1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs 4 * Copyright (C) 2013, Intel Corporation 5 */ 6 7 #include <linux/bitops.h> 8 #include <linux/init.h> 9 #include <linux/module.h> 10 #include <linux/device.h> 11 #include <linux/ioport.h> 12 #include <linux/errno.h> 13 #include <linux/err.h> 14 #include <linux/interrupt.h> 15 #include <linux/kernel.h> 16 #include <linux/pci.h> 17 #include <linux/platform_device.h> 18 #include <linux/spi/pxa2xx_spi.h> 19 #include <linux/spi/spi.h> 20 #include <linux/delay.h> 21 #include <linux/gpio.h> 22 #include <linux/gpio/consumer.h> 23 #include <linux/slab.h> 24 #include <linux/clk.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/acpi.h> 27 #include <linux/of_device.h> 28 29 #include "spi-pxa2xx.h" 30 31 MODULE_AUTHOR("Stephen Street"); 32 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller"); 33 MODULE_LICENSE("GPL"); 34 MODULE_ALIAS("platform:pxa2xx-spi"); 35 36 #define TIMOUT_DFLT 1000 37 38 /* 39 * for testing SSCR1 changes that require SSP restart, basically 40 * everything except the service and interrupt enables, the pxa270 developer 41 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this 42 * list, but the PXA255 dev man says all bits without really meaning the 43 * service and interrupt enables 44 */ 45 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \ 46 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \ 47 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \ 48 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \ 49 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \ 50 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) 51 52 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \ 53 | QUARK_X1000_SSCR1_EFWR \ 54 | QUARK_X1000_SSCR1_RFT \ 55 | QUARK_X1000_SSCR1_TFT \ 56 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) 57 58 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \ 59 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \ 60 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \ 61 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \ 62 | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \ 63 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) 64 65 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24) 66 #define LPSS_CS_CONTROL_SW_MODE BIT(0) 67 #define LPSS_CS_CONTROL_CS_HIGH BIT(1) 68 #define LPSS_CAPS_CS_EN_SHIFT 9 69 #define LPSS_CAPS_CS_EN_MASK (0xf << LPSS_CAPS_CS_EN_SHIFT) 70 71 struct lpss_config { 72 /* LPSS offset from drv_data->ioaddr */ 73 unsigned offset; 74 /* Register offsets from drv_data->lpss_base or -1 */ 75 int reg_general; 76 int reg_ssp; 77 int reg_cs_ctrl; 78 int reg_capabilities; 79 /* FIFO thresholds */ 80 u32 rx_threshold; 81 u32 tx_threshold_lo; 82 u32 tx_threshold_hi; 83 /* Chip select control */ 84 unsigned cs_sel_shift; 85 unsigned cs_sel_mask; 86 unsigned cs_num; 87 }; 88 89 /* Keep these sorted with enum pxa_ssp_type */ 90 static const struct lpss_config lpss_platforms[] = { 91 { /* LPSS_LPT_SSP */ 92 .offset = 0x800, 93 .reg_general = 0x08, 94 .reg_ssp = 0x0c, 95 .reg_cs_ctrl = 0x18, 96 .reg_capabilities = -1, 97 .rx_threshold = 64, 98 .tx_threshold_lo = 160, 99 .tx_threshold_hi = 224, 100 }, 101 { /* LPSS_BYT_SSP */ 102 .offset = 0x400, 103 .reg_general = 0x08, 104 .reg_ssp = 0x0c, 105 .reg_cs_ctrl = 0x18, 106 .reg_capabilities = -1, 107 .rx_threshold = 64, 108 .tx_threshold_lo = 160, 109 .tx_threshold_hi = 224, 110 }, 111 { /* LPSS_BSW_SSP */ 112 .offset = 0x400, 113 .reg_general = 0x08, 114 .reg_ssp = 0x0c, 115 .reg_cs_ctrl = 0x18, 116 .reg_capabilities = -1, 117 .rx_threshold = 64, 118 .tx_threshold_lo = 160, 119 .tx_threshold_hi = 224, 120 .cs_sel_shift = 2, 121 .cs_sel_mask = 1 << 2, 122 .cs_num = 2, 123 }, 124 { /* LPSS_SPT_SSP */ 125 .offset = 0x200, 126 .reg_general = -1, 127 .reg_ssp = 0x20, 128 .reg_cs_ctrl = 0x24, 129 .reg_capabilities = -1, 130 .rx_threshold = 1, 131 .tx_threshold_lo = 32, 132 .tx_threshold_hi = 56, 133 }, 134 { /* LPSS_BXT_SSP */ 135 .offset = 0x200, 136 .reg_general = -1, 137 .reg_ssp = 0x20, 138 .reg_cs_ctrl = 0x24, 139 .reg_capabilities = 0xfc, 140 .rx_threshold = 1, 141 .tx_threshold_lo = 16, 142 .tx_threshold_hi = 48, 143 .cs_sel_shift = 8, 144 .cs_sel_mask = 3 << 8, 145 }, 146 { /* LPSS_CNL_SSP */ 147 .offset = 0x200, 148 .reg_general = -1, 149 .reg_ssp = 0x20, 150 .reg_cs_ctrl = 0x24, 151 .reg_capabilities = 0xfc, 152 .rx_threshold = 1, 153 .tx_threshold_lo = 32, 154 .tx_threshold_hi = 56, 155 .cs_sel_shift = 8, 156 .cs_sel_mask = 3 << 8, 157 }, 158 }; 159 160 static inline const struct lpss_config 161 *lpss_get_config(const struct driver_data *drv_data) 162 { 163 return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP]; 164 } 165 166 static bool is_lpss_ssp(const struct driver_data *drv_data) 167 { 168 switch (drv_data->ssp_type) { 169 case LPSS_LPT_SSP: 170 case LPSS_BYT_SSP: 171 case LPSS_BSW_SSP: 172 case LPSS_SPT_SSP: 173 case LPSS_BXT_SSP: 174 case LPSS_CNL_SSP: 175 return true; 176 default: 177 return false; 178 } 179 } 180 181 static bool is_quark_x1000_ssp(const struct driver_data *drv_data) 182 { 183 return drv_data->ssp_type == QUARK_X1000_SSP; 184 } 185 186 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data) 187 { 188 switch (drv_data->ssp_type) { 189 case QUARK_X1000_SSP: 190 return QUARK_X1000_SSCR1_CHANGE_MASK; 191 case CE4100_SSP: 192 return CE4100_SSCR1_CHANGE_MASK; 193 default: 194 return SSCR1_CHANGE_MASK; 195 } 196 } 197 198 static u32 199 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data) 200 { 201 switch (drv_data->ssp_type) { 202 case QUARK_X1000_SSP: 203 return RX_THRESH_QUARK_X1000_DFLT; 204 case CE4100_SSP: 205 return RX_THRESH_CE4100_DFLT; 206 default: 207 return RX_THRESH_DFLT; 208 } 209 } 210 211 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data) 212 { 213 u32 mask; 214 215 switch (drv_data->ssp_type) { 216 case QUARK_X1000_SSP: 217 mask = QUARK_X1000_SSSR_TFL_MASK; 218 break; 219 case CE4100_SSP: 220 mask = CE4100_SSSR_TFL_MASK; 221 break; 222 default: 223 mask = SSSR_TFL_MASK; 224 break; 225 } 226 227 return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask; 228 } 229 230 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data, 231 u32 *sccr1_reg) 232 { 233 u32 mask; 234 235 switch (drv_data->ssp_type) { 236 case QUARK_X1000_SSP: 237 mask = QUARK_X1000_SSCR1_RFT; 238 break; 239 case CE4100_SSP: 240 mask = CE4100_SSCR1_RFT; 241 break; 242 default: 243 mask = SSCR1_RFT; 244 break; 245 } 246 *sccr1_reg &= ~mask; 247 } 248 249 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data, 250 u32 *sccr1_reg, u32 threshold) 251 { 252 switch (drv_data->ssp_type) { 253 case QUARK_X1000_SSP: 254 *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold); 255 break; 256 case CE4100_SSP: 257 *sccr1_reg |= CE4100_SSCR1_RxTresh(threshold); 258 break; 259 default: 260 *sccr1_reg |= SSCR1_RxTresh(threshold); 261 break; 262 } 263 } 264 265 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data, 266 u32 clk_div, u8 bits) 267 { 268 switch (drv_data->ssp_type) { 269 case QUARK_X1000_SSP: 270 return clk_div 271 | QUARK_X1000_SSCR0_Motorola 272 | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits) 273 | SSCR0_SSE; 274 default: 275 return clk_div 276 | SSCR0_Motorola 277 | SSCR0_DataSize(bits > 16 ? bits - 16 : bits) 278 | SSCR0_SSE 279 | (bits > 16 ? SSCR0_EDSS : 0); 280 } 281 } 282 283 /* 284 * Read and write LPSS SSP private registers. Caller must first check that 285 * is_lpss_ssp() returns true before these can be called. 286 */ 287 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset) 288 { 289 WARN_ON(!drv_data->lpss_base); 290 return readl(drv_data->lpss_base + offset); 291 } 292 293 static void __lpss_ssp_write_priv(struct driver_data *drv_data, 294 unsigned offset, u32 value) 295 { 296 WARN_ON(!drv_data->lpss_base); 297 writel(value, drv_data->lpss_base + offset); 298 } 299 300 /* 301 * lpss_ssp_setup - perform LPSS SSP specific setup 302 * @drv_data: pointer to the driver private data 303 * 304 * Perform LPSS SSP specific setup. This function must be called first if 305 * one is going to use LPSS SSP private registers. 306 */ 307 static void lpss_ssp_setup(struct driver_data *drv_data) 308 { 309 const struct lpss_config *config; 310 u32 value; 311 312 config = lpss_get_config(drv_data); 313 drv_data->lpss_base = drv_data->ioaddr + config->offset; 314 315 /* Enable software chip select control */ 316 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); 317 value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH); 318 value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH; 319 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value); 320 321 /* Enable multiblock DMA transfers */ 322 if (drv_data->controller_info->enable_dma) { 323 __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1); 324 325 if (config->reg_general >= 0) { 326 value = __lpss_ssp_read_priv(drv_data, 327 config->reg_general); 328 value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE; 329 __lpss_ssp_write_priv(drv_data, 330 config->reg_general, value); 331 } 332 } 333 } 334 335 static void lpss_ssp_select_cs(struct spi_device *spi, 336 const struct lpss_config *config) 337 { 338 struct driver_data *drv_data = 339 spi_controller_get_devdata(spi->controller); 340 u32 value, cs; 341 342 if (!config->cs_sel_mask) 343 return; 344 345 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); 346 347 cs = spi->chip_select; 348 cs <<= config->cs_sel_shift; 349 if (cs != (value & config->cs_sel_mask)) { 350 /* 351 * When switching another chip select output active the 352 * output must be selected first and wait 2 ssp_clk cycles 353 * before changing state to active. Otherwise a short 354 * glitch will occur on the previous chip select since 355 * output select is latched but state control is not. 356 */ 357 value &= ~config->cs_sel_mask; 358 value |= cs; 359 __lpss_ssp_write_priv(drv_data, 360 config->reg_cs_ctrl, value); 361 ndelay(1000000000 / 362 (drv_data->controller->max_speed_hz / 2)); 363 } 364 } 365 366 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable) 367 { 368 struct driver_data *drv_data = 369 spi_controller_get_devdata(spi->controller); 370 const struct lpss_config *config; 371 u32 value; 372 373 config = lpss_get_config(drv_data); 374 375 if (enable) 376 lpss_ssp_select_cs(spi, config); 377 378 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); 379 if (enable) 380 value &= ~LPSS_CS_CONTROL_CS_HIGH; 381 else 382 value |= LPSS_CS_CONTROL_CS_HIGH; 383 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value); 384 } 385 386 static void cs_assert(struct spi_device *spi) 387 { 388 struct chip_data *chip = spi_get_ctldata(spi); 389 struct driver_data *drv_data = 390 spi_controller_get_devdata(spi->controller); 391 392 if (drv_data->ssp_type == CE4100_SSP) { 393 pxa2xx_spi_write(drv_data, SSSR, chip->frm); 394 return; 395 } 396 397 if (chip->cs_control) { 398 chip->cs_control(PXA2XX_CS_ASSERT); 399 return; 400 } 401 402 if (chip->gpiod_cs) { 403 gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted); 404 return; 405 } 406 407 if (is_lpss_ssp(drv_data)) 408 lpss_ssp_cs_control(spi, true); 409 } 410 411 static void cs_deassert(struct spi_device *spi) 412 { 413 struct chip_data *chip = spi_get_ctldata(spi); 414 struct driver_data *drv_data = 415 spi_controller_get_devdata(spi->controller); 416 unsigned long timeout; 417 418 if (drv_data->ssp_type == CE4100_SSP) 419 return; 420 421 /* Wait until SSP becomes idle before deasserting the CS */ 422 timeout = jiffies + msecs_to_jiffies(10); 423 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY && 424 !time_after(jiffies, timeout)) 425 cpu_relax(); 426 427 if (chip->cs_control) { 428 chip->cs_control(PXA2XX_CS_DEASSERT); 429 return; 430 } 431 432 if (chip->gpiod_cs) { 433 gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted); 434 return; 435 } 436 437 if (is_lpss_ssp(drv_data)) 438 lpss_ssp_cs_control(spi, false); 439 } 440 441 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level) 442 { 443 if (level) 444 cs_deassert(spi); 445 else 446 cs_assert(spi); 447 } 448 449 int pxa2xx_spi_flush(struct driver_data *drv_data) 450 { 451 unsigned long limit = loops_per_jiffy << 1; 452 453 do { 454 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 455 pxa2xx_spi_read(drv_data, SSDR); 456 } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit); 457 write_SSSR_CS(drv_data, SSSR_ROR); 458 459 return limit; 460 } 461 462 static int null_writer(struct driver_data *drv_data) 463 { 464 u8 n_bytes = drv_data->n_bytes; 465 466 if (pxa2xx_spi_txfifo_full(drv_data) 467 || (drv_data->tx == drv_data->tx_end)) 468 return 0; 469 470 pxa2xx_spi_write(drv_data, SSDR, 0); 471 drv_data->tx += n_bytes; 472 473 return 1; 474 } 475 476 static int null_reader(struct driver_data *drv_data) 477 { 478 u8 n_bytes = drv_data->n_bytes; 479 480 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 481 && (drv_data->rx < drv_data->rx_end)) { 482 pxa2xx_spi_read(drv_data, SSDR); 483 drv_data->rx += n_bytes; 484 } 485 486 return drv_data->rx == drv_data->rx_end; 487 } 488 489 static int u8_writer(struct driver_data *drv_data) 490 { 491 if (pxa2xx_spi_txfifo_full(drv_data) 492 || (drv_data->tx == drv_data->tx_end)) 493 return 0; 494 495 pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx)); 496 ++drv_data->tx; 497 498 return 1; 499 } 500 501 static int u8_reader(struct driver_data *drv_data) 502 { 503 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 504 && (drv_data->rx < drv_data->rx_end)) { 505 *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); 506 ++drv_data->rx; 507 } 508 509 return drv_data->rx == drv_data->rx_end; 510 } 511 512 static int u16_writer(struct driver_data *drv_data) 513 { 514 if (pxa2xx_spi_txfifo_full(drv_data) 515 || (drv_data->tx == drv_data->tx_end)) 516 return 0; 517 518 pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx)); 519 drv_data->tx += 2; 520 521 return 1; 522 } 523 524 static int u16_reader(struct driver_data *drv_data) 525 { 526 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 527 && (drv_data->rx < drv_data->rx_end)) { 528 *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); 529 drv_data->rx += 2; 530 } 531 532 return drv_data->rx == drv_data->rx_end; 533 } 534 535 static int u32_writer(struct driver_data *drv_data) 536 { 537 if (pxa2xx_spi_txfifo_full(drv_data) 538 || (drv_data->tx == drv_data->tx_end)) 539 return 0; 540 541 pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx)); 542 drv_data->tx += 4; 543 544 return 1; 545 } 546 547 static int u32_reader(struct driver_data *drv_data) 548 { 549 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 550 && (drv_data->rx < drv_data->rx_end)) { 551 *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); 552 drv_data->rx += 4; 553 } 554 555 return drv_data->rx == drv_data->rx_end; 556 } 557 558 static void reset_sccr1(struct driver_data *drv_data) 559 { 560 struct chip_data *chip = 561 spi_get_ctldata(drv_data->controller->cur_msg->spi); 562 u32 sccr1_reg; 563 564 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1; 565 switch (drv_data->ssp_type) { 566 case QUARK_X1000_SSP: 567 sccr1_reg &= ~QUARK_X1000_SSCR1_RFT; 568 break; 569 case CE4100_SSP: 570 sccr1_reg &= ~CE4100_SSCR1_RFT; 571 break; 572 default: 573 sccr1_reg &= ~SSCR1_RFT; 574 break; 575 } 576 sccr1_reg |= chip->threshold; 577 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); 578 } 579 580 static void int_error_stop(struct driver_data *drv_data, const char* msg) 581 { 582 /* Stop and reset SSP */ 583 write_SSSR_CS(drv_data, drv_data->clear_sr); 584 reset_sccr1(drv_data); 585 if (!pxa25x_ssp_comp(drv_data)) 586 pxa2xx_spi_write(drv_data, SSTO, 0); 587 pxa2xx_spi_flush(drv_data); 588 pxa2xx_spi_write(drv_data, SSCR0, 589 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE); 590 591 dev_err(&drv_data->pdev->dev, "%s\n", msg); 592 593 drv_data->controller->cur_msg->status = -EIO; 594 spi_finalize_current_transfer(drv_data->controller); 595 } 596 597 static void int_transfer_complete(struct driver_data *drv_data) 598 { 599 /* Clear and disable interrupts */ 600 write_SSSR_CS(drv_data, drv_data->clear_sr); 601 reset_sccr1(drv_data); 602 if (!pxa25x_ssp_comp(drv_data)) 603 pxa2xx_spi_write(drv_data, SSTO, 0); 604 605 spi_finalize_current_transfer(drv_data->controller); 606 } 607 608 static irqreturn_t interrupt_transfer(struct driver_data *drv_data) 609 { 610 u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ? 611 drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS; 612 613 u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask; 614 615 if (irq_status & SSSR_ROR) { 616 int_error_stop(drv_data, "interrupt_transfer: fifo overrun"); 617 return IRQ_HANDLED; 618 } 619 620 if (irq_status & SSSR_TUR) { 621 int_error_stop(drv_data, "interrupt_transfer: fifo underrun"); 622 return IRQ_HANDLED; 623 } 624 625 if (irq_status & SSSR_TINT) { 626 pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT); 627 if (drv_data->read(drv_data)) { 628 int_transfer_complete(drv_data); 629 return IRQ_HANDLED; 630 } 631 } 632 633 /* Drain rx fifo, Fill tx fifo and prevent overruns */ 634 do { 635 if (drv_data->read(drv_data)) { 636 int_transfer_complete(drv_data); 637 return IRQ_HANDLED; 638 } 639 } while (drv_data->write(drv_data)); 640 641 if (drv_data->read(drv_data)) { 642 int_transfer_complete(drv_data); 643 return IRQ_HANDLED; 644 } 645 646 if (drv_data->tx == drv_data->tx_end) { 647 u32 bytes_left; 648 u32 sccr1_reg; 649 650 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1); 651 sccr1_reg &= ~SSCR1_TIE; 652 653 /* 654 * PXA25x_SSP has no timeout, set up rx threshould for the 655 * remaining RX bytes. 656 */ 657 if (pxa25x_ssp_comp(drv_data)) { 658 u32 rx_thre; 659 660 pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg); 661 662 bytes_left = drv_data->rx_end - drv_data->rx; 663 switch (drv_data->n_bytes) { 664 case 4: 665 bytes_left >>= 2; 666 break; 667 case 2: 668 bytes_left >>= 1; 669 break; 670 } 671 672 rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data); 673 if (rx_thre > bytes_left) 674 rx_thre = bytes_left; 675 676 pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre); 677 } 678 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); 679 } 680 681 /* We did something */ 682 return IRQ_HANDLED; 683 } 684 685 static void handle_bad_msg(struct driver_data *drv_data) 686 { 687 pxa2xx_spi_write(drv_data, SSCR0, 688 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE); 689 pxa2xx_spi_write(drv_data, SSCR1, 690 pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1); 691 if (!pxa25x_ssp_comp(drv_data)) 692 pxa2xx_spi_write(drv_data, SSTO, 0); 693 write_SSSR_CS(drv_data, drv_data->clear_sr); 694 695 dev_err(&drv_data->pdev->dev, 696 "bad message state in interrupt handler\n"); 697 } 698 699 static irqreturn_t ssp_int(int irq, void *dev_id) 700 { 701 struct driver_data *drv_data = dev_id; 702 u32 sccr1_reg; 703 u32 mask = drv_data->mask_sr; 704 u32 status; 705 706 /* 707 * The IRQ might be shared with other peripherals so we must first 708 * check that are we RPM suspended or not. If we are we assume that 709 * the IRQ was not for us (we shouldn't be RPM suspended when the 710 * interrupt is enabled). 711 */ 712 if (pm_runtime_suspended(&drv_data->pdev->dev)) 713 return IRQ_NONE; 714 715 /* 716 * If the device is not yet in RPM suspended state and we get an 717 * interrupt that is meant for another device, check if status bits 718 * are all set to one. That means that the device is already 719 * powered off. 720 */ 721 status = pxa2xx_spi_read(drv_data, SSSR); 722 if (status == ~0) 723 return IRQ_NONE; 724 725 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1); 726 727 /* Ignore possible writes if we don't need to write */ 728 if (!(sccr1_reg & SSCR1_TIE)) 729 mask &= ~SSSR_TFS; 730 731 /* Ignore RX timeout interrupt if it is disabled */ 732 if (!(sccr1_reg & SSCR1_TINTE)) 733 mask &= ~SSSR_TINT; 734 735 if (!(status & mask)) 736 return IRQ_NONE; 737 738 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1); 739 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); 740 741 if (!drv_data->controller->cur_msg) { 742 handle_bad_msg(drv_data); 743 /* Never fail */ 744 return IRQ_HANDLED; 745 } 746 747 return drv_data->transfer_handler(drv_data); 748 } 749 750 /* 751 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply 752 * input frequency by fractions of 2^24. It also has a divider by 5. 753 * 754 * There are formulas to get baud rate value for given input frequency and 755 * divider parameters, such as DDS_CLK_RATE and SCR: 756 * 757 * Fsys = 200MHz 758 * 759 * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1) 760 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2) 761 * 762 * DDS_CLK_RATE either 2^n or 2^n / 5. 763 * SCR is in range 0 .. 255 764 * 765 * Divisor = 5^i * 2^j * 2 * k 766 * i = [0, 1] i = 1 iff j = 0 or j > 3 767 * j = [0, 23] j = 0 iff i = 1 768 * k = [1, 256] 769 * Special case: j = 0, i = 1: Divisor = 2 / 5 770 * 771 * Accordingly to the specification the recommended values for DDS_CLK_RATE 772 * are: 773 * Case 1: 2^n, n = [0, 23] 774 * Case 2: 2^24 * 2 / 5 (0x666666) 775 * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333) 776 * 777 * In all cases the lowest possible value is better. 778 * 779 * The function calculates parameters for all cases and chooses the one closest 780 * to the asked baud rate. 781 */ 782 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds) 783 { 784 unsigned long xtal = 200000000; 785 unsigned long fref = xtal / 2; /* mandatory division by 2, 786 see (2) */ 787 /* case 3 */ 788 unsigned long fref1 = fref / 2; /* case 1 */ 789 unsigned long fref2 = fref * 2 / 5; /* case 2 */ 790 unsigned long scale; 791 unsigned long q, q1, q2; 792 long r, r1, r2; 793 u32 mul; 794 795 /* Case 1 */ 796 797 /* Set initial value for DDS_CLK_RATE */ 798 mul = (1 << 24) >> 1; 799 800 /* Calculate initial quot */ 801 q1 = DIV_ROUND_UP(fref1, rate); 802 803 /* Scale q1 if it's too big */ 804 if (q1 > 256) { 805 /* Scale q1 to range [1, 512] */ 806 scale = fls_long(q1 - 1); 807 if (scale > 9) { 808 q1 >>= scale - 9; 809 mul >>= scale - 9; 810 } 811 812 /* Round the result if we have a remainder */ 813 q1 += q1 & 1; 814 } 815 816 /* Decrease DDS_CLK_RATE as much as we can without loss in precision */ 817 scale = __ffs(q1); 818 q1 >>= scale; 819 mul >>= scale; 820 821 /* Get the remainder */ 822 r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate); 823 824 /* Case 2 */ 825 826 q2 = DIV_ROUND_UP(fref2, rate); 827 r2 = abs(fref2 / q2 - rate); 828 829 /* 830 * Choose the best between two: less remainder we have the better. We 831 * can't go case 2 if q2 is greater than 256 since SCR register can 832 * hold only values 0 .. 255. 833 */ 834 if (r2 >= r1 || q2 > 256) { 835 /* case 1 is better */ 836 r = r1; 837 q = q1; 838 } else { 839 /* case 2 is better */ 840 r = r2; 841 q = q2; 842 mul = (1 << 24) * 2 / 5; 843 } 844 845 /* Check case 3 only if the divisor is big enough */ 846 if (fref / rate >= 80) { 847 u64 fssp; 848 u32 m; 849 850 /* Calculate initial quot */ 851 q1 = DIV_ROUND_UP(fref, rate); 852 m = (1 << 24) / q1; 853 854 /* Get the remainder */ 855 fssp = (u64)fref * m; 856 do_div(fssp, 1 << 24); 857 r1 = abs(fssp - rate); 858 859 /* Choose this one if it suits better */ 860 if (r1 < r) { 861 /* case 3 is better */ 862 q = 1; 863 mul = m; 864 } 865 } 866 867 *dds = mul; 868 return q - 1; 869 } 870 871 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate) 872 { 873 unsigned long ssp_clk = drv_data->controller->max_speed_hz; 874 const struct ssp_device *ssp = drv_data->ssp; 875 876 rate = min_t(int, ssp_clk, rate); 877 878 /* 879 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding 880 * that the SSP transmission rate can be greater than the device rate 881 */ 882 if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP) 883 return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff; 884 else 885 return (DIV_ROUND_UP(ssp_clk, rate) - 1) & 0xfff; 886 } 887 888 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data, 889 int rate) 890 { 891 struct chip_data *chip = 892 spi_get_ctldata(drv_data->controller->cur_msg->spi); 893 unsigned int clk_div; 894 895 switch (drv_data->ssp_type) { 896 case QUARK_X1000_SSP: 897 clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate); 898 break; 899 default: 900 clk_div = ssp_get_clk_div(drv_data, rate); 901 break; 902 } 903 return clk_div << 8; 904 } 905 906 static bool pxa2xx_spi_can_dma(struct spi_controller *controller, 907 struct spi_device *spi, 908 struct spi_transfer *xfer) 909 { 910 struct chip_data *chip = spi_get_ctldata(spi); 911 912 return chip->enable_dma && 913 xfer->len <= MAX_DMA_LEN && 914 xfer->len >= chip->dma_burst_size; 915 } 916 917 static int pxa2xx_spi_transfer_one(struct spi_controller *controller, 918 struct spi_device *spi, 919 struct spi_transfer *transfer) 920 { 921 struct driver_data *drv_data = spi_controller_get_devdata(controller); 922 struct spi_message *message = controller->cur_msg; 923 struct chip_data *chip = spi_get_ctldata(spi); 924 u32 dma_thresh = chip->dma_threshold; 925 u32 dma_burst = chip->dma_burst_size; 926 u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data); 927 u32 clk_div; 928 u8 bits; 929 u32 speed; 930 u32 cr0; 931 u32 cr1; 932 int err; 933 int dma_mapped; 934 935 /* Check if we can DMA this transfer */ 936 if (transfer->len > MAX_DMA_LEN && chip->enable_dma) { 937 938 /* reject already-mapped transfers; PIO won't always work */ 939 if (message->is_dma_mapped 940 || transfer->rx_dma || transfer->tx_dma) { 941 dev_err(&spi->dev, 942 "Mapped transfer length of %u is greater than %d\n", 943 transfer->len, MAX_DMA_LEN); 944 return -EINVAL; 945 } 946 947 /* warn ... we force this to PIO mode */ 948 dev_warn_ratelimited(&spi->dev, 949 "DMA disabled for transfer length %ld greater than %d\n", 950 (long)transfer->len, MAX_DMA_LEN); 951 } 952 953 /* Setup the transfer state based on the type of transfer */ 954 if (pxa2xx_spi_flush(drv_data) == 0) { 955 dev_err(&spi->dev, "Flush failed\n"); 956 return -EIO; 957 } 958 drv_data->n_bytes = chip->n_bytes; 959 drv_data->tx = (void *)transfer->tx_buf; 960 drv_data->tx_end = drv_data->tx + transfer->len; 961 drv_data->rx = transfer->rx_buf; 962 drv_data->rx_end = drv_data->rx + transfer->len; 963 drv_data->write = drv_data->tx ? chip->write : null_writer; 964 drv_data->read = drv_data->rx ? chip->read : null_reader; 965 966 /* Change speed and bit per word on a per transfer */ 967 bits = transfer->bits_per_word; 968 speed = transfer->speed_hz; 969 970 clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed); 971 972 if (bits <= 8) { 973 drv_data->n_bytes = 1; 974 drv_data->read = drv_data->read != null_reader ? 975 u8_reader : null_reader; 976 drv_data->write = drv_data->write != null_writer ? 977 u8_writer : null_writer; 978 } else if (bits <= 16) { 979 drv_data->n_bytes = 2; 980 drv_data->read = drv_data->read != null_reader ? 981 u16_reader : null_reader; 982 drv_data->write = drv_data->write != null_writer ? 983 u16_writer : null_writer; 984 } else if (bits <= 32) { 985 drv_data->n_bytes = 4; 986 drv_data->read = drv_data->read != null_reader ? 987 u32_reader : null_reader; 988 drv_data->write = drv_data->write != null_writer ? 989 u32_writer : null_writer; 990 } 991 /* 992 * if bits/word is changed in dma mode, then must check the 993 * thresholds and burst also 994 */ 995 if (chip->enable_dma) { 996 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, 997 spi, 998 bits, &dma_burst, 999 &dma_thresh)) 1000 dev_warn_ratelimited(&spi->dev, 1001 "DMA burst size reduced to match bits_per_word\n"); 1002 } 1003 1004 dma_mapped = controller->can_dma && 1005 controller->can_dma(controller, spi, transfer) && 1006 controller->cur_msg_mapped; 1007 if (dma_mapped) { 1008 1009 /* Ensure we have the correct interrupt handler */ 1010 drv_data->transfer_handler = pxa2xx_spi_dma_transfer; 1011 1012 err = pxa2xx_spi_dma_prepare(drv_data, transfer); 1013 if (err) 1014 return err; 1015 1016 /* Clear status and start DMA engine */ 1017 cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1; 1018 pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr); 1019 1020 pxa2xx_spi_dma_start(drv_data); 1021 } else { 1022 /* Ensure we have the correct interrupt handler */ 1023 drv_data->transfer_handler = interrupt_transfer; 1024 1025 /* Clear status */ 1026 cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1; 1027 write_SSSR_CS(drv_data, drv_data->clear_sr); 1028 } 1029 1030 /* NOTE: PXA25x_SSP _could_ use external clocking ... */ 1031 cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits); 1032 if (!pxa25x_ssp_comp(drv_data)) 1033 dev_dbg(&spi->dev, "%u Hz actual, %s\n", 1034 controller->max_speed_hz 1035 / (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)), 1036 dma_mapped ? "DMA" : "PIO"); 1037 else 1038 dev_dbg(&spi->dev, "%u Hz actual, %s\n", 1039 controller->max_speed_hz / 2 1040 / (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)), 1041 dma_mapped ? "DMA" : "PIO"); 1042 1043 if (is_lpss_ssp(drv_data)) { 1044 if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff) 1045 != chip->lpss_rx_threshold) 1046 pxa2xx_spi_write(drv_data, SSIRF, 1047 chip->lpss_rx_threshold); 1048 if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff) 1049 != chip->lpss_tx_threshold) 1050 pxa2xx_spi_write(drv_data, SSITF, 1051 chip->lpss_tx_threshold); 1052 } 1053 1054 if (is_quark_x1000_ssp(drv_data) && 1055 (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate)) 1056 pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate); 1057 1058 /* see if we need to reload the config registers */ 1059 if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0) 1060 || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask) 1061 != (cr1 & change_mask)) { 1062 /* stop the SSP, and update the other bits */ 1063 pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE); 1064 if (!pxa25x_ssp_comp(drv_data)) 1065 pxa2xx_spi_write(drv_data, SSTO, chip->timeout); 1066 /* first set CR1 without interrupt and service enables */ 1067 pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask); 1068 /* restart the SSP */ 1069 pxa2xx_spi_write(drv_data, SSCR0, cr0); 1070 1071 } else { 1072 if (!pxa25x_ssp_comp(drv_data)) 1073 pxa2xx_spi_write(drv_data, SSTO, chip->timeout); 1074 } 1075 1076 if (drv_data->ssp_type == MMP2_SSP) { 1077 u8 tx_level = (pxa2xx_spi_read(drv_data, SSSR) 1078 & SSSR_TFL_MASK) >> 8; 1079 1080 if (tx_level) { 1081 /* On MMP2, flipping SSE doesn't to empty TXFIFO. */ 1082 dev_warn(&spi->dev, "%d bytes of garbage in TXFIFO!\n", 1083 tx_level); 1084 if (tx_level > transfer->len) 1085 tx_level = transfer->len; 1086 drv_data->tx += tx_level; 1087 } 1088 } 1089 1090 if (spi_controller_is_slave(controller)) { 1091 while (drv_data->write(drv_data)) 1092 ; 1093 if (drv_data->gpiod_ready) { 1094 gpiod_set_value(drv_data->gpiod_ready, 1); 1095 udelay(1); 1096 gpiod_set_value(drv_data->gpiod_ready, 0); 1097 } 1098 } 1099 1100 /* 1101 * Release the data by enabling service requests and interrupts, 1102 * without changing any mode bits 1103 */ 1104 pxa2xx_spi_write(drv_data, SSCR1, cr1); 1105 1106 return 1; 1107 } 1108 1109 static int pxa2xx_spi_slave_abort(struct spi_controller *controller) 1110 { 1111 struct driver_data *drv_data = spi_controller_get_devdata(controller); 1112 1113 /* Stop and reset SSP */ 1114 write_SSSR_CS(drv_data, drv_data->clear_sr); 1115 reset_sccr1(drv_data); 1116 if (!pxa25x_ssp_comp(drv_data)) 1117 pxa2xx_spi_write(drv_data, SSTO, 0); 1118 pxa2xx_spi_flush(drv_data); 1119 pxa2xx_spi_write(drv_data, SSCR0, 1120 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE); 1121 1122 dev_dbg(&drv_data->pdev->dev, "transfer aborted\n"); 1123 1124 drv_data->controller->cur_msg->status = -EINTR; 1125 spi_finalize_current_transfer(drv_data->controller); 1126 1127 return 0; 1128 } 1129 1130 static void pxa2xx_spi_handle_err(struct spi_controller *controller, 1131 struct spi_message *msg) 1132 { 1133 struct driver_data *drv_data = spi_controller_get_devdata(controller); 1134 1135 /* Disable the SSP */ 1136 pxa2xx_spi_write(drv_data, SSCR0, 1137 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE); 1138 /* Clear and disable interrupts and service requests */ 1139 write_SSSR_CS(drv_data, drv_data->clear_sr); 1140 pxa2xx_spi_write(drv_data, SSCR1, 1141 pxa2xx_spi_read(drv_data, SSCR1) 1142 & ~(drv_data->int_cr1 | drv_data->dma_cr1)); 1143 if (!pxa25x_ssp_comp(drv_data)) 1144 pxa2xx_spi_write(drv_data, SSTO, 0); 1145 1146 /* 1147 * Stop the DMA if running. Note DMA callback handler may have unset 1148 * the dma_running already, which is fine as stopping is not needed 1149 * then but we shouldn't rely this flag for anything else than 1150 * stopping. For instance to differentiate between PIO and DMA 1151 * transfers. 1152 */ 1153 if (atomic_read(&drv_data->dma_running)) 1154 pxa2xx_spi_dma_stop(drv_data); 1155 } 1156 1157 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller) 1158 { 1159 struct driver_data *drv_data = spi_controller_get_devdata(controller); 1160 1161 /* Disable the SSP now */ 1162 pxa2xx_spi_write(drv_data, SSCR0, 1163 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE); 1164 1165 return 0; 1166 } 1167 1168 static int setup_cs(struct spi_device *spi, struct chip_data *chip, 1169 struct pxa2xx_spi_chip *chip_info) 1170 { 1171 struct driver_data *drv_data = 1172 spi_controller_get_devdata(spi->controller); 1173 struct gpio_desc *gpiod; 1174 int err = 0; 1175 1176 if (chip == NULL) 1177 return 0; 1178 1179 if (drv_data->cs_gpiods) { 1180 gpiod = drv_data->cs_gpiods[spi->chip_select]; 1181 if (gpiod) { 1182 chip->gpiod_cs = gpiod; 1183 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH; 1184 gpiod_set_value(gpiod, chip->gpio_cs_inverted); 1185 } 1186 1187 return 0; 1188 } 1189 1190 if (chip_info == NULL) 1191 return 0; 1192 1193 /* NOTE: setup() can be called multiple times, possibly with 1194 * different chip_info, release previously requested GPIO 1195 */ 1196 if (chip->gpiod_cs) { 1197 gpiod_put(chip->gpiod_cs); 1198 chip->gpiod_cs = NULL; 1199 } 1200 1201 /* If (*cs_control) is provided, ignore GPIO chip select */ 1202 if (chip_info->cs_control) { 1203 chip->cs_control = chip_info->cs_control; 1204 return 0; 1205 } 1206 1207 if (gpio_is_valid(chip_info->gpio_cs)) { 1208 err = gpio_request(chip_info->gpio_cs, "SPI_CS"); 1209 if (err) { 1210 dev_err(&spi->dev, "failed to request chip select GPIO%d\n", 1211 chip_info->gpio_cs); 1212 return err; 1213 } 1214 1215 gpiod = gpio_to_desc(chip_info->gpio_cs); 1216 chip->gpiod_cs = gpiod; 1217 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH; 1218 1219 err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted); 1220 } 1221 1222 return err; 1223 } 1224 1225 static int setup(struct spi_device *spi) 1226 { 1227 struct pxa2xx_spi_chip *chip_info; 1228 struct chip_data *chip; 1229 const struct lpss_config *config; 1230 struct driver_data *drv_data = 1231 spi_controller_get_devdata(spi->controller); 1232 uint tx_thres, tx_hi_thres, rx_thres; 1233 1234 switch (drv_data->ssp_type) { 1235 case QUARK_X1000_SSP: 1236 tx_thres = TX_THRESH_QUARK_X1000_DFLT; 1237 tx_hi_thres = 0; 1238 rx_thres = RX_THRESH_QUARK_X1000_DFLT; 1239 break; 1240 case CE4100_SSP: 1241 tx_thres = TX_THRESH_CE4100_DFLT; 1242 tx_hi_thres = 0; 1243 rx_thres = RX_THRESH_CE4100_DFLT; 1244 break; 1245 case LPSS_LPT_SSP: 1246 case LPSS_BYT_SSP: 1247 case LPSS_BSW_SSP: 1248 case LPSS_SPT_SSP: 1249 case LPSS_BXT_SSP: 1250 case LPSS_CNL_SSP: 1251 config = lpss_get_config(drv_data); 1252 tx_thres = config->tx_threshold_lo; 1253 tx_hi_thres = config->tx_threshold_hi; 1254 rx_thres = config->rx_threshold; 1255 break; 1256 default: 1257 tx_hi_thres = 0; 1258 if (spi_controller_is_slave(drv_data->controller)) { 1259 tx_thres = 1; 1260 rx_thres = 2; 1261 } else { 1262 tx_thres = TX_THRESH_DFLT; 1263 rx_thres = RX_THRESH_DFLT; 1264 } 1265 break; 1266 } 1267 1268 /* Only alloc on first setup */ 1269 chip = spi_get_ctldata(spi); 1270 if (!chip) { 1271 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); 1272 if (!chip) 1273 return -ENOMEM; 1274 1275 if (drv_data->ssp_type == CE4100_SSP) { 1276 if (spi->chip_select > 4) { 1277 dev_err(&spi->dev, 1278 "failed setup: cs number must not be > 4.\n"); 1279 kfree(chip); 1280 return -EINVAL; 1281 } 1282 1283 chip->frm = spi->chip_select; 1284 } 1285 chip->enable_dma = drv_data->controller_info->enable_dma; 1286 chip->timeout = TIMOUT_DFLT; 1287 } 1288 1289 /* protocol drivers may change the chip settings, so... 1290 * if chip_info exists, use it */ 1291 chip_info = spi->controller_data; 1292 1293 /* chip_info isn't always needed */ 1294 chip->cr1 = 0; 1295 if (chip_info) { 1296 if (chip_info->timeout) 1297 chip->timeout = chip_info->timeout; 1298 if (chip_info->tx_threshold) 1299 tx_thres = chip_info->tx_threshold; 1300 if (chip_info->tx_hi_threshold) 1301 tx_hi_thres = chip_info->tx_hi_threshold; 1302 if (chip_info->rx_threshold) 1303 rx_thres = chip_info->rx_threshold; 1304 chip->dma_threshold = 0; 1305 if (chip_info->enable_loopback) 1306 chip->cr1 = SSCR1_LBM; 1307 } 1308 if (spi_controller_is_slave(drv_data->controller)) { 1309 chip->cr1 |= SSCR1_SCFR; 1310 chip->cr1 |= SSCR1_SCLKDIR; 1311 chip->cr1 |= SSCR1_SFRMDIR; 1312 chip->cr1 |= SSCR1_SPH; 1313 } 1314 1315 chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres); 1316 chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) 1317 | SSITF_TxHiThresh(tx_hi_thres); 1318 1319 /* set dma burst and threshold outside of chip_info path so that if 1320 * chip_info goes away after setting chip->enable_dma, the 1321 * burst and threshold can still respond to changes in bits_per_word */ 1322 if (chip->enable_dma) { 1323 /* set up legal burst and threshold for dma */ 1324 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi, 1325 spi->bits_per_word, 1326 &chip->dma_burst_size, 1327 &chip->dma_threshold)) { 1328 dev_warn(&spi->dev, 1329 "in setup: DMA burst size reduced to match bits_per_word\n"); 1330 } 1331 dev_dbg(&spi->dev, 1332 "in setup: DMA burst size set to %u\n", 1333 chip->dma_burst_size); 1334 } 1335 1336 switch (drv_data->ssp_type) { 1337 case QUARK_X1000_SSP: 1338 chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres) 1339 & QUARK_X1000_SSCR1_RFT) 1340 | (QUARK_X1000_SSCR1_TxTresh(tx_thres) 1341 & QUARK_X1000_SSCR1_TFT); 1342 break; 1343 case CE4100_SSP: 1344 chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) | 1345 (CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT); 1346 break; 1347 default: 1348 chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) | 1349 (SSCR1_TxTresh(tx_thres) & SSCR1_TFT); 1350 break; 1351 } 1352 1353 chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH); 1354 chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0) 1355 | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0); 1356 1357 if (spi->mode & SPI_LOOP) 1358 chip->cr1 |= SSCR1_LBM; 1359 1360 if (spi->bits_per_word <= 8) { 1361 chip->n_bytes = 1; 1362 chip->read = u8_reader; 1363 chip->write = u8_writer; 1364 } else if (spi->bits_per_word <= 16) { 1365 chip->n_bytes = 2; 1366 chip->read = u16_reader; 1367 chip->write = u16_writer; 1368 } else if (spi->bits_per_word <= 32) { 1369 chip->n_bytes = 4; 1370 chip->read = u32_reader; 1371 chip->write = u32_writer; 1372 } 1373 1374 spi_set_ctldata(spi, chip); 1375 1376 if (drv_data->ssp_type == CE4100_SSP) 1377 return 0; 1378 1379 return setup_cs(spi, chip, chip_info); 1380 } 1381 1382 static void cleanup(struct spi_device *spi) 1383 { 1384 struct chip_data *chip = spi_get_ctldata(spi); 1385 struct driver_data *drv_data = 1386 spi_controller_get_devdata(spi->controller); 1387 1388 if (!chip) 1389 return; 1390 1391 if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods && 1392 chip->gpiod_cs) 1393 gpiod_put(chip->gpiod_cs); 1394 1395 kfree(chip); 1396 } 1397 1398 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = { 1399 { "INT33C0", LPSS_LPT_SSP }, 1400 { "INT33C1", LPSS_LPT_SSP }, 1401 { "INT3430", LPSS_LPT_SSP }, 1402 { "INT3431", LPSS_LPT_SSP }, 1403 { "80860F0E", LPSS_BYT_SSP }, 1404 { "8086228E", LPSS_BSW_SSP }, 1405 { }, 1406 }; 1407 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match); 1408 1409 /* 1410 * PCI IDs of compound devices that integrate both host controller and private 1411 * integrated DMA engine. Please note these are not used in module 1412 * autoloading and probing in this module but matching the LPSS SSP type. 1413 */ 1414 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = { 1415 /* SPT-LP */ 1416 { PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP }, 1417 { PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP }, 1418 /* SPT-H */ 1419 { PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP }, 1420 { PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP }, 1421 /* KBL-H */ 1422 { PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP }, 1423 { PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP }, 1424 /* BXT A-Step */ 1425 { PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP }, 1426 { PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP }, 1427 { PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP }, 1428 /* BXT B-Step */ 1429 { PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP }, 1430 { PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP }, 1431 { PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP }, 1432 /* GLK */ 1433 { PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP }, 1434 { PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP }, 1435 { PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP }, 1436 /* ICL-LP */ 1437 { PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP }, 1438 { PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP }, 1439 { PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP }, 1440 /* EHL */ 1441 { PCI_VDEVICE(INTEL, 0x4b2a), LPSS_BXT_SSP }, 1442 { PCI_VDEVICE(INTEL, 0x4b2b), LPSS_BXT_SSP }, 1443 { PCI_VDEVICE(INTEL, 0x4b37), LPSS_BXT_SSP }, 1444 /* APL */ 1445 { PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP }, 1446 { PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP }, 1447 { PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP }, 1448 /* CNL-LP */ 1449 { PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP }, 1450 { PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP }, 1451 { PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP }, 1452 /* CNL-H */ 1453 { PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP }, 1454 { PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP }, 1455 { PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP }, 1456 /* CML-LP */ 1457 { PCI_VDEVICE(INTEL, 0x02aa), LPSS_CNL_SSP }, 1458 { PCI_VDEVICE(INTEL, 0x02ab), LPSS_CNL_SSP }, 1459 { PCI_VDEVICE(INTEL, 0x02fb), LPSS_CNL_SSP }, 1460 { }, 1461 }; 1462 1463 static const struct of_device_id pxa2xx_spi_of_match[] = { 1464 { .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP }, 1465 {}, 1466 }; 1467 MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match); 1468 1469 #ifdef CONFIG_ACPI 1470 1471 static int pxa2xx_spi_get_port_id(struct acpi_device *adev) 1472 { 1473 unsigned int devid; 1474 int port_id = -1; 1475 1476 if (adev && adev->pnp.unique_id && 1477 !kstrtouint(adev->pnp.unique_id, 0, &devid)) 1478 port_id = devid; 1479 return port_id; 1480 } 1481 1482 #else /* !CONFIG_ACPI */ 1483 1484 static int pxa2xx_spi_get_port_id(struct acpi_device *adev) 1485 { 1486 return -1; 1487 } 1488 1489 #endif /* CONFIG_ACPI */ 1490 1491 1492 #ifdef CONFIG_PCI 1493 1494 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param) 1495 { 1496 return param == chan->device->dev; 1497 } 1498 1499 #endif /* CONFIG_PCI */ 1500 1501 static struct pxa2xx_spi_controller * 1502 pxa2xx_spi_init_pdata(struct platform_device *pdev) 1503 { 1504 struct pxa2xx_spi_controller *pdata; 1505 struct acpi_device *adev; 1506 struct ssp_device *ssp; 1507 struct resource *res; 1508 const struct acpi_device_id *adev_id = NULL; 1509 const struct pci_device_id *pcidev_id = NULL; 1510 const struct of_device_id *of_id = NULL; 1511 enum pxa_ssp_type type; 1512 1513 adev = ACPI_COMPANION(&pdev->dev); 1514 1515 if (pdev->dev.of_node) 1516 of_id = of_match_device(pdev->dev.driver->of_match_table, 1517 &pdev->dev); 1518 else if (dev_is_pci(pdev->dev.parent)) 1519 pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match, 1520 to_pci_dev(pdev->dev.parent)); 1521 else if (adev) 1522 adev_id = acpi_match_device(pdev->dev.driver->acpi_match_table, 1523 &pdev->dev); 1524 else 1525 return NULL; 1526 1527 if (adev_id) 1528 type = (enum pxa_ssp_type)adev_id->driver_data; 1529 else if (pcidev_id) 1530 type = (enum pxa_ssp_type)pcidev_id->driver_data; 1531 else if (of_id) 1532 type = (enum pxa_ssp_type)of_id->data; 1533 else 1534 return NULL; 1535 1536 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); 1537 if (!pdata) 1538 return NULL; 1539 1540 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1541 if (!res) 1542 return NULL; 1543 1544 ssp = &pdata->ssp; 1545 1546 ssp->phys_base = res->start; 1547 ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res); 1548 if (IS_ERR(ssp->mmio_base)) 1549 return NULL; 1550 1551 #ifdef CONFIG_PCI 1552 if (pcidev_id) { 1553 pdata->tx_param = pdev->dev.parent; 1554 pdata->rx_param = pdev->dev.parent; 1555 pdata->dma_filter = pxa2xx_spi_idma_filter; 1556 } 1557 #endif 1558 1559 ssp->clk = devm_clk_get(&pdev->dev, NULL); 1560 ssp->irq = platform_get_irq(pdev, 0); 1561 ssp->type = type; 1562 ssp->pdev = pdev; 1563 ssp->port_id = pxa2xx_spi_get_port_id(adev); 1564 1565 pdata->is_slave = of_property_read_bool(pdev->dev.of_node, "spi-slave"); 1566 pdata->num_chipselect = 1; 1567 pdata->enable_dma = true; 1568 pdata->dma_burst_size = 1; 1569 1570 return pdata; 1571 } 1572 1573 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller, 1574 unsigned int cs) 1575 { 1576 struct driver_data *drv_data = spi_controller_get_devdata(controller); 1577 1578 if (has_acpi_companion(&drv_data->pdev->dev)) { 1579 switch (drv_data->ssp_type) { 1580 /* 1581 * For Atoms the ACPI DeviceSelection used by the Windows 1582 * driver starts from 1 instead of 0 so translate it here 1583 * to match what Linux expects. 1584 */ 1585 case LPSS_BYT_SSP: 1586 case LPSS_BSW_SSP: 1587 return cs - 1; 1588 1589 default: 1590 break; 1591 } 1592 } 1593 1594 return cs; 1595 } 1596 1597 static int pxa2xx_spi_probe(struct platform_device *pdev) 1598 { 1599 struct device *dev = &pdev->dev; 1600 struct pxa2xx_spi_controller *platform_info; 1601 struct spi_controller *controller; 1602 struct driver_data *drv_data; 1603 struct ssp_device *ssp; 1604 const struct lpss_config *config; 1605 int status, count; 1606 u32 tmp; 1607 1608 platform_info = dev_get_platdata(dev); 1609 if (!platform_info) { 1610 platform_info = pxa2xx_spi_init_pdata(pdev); 1611 if (!platform_info) { 1612 dev_err(&pdev->dev, "missing platform data\n"); 1613 return -ENODEV; 1614 } 1615 } 1616 1617 ssp = pxa_ssp_request(pdev->id, pdev->name); 1618 if (!ssp) 1619 ssp = &platform_info->ssp; 1620 1621 if (!ssp->mmio_base) { 1622 dev_err(&pdev->dev, "failed to get ssp\n"); 1623 return -ENODEV; 1624 } 1625 1626 if (platform_info->is_slave) 1627 controller = spi_alloc_slave(dev, sizeof(struct driver_data)); 1628 else 1629 controller = spi_alloc_master(dev, sizeof(struct driver_data)); 1630 1631 if (!controller) { 1632 dev_err(&pdev->dev, "cannot alloc spi_controller\n"); 1633 pxa_ssp_free(ssp); 1634 return -ENOMEM; 1635 } 1636 drv_data = spi_controller_get_devdata(controller); 1637 drv_data->controller = controller; 1638 drv_data->controller_info = platform_info; 1639 drv_data->pdev = pdev; 1640 drv_data->ssp = ssp; 1641 1642 controller->dev.of_node = pdev->dev.of_node; 1643 /* the spi->mode bits understood by this driver: */ 1644 controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP; 1645 1646 controller->bus_num = ssp->port_id; 1647 controller->dma_alignment = DMA_ALIGNMENT; 1648 controller->cleanup = cleanup; 1649 controller->setup = setup; 1650 controller->set_cs = pxa2xx_spi_set_cs; 1651 controller->transfer_one = pxa2xx_spi_transfer_one; 1652 controller->slave_abort = pxa2xx_spi_slave_abort; 1653 controller->handle_err = pxa2xx_spi_handle_err; 1654 controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer; 1655 controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs; 1656 controller->auto_runtime_pm = true; 1657 controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX; 1658 1659 drv_data->ssp_type = ssp->type; 1660 1661 drv_data->ioaddr = ssp->mmio_base; 1662 drv_data->ssdr_physical = ssp->phys_base + SSDR; 1663 if (pxa25x_ssp_comp(drv_data)) { 1664 switch (drv_data->ssp_type) { 1665 case QUARK_X1000_SSP: 1666 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 1667 break; 1668 default: 1669 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); 1670 break; 1671 } 1672 1673 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE; 1674 drv_data->dma_cr1 = 0; 1675 drv_data->clear_sr = SSSR_ROR; 1676 drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR; 1677 } else { 1678 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 1679 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE; 1680 drv_data->dma_cr1 = DEFAULT_DMA_CR1; 1681 drv_data->clear_sr = SSSR_ROR | SSSR_TINT; 1682 drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS 1683 | SSSR_ROR | SSSR_TUR; 1684 } 1685 1686 status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev), 1687 drv_data); 1688 if (status < 0) { 1689 dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq); 1690 goto out_error_controller_alloc; 1691 } 1692 1693 /* Setup DMA if requested */ 1694 if (platform_info->enable_dma) { 1695 status = pxa2xx_spi_dma_setup(drv_data); 1696 if (status) { 1697 dev_warn(dev, "no DMA channels available, using PIO\n"); 1698 platform_info->enable_dma = false; 1699 } else { 1700 controller->can_dma = pxa2xx_spi_can_dma; 1701 controller->max_dma_len = MAX_DMA_LEN; 1702 } 1703 } 1704 1705 /* Enable SOC clock */ 1706 status = clk_prepare_enable(ssp->clk); 1707 if (status) 1708 goto out_error_dma_irq_alloc; 1709 1710 controller->max_speed_hz = clk_get_rate(ssp->clk); 1711 /* 1712 * Set minimum speed for all other platforms than Intel Quark which is 1713 * able do under 1 Hz transfers. 1714 */ 1715 if (!pxa25x_ssp_comp(drv_data)) 1716 controller->min_speed_hz = 1717 DIV_ROUND_UP(controller->max_speed_hz, 4096); 1718 else if (!is_quark_x1000_ssp(drv_data)) 1719 controller->min_speed_hz = 1720 DIV_ROUND_UP(controller->max_speed_hz, 512); 1721 1722 /* Load default SSP configuration */ 1723 pxa2xx_spi_write(drv_data, SSCR0, 0); 1724 switch (drv_data->ssp_type) { 1725 case QUARK_X1000_SSP: 1726 tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) | 1727 QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT); 1728 pxa2xx_spi_write(drv_data, SSCR1, tmp); 1729 1730 /* using the Motorola SPI protocol and use 8 bit frame */ 1731 tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8); 1732 pxa2xx_spi_write(drv_data, SSCR0, tmp); 1733 break; 1734 case CE4100_SSP: 1735 tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) | 1736 CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT); 1737 pxa2xx_spi_write(drv_data, SSCR1, tmp); 1738 tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8); 1739 pxa2xx_spi_write(drv_data, SSCR0, tmp); 1740 break; 1741 default: 1742 1743 if (spi_controller_is_slave(controller)) { 1744 tmp = SSCR1_SCFR | 1745 SSCR1_SCLKDIR | 1746 SSCR1_SFRMDIR | 1747 SSCR1_RxTresh(2) | 1748 SSCR1_TxTresh(1) | 1749 SSCR1_SPH; 1750 } else { 1751 tmp = SSCR1_RxTresh(RX_THRESH_DFLT) | 1752 SSCR1_TxTresh(TX_THRESH_DFLT); 1753 } 1754 pxa2xx_spi_write(drv_data, SSCR1, tmp); 1755 tmp = SSCR0_Motorola | SSCR0_DataSize(8); 1756 if (!spi_controller_is_slave(controller)) 1757 tmp |= SSCR0_SCR(2); 1758 pxa2xx_spi_write(drv_data, SSCR0, tmp); 1759 break; 1760 } 1761 1762 if (!pxa25x_ssp_comp(drv_data)) 1763 pxa2xx_spi_write(drv_data, SSTO, 0); 1764 1765 if (!is_quark_x1000_ssp(drv_data)) 1766 pxa2xx_spi_write(drv_data, SSPSP, 0); 1767 1768 if (is_lpss_ssp(drv_data)) { 1769 lpss_ssp_setup(drv_data); 1770 config = lpss_get_config(drv_data); 1771 if (config->reg_capabilities >= 0) { 1772 tmp = __lpss_ssp_read_priv(drv_data, 1773 config->reg_capabilities); 1774 tmp &= LPSS_CAPS_CS_EN_MASK; 1775 tmp >>= LPSS_CAPS_CS_EN_SHIFT; 1776 platform_info->num_chipselect = ffz(tmp); 1777 } else if (config->cs_num) { 1778 platform_info->num_chipselect = config->cs_num; 1779 } 1780 } 1781 controller->num_chipselect = platform_info->num_chipselect; 1782 1783 count = gpiod_count(&pdev->dev, "cs"); 1784 if (count > 0) { 1785 int i; 1786 1787 controller->num_chipselect = max_t(int, count, 1788 controller->num_chipselect); 1789 1790 drv_data->cs_gpiods = devm_kcalloc(&pdev->dev, 1791 controller->num_chipselect, sizeof(struct gpio_desc *), 1792 GFP_KERNEL); 1793 if (!drv_data->cs_gpiods) { 1794 status = -ENOMEM; 1795 goto out_error_clock_enabled; 1796 } 1797 1798 for (i = 0; i < controller->num_chipselect; i++) { 1799 struct gpio_desc *gpiod; 1800 1801 gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS); 1802 if (IS_ERR(gpiod)) { 1803 /* Means use native chip select */ 1804 if (PTR_ERR(gpiod) == -ENOENT) 1805 continue; 1806 1807 status = PTR_ERR(gpiod); 1808 goto out_error_clock_enabled; 1809 } else { 1810 drv_data->cs_gpiods[i] = gpiod; 1811 } 1812 } 1813 } 1814 1815 if (platform_info->is_slave) { 1816 drv_data->gpiod_ready = devm_gpiod_get_optional(dev, 1817 "ready", GPIOD_OUT_LOW); 1818 if (IS_ERR(drv_data->gpiod_ready)) { 1819 status = PTR_ERR(drv_data->gpiod_ready); 1820 goto out_error_clock_enabled; 1821 } 1822 } 1823 1824 pm_runtime_set_autosuspend_delay(&pdev->dev, 50); 1825 pm_runtime_use_autosuspend(&pdev->dev); 1826 pm_runtime_set_active(&pdev->dev); 1827 pm_runtime_enable(&pdev->dev); 1828 1829 /* Register with the SPI framework */ 1830 platform_set_drvdata(pdev, drv_data); 1831 status = devm_spi_register_controller(&pdev->dev, controller); 1832 if (status != 0) { 1833 dev_err(&pdev->dev, "problem registering spi controller\n"); 1834 goto out_error_clock_enabled; 1835 } 1836 1837 return status; 1838 1839 out_error_clock_enabled: 1840 pm_runtime_put_noidle(&pdev->dev); 1841 pm_runtime_disable(&pdev->dev); 1842 clk_disable_unprepare(ssp->clk); 1843 1844 out_error_dma_irq_alloc: 1845 pxa2xx_spi_dma_release(drv_data); 1846 free_irq(ssp->irq, drv_data); 1847 1848 out_error_controller_alloc: 1849 spi_controller_put(controller); 1850 pxa_ssp_free(ssp); 1851 return status; 1852 } 1853 1854 static int pxa2xx_spi_remove(struct platform_device *pdev) 1855 { 1856 struct driver_data *drv_data = platform_get_drvdata(pdev); 1857 struct ssp_device *ssp; 1858 1859 if (!drv_data) 1860 return 0; 1861 ssp = drv_data->ssp; 1862 1863 pm_runtime_get_sync(&pdev->dev); 1864 1865 /* Disable the SSP at the peripheral and SOC level */ 1866 pxa2xx_spi_write(drv_data, SSCR0, 0); 1867 clk_disable_unprepare(ssp->clk); 1868 1869 /* Release DMA */ 1870 if (drv_data->controller_info->enable_dma) 1871 pxa2xx_spi_dma_release(drv_data); 1872 1873 pm_runtime_put_noidle(&pdev->dev); 1874 pm_runtime_disable(&pdev->dev); 1875 1876 /* Release IRQ */ 1877 free_irq(ssp->irq, drv_data); 1878 1879 /* Release SSP */ 1880 pxa_ssp_free(ssp); 1881 1882 return 0; 1883 } 1884 1885 #ifdef CONFIG_PM_SLEEP 1886 static int pxa2xx_spi_suspend(struct device *dev) 1887 { 1888 struct driver_data *drv_data = dev_get_drvdata(dev); 1889 struct ssp_device *ssp = drv_data->ssp; 1890 int status; 1891 1892 status = spi_controller_suspend(drv_data->controller); 1893 if (status != 0) 1894 return status; 1895 pxa2xx_spi_write(drv_data, SSCR0, 0); 1896 1897 if (!pm_runtime_suspended(dev)) 1898 clk_disable_unprepare(ssp->clk); 1899 1900 return 0; 1901 } 1902 1903 static int pxa2xx_spi_resume(struct device *dev) 1904 { 1905 struct driver_data *drv_data = dev_get_drvdata(dev); 1906 struct ssp_device *ssp = drv_data->ssp; 1907 int status; 1908 1909 /* Enable the SSP clock */ 1910 if (!pm_runtime_suspended(dev)) { 1911 status = clk_prepare_enable(ssp->clk); 1912 if (status) 1913 return status; 1914 } 1915 1916 /* Start the queue running */ 1917 return spi_controller_resume(drv_data->controller); 1918 } 1919 #endif 1920 1921 #ifdef CONFIG_PM 1922 static int pxa2xx_spi_runtime_suspend(struct device *dev) 1923 { 1924 struct driver_data *drv_data = dev_get_drvdata(dev); 1925 1926 clk_disable_unprepare(drv_data->ssp->clk); 1927 return 0; 1928 } 1929 1930 static int pxa2xx_spi_runtime_resume(struct device *dev) 1931 { 1932 struct driver_data *drv_data = dev_get_drvdata(dev); 1933 int status; 1934 1935 status = clk_prepare_enable(drv_data->ssp->clk); 1936 return status; 1937 } 1938 #endif 1939 1940 static const struct dev_pm_ops pxa2xx_spi_pm_ops = { 1941 SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume) 1942 SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend, 1943 pxa2xx_spi_runtime_resume, NULL) 1944 }; 1945 1946 static struct platform_driver driver = { 1947 .driver = { 1948 .name = "pxa2xx-spi", 1949 .pm = &pxa2xx_spi_pm_ops, 1950 .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match), 1951 .of_match_table = of_match_ptr(pxa2xx_spi_of_match), 1952 }, 1953 .probe = pxa2xx_spi_probe, 1954 .remove = pxa2xx_spi_remove, 1955 }; 1956 1957 static int __init pxa2xx_spi_init(void) 1958 { 1959 return platform_driver_register(&driver); 1960 } 1961 subsys_initcall(pxa2xx_spi_init); 1962 1963 static void __exit pxa2xx_spi_exit(void) 1964 { 1965 platform_driver_unregister(&driver); 1966 } 1967 module_exit(pxa2xx_spi_exit); 1968 1969 MODULE_SOFTDEP("pre: dw_dmac"); 1970