define RUNNING_STATE ((void*)1)
85 #define DONE_STATE ((void*)2)
86 #define ERROR_STATE ((void*)-1)
87 
88 #define QUEUE_RUNNING 0
89 #define QUEUE_STOPPED 1
90 
91 struct driver_data {
92 	/* Driver model hookup */
93 	struct platform_device *pdev;
94 
95 	/* SSP Info */
96 	struct ssp_device *ssp;
97 
98 	/* SPI framework hookup */
99 	enum pxa_ssp_type ssp_type;
100 	struct spi_master *master;
101 
102 	/* PXA hookup */
103 	struct pxa2xx_spi_master *master_info;
104 
105 	/* DMA setup stuff */
106 	int rx_channel;
107 	int tx_channel;
108 	u32 *null_dma_buf;
109 
110 	/* SSP register addresses */
111 	void __iomem *ioaddr;
112 	u32 ssdr_physical;
113 
114 	/* SSP masks*/
115 	u32 dma_cr1;
116 	u32 int_cr1;
117 	u32 clear_sr;
118 	u32 mask_sr;
119 
120 	/* Driver message queue */
121 	struct workqueue_struct	*workqueue;
122 	struct work_struct pump_messages;
123 	spinlock_t lock;
124 	struct list_head queue;
125 	int busy;
126 	int run;
127 
128 	/* Message Transfer pump */
129 	struct tasklet_struct pump_transfers;
130 
131 	/* Current message transfer state info */
132 	struct spi_message* cur_msg;
133 	struct spi_transfer* cur_transfer;
134 	struct chip_data *cur_chip;
135 	size_t len;
136 	void *tx;
137 	void *tx_end;
138 	void *rx;
139 	void *rx_end;
140 	int dma_mapped;
141 	dma_addr_t rx_dma;
142 	dma_addr_t tx_dma;
143 	size_t rx_map_len;
144 	size_t tx_map_len;
145 	u8 n_bytes;
146 	u32 dma_width;
147 	int (*write)(struct driver_data *drv_data);
148 	int (*read)(struct driver_data *drv_data);
149 	irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
150 	void (*cs_control)(u32 command);
151 };
152 
153 struct chip_data {
154 	u32 cr0;
155 	u32 cr1;
156 	u32 psp;
157 	u32 timeout;
158 	u8 n_bytes;
159 	u32 dma_width;
160 	u32 dma_burst_size;
161 	u32 threshold;
162 	u32 dma_threshold;
163 	u8 enable_dma;
164 	u8 bits_per_word;
165 	u32 speed_hz;
166 	union {
167 		int gpio_cs;
168 		unsigned int frm;
169 	};
170 	int gpio_cs_inverted;
171 	int (*write)(struct driver_data *drv_data);
172 	int (*read)(struct driver_data *drv_data);
173 	void (*cs_control)(u32 command);
174 };
175 
176 static void pump_messages(struct work_struct *work);
177 
178 static void cs_assert(struct driver_data *drv_data)
179 {
180 	struct chip_data *chip = drv_data->cur_chip;
181 
182 	if (drv_data->ssp_type == CE4100_SSP) {
183 		write_SSSR(drv_data->cur_chip->frm, drv_data->ioaddr);
184 		return;
185 	}
186 
187 	if (chip->cs_control) {
188 		chip->cs_control(PXA2XX_CS_ASSERT);
189 		return;
190 	}
191 
192 	if (gpio_is_valid(chip->gpio_cs))
193 		gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
194 }
195 
196 static void cs_deassert(struct driver_data *drv_data)
197 {
198 	struct chip_data *chip = drv_data->cur_chip;
199 
200 	if (drv_data->ssp_type == CE4100_SSP)
201 		return;
202 
203 	if (chip->cs_control) {
204 		chip->cs_control(PXA2XX_CS_DEASSERT);
205 		return;
206 	}
207 
208 	if (gpio_is_valid(chip->gpio_cs))
209 		gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
210 }
211 
212 static void write_SSSR_CS(struct driver_data *drv_data, u32 val)
213 {
214 	void __iomem *reg = drv_data->ioaddr;
215 
216 	if (drv_data->ssp_type == CE4100_SSP)
217 		val |= read_SSSR(reg) & SSSR_ALT_FRM_MASK;
218 
219 	write_SSSR(val, reg);
220 }
221 
222 static int pxa25x_ssp_comp(struct driver_data *drv_data)
223 {
224 	if (drv_data->ssp_type == PXA25x_SSP)
225 		return 1;
226 	if (drv_data->ssp_type == CE4100_SSP)
227 		return 1;
228 	return 0;
229 }
230 
231 static int flush(struct driver_data *drv_data)
232 {
233 	unsigned long limit = loops_per_jiffy << 1;
234 
235 	void __iomem *reg = drv_data->ioaddr;
236 
237 	do {
238 		while (read_SSSR(reg) & SSSR_RNE) {
239 			read_SSDR(reg);
240 		}
241 	} while ((read_SSSR(reg) & SSSR_BSY) && --limit);
242 	write_SSSR_CS(drv_data, SSSR_ROR);
243 
244 	return limit;
245 }
246 
247 static int null_writer(struct driver_data *drv_data)
248 {
249 	void __iomem *reg = drv_data->ioaddr;
250 	u8 n_bytes = drv_data->n_bytes;
251 
252 	if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
253 		|| (drv_data->tx == drv_data->tx_end))
254 		return 0;
255 
256 	write_SSDR(0, reg);
257 	drv_data->tx += n_bytes;
258 
259 	return 1;
260 }
261 
262 static int null_reader(struct driver_data *drv_data)
263 {
264 	void __iomem *reg = drv_data->ioaddr;
265 	u8 n_bytes = drv_data->n_bytes;
266 
267 	while ((read_SSSR(reg) & SSSR_RNE)
268 		&& (drv_data->rx < drv_data->rx_end)) {
269 		read_SSDR(reg);
270 		drv_data->rx += n_bytes;
271 	}
272 
273 	return drv_data->rx == drv_data->rx_end;
274 }
275 
276 static int u8_writer(struct driver_data *drv_data)
277 {
278 	void __iomem *reg = drv_data->ioaddr;
279 
280 	if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
281 		|| (drv_data->tx == drv_data->tx_end))
282 		return 0;
283 
284 	write_SSDR(*(u8 *)(drv_data->tx), reg);
285 	++drv_data->tx;
286 
287 	return 1;
288 }
289 
290 static int u8_reader(struct driver_data *drv_data)
291 {
292 	void __iomem *reg = drv_data->ioaddr;
293 
294 	while ((read_SSSR(reg) & SSSR_RNE)
295 		&& (drv_data->rx < drv_data->rx_end)) {
296 		*(u8 *)(drv_data->rx) = read_SSDR(reg);
297 		++drv_data->rx;
298 	}
299 
300 	return drv_data->rx == drv_data->rx_end;
301 }
302 
303 static int u16_writer(struct driver_data *drv_data)
304 {
305 	void __iomem *reg = drv_data->ioaddr;
306 
307 	if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
308 		|| (drv_data->tx == drv_data->tx_end))
309 		return 0;
310 
311 	write_SSDR(*(u16 *)(drv_data->tx), reg);
312 	drv_data->tx += 2;
313 
314 	return 1;
315 }
316 
317 static int u16_reader(struct driver_data *drv_data)
318 {
319 	void __iomem *reg = drv_data->ioaddr;
320 
321 	while ((read_SSSR(reg) & SSSR_RNE)
322 		&& (drv_data->rx < drv_data->rx_end)) {
323 		*(u16 *)(drv_data->rx) = read_SSDR(reg);
324 		drv_data->rx += 2;
325 	}
326 
327 	return drv_data->rx == drv_data->rx_end;
328 }
329 
330 static int u32_writer(struct driver_data *drv_data)
331 {
332 	void __iomem *reg = drv_data->ioaddr;
333 
334 	if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
335 		|| (drv_data->tx == drv_data->tx_end))
336 		return 0;
337 
338 	write_SSDR(*(u32 *)(drv_data->tx), reg);
339 	drv_data->tx += 4;
340 
341 	return 1;
342 }
343 
344 static int u32_reader(struct driver_data *drv_data)
345 {
346 	void __iomem *reg = drv_data->ioaddr;
347 
348 	while ((read_SSSR(reg) & SSSR_RNE)
349 		&& (drv_data->rx < drv_data->rx_end)) {
350 		*(u32 *)(drv_data->rx) = read_SSDR(reg);
351 		drv_data->rx += 4;
352 	}
353 
354 	return drv_data->rx == drv_data->rx_end;
355 }
356 
357 static void *next_transfer(struct driver_data *drv_data)
358 {
359 	struct spi_message *msg = drv_data->cur_msg;
360 	struct spi_transfer *trans = drv_data->cur_transfer;
361 
362 	/* Move to next transfer */
363 	if (trans->transfer_list.next != &msg->transfers) {
364 		drv_data->cur_transfer =
365 			list_entry(trans->transfer_list.next,
366 					struct spi_transfer,
367 					transfer_list);
368 		return RUNNING_STATE;
369 	} else
370 		return DONE_STATE;
371 }
372 
373 static int map_dma_buffers(struct driver_data *drv_data)
374 {
375 	struct spi_message *msg = drv_data->cur_msg;
376 	struct device *dev = &msg->spi->dev;
377 
378 	if (!drv_data->cur_chip->enable_dma)
379 		return 0;
380 
381 	if (msg->is_dma_mapped)
382 		return  drv_data->rx_dma && drv_data->tx_dma;
383 
384 	if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
385 		return 0;
386 
387 	/* Modify setup if rx buffer is null */
388 	if (drv_data->rx == NULL) {
389 		*drv_data->null_dma_buf = 0;
390 		drv_data->rx = drv_data->null_dma_buf;
391 		drv_data->rx_map_len = 4;
392 	} else
393 		drv_data->rx_map_len = drv_data->len;
394 
395 
396 	/* Modify setup if tx buffer is null */
397 	if (drv_data->tx == NULL) {
398 		*drv_data->null_dma_buf = 0;
399 		drv_data->tx = drv_data->null_dma_buf;
400 		drv_data->tx_map_len = 4;
401 	} else
402 		drv_data->tx_map_len = drv_data->len;
403 
404 	/* Stream map the tx buffer. Always do DMA_TO_DEVICE first
405 	 * so we flush the cache *before* invalidating it, in case
406 	 * the tx and rx buffers overlap.
407 	 */
408 	drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
409 					drv_data->tx_map_len, DMA_TO_DEVICE);
410 	if (dma_mapping_error(dev, drv_data->tx_dma))
411 		return 0;
412 
413 	/* Stream map the rx buffer */
414 	drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
415 					drv_data->rx_map_len, DMA_FROM_DEVICE);
416 	if (dma_mapping_error(dev, drv_data->rx_dma)) {
417 		dma_unmap_single(dev, drv_data->tx_dma,
418 					drv_data->tx_map_len, DMA_TO_DEVICE);
419 		return 0;
420 	}
421 
422 	return 1;
423 }
424 
425 static void unmap_dma_buffers(struct driver_data *drv_data)
426 {
427 	struct device *dev;
428 
429 	if (!drv_data->dma_mapped)
430 		return;
431 
432 	if (!drv_data->cur_msg->is_dma_mapped) {
433 		dev = &drv_data->cur_msg->spi->dev;
434 		dma_unmap_single(dev, drv_data->rx_dma,
435 					drv_data->rx_map_len, DMA_FROM_DEVICE);
436 		dma_unmap_single(dev, drv_data->tx_dma,
437 					drv_data->tx_map_len, DMA_TO_DEVICE);
438 	}
439 
440 	drv_data->dma_mapped = 0;
441 }
442 
443 /* caller already set message->status; dma and pio irqs are blocked */
444 static void giveback(struct driver_data *drv_data)
445 {
446 	struct spi_transfer* last_transfer;
447 	unsigned long flags;
448 	struct spi_message *msg;
449 
450 	spin_lock_irqsave(&drv_data->lock, flags);
451 	msg = drv_data->cur_msg;
452 	drv_data->cur_msg = NULL;
453 	drv_data->cur_transfer = NULL;
454 	queue_work(drv_data->workqueue, &drv_data->pump_messages);
455 	spin_unlock_irqrestore(&drv_data->lock, flags);
456 
457 	last_transfer = list_entry(msg->transfers.prev,
458 					struct spi_transfer,
459 					transfer_list);
460 
461 	/* Delay if requested before any change in chip select */
462 	if (last_transfer->delay_usecs)
463 		udelay(last_transfer->delay_usecs);
464 
465 	/* Drop chip select UNLESS cs_change is true or we are returning
466 	 * a message with an error, or next message is for another chip
467 	 */
468 	if (!last_transfer->cs_change)
469 		cs_deassert(drv_data);
470 	else {
471 		struct spi_message *next_msg;
472 
473 		/* Holding of cs was hinted, but we need to make sure
474 		 * the next message is for the same chip.  Don't waste
475 		 * time with the following tests unless this was hinted.
476 		 *
477 		 * We cannot postpone this until pump_messages, because
478 		 * after calling msg->complete (below) the driver that
479 		 * sent the current message could be unloaded, which
480 		 * could invalidate the cs_control() callback...
481 		 */
482 
483 		/* get a pointer to the next message, if any */
484 		spin_lock_irqsave(&drv_data->lock, flags);
485 		if (list_empty(&drv_data->queue))
486 			next_msg = NULL;
487 		else
488 			next_msg = list_entry(drv_data->queue.next,
489 					struct spi_message, queue);
490 		spin_unlock_irqrestore(&drv_data->lock, flags);
491 
492 		/* see if the next and current messages point
493 		 * to the same chip
494 		 */
495 		if (next_msg && next_msg->spi != msg->spi)
496 			next_msg = NULL;
497 		if (!next_msg || msg->state == ERROR_STATE)
498 			cs_deassert(drv_data);
499 	}
500 
501 	msg->state = NULL;
502 	if (msg->complete)
503 		msg->complete(msg->context);
504 
505 	drv_data->cur_chip = NULL;
506 }
507 
508 static int wait_ssp_rx_stall(void const __iomem *ioaddr)
509 {
510 	unsigned long limit = loops_per_jiffy << 1;
511 
512 	while ((read_SSSR(ioaddr) & SSSR_BSY) && --limit)
513 		cpu_relax();
514 
515 	return limit;
516 }
517 
518 static int wait_dma_channel_stop(int channel)
519 {
520 	unsigned long limit = loops_per_jiffy << 1;
521 
522 	while (!(DCSR(channel) & DCSR_STOPSTATE) && --limit)
523 		cpu_relax();
524 
525 	return limit;
526 }
527 
528 static void dma_error_stop(struct driver_data *drv_data, const char *msg)
529 {
530 	void __iomem *reg = drv_data->ioaddr;
531 
532 	/* Stop and reset */
533 	DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
534 	DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
535 	write_SSSR_CS(drv_data, drv_data->clear_sr);
536 	write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
537 	if (!pxa25x_ssp_comp(drv_data))
538 		write_SSTO(0, reg);
539 	flush(drv_data);
540 	write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
541 
542 	unmap_dma_buffers(drv_data);
543 
544 	dev_err(&drv_data->pdev->dev, "%s\n", msg);
545 
546 	drv_data->cur_msg->state = ERROR_STATE;
547 	tasklet_schedule(&drv_data->pump_transfers);
548 }
549 
550 static void dma_transfer_complete(struct driver_data *drv_data)
551 {
552 	void __iomem *reg = drv_data->ioaddr;
553 	struct spi_message *msg = drv_data->cur_msg;
554 
555 	/* Clear and disable interrupts on SSP and DMA channels*/
556 	write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
557 	write_SSSR_CS(drv_data, drv_data->clear_sr);
558 	DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
559 	DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
560 
561 	if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
562 		dev_err(&drv_data->pdev->dev,
563 			"dma_handler: dma rx channel stop failed\n");
564 
565 	if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
566 		dev_err(&drv_data->pdev->dev,
567 			"dma_transfer: ssp rx stall failed\n");
568 
569 	unmap_dma_buffers(drv_data);
570 
571 	/* update the buffer pointer for the amount completed in dma */
572 	drv_data->rx += drv_data->len -
573 			(DCMD(drv_data->rx_channel) & DCMD_LENGTH);
574 
575 	/* read trailing data from fifo, it does not matter how many
576 	 * bytes are in the fifo just read until buffer is full
577 	 * or fifo is empty, which ever occurs first */
578 	drv_data->read(drv_data);
579 
580 	/* return count of what was actually read */
581 	msg->actual_length += drv_data->len -
582 				(drv_data->rx_end - drv_data->rx);
583 
584 	/* Transfer delays and chip select release are
585 	 * handled in pump_transfers or giveback
586 	 */
587 
588 	/* Move to next transfer */
589 	msg->state = next_transfer(drv_data);
590 
591 	/* Schedule transfer tasklet */
592 	tasklet_schedule(&drv_data->pump_transfers);
593 }
594 
595 static void dma_handler(int channel, void *data)
596 {
597 	struct driver_data *drv_data = data;
598 	u32 irq_status = DCSR(channel) & DMA_INT_MASK;
599 
600 	if (irq_status & DCSR_BUSERR) {
601 
602 		if (channel == drv_data->tx_channel)
603 			dma_error_stop(drv_data,
604 					"dma_handler: "
605 					"bad bus address on tx channel");
606 		else
607 			dma_error_stop(drv_data,
608 					"dma_handler: "
609 					"bad bus address on rx channel");
610 		return;
611 	}
612 
613 	/* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
614 	if ((channel == drv_data->tx_channel)
615 		&& (irq_status & DCSR_ENDINTR)
616 		&& (drv_data->ssp_type == PXA25x_SSP)) {
617 
618 		/* Wait for rx to stall */
619 		if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
620 			dev_err(&drv_data->pdev->dev,
621 				"dma_handler: ssp rx stall failed\n");
622 
623 		/* finish this transfer, start the next */
624 		dma_transfer_complete(drv_data);
625 	}
626 }
627 
628 static irqreturn_t dma_transfer(struct driver_data *drv_data)
629 {
630 	u32 irq_status;
631 	void __iomem *reg = drv_data->ioaddr;
632 
633 	irq_status = read_SSSR(reg) & drv_data->mask_sr;
634 	if (irq_status & SSSR_ROR) {
635 		dma_error_stop(drv_data, "dma_transfer: fifo overrun");
636 		return IRQ_HANDLED;
637 	}
638 
639 	/* Check for false positive timeout */
640 	if ((irq_status & SSSR_TINT)
641 		&& (DCSR(drv_data->tx_channel) & DCSR_RUN)) {
642 		write_SSSR(SSSR_TINT, reg);
643 		return IRQ_HANDLED;
644 	}
645 
646 	if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
647 
648 		/* Clear and disable timeout interrupt, do the rest in
649 		 * dma_transfer_complete */
650 		if (!pxa25x_ssp_comp(drv_data))
651 			write_SSTO(0, reg);
652 
653 		/* finish this transfer, start the next */
654 		dma_transfer_complete(drv_data);
655 
656 		return IRQ_HANDLED;
657 	}
658 
659 	/* Opps problem detected */
660 	return IRQ_NONE;
661 }
662 
663 static void reset_sccr1(struct driver_data *drv_data)
664 {
665 	void __iomem *reg = drv_data->ioaddr;
666 	struct chip_data *chip = drv_data->cur_chip;
667 	u32 sccr1_reg;
668 
669 	sccr1_reg = read_SSCR1(reg) & ~drv_data->int_cr1;
670 	sccr1_reg &= ~SSCR1_RFT;
671 	sccr1_reg |= chip->threshold;
672 	write_SSCR1(sccr1_reg, reg);
673 }
674 
675 static void int_error_stop(struct driver_data *drv_data, const char* msg)
676 {
677 	void __iomem *reg = drv_data->ioaddr;
678 
679 	/* Stop and reset SSP */
680 	write_SSSR_CS(drv_data, drv_data->clear_sr);
681 	reset_sccr1(drv_data);
682 	if (!pxa25x_ssp_comp(drv_data))
683 		write_SSTO(0, reg);
684 	flush(drv_data);
685 	write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
686 
687 	dev_err(&drv_data->pdev->dev, "%s\n", msg);
688 
689 	drv_data->cur_msg->state = ERROR_STATE;
690 	tasklet_schedule(&drv_data->pump_transfers);
691 }
692 
693 static void int_transfer_complete(struct driver_data *drv_data)
694 {
695 	void __iomem *reg = drv_data->ioaddr;
696 
697 	/* Stop SSP */
698 	write_SSSR_CS(drv_data, drv_data->clear_sr);
699 	reset_sccr1(drv_data);
700 	if (!pxa25x_ssp_comp(drv_data))
701 		write_SSTO(0, reg);
702 
703 	/* Update total byte transferred return count actual bytes read */
704 	drv_data->cur_msg->actual_length += drv_data->len -
705 				(drv_data->rx_end - drv_data->rx);
706 
707 	/* Transfer delays and chip select release are
708 	 * handled in pump_transfers or giveback
709 	 */
710 
711 	/* Move to next transfer */
712 	drv_data->cur_msg->state = next_transfer(drv_data);
713 
714 	/* Schedule transfer tasklet */
715 	tasklet_schedule(&drv_data->pump_transfers);
716 }
717 
718 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
719 {
720 	void __iomem *reg = drv_data->ioaddr;
721 
722 	u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
723 			drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
724 
725 	u32 irq_status = read_SSSR(reg) & irq_mask;
726 
727 	if (irq_status & SSSR_ROR) {
728 		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
729 		return IRQ_HANDLED;
730 	}
731 
732 	if (irq_status & SSSR_TINT) {
733 		write_SSSR(SSSR_TINT, reg);
734 		if (drv_data->read(drv_data)) {
735 			int_transfer_complete(drv_data);
736 			return IRQ_HANDLED;
737 		}
738 	}
739 
740 	/* Drain rx fifo, Fill tx fifo and prevent overruns */
741 	do {
742 		if (drv_data->read(drv_data)) {
743 			int_transfer_complete(drv_data);
744 			return IRQ_HANDLED;
745 		}
746 	} while (drv_data->write(drv_data));
747 
748 	if (drv_data->read(drv_data)) {
749 		int_transfer_complete(drv_data);
750 		return IRQ_HANDLED;
751 	}
752 
753 	if (drv_data->tx == drv_data->tx_end) {
754 		u32 bytes_left;
755 		u32 sccr1_reg;
756 
757 		sccr1_reg = read_SSCR1(reg);
758 		sccr1_reg &= ~SSCR1_TIE;
759 
760 		/*
761 		 * PXA25x_SSP has no timeout, set up rx threshould for the
762 		 * remaining RX bytes.
763 		 */
764 		if (pxa25x_ssp_comp(drv_data)) {
765 
766 			sccr1_reg &= ~SSCR1_RFT;
767 
768 			bytes_left = drv_data->rx_end - drv_data->rx;
769 			switch (drv_data->n_bytes) {
770 			case 4:
771 				bytes_left >>= 1;
772 			case 2:
773 				bytes_left >>= 1;
774 			}
775 
776 			if (bytes_left > RX_THRESH_DFLT)
777 				bytes_left = RX_THRESH_DFLT;
778 
779 			sccr1_reg |= SSCR1_RxTresh(bytes_left);
780 		}
781 		write_SSCR1(sccr1_reg, reg);
782 	}
783 
784 	/* We did something */
785 	return IRQ_HANDLED;
786 }
787 
788 static irqreturn_t ssp_int(int irq, void *dev_id)
789 {
790 	struct driver_data *drv_data = dev_id;
791 	void __iomem *reg = drv_data->ioaddr;
792 	u32 sccr1_reg = read_SSCR1(reg);
793 	u32 mask = drv_data->mask_sr;
794 	u32 status;
795 
796 	status = read_SSSR(reg);
797 
798 	/* Ignore possible writes if we don't need to write */
799 	if (!(sccr1_reg & SSCR1_TIE))
800 		mask &= ~SSSR_TFS;
801 
802 	if (!(status & mask))
803 		return IRQ_NONE;
804 
805 	if (!drv_data->cur_msg) {
806 
807 		write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
808 		write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
809 		if (!pxa25x_ssp_comp(drv_data))
810 			write_SSTO(0, reg);
811 		write_SSSR_CS(drv_data, drv_data->clear_sr);
812 
813 		dev_err(&drv_data->pdev->dev, "bad message state "
814 			"in interrupt handler\n");
815 
816 		/* Never fail */
817 		return IRQ_HANDLED;
818 	}
819 
820 	return drv_data->transfer_handler(drv_data);
821 }
822 
823 static int set_dma_burst_and_threshold(struct chip_data *chip,
824 				struct spi_device *spi,
825 				u8 bits_per_word, u32 *burst_code,
826 				u32 *threshold)
827 {
828 	struct pxa2xx_spi_chip *chip_info =
829 			(struct pxa2xx_spi_chip *)spi->controller_data;
830 	int bytes_per_word;
831 	int burst_bytes;
832 	int thresh_words;
833 	int req_burst_size;
834 	int retval = 0;
835 
836 	/* Set the threshold (in registers) to equal the same amount of data
837 	 * as represented by burst size (in bytes).  The computation below
838 	 * is (burst_size rounded up to nearest 8 byte, word or long word)
839 	 * divided by (bytes/register); the tx threshold is the inverse of
840 	 * the rx, so that there will always be enough data in the rx fifo
841 	 * to satisfy a burst, and there will always be enough space in the
842 	 * tx fifo to accept a burst (a tx burst will overwrite the fifo if
843 	 * there is not enough space), there must always remain enough empty
844 	 * space in the rx fifo for any data loaded to the tx fifo.
845 	 * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
846 	 * will be 8, or half the fifo;
847 	 * The threshold can only be set to 2, 4 or 8, but not 16, because
848 	 * to burst 16 to the tx fifo, the fifo would have to be empty;
849 	 * however, the minimum fifo trigger level is 1, and the tx will
850 	 * request service when the fifo is at this level, with only 15 spaces.
851 	 */
852 
853 	/* find bytes/word */
854 	if (bits_per_word <= 8)
855 		bytes_per_word = 1;
856 	else if (bits_per_word <= 16)
857 		bytes_per_word = 2;
858 	else
859 		bytes_per_word = 4;
860 
861 	/* use struct pxa2xx_spi_chip->dma_burst_size if available */
862 	if (chip_info)
863 		req_burst_size = chip_info->dma_burst_size;
864 	else {
865 		switch (chip->dma_burst_size) {
866 		default:
867 			/* if the default burst size is not set,
868 			 * do it now */
869 			chip->dma_burst_size = DCMD_BURST8;
870 		case DCMD_BURST8:
871 			req_burst_size = 8;
872 			break;
873 		case DCMD_BURST16:
874 			req_burst_size = 16;
875 			break;
876 		case DCMD_BURST32:
877 			req_burst_size = 32;
878 			break;
879 		}
880 	}
881 	if (req_burst_size <= 8) {
882 		*burst_code = DCMD_BURST8;
883 		burst_bytes = 8;
884 	} else if (req_burst_size <= 16) {
885 		if (bytes_per_word == 1) {
886 			/* don't burst more than 1/2 the fifo */
887 			*burst_code = DCMD_BURST8;
888 			burst_bytes = 8;
889 			retval = 1;
890 		} else {
891 			*burst_code = DCMD_BURST16;
892 			burst_bytes = 16;
893 		}
894 	} else {
895 		if (bytes_per_word == 1) {
896 			/* don't burst more than 1/2 the fifo */
897 			*burst_code = DCMD_BURST8;
898 			burst_bytes = 8;
899 			retval = 1;
900 		} else if (bytes_per_word == 2) {
901 			/* don't burst more than 1/2 the fifo */
902 			*burst_code = DCMD_BURST16;
903 			burst_bytes = 16;
904 			retval = 1;
905 		} else {
906 			*burst_code = DCMD_BURST32;
907 			burst_bytes = 32;
908 		}
909 	}
910 
911 	thresh_words = burst_bytes / bytes_per_word;
912 
913 	/* thresh_words will be between 2 and 8 */
914 	*threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT)
915 			| (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT);
916 
917 	return retval;
918 }
919 
920 static unsigned int ssp_get_clk_div(struct ssp_device *ssp, int rate)
921 {
922 	unsigned long ssp_clk = clk_get_rate(ssp->clk);
923 
924 	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
925 		return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
926 	else
927 		return ((ssp_clk / rate - 1) & 0xfff) << 8;
928 }
929 
930 static void pump_transfers(unsigned long data)
931 {
932 	struct driver_data *drv_data = (struct driver_data *)data;
933 	struct spi_message *message = NULL;
934 	struct spi_transfer *transfer = NULL;
935 	struct spi_transfer *previous = NULL;
936 	struct chip_data *chip = NULL;
937 	struct ssp_device *ssp = drv_data->ssp;
938 	void __iomem *reg = drv_data->ioaddr;
939 	u32 clk_div = 0;
940 	u8 bits = 0;
941 	u32 speed = 0;
942 	u32 cr0;
943 	u32 cr1;
944 	u32 dma_thresh = drv_data->cur_chip->dma_threshold;
945 	u32 dma_burst = drv_data->cur_chip->dma_burst_size;
946 
947 	/* Get current state information */
948 	message = drv_data->cur_msg;
949 	transfer = drv_data->cur_transfer;
950 	chip = drv_data->cur_chip;
951 
952 	/* Handle for abort */
953 	if (message->state == ERROR_STATE) {
954 		message->status = -EIO;
955 		giveback(drv_data);
956 		return;
957 	}
958 
959 	/* Handle end of message */
960 	if (message->state == DONE_STATE) {
961 		message->status = 0;
962 		giveback(drv_data);
963 		return;
964 	}
965 
966 	/* Delay if requested at end of transfer before CS change */
967 	if (message->state == RUNNING_STATE) {
968 		previous = list_entry(transfer->transfer_list.prev,
969 					struct spi_transfer,
970 					transfer_list);
971 		if (previous->delay_usecs)
972 			udelay(previous->delay_usecs);
973 
974 		/* Drop chip select only if cs_change is requested */
975 		if (previous->cs_change)
976 			cs_deassert(drv_data);
977 	}
978 
979 	/* Check for transfers that need multiple DMA segments */
980 	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
981 
982 		/* reject already-mapped transfers; PIO won't always work */
983 		if (message->is_dma_mapped
984 				|| transfer->rx_dma || transfer->tx_dma) {
985 			dev_err(&drv_data->pdev->dev,
986 				"pump_transfers: mapped transfer length "
987 				"of %u is greater than %d\n",
988 				transfer->len, MAX_DMA_LEN);
989 			message->status = -EINVAL;
990 			giveback(drv_data);
991 			return;
992 		}
993 
994 		/* warn ... we force this to PIO mode */
995 		if (printk_ratelimit())
996 			dev_warn(&message->spi->dev, "pump_transfers: "
997 				"DMA disabled for transfer length %ld "
998 				"greater than %d\n",
999 				(long)drv_data->len, MAX_DMA_LEN);
1000 	}
1001 
1002 	/* Setup the transfer state based on the type of transfer */
1003 	if (flush(drv_data) == 0) {
1004 		dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
1005 		message->status = -EIO;
1006 		giveback(drv_data);
1007 		return;
1008 	}
1009 	drv_data->n_bytes = chip->n_bytes;
1010 	drv_data->dma_width = chip->dma_width;
1011 	drv_data->tx = (void *)transfer->tx_buf;
1012 	drv_data->tx_end = drv_data->tx + transfer->len;
1013 	drv_data->rx = transfer->rx_buf;
1014 	drv_data->rx_end = drv_data->rx + transfer->len;
1015 	drv_data->rx_dma = transfer->rx_dma;
1016 	drv_data->tx_dma = transfer->tx_dma;
1017 	drv_data->len = transfer->len & DCMD_LENGTH;
1018 	drv_data->write = drv_data->tx ? chip->write : null_writer;
1019 	drv_data->read = drv_data->rx ? chip->read : null_reader;
1020 
1021 	/* Change speed and bit per word on a per transfer */
1022 	cr0 = chip->cr0;
1023 	if (transfer->speed_hz || transfer->bits_per_word) {
1024 
1025 		bits = chip->bits_per_word;
1026 		speed = chip->speed_hz;
1027 
1028 		if (transfer->speed_hz)
1029 			speed = transfer->speed_hz;
1030 
1031 		if (transfer->bits_per_word)
1032 			bits = transfer->bits_per_word;
1033 
1034 		clk_div = ssp_get_clk_div(ssp, speed);
1035 
1036 		if (bits <= 8) {
1037 			drv_data->n_bytes = 1;
1038 			drv_data->dma_width = DCMD_WIDTH1;
1039 			drv_data->read = drv_data->read != null_reader ?
1040 						u8_reader : null_reader;
1041 			drv_data->write = drv_data->write != null_writer ?
1042 						u8_writer : null_writer;
1043 		} else if (bits <= 16) {
1044 			drv_data->n_bytes = 2;
1045 			drv_data->dma_width = DCMD_WIDTH2;
1046 			drv_data->read = drv_data->read != null_reader ?
1047 						u16_reader : null_reader;
1048 			drv_data->write = drv_data->write != null_writer ?
1049 						u16_writer : null_writer;
1050 		} else if (bits <= 32) {
1051 			drv_data->n_bytes = 4;
1052 			drv_data->dma_width = DCMD_WIDTH4;
1053 			drv_data->read = drv_data->read != null_reader ?
1054 						u32_reader : null_reader;
1055 			drv_data->write = drv_data->write != null_writer ?
1056 						u32_writer : null_writer;
1057 		}
1058 		/* if bits/word is changed in dma mode, then must check the
1059 		 * thresholds and burst also */
1060 		if (chip->enable_dma) {
1061 			if (set_dma_burst_and_threshold(chip, message->spi,
1062 							bits, &dma_burst,
1063 							&dma_thresh))
1064 				if (printk_ratelimit())
1065 					dev_warn(&message->spi->dev,
1066 						"pump_transfers: "
1067 						"DMA burst size reduced to "
1068 						"match bits_per_word\n");
1069 		}
1070 
1071 		cr0 = clk_div
1072 			| SSCR0_Motorola
1073 			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
1074 			| SSCR0_SSE
1075 			| (bits > 16 ? SSCR0_EDSS : 0);
1076 	}
1077 
1078 	message->state = RUNNING_STATE;
1079 
1080 	/* Try to map dma buffer and do a dma transfer if successful, but
1081 	 * only if the length is non-zero and less than MAX_DMA_LEN.
1082 	 *
1083 	 * Zero-length non-descriptor DMA is illegal on PXA2xx; force use
1084 	 * of PIO instead.  Care is needed above because the transfer may
1085 	 * have have been passed with buffers that are already dma mapped.
1086 	 * A zero-length transfer in PIO mode will not try to write/read
1087 	 * to/from the buffers
1088 	 *
1089 	 * REVISIT large transfers are exactly where we most want to be
1090 	 * using DMA.  If this happens much, split those transfers into
1091 	 * multiple DMA segments rather than forcing PIO.
1092 	 */
1093 	drv_data->dma_mapped = 0;
1094 	if (drv_data->len > 0 && drv_data->len <= MAX_DMA_LEN)
1095 		drv_data->dma_mapped = map_dma_buffers(drv_data);
1096 	if (drv_data->dma_mapped) {
1097 
1098 		/* Ensure we have the correct interrupt handler */
1099 		drv_data->transfer_handler = dma_transfer;
1100 
1101 		/* Setup rx DMA Channel */
1102 		DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
1103 		DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
1104 		DTADR(drv_data->rx_channel) = drv_data->rx_dma;
1105 		if (drv_data->rx == drv_data->null_dma_buf)
1106 			/* No target address increment */
1107 			DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
1108 							| drv_data->dma_width
1109 							| dma_burst
1110 							| drv_data->len;
1111 		else
1112 			DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
1113 							| DCMD_FLOWSRC
1114 							| drv_data->dma_width
1115 							| dma_burst
1116 							| drv_data->len;
1117 
1118 		/* Setup tx DMA Channel */
1119 		DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
1120 		DSADR(drv_data->tx_channel) = drv_data->tx_dma;
1121 		DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
1122 		if (drv_data->tx == drv_data->null_dma_buf)
1123 			/* No source address increment */
1124 			DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
1125 							| drv_data->dma_width
1126 							| dma_burst
1127 							| drv_data->len;
1128 		else
1129 			DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
1130 							| DCMD_FLOWTRG
1131 							| drv_data->dma_width
1132 							| dma_burst
1133 							| drv_data->len;
1134 
1135 		/* Enable dma end irqs on SSP to detect end of transfer */
1136 		if (drv_data->ssp_type == PXA25x_SSP)
1137 			DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
1138 
1139 		/* Clear status and start DMA engine */
1140 		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1141 		write_SSSR(drv_data->clear_sr, reg);
1142 		DCSR(drv_data->rx_channel) |= DCSR_RUN;
1143 		DCSR(drv_data->tx_channel) |= DCSR_RUN;
1144 	} else {
1145 		/* Ensure we have the correct interrupt handler	*/
1146 		drv_data->transfer_handler = interrupt_transfer;
1147 
1148 		/* Clear status  */
1149 		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1150 		write_SSSR_CS(drv_data, drv_data->clear_sr);
1151 	}
1152 
1153 	/* see if we need to reload the config registers */
1154 	if ((read_SSCR0(reg) != cr0)
1155 		|| (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
1156 			(cr1 & SSCR1_CHANGE_MASK)) {
1157 
1158 		/* stop the SSP, and update the other bits */
1159 		write_SSCR0(cr0 & ~SSCR0_SSE, reg);
1160 		if (!pxa25x_ssp_comp(drv_data))
1161 			write_SSTO(chip->timeout, reg);
1162 		/* first set CR1 without interrupt and service enables */
1163 		write_SSCR1(cr1 & SSCR1_CHANGE_MASK, reg);
1164 		/* restart the SSP */
1165 		write_SSCR0(cr0, reg);
1166 
1167 	} else {
1168 		if (!pxa25x_ssp_comp(drv_data))
1169 			write_SSTO(chip->timeout, reg);
1170 	}
1171 
1172 	cs_assert(drv_data);
1173 
1174 	/* after chip select, release the data by enabling service
1175 	 * requests and interrupts, without changing any mode bits */
1176 	write_SSCR1(cr1, reg);
1177 }
1178 
1179 static void pump_messages(struct work_struct *work)
1180 {
1181 	struct driver_data *drv_data =
1182 		container_of(work, struct driver_data, pump_messages);
1183 	unsigned long flags;
1184 
1185 	/* Lock queue and check for queue work */
1186 	spin_lock_irqsave(&drv_data->lock, flags);
1187 	if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
1188 		drv_data->busy = 0;
1189 		spin_unlock_irqrestore(&drv_data->lock, flags);
1190 		return;
1191 	}
1192 
1193 	/* Make sure we are not already running a message */
1194 	if (drv_data->cur_msg) {
1195 		spin_unlock_irqrestore(&drv_data->lock, flags);
1196 		return;
1197 	}
1198 
1199 	/* Extract head of queue */
1200 	drv_data->cur_msg = list_entry(drv_data->queue.next,
1201 					struct spi_message, queue);
1202 	list_del_init(&drv_data->cur_msg->queue);
1203 
1204 	/* Initial message state*/
1205 	drv_data->cur_msg->state = START_STATE;
1206 	drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
1207 						struct spi_transfer,
1208 						transfer_list);
1209 
1210 	/* prepare to setup the SSP, in pump_transfers, using the per
1211 	 * chip configuration */
1212 	drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
1213 
1214 	/* Mark as busy and launch transfers */
1215 	tasklet_schedule(&drv_data->pump_transfers);
1216 
1217 	drv_data->busy = 1;
1218 	spin_unlock_irqrestore(&drv_data->lock, flags);
1219 }
1220 
1221 static int transfer(struct spi_device *spi, struct spi_message *msg)
1222 {
1223 	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1224 	unsigned long flags;
1225 
1226 	spin_lock_irqsave(&drv_data->lock, flags);
1227 
1228 	if (drv_data->run == QUEUE_STOPPED) {
1229 		spin_unlock_irqrestore(&drv_data->lock, flags);
1230 		return -ESHUTDOWN;
1231 	}
1232 
1233 	msg->actual_length = 0;
1234 	msg->status = -EINPROGRESS;
1235 	msg->state = START_STATE;
1236 
1237 	list_add_tail(&msg->queue, &drv_data->queue);
1238 
1239 	if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
1240 		queue_work(drv_data->workqueue, &drv_data->pump_messages);
1241 
1242 	spin_unlock_irqrestore(&drv_data->lock, flags);
1243 
1244 	return 0;
1245 }
1246 
1247 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1248 		    struct pxa2xx_spi_chip *chip_info)
1249 {
1250 	int err = 0;
1251 
1252 	if (chip == NULL || chip_info == NULL)
1253 		return 0;
1254 
1255 	/* NOTE: setup() can be called multiple times, possibly with
1256 	 * different chip_info, release previously requested GPIO
1257 	 */
1258 	if (gpio_is_valid(chip->gpio_cs))
1259 		gpio_free(chip->gpio_cs);
1260 
1261 	/* If (*cs_control) is provided, ignore GPIO chip select */
1262 	if (chip_info->cs_control) {
1263 		chip->cs_control = chip_info->cs_control;
1264 		return 0;
1265 	}
1266 
1267 	if (gpio_is_valid(chip_info->gpio_cs)) {
1268 		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1269 		if (err) {
1270 			dev_err(&spi->dev, "failed to request chip select "
1271 					"GPIO%d\n", chip_info->gpio_cs);
1272 			return err;
1273 		}
1274 
1275 		chip->gpio_cs = chip_info->gpio_cs;
1276 		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1277 
1278 		err = gpio_direction_output(chip->gpio_cs,
1279 					!chip->gpio_cs_inverted);
1280 	}
1281 
1282 	return err;
1283 }
1284 
1285 static int setup(struct spi_device *spi)
1286 {
1287 	struct pxa2xx_spi_chip *chip_info = NULL;
1288 	struct chip_data *chip;
1289 	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1290 	struct ssp_device *ssp = drv_data->ssp;
1291 	unsigned int clk_div;
1292 	uint tx_thres = TX_THRESH_DFLT;
1293 	uint rx_thres = RX_THRESH_DFLT;
1294 
1295 	if (!pxa25x_ssp_comp(drv_data)
1296 		&& (spi->bits_per_word < 4 || spi->bits_per_word > 32)) {
1297 		dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
1298 				"b/w not 4-32 for type non-PXA25x_SSP\n",
1299 				drv_data->ssp_type, spi->bits_per_word);
1300 		return -EINVAL;
1301 	} else if (pxa25x_ssp_comp(drv_data)
1302 			&& (spi->bits_per_word < 4
1303 				|| spi->bits_per_word > 16)) {
1304 		dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
1305 				"b/w not 4-16 for type PXA25x_SSP\n",
1306 				drv_data->ssp_type, spi->bits_per_word);
1307 		return -EINVAL;
1308 	}
1309 
1310 	/* Only alloc on first setup */
1311 	chip = spi_get_ctldata(spi);
1312 	if (!chip) {
1313 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1314 		if (!chip) {
1315 			dev_err(&spi->dev,
1316 				"failed setup: can't allocate chip data\n");
1317 			return -ENOMEM;
1318 		}
1319 
1320 		if (drv_data->ssp_type == CE4100_SSP) {
1321 			if (spi->chip_select > 4) {
1322 				dev_err(&spi->dev, "failed setup: "
1323 				"cs number must not be > 4.\n");
1324 				kfree(chip);
1325 				return -EINVAL;
1326 			}
1327 
1328 			chip->frm = spi->chip_select;
1329 		} else
1330 			chip->gpio_cs = -1;
1331 		chip->enable_dma = 0;
1332 		chip->timeout = TIMOUT_DFLT;
1333 		chip->dma_burst_size = drv_data->master_info->enable_dma ?
1334 					DCMD_BURST8 : 0;
1335 	}
1336 
1337 	/* protocol drivers may change the chip settings, so...
1338 	 * if chip_info exists, use it */
1339 	chip_info = spi->controller_data;
1340 
1341 	/* chip_info isn't always needed */
1342 	chip->cr1 = 0;
1343 	if (chip_info) {
1344 		if (chip_info->timeout)
1345 			chip->timeout = chip_info->timeout;
1346 		if (chip_info->tx_threshold)
1347 			tx_thres = chip_info->tx_threshold;
1348 		if (chip_info->rx_threshold)
1349 			rx_thres = chip_info->rx_threshold;
1350 		chip->enable_dma = drv_data->master_info->enable_dma;
1351 		chip->dma_threshold = 0;
1352 		if (chip_info->enable_loopback)
1353 			chip->cr1 = SSCR1_LBM;
1354 	}
1355 
1356 	chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1357 			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1358 
1359 	/* set dma burst and threshold outside of chip_info path so that if
1360 	 * chip_info goes away after setting chip->enable_dma, the
1361 	 * burst and threshold can still respond to changes in bits_per_word */
1362 	if (chip->enable_dma) {
1363 		/* set up legal burst and threshold for dma */
1364 		if (set_dma_burst_and_threshold(chip, spi, spi->bits_per_word,
1365 						&chip->dma_burst_size,
1366 						&chip->dma_threshold)) {
1367 			dev_warn(&spi->dev, "in setup: DMA burst size reduced "
1368 					"to match bits_per_word\n");
1369 		}
1370 	}
1371 
1372 	clk_div = ssp_get_clk_div(ssp, spi->max_speed_hz);
1373 	chip->speed_hz = spi->max_speed_hz;
1374 
1375 	chip->cr0 = clk_div
1376 			| SSCR0_Motorola
1377 			| SSCR0_DataSize(spi->bits_per_word > 16 ?
1378 				spi->bits_per_word - 16 : spi->bits_per_word)
1379 			| SSCR0_SSE
1380 			| (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
1381 	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1382 	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1383 			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1384 
1385 	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1386 	if (!pxa25x_ssp_comp(drv_data))
1387 		dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
1388 			clk_get_rate(ssp->clk)
1389 				/ (1 + ((chip->cr0 & SSCR0_SCR(0xfff)) >> 8)),
1390 			chip->enable_dma ? "DMA" : "PIO");
1391 	else
1392 		dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
1393 			clk_get_rate(ssp->clk) / 2
1394 				/ (1 + ((chip->cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1395 			chip->enable_dma ? "DMA" : "PIO");
1396 
1397 	if (spi->bits_per_word <= 8) {
1398 		chip->n_bytes = 1;
1399 		chip->dma_width = DCMD_WIDTH1;
1400 		chip->read = u8_reader;
1401 		chip->write = u8_writer;
1402 	} else if (spi->bits_per_word <= 16) {
1403 		chip->n_bytes = 2;
1404 		chip->dma_width = DCMD_WIDTH2;
1405 		chip->read = u16_reader;
1406 		chip->write = u16_writer;
1407 	} else if (spi->bits_per_word <= 32) {
1408 		chip->cr0 |= SSCR0_EDSS;
1409 		chip->n_bytes = 4;
1410 		chip->dma_width = DCMD_WIDTH4;
1411 		chip->read = u32_reader;
1412 		chip->write = u32_writer;
1413 	} else {
1414 		dev_err(&spi->dev, "invalid wordsize\n");
1415 		return -ENODEV;
1416 	}
1417 	chip->bits_per_word = spi->bits_per_word;
1418 
1419 	spi_set_ctldata(spi, chip);
1420 
1421 	if (drv_data->ssp_type == CE4100_SSP)
1422 		return 0;
1423 
1424 	return setup_cs(spi, chip, chip_info);
1425 }
1426 
1427 static void cleanup(struct spi_device *spi)
1428 {
1429 	struct chip_data *chip = spi_get_ctldata(spi);
1430 	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1431 
1432 	if (!chip)
1433 		return;
1434 
1435 	if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs))
1436 		gpio_free(chip->gpio_cs);
1437 
1438 	kfree(chip);
1439 }
1440 
1441 static int init_queue(struct driver_data *drv_data)
1442 {
1443 	INIT_LIST_HEAD(&drv_data->queue);
1444 	spin_lock_init(&drv_data->lock);
1445 
1446 	drv_data->run = QUEUE_STOPPED;
1447 	drv_data->busy = 0;
1448 
1449 	tasklet_init(&drv_data->pump_transfers,
1450 			pump_transfers,	(unsigned long)drv_data);
1451 
1452 	INIT_WORK(&drv_data->pump_messages, pump_messages);
1453 	drv_data->workqueue = create_singlethread_workqueue(
1454 				dev_name(drv_data->master->dev.parent));
1455 	if (drv_data->workqueue == NULL)
1456 		return -EBUSY;
1457 
1458 	return 0;
1459 }
1460 
1461 static int start_queue(struct driver_data *drv_data)
1462 {
1463 	unsigned long flags;
1464 
1465 	spin_lock_irqsave(&drv_data->lock, flags);
1466 
1467 	if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
1468 		spin_unlock_irqrestore(&drv_data->lock, flags);
1469 		return -EBUSY;
1470 	}
1471 
1472 	drv_data->run = QUEUE_RUNNING;
1473 	drv_data->cur_msg = NULL;
1474 	drv_data->cur_transfer = NULL;
1475 	drv_data->cur_chip = NULL;
1476 	spin_unlock_irqrestore(&drv_data->lock, flags);
1477 
1478 	queue_work(drv_data->workqueue, &drv_data->pump_messages);
1479 
1480 	return 0;
1481 }
1482 
1483 static int stop_queue(struct driver_data *drv_data)
1484 {
1485 	unsigned long flags;
1486 	unsigned limit = 500;
1487 	int status = 0;
1488 
1489 	spin_lock_irqsave(&drv_data->lock, flags);
1490 
1491 	/* This is a bit lame, but is optimized for the common execution path.
1492 	 * A wait_queue on the drv_data->busy could be used, but then the common
1493 	 * execution path (pump_messages) would be required to call wake_up or
1494 	 * friends on every SPI message. Do this instead */
1495 	drv_data->run = QUEUE_STOPPED;
1496 	while ((!list_empty(&drv_data->queue) || drv_data->busy) && limit--) {
1497 		spin_unlock_irqrestore(&drv_data->lock, flags);
1498 		msleep(10);
1499 		spin_lock_irqsave(&drv_data->lock, flags);
1500 	}
1501 
1502 	if (!list_empty(&drv_data->queue) || drv_data->busy)
1503 		status = -EBUSY;
1504 
1505 	spin_unlock_irqrestore(&drv_data->lock, flags);
1506 
1507 	return status;
1508 }
1509 
1510 static int destroy_queue(struct driver_data *drv_data)
1511 {
1512 	int status;
1513 
1514 	status = stop_queue(drv_data);
1515 	/* we are unloading the module or failing to load (only two calls
1516 	 * to this routine), and neither call can handle a return value.
1517 	 * However, destroy_workqueue calls flush_workqueue, and that will
1518 	 * block until all work is done.  If the reason that stop_queue
1519 	 * timed out is that the work will never finish, then it does no
1520 	 * good to call destroy_workqueue, so return anyway. */
1521 	if (status != 0)
1522 		return status;
1523 
1524 	destroy_workqueue(drv_data->workqueue);
1525 
1526 	return 0;
1527 }
1528 
1529 static int pxa2xx_spi_probe(struct platform_device *pdev)
1530 {
1531 	struct device *dev = &pdev->dev;
1532 	struct pxa2xx_spi_master *platform_info;
1533 	struct spi_master *master;
1534 	struct driver_data *drv_data;
1535 	struct ssp_device *ssp;
1536 	int status;
1537 
1538 	platform_info = dev->platform_data;
1539 
1540 	ssp = pxa_ssp_request(pdev->id, pdev->name);
1541 	if (ssp == NULL) {
1542 		dev_err(&pdev->dev, "failed to request SSP%d\n", pdev->id);
1543 		return -ENODEV;
1544 	}
1545 
1546 	/* Allocate master with space for drv_data and null dma buffer */
1547 	master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
1548 	if (!master) {
1549 		dev_err(&pdev->dev, "cannot alloc spi_master\n");
1550 		pxa_ssp_free(ssp);
1551 		return -ENOMEM;
1552 	}
1553 	drv_data = spi_master_get_devdata(master);
1554 	drv_data->master = master;
1555 	drv_data->master_info = platform_info;
1556 	drv_data->pdev = pdev;
1557 	drv_data->ssp = ssp;
1558 
1559 	master->dev.parent = &pdev->dev;
1560 	master->dev.of_node = pdev->dev.of_node;
1561 	/* the spi->mode bits understood by this driver: */
1562 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1563 
1564 	master->bus_num = pdev->id;
1565 	master->num_chipselect = platform_info->num_chipselect;
1566 	master->dma_alignment = DMA_ALIGNMENT;
1567 	master->cleanup = cleanup;
1568 	master->setup = setup;
1569 	master->transfer = transfer;
1570 
1571 	drv_data->ssp_type = ssp->type;
1572 	drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data +
1573 						sizeof(struct driver_data)), 8);
1574 
1575 	drv_data->ioaddr = ssp->mmio_base;
1576 	drv_data->ssdr_physical = ssp->phys_base + SSDR;
1577 	if (pxa25x_ssp_comp(drv_data)) {
1578 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1579 		drv_data->dma_cr1 = 0;
1580 		drv_data->clear_sr = SSSR_ROR;
1581 		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1582 	} else {
1583 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1584 		drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE;
1585 		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1586 		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1587 	}
1588 
1589 	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1590 			drv_data);
1591 	if (status < 0) {
1592 		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1593 		goto out_error_master_alloc;
1594 	}
1595 
1596 	/* Setup DMA if requested */
1597 	drv_data->tx_channel = -1;
1598 	drv_data->rx_channel = -1;
1599 	if (platform_info->enable_dma) {
1600 
1601 		/* Get two DMA channels	(rx and tx) */
1602 		drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
1603 							DMA_PRIO_HIGH,
1604 							dma_handler,
1605 							drv_data);
1606 		if (drv_data->rx_channel < 0) {
1607 			dev_err(dev, "problem (%d) requesting rx channel\n",
1608 				drv_data->rx_channel);
1609 			status = -ENODEV;
1610 			goto out_error_irq_alloc;
1611 		}
1612 		drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
1613 							DMA_PRIO_MEDIUM,
1614 							dma_handler,
1615 							drv_data);
1616 		if (drv_data->tx_channel < 0) {
1617 			dev_err(dev, "problem (%d) requesting tx channel\n",
1618 				drv_data->tx_channel);
1619 			status = -ENODEV;
1620 			goto out_error_dma_alloc;
1621 		}
1622 
1623 		DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel;
1624 		DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel;
1625 	}
1626 
1627 	/* Enable SOC clock */
1628 	clk_enable(ssp->clk);
1629 
1630 	/* Load default SSP configuration */
1631 	write_SSCR0(0, drv_data->ioaddr);
1632 	write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT) |
1633 				SSCR1_TxTresh(TX_THRESH_DFLT),
1634 				drv_data->ioaddr);
1635 	write_SSCR0(SSCR0_SCR(2)
1636 			| SSCR0_Motorola
1637 			| SSCR0_DataSize(8),
1638 			drv_data->ioaddr);
1639 	if (!pxa25x_ssp_comp(drv_data))
1640 		write_SSTO(0, drv_data->ioaddr);
1641 	write_SSPSP(0, drv_data->ioaddr);
1642 
1643 	/* Initial and start queue */
1644 	status = init_queue(drv_data);
1645 	if (status != 0) {
1646 		dev_err(&pdev->dev, "problem initializing queue\n");
1647 		goto out_error_clock_enabled;
1648 	}
1649 	status = start_queue(drv_data);
1650 	if (status != 0) {
1651 		dev_err(&pdev->dev, "problem starting queue\n");
1652 		goto out_error_clock_enabled;
1653 	}
1654 
1655 	/* Register with the SPI framework */
1656 	platform_set_drvdata(pdev, drv_data);
1657 	status = spi_register_master(master);
1658 	if (status != 0) {
1659 		dev_err(&pdev->dev, "problem registering spi master\n");
1660 		goto out_error_queue_alloc;
1661 	}
1662 
1663 	return status;
1664 
1665 out_error_queue_alloc:
1666 	destroy_queue(drv_data);
1667 
1668 out_error_clock_enabled:
1669 	clk_disable(ssp->clk);
1670 
1671 out_error_dma_alloc:
1672 	if (drv_data->tx_channel != -1)
1673 		pxa_free_dma(drv_data->tx_channel);
1674 	if (drv_data->rx_channel != -1)
1675 		pxa_free_dma(drv_data->rx_channel);
1676 
1677 out_error_irq_alloc:
1678 	free_irq(ssp->irq, drv_data);
1679 
1680 out_error_master_alloc:
1681 	spi_master_put(master);
1682 	pxa_ssp_free(ssp);
1683 	return status;
1684 }
1685 
1686 static int pxa2xx_spi_remove(struct platform_device *pdev)
1687 {
1688 	struct driver_data *drv_data = platform_get_drvdata(pdev);
1689 	struct ssp_device *ssp;
1690 	int status = 0;
1691 
1692 	if (!drv_data)
1693 		return 0;
1694 	ssp = drv_data->ssp;
1695 
1696 	/* Remove the queue */
1697 	status = destroy_queue(drv_data);
1698 	if (status != 0)
1699 		/* the kernel does not check the return status of this
1700 		 * this routine (mod->exit, within the kernel).  Therefore
1701 		 * nothing is gained by returning from here, the module is
1702 		 * going away regardless, and we should not leave any more
1703 		 * resources allocated than necessary.  We cannot free the
1704 		 * message memory in drv_data->queue, but we can release the
1705 		 * resources below.  I think the kernel should honor -EBUSY
1706 		 * returns but... */
1707 		dev_err(&pdev->dev, "pxa2xx_spi_remove: workqueue will not "
1708 			"complete, message memory not freed\n");
1709 
1710 	/* Disable the SSP at the peripheral and SOC level */
1711 	write_SSCR0(0, drv_data->ioaddr);
1712 	clk_disable(ssp->clk);
1713 
1714 	/* Release DMA */
1715 	if (drv_data->master_info->enable_dma) {
1716 		DRCMR(ssp->drcmr_rx) = 0;
1717 		DRCMR(ssp->drcmr_tx) = 0;
1718 		pxa_free_dma(drv_data->tx_channel);
1719 		pxa_free_dma(drv_data->rx_channel);
1720 	}
1721 
1722 	/* Release IRQ */
1723 	free_irq(ssp->irq, drv_data);
1724 
1725 	/* Release SSP */
1726 	pxa_ssp_free(ssp);
1727 
1728 	/* Disconnect from the SPI framework */
1729 	spi_unregister_master(drv_data->master);
1730 
1731 	/* Prevent double remove */
1732 	platform_set_drvdata(pdev, NULL);
1733 
1734 	return 0;
1735 }
1736 
1737 static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1738 {
1739 	int status = 0;
1740 
1741 	if ((status = pxa2xx_spi_remove(pdev)) != 0)
1742 		dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1743 }
1744 
1745 #ifdef CONFIG_PM
1746 static int pxa2xx_spi_suspend(struct device *dev)
1747 {
1748 	struct driver_data *drv_data = dev_get_drvdata(dev);
1749 	struct ssp_device *ssp = drv_data->ssp;
1750 	int status = 0;
1751 
1752 	status = stop_queue(drv_data);
1753 	if (status != 0)
1754 		return status;
1755 	write_SSCR0(0, drv_data->ioaddr);
1756 	clk_disable(ssp->clk);
1757 
1758 	return 0;
1759 }
1760 
1761 static int pxa2xx_spi_resume(struct device *dev)
1762 {
1763 	struct driver_data *drv_data = dev_get_drvdata(dev);
1764 	struct ssp_device *ssp = drv_data->ssp;
1765 	int status = 0;
1766 
1767 	if (drv_data->rx_channel != -1)
1768 		DRCMR(drv_data->ssp->drcmr_rx) =
1769 			DRCMR_MAPVLD | drv_data->rx_channel;
1770 	if (drv_data->tx_channel != -1)
1771 		DRCMR(drv_data->ssp->drcmr_tx) =
1772 			DRCMR_MAPVLD | drv_data->tx_channel;
1773 
1774 	/* Enable the SSP clock */
1775 	clk_enable(ssp->clk);
1776 
1777 	/* Start the queue running */
1778 	status = start_queue(drv_data);
1779 	if (status != 0) {
1780 		dev_err(dev, "problem starting queue (%d)\n", status);
1781 		return status;
1782 	}
1783 
1784 	return 0;
1785 }
1786 
1787 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1788 	.suspend	= pxa2xx_spi_suspend,
1789 	.resume		= pxa2xx_spi_resume,
1790 };
1791 #endif
1792 
1793 static struct platform_driver driver = {
1794 	.driver = {
1795 		.name	= "pxa2xx-spi",
1796 		.owner	= THIS_MODULE,
1797 #ifdef CONFIG_PM
1798 		.pm	= &pxa2xx_spi_pm_ops,
1799 #endif
1800 	},
1801 	.probe = pxa2xx_spi_probe,
1802 	.remove = pxa2xx_spi_remove,
1803 	.shutdown = pxa2xx_spi_shutdown,
1804 };
1805 
1806 static int __init pxa2xx_spi_init(void)
1807 {
1808 	return platform_driver_register(&driver);
1809 }
1810 subsys_initcall(pxa2xx_spi_init);
1811 
1812 static void __exit pxa2xx_spi_exit(void)
1813 {
1814 	platform_driver_unregister(&driver);
1815 }
1816 module_exit(pxa2xx_spi_exit);
1817