xref: /openbmc/linux/drivers/spi/spi-pxa2xx.c (revision b2765275)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4  * Copyright (C) 2013, Intel Corporation
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/bitops.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/err.h>
13 #include <linux/errno.h>
14 #include <linux/gpio/consumer.h>
15 #include <linux/gpio.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/ioport.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/mod_devicetable.h>
22 #include <linux/of.h>
23 #include <linux/pci.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/property.h>
27 #include <linux/slab.h>
28 #include <linux/spi/pxa2xx_spi.h>
29 #include <linux/spi/spi.h>
30 
31 #include "spi-pxa2xx.h"
32 
33 MODULE_AUTHOR("Stephen Street");
34 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
35 MODULE_LICENSE("GPL");
36 MODULE_ALIAS("platform:pxa2xx-spi");
37 
38 #define TIMOUT_DFLT		1000
39 
40 /*
41  * for testing SSCR1 changes that require SSP restart, basically
42  * everything except the service and interrupt enables, the pxa270 developer
43  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
44  * list, but the PXA255 dev man says all bits without really meaning the
45  * service and interrupt enables
46  */
47 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
48 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
49 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
50 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
51 				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
52 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
53 
54 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
55 				| QUARK_X1000_SSCR1_EFWR	\
56 				| QUARK_X1000_SSCR1_RFT		\
57 				| QUARK_X1000_SSCR1_TFT		\
58 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
59 
60 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
61 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
62 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
63 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
64 				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
65 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
66 
67 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
68 #define LPSS_CS_CONTROL_SW_MODE			BIT(0)
69 #define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
70 #define LPSS_CAPS_CS_EN_SHIFT			9
71 #define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
72 
73 #define LPSS_PRIV_CLOCK_GATE 0x38
74 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3
75 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3
76 
77 struct lpss_config {
78 	/* LPSS offset from drv_data->ioaddr */
79 	unsigned offset;
80 	/* Register offsets from drv_data->lpss_base or -1 */
81 	int reg_general;
82 	int reg_ssp;
83 	int reg_cs_ctrl;
84 	int reg_capabilities;
85 	/* FIFO thresholds */
86 	u32 rx_threshold;
87 	u32 tx_threshold_lo;
88 	u32 tx_threshold_hi;
89 	/* Chip select control */
90 	unsigned cs_sel_shift;
91 	unsigned cs_sel_mask;
92 	unsigned cs_num;
93 	/* Quirks */
94 	unsigned cs_clk_stays_gated : 1;
95 };
96 
97 /* Keep these sorted with enum pxa_ssp_type */
98 static const struct lpss_config lpss_platforms[] = {
99 	{	/* LPSS_LPT_SSP */
100 		.offset = 0x800,
101 		.reg_general = 0x08,
102 		.reg_ssp = 0x0c,
103 		.reg_cs_ctrl = 0x18,
104 		.reg_capabilities = -1,
105 		.rx_threshold = 64,
106 		.tx_threshold_lo = 160,
107 		.tx_threshold_hi = 224,
108 	},
109 	{	/* LPSS_BYT_SSP */
110 		.offset = 0x400,
111 		.reg_general = 0x08,
112 		.reg_ssp = 0x0c,
113 		.reg_cs_ctrl = 0x18,
114 		.reg_capabilities = -1,
115 		.rx_threshold = 64,
116 		.tx_threshold_lo = 160,
117 		.tx_threshold_hi = 224,
118 	},
119 	{	/* LPSS_BSW_SSP */
120 		.offset = 0x400,
121 		.reg_general = 0x08,
122 		.reg_ssp = 0x0c,
123 		.reg_cs_ctrl = 0x18,
124 		.reg_capabilities = -1,
125 		.rx_threshold = 64,
126 		.tx_threshold_lo = 160,
127 		.tx_threshold_hi = 224,
128 		.cs_sel_shift = 2,
129 		.cs_sel_mask = 1 << 2,
130 		.cs_num = 2,
131 	},
132 	{	/* LPSS_SPT_SSP */
133 		.offset = 0x200,
134 		.reg_general = -1,
135 		.reg_ssp = 0x20,
136 		.reg_cs_ctrl = 0x24,
137 		.reg_capabilities = -1,
138 		.rx_threshold = 1,
139 		.tx_threshold_lo = 32,
140 		.tx_threshold_hi = 56,
141 	},
142 	{	/* LPSS_BXT_SSP */
143 		.offset = 0x200,
144 		.reg_general = -1,
145 		.reg_ssp = 0x20,
146 		.reg_cs_ctrl = 0x24,
147 		.reg_capabilities = 0xfc,
148 		.rx_threshold = 1,
149 		.tx_threshold_lo = 16,
150 		.tx_threshold_hi = 48,
151 		.cs_sel_shift = 8,
152 		.cs_sel_mask = 3 << 8,
153 	},
154 	{	/* LPSS_CNL_SSP */
155 		.offset = 0x200,
156 		.reg_general = -1,
157 		.reg_ssp = 0x20,
158 		.reg_cs_ctrl = 0x24,
159 		.reg_capabilities = 0xfc,
160 		.rx_threshold = 1,
161 		.tx_threshold_lo = 32,
162 		.tx_threshold_hi = 56,
163 		.cs_sel_shift = 8,
164 		.cs_sel_mask = 3 << 8,
165 		.cs_clk_stays_gated = true,
166 	},
167 };
168 
169 static inline const struct lpss_config
170 *lpss_get_config(const struct driver_data *drv_data)
171 {
172 	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
173 }
174 
175 static bool is_lpss_ssp(const struct driver_data *drv_data)
176 {
177 	switch (drv_data->ssp_type) {
178 	case LPSS_LPT_SSP:
179 	case LPSS_BYT_SSP:
180 	case LPSS_BSW_SSP:
181 	case LPSS_SPT_SSP:
182 	case LPSS_BXT_SSP:
183 	case LPSS_CNL_SSP:
184 		return true;
185 	default:
186 		return false;
187 	}
188 }
189 
190 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
191 {
192 	return drv_data->ssp_type == QUARK_X1000_SSP;
193 }
194 
195 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
196 {
197 	switch (drv_data->ssp_type) {
198 	case QUARK_X1000_SSP:
199 		return QUARK_X1000_SSCR1_CHANGE_MASK;
200 	case CE4100_SSP:
201 		return CE4100_SSCR1_CHANGE_MASK;
202 	default:
203 		return SSCR1_CHANGE_MASK;
204 	}
205 }
206 
207 static u32
208 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
209 {
210 	switch (drv_data->ssp_type) {
211 	case QUARK_X1000_SSP:
212 		return RX_THRESH_QUARK_X1000_DFLT;
213 	case CE4100_SSP:
214 		return RX_THRESH_CE4100_DFLT;
215 	default:
216 		return RX_THRESH_DFLT;
217 	}
218 }
219 
220 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
221 {
222 	u32 mask;
223 
224 	switch (drv_data->ssp_type) {
225 	case QUARK_X1000_SSP:
226 		mask = QUARK_X1000_SSSR_TFL_MASK;
227 		break;
228 	case CE4100_SSP:
229 		mask = CE4100_SSSR_TFL_MASK;
230 		break;
231 	default:
232 		mask = SSSR_TFL_MASK;
233 		break;
234 	}
235 
236 	return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
237 }
238 
239 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
240 				     u32 *sccr1_reg)
241 {
242 	u32 mask;
243 
244 	switch (drv_data->ssp_type) {
245 	case QUARK_X1000_SSP:
246 		mask = QUARK_X1000_SSCR1_RFT;
247 		break;
248 	case CE4100_SSP:
249 		mask = CE4100_SSCR1_RFT;
250 		break;
251 	default:
252 		mask = SSCR1_RFT;
253 		break;
254 	}
255 	*sccr1_reg &= ~mask;
256 }
257 
258 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
259 				   u32 *sccr1_reg, u32 threshold)
260 {
261 	switch (drv_data->ssp_type) {
262 	case QUARK_X1000_SSP:
263 		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
264 		break;
265 	case CE4100_SSP:
266 		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
267 		break;
268 	default:
269 		*sccr1_reg |= SSCR1_RxTresh(threshold);
270 		break;
271 	}
272 }
273 
274 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
275 				  u32 clk_div, u8 bits)
276 {
277 	switch (drv_data->ssp_type) {
278 	case QUARK_X1000_SSP:
279 		return clk_div
280 			| QUARK_X1000_SSCR0_Motorola
281 			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
282 			| SSCR0_SSE;
283 	default:
284 		return clk_div
285 			| SSCR0_Motorola
286 			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
287 			| SSCR0_SSE
288 			| (bits > 16 ? SSCR0_EDSS : 0);
289 	}
290 }
291 
292 /*
293  * Read and write LPSS SSP private registers. Caller must first check that
294  * is_lpss_ssp() returns true before these can be called.
295  */
296 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
297 {
298 	WARN_ON(!drv_data->lpss_base);
299 	return readl(drv_data->lpss_base + offset);
300 }
301 
302 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
303 				  unsigned offset, u32 value)
304 {
305 	WARN_ON(!drv_data->lpss_base);
306 	writel(value, drv_data->lpss_base + offset);
307 }
308 
309 /*
310  * lpss_ssp_setup - perform LPSS SSP specific setup
311  * @drv_data: pointer to the driver private data
312  *
313  * Perform LPSS SSP specific setup. This function must be called first if
314  * one is going to use LPSS SSP private registers.
315  */
316 static void lpss_ssp_setup(struct driver_data *drv_data)
317 {
318 	const struct lpss_config *config;
319 	u32 value;
320 
321 	config = lpss_get_config(drv_data);
322 	drv_data->lpss_base = drv_data->ioaddr + config->offset;
323 
324 	/* Enable software chip select control */
325 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
326 	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
327 	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
328 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
329 
330 	/* Enable multiblock DMA transfers */
331 	if (drv_data->controller_info->enable_dma) {
332 		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
333 
334 		if (config->reg_general >= 0) {
335 			value = __lpss_ssp_read_priv(drv_data,
336 						     config->reg_general);
337 			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
338 			__lpss_ssp_write_priv(drv_data,
339 					      config->reg_general, value);
340 		}
341 	}
342 }
343 
344 static void lpss_ssp_select_cs(struct spi_device *spi,
345 			       const struct lpss_config *config)
346 {
347 	struct driver_data *drv_data =
348 		spi_controller_get_devdata(spi->controller);
349 	u32 value, cs;
350 
351 	if (!config->cs_sel_mask)
352 		return;
353 
354 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
355 
356 	cs = spi->chip_select;
357 	cs <<= config->cs_sel_shift;
358 	if (cs != (value & config->cs_sel_mask)) {
359 		/*
360 		 * When switching another chip select output active the
361 		 * output must be selected first and wait 2 ssp_clk cycles
362 		 * before changing state to active. Otherwise a short
363 		 * glitch will occur on the previous chip select since
364 		 * output select is latched but state control is not.
365 		 */
366 		value &= ~config->cs_sel_mask;
367 		value |= cs;
368 		__lpss_ssp_write_priv(drv_data,
369 				      config->reg_cs_ctrl, value);
370 		ndelay(1000000000 /
371 		       (drv_data->controller->max_speed_hz / 2));
372 	}
373 }
374 
375 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
376 {
377 	struct driver_data *drv_data =
378 		spi_controller_get_devdata(spi->controller);
379 	const struct lpss_config *config;
380 	u32 value;
381 
382 	config = lpss_get_config(drv_data);
383 
384 	if (enable)
385 		lpss_ssp_select_cs(spi, config);
386 
387 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
388 	if (enable)
389 		value &= ~LPSS_CS_CONTROL_CS_HIGH;
390 	else
391 		value |= LPSS_CS_CONTROL_CS_HIGH;
392 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
393 	if (config->cs_clk_stays_gated) {
394 		u32 clkgate;
395 
396 		/*
397 		 * Changing CS alone when dynamic clock gating is on won't
398 		 * actually flip CS at that time. This ruins SPI transfers
399 		 * that specify delays, or have no data. Toggle the clock mode
400 		 * to force on briefly to poke the CS pin to move.
401 		 */
402 		clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE);
403 		value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) |
404 			LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON;
405 
406 		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value);
407 		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate);
408 	}
409 }
410 
411 static void cs_assert(struct spi_device *spi)
412 {
413 	struct chip_data *chip = spi_get_ctldata(spi);
414 	struct driver_data *drv_data =
415 		spi_controller_get_devdata(spi->controller);
416 
417 	if (drv_data->ssp_type == CE4100_SSP) {
418 		pxa2xx_spi_write(drv_data, SSSR, chip->frm);
419 		return;
420 	}
421 
422 	if (chip->cs_control) {
423 		chip->cs_control(PXA2XX_CS_ASSERT);
424 		return;
425 	}
426 
427 	if (chip->gpiod_cs) {
428 		gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted);
429 		return;
430 	}
431 
432 	if (is_lpss_ssp(drv_data))
433 		lpss_ssp_cs_control(spi, true);
434 }
435 
436 static void cs_deassert(struct spi_device *spi)
437 {
438 	struct chip_data *chip = spi_get_ctldata(spi);
439 	struct driver_data *drv_data =
440 		spi_controller_get_devdata(spi->controller);
441 	unsigned long timeout;
442 
443 	if (drv_data->ssp_type == CE4100_SSP)
444 		return;
445 
446 	/* Wait until SSP becomes idle before deasserting the CS */
447 	timeout = jiffies + msecs_to_jiffies(10);
448 	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
449 	       !time_after(jiffies, timeout))
450 		cpu_relax();
451 
452 	if (chip->cs_control) {
453 		chip->cs_control(PXA2XX_CS_DEASSERT);
454 		return;
455 	}
456 
457 	if (chip->gpiod_cs) {
458 		gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted);
459 		return;
460 	}
461 
462 	if (is_lpss_ssp(drv_data))
463 		lpss_ssp_cs_control(spi, false);
464 }
465 
466 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
467 {
468 	if (level)
469 		cs_deassert(spi);
470 	else
471 		cs_assert(spi);
472 }
473 
474 int pxa2xx_spi_flush(struct driver_data *drv_data)
475 {
476 	unsigned long limit = loops_per_jiffy << 1;
477 
478 	do {
479 		while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
480 			pxa2xx_spi_read(drv_data, SSDR);
481 	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
482 	write_SSSR_CS(drv_data, SSSR_ROR);
483 
484 	return limit;
485 }
486 
487 static void pxa2xx_spi_off(struct driver_data *drv_data)
488 {
489 	/* On MMP, disabling SSE seems to corrupt the rx fifo */
490 	if (drv_data->ssp_type == MMP2_SSP)
491 		return;
492 
493 	pxa2xx_spi_write(drv_data, SSCR0,
494 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
495 }
496 
497 static int null_writer(struct driver_data *drv_data)
498 {
499 	u8 n_bytes = drv_data->n_bytes;
500 
501 	if (pxa2xx_spi_txfifo_full(drv_data)
502 		|| (drv_data->tx == drv_data->tx_end))
503 		return 0;
504 
505 	pxa2xx_spi_write(drv_data, SSDR, 0);
506 	drv_data->tx += n_bytes;
507 
508 	return 1;
509 }
510 
511 static int null_reader(struct driver_data *drv_data)
512 {
513 	u8 n_bytes = drv_data->n_bytes;
514 
515 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
516 	       && (drv_data->rx < drv_data->rx_end)) {
517 		pxa2xx_spi_read(drv_data, SSDR);
518 		drv_data->rx += n_bytes;
519 	}
520 
521 	return drv_data->rx == drv_data->rx_end;
522 }
523 
524 static int u8_writer(struct driver_data *drv_data)
525 {
526 	if (pxa2xx_spi_txfifo_full(drv_data)
527 		|| (drv_data->tx == drv_data->tx_end))
528 		return 0;
529 
530 	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
531 	++drv_data->tx;
532 
533 	return 1;
534 }
535 
536 static int u8_reader(struct driver_data *drv_data)
537 {
538 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
539 	       && (drv_data->rx < drv_data->rx_end)) {
540 		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
541 		++drv_data->rx;
542 	}
543 
544 	return drv_data->rx == drv_data->rx_end;
545 }
546 
547 static int u16_writer(struct driver_data *drv_data)
548 {
549 	if (pxa2xx_spi_txfifo_full(drv_data)
550 		|| (drv_data->tx == drv_data->tx_end))
551 		return 0;
552 
553 	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
554 	drv_data->tx += 2;
555 
556 	return 1;
557 }
558 
559 static int u16_reader(struct driver_data *drv_data)
560 {
561 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
562 	       && (drv_data->rx < drv_data->rx_end)) {
563 		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
564 		drv_data->rx += 2;
565 	}
566 
567 	return drv_data->rx == drv_data->rx_end;
568 }
569 
570 static int u32_writer(struct driver_data *drv_data)
571 {
572 	if (pxa2xx_spi_txfifo_full(drv_data)
573 		|| (drv_data->tx == drv_data->tx_end))
574 		return 0;
575 
576 	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
577 	drv_data->tx += 4;
578 
579 	return 1;
580 }
581 
582 static int u32_reader(struct driver_data *drv_data)
583 {
584 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
585 	       && (drv_data->rx < drv_data->rx_end)) {
586 		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
587 		drv_data->rx += 4;
588 	}
589 
590 	return drv_data->rx == drv_data->rx_end;
591 }
592 
593 static void reset_sccr1(struct driver_data *drv_data)
594 {
595 	struct chip_data *chip =
596 		spi_get_ctldata(drv_data->controller->cur_msg->spi);
597 	u32 sccr1_reg;
598 
599 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
600 	switch (drv_data->ssp_type) {
601 	case QUARK_X1000_SSP:
602 		sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
603 		break;
604 	case CE4100_SSP:
605 		sccr1_reg &= ~CE4100_SSCR1_RFT;
606 		break;
607 	default:
608 		sccr1_reg &= ~SSCR1_RFT;
609 		break;
610 	}
611 	sccr1_reg |= chip->threshold;
612 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
613 }
614 
615 static void int_error_stop(struct driver_data *drv_data, const char* msg)
616 {
617 	/* Stop and reset SSP */
618 	write_SSSR_CS(drv_data, drv_data->clear_sr);
619 	reset_sccr1(drv_data);
620 	if (!pxa25x_ssp_comp(drv_data))
621 		pxa2xx_spi_write(drv_data, SSTO, 0);
622 	pxa2xx_spi_flush(drv_data);
623 	pxa2xx_spi_off(drv_data);
624 
625 	dev_err(&drv_data->pdev->dev, "%s\n", msg);
626 
627 	drv_data->controller->cur_msg->status = -EIO;
628 	spi_finalize_current_transfer(drv_data->controller);
629 }
630 
631 static void int_transfer_complete(struct driver_data *drv_data)
632 {
633 	/* Clear and disable interrupts */
634 	write_SSSR_CS(drv_data, drv_data->clear_sr);
635 	reset_sccr1(drv_data);
636 	if (!pxa25x_ssp_comp(drv_data))
637 		pxa2xx_spi_write(drv_data, SSTO, 0);
638 
639 	spi_finalize_current_transfer(drv_data->controller);
640 }
641 
642 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
643 {
644 	u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
645 		       drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
646 
647 	u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
648 
649 	if (irq_status & SSSR_ROR) {
650 		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
651 		return IRQ_HANDLED;
652 	}
653 
654 	if (irq_status & SSSR_TUR) {
655 		int_error_stop(drv_data, "interrupt_transfer: fifo underrun");
656 		return IRQ_HANDLED;
657 	}
658 
659 	if (irq_status & SSSR_TINT) {
660 		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
661 		if (drv_data->read(drv_data)) {
662 			int_transfer_complete(drv_data);
663 			return IRQ_HANDLED;
664 		}
665 	}
666 
667 	/* Drain rx fifo, Fill tx fifo and prevent overruns */
668 	do {
669 		if (drv_data->read(drv_data)) {
670 			int_transfer_complete(drv_data);
671 			return IRQ_HANDLED;
672 		}
673 	} while (drv_data->write(drv_data));
674 
675 	if (drv_data->read(drv_data)) {
676 		int_transfer_complete(drv_data);
677 		return IRQ_HANDLED;
678 	}
679 
680 	if (drv_data->tx == drv_data->tx_end) {
681 		u32 bytes_left;
682 		u32 sccr1_reg;
683 
684 		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
685 		sccr1_reg &= ~SSCR1_TIE;
686 
687 		/*
688 		 * PXA25x_SSP has no timeout, set up rx threshould for the
689 		 * remaining RX bytes.
690 		 */
691 		if (pxa25x_ssp_comp(drv_data)) {
692 			u32 rx_thre;
693 
694 			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
695 
696 			bytes_left = drv_data->rx_end - drv_data->rx;
697 			switch (drv_data->n_bytes) {
698 			case 4:
699 				bytes_left >>= 2;
700 				break;
701 			case 2:
702 				bytes_left >>= 1;
703 				break;
704 			}
705 
706 			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
707 			if (rx_thre > bytes_left)
708 				rx_thre = bytes_left;
709 
710 			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
711 		}
712 		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
713 	}
714 
715 	/* We did something */
716 	return IRQ_HANDLED;
717 }
718 
719 static void handle_bad_msg(struct driver_data *drv_data)
720 {
721 	pxa2xx_spi_off(drv_data);
722 	pxa2xx_spi_write(drv_data, SSCR1,
723 			 pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1);
724 	if (!pxa25x_ssp_comp(drv_data))
725 		pxa2xx_spi_write(drv_data, SSTO, 0);
726 	write_SSSR_CS(drv_data, drv_data->clear_sr);
727 
728 	dev_err(&drv_data->pdev->dev,
729 		"bad message state in interrupt handler\n");
730 }
731 
732 static irqreturn_t ssp_int(int irq, void *dev_id)
733 {
734 	struct driver_data *drv_data = dev_id;
735 	u32 sccr1_reg;
736 	u32 mask = drv_data->mask_sr;
737 	u32 status;
738 
739 	/*
740 	 * The IRQ might be shared with other peripherals so we must first
741 	 * check that are we RPM suspended or not. If we are we assume that
742 	 * the IRQ was not for us (we shouldn't be RPM suspended when the
743 	 * interrupt is enabled).
744 	 */
745 	if (pm_runtime_suspended(&drv_data->pdev->dev))
746 		return IRQ_NONE;
747 
748 	/*
749 	 * If the device is not yet in RPM suspended state and we get an
750 	 * interrupt that is meant for another device, check if status bits
751 	 * are all set to one. That means that the device is already
752 	 * powered off.
753 	 */
754 	status = pxa2xx_spi_read(drv_data, SSSR);
755 	if (status == ~0)
756 		return IRQ_NONE;
757 
758 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
759 
760 	/* Ignore possible writes if we don't need to write */
761 	if (!(sccr1_reg & SSCR1_TIE))
762 		mask &= ~SSSR_TFS;
763 
764 	/* Ignore RX timeout interrupt if it is disabled */
765 	if (!(sccr1_reg & SSCR1_TINTE))
766 		mask &= ~SSSR_TINT;
767 
768 	if (!(status & mask))
769 		return IRQ_NONE;
770 
771 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
772 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
773 
774 	if (!drv_data->controller->cur_msg) {
775 		handle_bad_msg(drv_data);
776 		/* Never fail */
777 		return IRQ_HANDLED;
778 	}
779 
780 	return drv_data->transfer_handler(drv_data);
781 }
782 
783 /*
784  * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
785  * input frequency by fractions of 2^24. It also has a divider by 5.
786  *
787  * There are formulas to get baud rate value for given input frequency and
788  * divider parameters, such as DDS_CLK_RATE and SCR:
789  *
790  * Fsys = 200MHz
791  *
792  * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
793  * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
794  *
795  * DDS_CLK_RATE either 2^n or 2^n / 5.
796  * SCR is in range 0 .. 255
797  *
798  * Divisor = 5^i * 2^j * 2 * k
799  *       i = [0, 1]      i = 1 iff j = 0 or j > 3
800  *       j = [0, 23]     j = 0 iff i = 1
801  *       k = [1, 256]
802  * Special case: j = 0, i = 1: Divisor = 2 / 5
803  *
804  * Accordingly to the specification the recommended values for DDS_CLK_RATE
805  * are:
806  *	Case 1:		2^n, n = [0, 23]
807  *	Case 2:		2^24 * 2 / 5 (0x666666)
808  *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
809  *
810  * In all cases the lowest possible value is better.
811  *
812  * The function calculates parameters for all cases and chooses the one closest
813  * to the asked baud rate.
814  */
815 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
816 {
817 	unsigned long xtal = 200000000;
818 	unsigned long fref = xtal / 2;		/* mandatory division by 2,
819 						   see (2) */
820 						/* case 3 */
821 	unsigned long fref1 = fref / 2;		/* case 1 */
822 	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
823 	unsigned long scale;
824 	unsigned long q, q1, q2;
825 	long r, r1, r2;
826 	u32 mul;
827 
828 	/* Case 1 */
829 
830 	/* Set initial value for DDS_CLK_RATE */
831 	mul = (1 << 24) >> 1;
832 
833 	/* Calculate initial quot */
834 	q1 = DIV_ROUND_UP(fref1, rate);
835 
836 	/* Scale q1 if it's too big */
837 	if (q1 > 256) {
838 		/* Scale q1 to range [1, 512] */
839 		scale = fls_long(q1 - 1);
840 		if (scale > 9) {
841 			q1 >>= scale - 9;
842 			mul >>= scale - 9;
843 		}
844 
845 		/* Round the result if we have a remainder */
846 		q1 += q1 & 1;
847 	}
848 
849 	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
850 	scale = __ffs(q1);
851 	q1 >>= scale;
852 	mul >>= scale;
853 
854 	/* Get the remainder */
855 	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
856 
857 	/* Case 2 */
858 
859 	q2 = DIV_ROUND_UP(fref2, rate);
860 	r2 = abs(fref2 / q2 - rate);
861 
862 	/*
863 	 * Choose the best between two: less remainder we have the better. We
864 	 * can't go case 2 if q2 is greater than 256 since SCR register can
865 	 * hold only values 0 .. 255.
866 	 */
867 	if (r2 >= r1 || q2 > 256) {
868 		/* case 1 is better */
869 		r = r1;
870 		q = q1;
871 	} else {
872 		/* case 2 is better */
873 		r = r2;
874 		q = q2;
875 		mul = (1 << 24) * 2 / 5;
876 	}
877 
878 	/* Check case 3 only if the divisor is big enough */
879 	if (fref / rate >= 80) {
880 		u64 fssp;
881 		u32 m;
882 
883 		/* Calculate initial quot */
884 		q1 = DIV_ROUND_UP(fref, rate);
885 		m = (1 << 24) / q1;
886 
887 		/* Get the remainder */
888 		fssp = (u64)fref * m;
889 		do_div(fssp, 1 << 24);
890 		r1 = abs(fssp - rate);
891 
892 		/* Choose this one if it suits better */
893 		if (r1 < r) {
894 			/* case 3 is better */
895 			q = 1;
896 			mul = m;
897 		}
898 	}
899 
900 	*dds = mul;
901 	return q - 1;
902 }
903 
904 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
905 {
906 	unsigned long ssp_clk = drv_data->controller->max_speed_hz;
907 	const struct ssp_device *ssp = drv_data->ssp;
908 
909 	rate = min_t(int, ssp_clk, rate);
910 
911 	/*
912 	 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
913 	 * that the SSP transmission rate can be greater than the device rate
914 	 */
915 	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
916 		return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
917 	else
918 		return (DIV_ROUND_UP(ssp_clk, rate) - 1)  & 0xfff;
919 }
920 
921 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
922 					   int rate)
923 {
924 	struct chip_data *chip =
925 		spi_get_ctldata(drv_data->controller->cur_msg->spi);
926 	unsigned int clk_div;
927 
928 	switch (drv_data->ssp_type) {
929 	case QUARK_X1000_SSP:
930 		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
931 		break;
932 	default:
933 		clk_div = ssp_get_clk_div(drv_data, rate);
934 		break;
935 	}
936 	return clk_div << 8;
937 }
938 
939 static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
940 			       struct spi_device *spi,
941 			       struct spi_transfer *xfer)
942 {
943 	struct chip_data *chip = spi_get_ctldata(spi);
944 
945 	return chip->enable_dma &&
946 	       xfer->len <= MAX_DMA_LEN &&
947 	       xfer->len >= chip->dma_burst_size;
948 }
949 
950 static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
951 				   struct spi_device *spi,
952 				   struct spi_transfer *transfer)
953 {
954 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
955 	struct spi_message *message = controller->cur_msg;
956 	struct chip_data *chip = spi_get_ctldata(spi);
957 	u32 dma_thresh = chip->dma_threshold;
958 	u32 dma_burst = chip->dma_burst_size;
959 	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
960 	u32 clk_div;
961 	u8 bits;
962 	u32 speed;
963 	u32 cr0;
964 	u32 cr1;
965 	int err;
966 	int dma_mapped;
967 
968 	/* Check if we can DMA this transfer */
969 	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
970 
971 		/* reject already-mapped transfers; PIO won't always work */
972 		if (message->is_dma_mapped
973 				|| transfer->rx_dma || transfer->tx_dma) {
974 			dev_err(&spi->dev,
975 				"Mapped transfer length of %u is greater than %d\n",
976 				transfer->len, MAX_DMA_LEN);
977 			return -EINVAL;
978 		}
979 
980 		/* warn ... we force this to PIO mode */
981 		dev_warn_ratelimited(&spi->dev,
982 				     "DMA disabled for transfer length %ld greater than %d\n",
983 				     (long)transfer->len, MAX_DMA_LEN);
984 	}
985 
986 	/* Setup the transfer state based on the type of transfer */
987 	if (pxa2xx_spi_flush(drv_data) == 0) {
988 		dev_err(&spi->dev, "Flush failed\n");
989 		return -EIO;
990 	}
991 	drv_data->n_bytes = chip->n_bytes;
992 	drv_data->tx = (void *)transfer->tx_buf;
993 	drv_data->tx_end = drv_data->tx + transfer->len;
994 	drv_data->rx = transfer->rx_buf;
995 	drv_data->rx_end = drv_data->rx + transfer->len;
996 	drv_data->write = drv_data->tx ? chip->write : null_writer;
997 	drv_data->read = drv_data->rx ? chip->read : null_reader;
998 
999 	/* Change speed and bit per word on a per transfer */
1000 	bits = transfer->bits_per_word;
1001 	speed = transfer->speed_hz;
1002 
1003 	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
1004 
1005 	if (bits <= 8) {
1006 		drv_data->n_bytes = 1;
1007 		drv_data->read = drv_data->read != null_reader ?
1008 					u8_reader : null_reader;
1009 		drv_data->write = drv_data->write != null_writer ?
1010 					u8_writer : null_writer;
1011 	} else if (bits <= 16) {
1012 		drv_data->n_bytes = 2;
1013 		drv_data->read = drv_data->read != null_reader ?
1014 					u16_reader : null_reader;
1015 		drv_data->write = drv_data->write != null_writer ?
1016 					u16_writer : null_writer;
1017 	} else if (bits <= 32) {
1018 		drv_data->n_bytes = 4;
1019 		drv_data->read = drv_data->read != null_reader ?
1020 					u32_reader : null_reader;
1021 		drv_data->write = drv_data->write != null_writer ?
1022 					u32_writer : null_writer;
1023 	}
1024 	/*
1025 	 * if bits/word is changed in dma mode, then must check the
1026 	 * thresholds and burst also
1027 	 */
1028 	if (chip->enable_dma) {
1029 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1030 						spi,
1031 						bits, &dma_burst,
1032 						&dma_thresh))
1033 			dev_warn_ratelimited(&spi->dev,
1034 					     "DMA burst size reduced to match bits_per_word\n");
1035 	}
1036 
1037 	dma_mapped = controller->can_dma &&
1038 		     controller->can_dma(controller, spi, transfer) &&
1039 		     controller->cur_msg_mapped;
1040 	if (dma_mapped) {
1041 
1042 		/* Ensure we have the correct interrupt handler */
1043 		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1044 
1045 		err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1046 		if (err)
1047 			return err;
1048 
1049 		/* Clear status and start DMA engine */
1050 		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1051 		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1052 
1053 		pxa2xx_spi_dma_start(drv_data);
1054 	} else {
1055 		/* Ensure we have the correct interrupt handler	*/
1056 		drv_data->transfer_handler = interrupt_transfer;
1057 
1058 		/* Clear status  */
1059 		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1060 		write_SSSR_CS(drv_data, drv_data->clear_sr);
1061 	}
1062 
1063 	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1064 	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1065 	if (!pxa25x_ssp_comp(drv_data))
1066 		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1067 			controller->max_speed_hz
1068 				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1069 			dma_mapped ? "DMA" : "PIO");
1070 	else
1071 		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1072 			controller->max_speed_hz / 2
1073 				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1074 			dma_mapped ? "DMA" : "PIO");
1075 
1076 	if (is_lpss_ssp(drv_data)) {
1077 		if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1078 		    != chip->lpss_rx_threshold)
1079 			pxa2xx_spi_write(drv_data, SSIRF,
1080 					 chip->lpss_rx_threshold);
1081 		if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1082 		    != chip->lpss_tx_threshold)
1083 			pxa2xx_spi_write(drv_data, SSITF,
1084 					 chip->lpss_tx_threshold);
1085 	}
1086 
1087 	if (is_quark_x1000_ssp(drv_data) &&
1088 	    (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1089 		pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1090 
1091 	/* see if we need to reload the config registers */
1092 	if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1093 	    || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1094 	    != (cr1 & change_mask)) {
1095 		/* stop the SSP, and update the other bits */
1096 		if (drv_data->ssp_type != MMP2_SSP)
1097 			pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1098 		if (!pxa25x_ssp_comp(drv_data))
1099 			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1100 		/* first set CR1 without interrupt and service enables */
1101 		pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1102 		/* restart the SSP */
1103 		pxa2xx_spi_write(drv_data, SSCR0, cr0);
1104 
1105 	} else {
1106 		if (!pxa25x_ssp_comp(drv_data))
1107 			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1108 	}
1109 
1110 	if (drv_data->ssp_type == MMP2_SSP) {
1111 		u8 tx_level = (pxa2xx_spi_read(drv_data, SSSR)
1112 					& SSSR_TFL_MASK) >> 8;
1113 
1114 		if (tx_level) {
1115 			/* On MMP2, flipping SSE doesn't to empty TXFIFO. */
1116 			dev_warn(&spi->dev, "%d bytes of garbage in TXFIFO!\n",
1117 								tx_level);
1118 			if (tx_level > transfer->len)
1119 				tx_level = transfer->len;
1120 			drv_data->tx += tx_level;
1121 		}
1122 	}
1123 
1124 	if (spi_controller_is_slave(controller)) {
1125 		while (drv_data->write(drv_data))
1126 			;
1127 		if (drv_data->gpiod_ready) {
1128 			gpiod_set_value(drv_data->gpiod_ready, 1);
1129 			udelay(1);
1130 			gpiod_set_value(drv_data->gpiod_ready, 0);
1131 		}
1132 	}
1133 
1134 	/*
1135 	 * Release the data by enabling service requests and interrupts,
1136 	 * without changing any mode bits
1137 	 */
1138 	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1139 
1140 	return 1;
1141 }
1142 
1143 static int pxa2xx_spi_slave_abort(struct spi_controller *controller)
1144 {
1145 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1146 
1147 	/* Stop and reset SSP */
1148 	write_SSSR_CS(drv_data, drv_data->clear_sr);
1149 	reset_sccr1(drv_data);
1150 	if (!pxa25x_ssp_comp(drv_data))
1151 		pxa2xx_spi_write(drv_data, SSTO, 0);
1152 	pxa2xx_spi_flush(drv_data);
1153 	pxa2xx_spi_off(drv_data);
1154 
1155 	dev_dbg(&drv_data->pdev->dev, "transfer aborted\n");
1156 
1157 	drv_data->controller->cur_msg->status = -EINTR;
1158 	spi_finalize_current_transfer(drv_data->controller);
1159 
1160 	return 0;
1161 }
1162 
1163 static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1164 				 struct spi_message *msg)
1165 {
1166 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1167 
1168 	/* Disable the SSP */
1169 	pxa2xx_spi_off(drv_data);
1170 	/* Clear and disable interrupts and service requests */
1171 	write_SSSR_CS(drv_data, drv_data->clear_sr);
1172 	pxa2xx_spi_write(drv_data, SSCR1,
1173 			 pxa2xx_spi_read(drv_data, SSCR1)
1174 			 & ~(drv_data->int_cr1 | drv_data->dma_cr1));
1175 	if (!pxa25x_ssp_comp(drv_data))
1176 		pxa2xx_spi_write(drv_data, SSTO, 0);
1177 
1178 	/*
1179 	 * Stop the DMA if running. Note DMA callback handler may have unset
1180 	 * the dma_running already, which is fine as stopping is not needed
1181 	 * then but we shouldn't rely this flag for anything else than
1182 	 * stopping. For instance to differentiate between PIO and DMA
1183 	 * transfers.
1184 	 */
1185 	if (atomic_read(&drv_data->dma_running))
1186 		pxa2xx_spi_dma_stop(drv_data);
1187 }
1188 
1189 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1190 {
1191 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1192 
1193 	/* Disable the SSP now */
1194 	pxa2xx_spi_off(drv_data);
1195 
1196 	return 0;
1197 }
1198 
1199 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1200 		    struct pxa2xx_spi_chip *chip_info)
1201 {
1202 	struct driver_data *drv_data =
1203 		spi_controller_get_devdata(spi->controller);
1204 	struct gpio_desc *gpiod;
1205 	int err = 0;
1206 
1207 	if (chip == NULL)
1208 		return 0;
1209 
1210 	if (drv_data->cs_gpiods) {
1211 		gpiod = drv_data->cs_gpiods[spi->chip_select];
1212 		if (gpiod) {
1213 			chip->gpiod_cs = gpiod;
1214 			chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1215 			gpiod_set_value(gpiod, chip->gpio_cs_inverted);
1216 		}
1217 
1218 		return 0;
1219 	}
1220 
1221 	if (chip_info == NULL)
1222 		return 0;
1223 
1224 	/* NOTE: setup() can be called multiple times, possibly with
1225 	 * different chip_info, release previously requested GPIO
1226 	 */
1227 	if (chip->gpiod_cs) {
1228 		gpiod_put(chip->gpiod_cs);
1229 		chip->gpiod_cs = NULL;
1230 	}
1231 
1232 	/* If (*cs_control) is provided, ignore GPIO chip select */
1233 	if (chip_info->cs_control) {
1234 		chip->cs_control = chip_info->cs_control;
1235 		return 0;
1236 	}
1237 
1238 	if (gpio_is_valid(chip_info->gpio_cs)) {
1239 		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1240 		if (err) {
1241 			dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1242 				chip_info->gpio_cs);
1243 			return err;
1244 		}
1245 
1246 		gpiod = gpio_to_desc(chip_info->gpio_cs);
1247 		chip->gpiod_cs = gpiod;
1248 		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1249 
1250 		err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted);
1251 	}
1252 
1253 	return err;
1254 }
1255 
1256 static int setup(struct spi_device *spi)
1257 {
1258 	struct pxa2xx_spi_chip *chip_info;
1259 	struct chip_data *chip;
1260 	const struct lpss_config *config;
1261 	struct driver_data *drv_data =
1262 		spi_controller_get_devdata(spi->controller);
1263 	uint tx_thres, tx_hi_thres, rx_thres;
1264 
1265 	switch (drv_data->ssp_type) {
1266 	case QUARK_X1000_SSP:
1267 		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1268 		tx_hi_thres = 0;
1269 		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1270 		break;
1271 	case CE4100_SSP:
1272 		tx_thres = TX_THRESH_CE4100_DFLT;
1273 		tx_hi_thres = 0;
1274 		rx_thres = RX_THRESH_CE4100_DFLT;
1275 		break;
1276 	case LPSS_LPT_SSP:
1277 	case LPSS_BYT_SSP:
1278 	case LPSS_BSW_SSP:
1279 	case LPSS_SPT_SSP:
1280 	case LPSS_BXT_SSP:
1281 	case LPSS_CNL_SSP:
1282 		config = lpss_get_config(drv_data);
1283 		tx_thres = config->tx_threshold_lo;
1284 		tx_hi_thres = config->tx_threshold_hi;
1285 		rx_thres = config->rx_threshold;
1286 		break;
1287 	default:
1288 		tx_hi_thres = 0;
1289 		if (spi_controller_is_slave(drv_data->controller)) {
1290 			tx_thres = 1;
1291 			rx_thres = 2;
1292 		} else {
1293 			tx_thres = TX_THRESH_DFLT;
1294 			rx_thres = RX_THRESH_DFLT;
1295 		}
1296 		break;
1297 	}
1298 
1299 	/* Only alloc on first setup */
1300 	chip = spi_get_ctldata(spi);
1301 	if (!chip) {
1302 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1303 		if (!chip)
1304 			return -ENOMEM;
1305 
1306 		if (drv_data->ssp_type == CE4100_SSP) {
1307 			if (spi->chip_select > 4) {
1308 				dev_err(&spi->dev,
1309 					"failed setup: cs number must not be > 4.\n");
1310 				kfree(chip);
1311 				return -EINVAL;
1312 			}
1313 
1314 			chip->frm = spi->chip_select;
1315 		}
1316 		chip->enable_dma = drv_data->controller_info->enable_dma;
1317 		chip->timeout = TIMOUT_DFLT;
1318 	}
1319 
1320 	/* protocol drivers may change the chip settings, so...
1321 	 * if chip_info exists, use it */
1322 	chip_info = spi->controller_data;
1323 
1324 	/* chip_info isn't always needed */
1325 	chip->cr1 = 0;
1326 	if (chip_info) {
1327 		if (chip_info->timeout)
1328 			chip->timeout = chip_info->timeout;
1329 		if (chip_info->tx_threshold)
1330 			tx_thres = chip_info->tx_threshold;
1331 		if (chip_info->tx_hi_threshold)
1332 			tx_hi_thres = chip_info->tx_hi_threshold;
1333 		if (chip_info->rx_threshold)
1334 			rx_thres = chip_info->rx_threshold;
1335 		chip->dma_threshold = 0;
1336 		if (chip_info->enable_loopback)
1337 			chip->cr1 = SSCR1_LBM;
1338 	}
1339 	if (spi_controller_is_slave(drv_data->controller)) {
1340 		chip->cr1 |= SSCR1_SCFR;
1341 		chip->cr1 |= SSCR1_SCLKDIR;
1342 		chip->cr1 |= SSCR1_SFRMDIR;
1343 		chip->cr1 |= SSCR1_SPH;
1344 	}
1345 
1346 	chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1347 	chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1348 				| SSITF_TxHiThresh(tx_hi_thres);
1349 
1350 	/* set dma burst and threshold outside of chip_info path so that if
1351 	 * chip_info goes away after setting chip->enable_dma, the
1352 	 * burst and threshold can still respond to changes in bits_per_word */
1353 	if (chip->enable_dma) {
1354 		/* set up legal burst and threshold for dma */
1355 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1356 						spi->bits_per_word,
1357 						&chip->dma_burst_size,
1358 						&chip->dma_threshold)) {
1359 			dev_warn(&spi->dev,
1360 				 "in setup: DMA burst size reduced to match bits_per_word\n");
1361 		}
1362 		dev_dbg(&spi->dev,
1363 			"in setup: DMA burst size set to %u\n",
1364 			chip->dma_burst_size);
1365 	}
1366 
1367 	switch (drv_data->ssp_type) {
1368 	case QUARK_X1000_SSP:
1369 		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1370 				   & QUARK_X1000_SSCR1_RFT)
1371 				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1372 				   & QUARK_X1000_SSCR1_TFT);
1373 		break;
1374 	case CE4100_SSP:
1375 		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1376 			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1377 		break;
1378 	default:
1379 		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1380 			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1381 		break;
1382 	}
1383 
1384 	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1385 	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1386 			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1387 
1388 	if (spi->mode & SPI_LOOP)
1389 		chip->cr1 |= SSCR1_LBM;
1390 
1391 	if (spi->bits_per_word <= 8) {
1392 		chip->n_bytes = 1;
1393 		chip->read = u8_reader;
1394 		chip->write = u8_writer;
1395 	} else if (spi->bits_per_word <= 16) {
1396 		chip->n_bytes = 2;
1397 		chip->read = u16_reader;
1398 		chip->write = u16_writer;
1399 	} else if (spi->bits_per_word <= 32) {
1400 		chip->n_bytes = 4;
1401 		chip->read = u32_reader;
1402 		chip->write = u32_writer;
1403 	}
1404 
1405 	spi_set_ctldata(spi, chip);
1406 
1407 	if (drv_data->ssp_type == CE4100_SSP)
1408 		return 0;
1409 
1410 	return setup_cs(spi, chip, chip_info);
1411 }
1412 
1413 static void cleanup(struct spi_device *spi)
1414 {
1415 	struct chip_data *chip = spi_get_ctldata(spi);
1416 	struct driver_data *drv_data =
1417 		spi_controller_get_devdata(spi->controller);
1418 
1419 	if (!chip)
1420 		return;
1421 
1422 	if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
1423 	    chip->gpiod_cs)
1424 		gpiod_put(chip->gpiod_cs);
1425 
1426 	kfree(chip);
1427 }
1428 
1429 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1430 	{ "INT33C0", LPSS_LPT_SSP },
1431 	{ "INT33C1", LPSS_LPT_SSP },
1432 	{ "INT3430", LPSS_LPT_SSP },
1433 	{ "INT3431", LPSS_LPT_SSP },
1434 	{ "80860F0E", LPSS_BYT_SSP },
1435 	{ "8086228E", LPSS_BSW_SSP },
1436 	{ },
1437 };
1438 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1439 
1440 /*
1441  * PCI IDs of compound devices that integrate both host controller and private
1442  * integrated DMA engine. Please note these are not used in module
1443  * autoloading and probing in this module but matching the LPSS SSP type.
1444  */
1445 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1446 	/* SPT-LP */
1447 	{ PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1448 	{ PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1449 	/* SPT-H */
1450 	{ PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1451 	{ PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1452 	/* KBL-H */
1453 	{ PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1454 	{ PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1455 	/* CML-V */
1456 	{ PCI_VDEVICE(INTEL, 0xa3a9), LPSS_SPT_SSP },
1457 	{ PCI_VDEVICE(INTEL, 0xa3aa), LPSS_SPT_SSP },
1458 	/* BXT A-Step */
1459 	{ PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1460 	{ PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1461 	{ PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1462 	/* BXT B-Step */
1463 	{ PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1464 	{ PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1465 	{ PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1466 	/* GLK */
1467 	{ PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1468 	{ PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1469 	{ PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1470 	/* ICL-LP */
1471 	{ PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP },
1472 	{ PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP },
1473 	{ PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP },
1474 	/* EHL */
1475 	{ PCI_VDEVICE(INTEL, 0x4b2a), LPSS_BXT_SSP },
1476 	{ PCI_VDEVICE(INTEL, 0x4b2b), LPSS_BXT_SSP },
1477 	{ PCI_VDEVICE(INTEL, 0x4b37), LPSS_BXT_SSP },
1478 	/* JSL */
1479 	{ PCI_VDEVICE(INTEL, 0x4daa), LPSS_CNL_SSP },
1480 	{ PCI_VDEVICE(INTEL, 0x4dab), LPSS_CNL_SSP },
1481 	{ PCI_VDEVICE(INTEL, 0x4dfb), LPSS_CNL_SSP },
1482 	/* APL */
1483 	{ PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1484 	{ PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1485 	{ PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1486 	/* CNL-LP */
1487 	{ PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1488 	{ PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1489 	{ PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1490 	/* CNL-H */
1491 	{ PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1492 	{ PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1493 	{ PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1494 	/* CML-LP */
1495 	{ PCI_VDEVICE(INTEL, 0x02aa), LPSS_CNL_SSP },
1496 	{ PCI_VDEVICE(INTEL, 0x02ab), LPSS_CNL_SSP },
1497 	{ PCI_VDEVICE(INTEL, 0x02fb), LPSS_CNL_SSP },
1498 	/* CML-H */
1499 	{ PCI_VDEVICE(INTEL, 0x06aa), LPSS_CNL_SSP },
1500 	{ PCI_VDEVICE(INTEL, 0x06ab), LPSS_CNL_SSP },
1501 	{ PCI_VDEVICE(INTEL, 0x06fb), LPSS_CNL_SSP },
1502 	/* TGL-LP */
1503 	{ PCI_VDEVICE(INTEL, 0xa0aa), LPSS_CNL_SSP },
1504 	{ PCI_VDEVICE(INTEL, 0xa0ab), LPSS_CNL_SSP },
1505 	{ PCI_VDEVICE(INTEL, 0xa0de), LPSS_CNL_SSP },
1506 	{ PCI_VDEVICE(INTEL, 0xa0df), LPSS_CNL_SSP },
1507 	{ PCI_VDEVICE(INTEL, 0xa0fb), LPSS_CNL_SSP },
1508 	{ PCI_VDEVICE(INTEL, 0xa0fd), LPSS_CNL_SSP },
1509 	{ PCI_VDEVICE(INTEL, 0xa0fe), LPSS_CNL_SSP },
1510 	{ },
1511 };
1512 
1513 static const struct of_device_id pxa2xx_spi_of_match[] = {
1514 	{ .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1515 	{},
1516 };
1517 MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1518 
1519 #ifdef CONFIG_ACPI
1520 
1521 static int pxa2xx_spi_get_port_id(struct device *dev)
1522 {
1523 	struct acpi_device *adev;
1524 	unsigned int devid;
1525 	int port_id = -1;
1526 
1527 	adev = ACPI_COMPANION(dev);
1528 	if (adev && adev->pnp.unique_id &&
1529 	    !kstrtouint(adev->pnp.unique_id, 0, &devid))
1530 		port_id = devid;
1531 	return port_id;
1532 }
1533 
1534 #else /* !CONFIG_ACPI */
1535 
1536 static int pxa2xx_spi_get_port_id(struct device *dev)
1537 {
1538 	return -1;
1539 }
1540 
1541 #endif /* CONFIG_ACPI */
1542 
1543 
1544 #ifdef CONFIG_PCI
1545 
1546 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1547 {
1548 	return param == chan->device->dev;
1549 }
1550 
1551 #endif /* CONFIG_PCI */
1552 
1553 static struct pxa2xx_spi_controller *
1554 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1555 {
1556 	struct pxa2xx_spi_controller *pdata;
1557 	struct ssp_device *ssp;
1558 	struct resource *res;
1559 	struct device *parent = pdev->dev.parent;
1560 	struct pci_dev *pcidev = dev_is_pci(parent) ? to_pci_dev(parent) : NULL;
1561 	const struct pci_device_id *pcidev_id = NULL;
1562 	enum pxa_ssp_type type;
1563 	const void *match;
1564 
1565 	if (pcidev)
1566 		pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match, pcidev);
1567 
1568 	match = device_get_match_data(&pdev->dev);
1569 	if (match)
1570 		type = (enum pxa_ssp_type)match;
1571 	else if (pcidev_id)
1572 		type = (enum pxa_ssp_type)pcidev_id->driver_data;
1573 	else
1574 		return NULL;
1575 
1576 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1577 	if (!pdata)
1578 		return NULL;
1579 
1580 	ssp = &pdata->ssp;
1581 
1582 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1583 	ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1584 	if (IS_ERR(ssp->mmio_base))
1585 		return NULL;
1586 
1587 	ssp->phys_base = res->start;
1588 
1589 #ifdef CONFIG_PCI
1590 	if (pcidev_id) {
1591 		pdata->tx_param = parent;
1592 		pdata->rx_param = parent;
1593 		pdata->dma_filter = pxa2xx_spi_idma_filter;
1594 	}
1595 #endif
1596 
1597 	ssp->clk = devm_clk_get(&pdev->dev, NULL);
1598 	if (IS_ERR(ssp->clk))
1599 		return NULL;
1600 
1601 	ssp->irq = platform_get_irq(pdev, 0);
1602 	if (ssp->irq < 0)
1603 		return NULL;
1604 
1605 	ssp->type = type;
1606 	ssp->dev = &pdev->dev;
1607 	ssp->port_id = pxa2xx_spi_get_port_id(&pdev->dev);
1608 
1609 	pdata->is_slave = device_property_read_bool(&pdev->dev, "spi-slave");
1610 	pdata->num_chipselect = 1;
1611 	pdata->enable_dma = true;
1612 	pdata->dma_burst_size = 1;
1613 
1614 	return pdata;
1615 }
1616 
1617 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1618 				      unsigned int cs)
1619 {
1620 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1621 
1622 	if (has_acpi_companion(&drv_data->pdev->dev)) {
1623 		switch (drv_data->ssp_type) {
1624 		/*
1625 		 * For Atoms the ACPI DeviceSelection used by the Windows
1626 		 * driver starts from 1 instead of 0 so translate it here
1627 		 * to match what Linux expects.
1628 		 */
1629 		case LPSS_BYT_SSP:
1630 		case LPSS_BSW_SSP:
1631 			return cs - 1;
1632 
1633 		default:
1634 			break;
1635 		}
1636 	}
1637 
1638 	return cs;
1639 }
1640 
1641 static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi)
1642 {
1643 	return MAX_DMA_LEN;
1644 }
1645 
1646 static int pxa2xx_spi_probe(struct platform_device *pdev)
1647 {
1648 	struct device *dev = &pdev->dev;
1649 	struct pxa2xx_spi_controller *platform_info;
1650 	struct spi_controller *controller;
1651 	struct driver_data *drv_data;
1652 	struct ssp_device *ssp;
1653 	const struct lpss_config *config;
1654 	int status, count;
1655 	u32 tmp;
1656 
1657 	platform_info = dev_get_platdata(dev);
1658 	if (!platform_info) {
1659 		platform_info = pxa2xx_spi_init_pdata(pdev);
1660 		if (!platform_info) {
1661 			dev_err(&pdev->dev, "missing platform data\n");
1662 			return -ENODEV;
1663 		}
1664 	}
1665 
1666 	ssp = pxa_ssp_request(pdev->id, pdev->name);
1667 	if (!ssp)
1668 		ssp = &platform_info->ssp;
1669 
1670 	if (!ssp->mmio_base) {
1671 		dev_err(&pdev->dev, "failed to get ssp\n");
1672 		return -ENODEV;
1673 	}
1674 
1675 	if (platform_info->is_slave)
1676 		controller = spi_alloc_slave(dev, sizeof(struct driver_data));
1677 	else
1678 		controller = spi_alloc_master(dev, sizeof(struct driver_data));
1679 
1680 	if (!controller) {
1681 		dev_err(&pdev->dev, "cannot alloc spi_controller\n");
1682 		pxa_ssp_free(ssp);
1683 		return -ENOMEM;
1684 	}
1685 	drv_data = spi_controller_get_devdata(controller);
1686 	drv_data->controller = controller;
1687 	drv_data->controller_info = platform_info;
1688 	drv_data->pdev = pdev;
1689 	drv_data->ssp = ssp;
1690 
1691 	controller->dev.of_node = pdev->dev.of_node;
1692 	/* the spi->mode bits understood by this driver: */
1693 	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1694 
1695 	controller->bus_num = ssp->port_id;
1696 	controller->dma_alignment = DMA_ALIGNMENT;
1697 	controller->cleanup = cleanup;
1698 	controller->setup = setup;
1699 	controller->set_cs = pxa2xx_spi_set_cs;
1700 	controller->transfer_one = pxa2xx_spi_transfer_one;
1701 	controller->slave_abort = pxa2xx_spi_slave_abort;
1702 	controller->handle_err = pxa2xx_spi_handle_err;
1703 	controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1704 	controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1705 	controller->auto_runtime_pm = true;
1706 	controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1707 
1708 	drv_data->ssp_type = ssp->type;
1709 
1710 	drv_data->ioaddr = ssp->mmio_base;
1711 	drv_data->ssdr_physical = ssp->phys_base + SSDR;
1712 	if (pxa25x_ssp_comp(drv_data)) {
1713 		switch (drv_data->ssp_type) {
1714 		case QUARK_X1000_SSP:
1715 			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1716 			break;
1717 		default:
1718 			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1719 			break;
1720 		}
1721 
1722 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1723 		drv_data->dma_cr1 = 0;
1724 		drv_data->clear_sr = SSSR_ROR;
1725 		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1726 	} else {
1727 		controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1728 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1729 		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1730 		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1731 		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1732 						| SSSR_ROR | SSSR_TUR;
1733 	}
1734 
1735 	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1736 			drv_data);
1737 	if (status < 0) {
1738 		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1739 		goto out_error_controller_alloc;
1740 	}
1741 
1742 	/* Setup DMA if requested */
1743 	if (platform_info->enable_dma) {
1744 		status = pxa2xx_spi_dma_setup(drv_data);
1745 		if (status) {
1746 			dev_warn(dev, "no DMA channels available, using PIO\n");
1747 			platform_info->enable_dma = false;
1748 		} else {
1749 			controller->can_dma = pxa2xx_spi_can_dma;
1750 			controller->max_dma_len = MAX_DMA_LEN;
1751 			controller->max_transfer_size =
1752 				pxa2xx_spi_max_dma_transfer_size;
1753 		}
1754 	}
1755 
1756 	/* Enable SOC clock */
1757 	status = clk_prepare_enable(ssp->clk);
1758 	if (status)
1759 		goto out_error_dma_irq_alloc;
1760 
1761 	controller->max_speed_hz = clk_get_rate(ssp->clk);
1762 	/*
1763 	 * Set minimum speed for all other platforms than Intel Quark which is
1764 	 * able do under 1 Hz transfers.
1765 	 */
1766 	if (!pxa25x_ssp_comp(drv_data))
1767 		controller->min_speed_hz =
1768 			DIV_ROUND_UP(controller->max_speed_hz, 4096);
1769 	else if (!is_quark_x1000_ssp(drv_data))
1770 		controller->min_speed_hz =
1771 			DIV_ROUND_UP(controller->max_speed_hz, 512);
1772 
1773 	/* Load default SSP configuration */
1774 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1775 	switch (drv_data->ssp_type) {
1776 	case QUARK_X1000_SSP:
1777 		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1778 		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1779 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1780 
1781 		/* using the Motorola SPI protocol and use 8 bit frame */
1782 		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1783 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1784 		break;
1785 	case CE4100_SSP:
1786 		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1787 		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1788 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1789 		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1790 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1791 		break;
1792 	default:
1793 
1794 		if (spi_controller_is_slave(controller)) {
1795 			tmp = SSCR1_SCFR |
1796 			      SSCR1_SCLKDIR |
1797 			      SSCR1_SFRMDIR |
1798 			      SSCR1_RxTresh(2) |
1799 			      SSCR1_TxTresh(1) |
1800 			      SSCR1_SPH;
1801 		} else {
1802 			tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1803 			      SSCR1_TxTresh(TX_THRESH_DFLT);
1804 		}
1805 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1806 		tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1807 		if (!spi_controller_is_slave(controller))
1808 			tmp |= SSCR0_SCR(2);
1809 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1810 		break;
1811 	}
1812 
1813 	if (!pxa25x_ssp_comp(drv_data))
1814 		pxa2xx_spi_write(drv_data, SSTO, 0);
1815 
1816 	if (!is_quark_x1000_ssp(drv_data))
1817 		pxa2xx_spi_write(drv_data, SSPSP, 0);
1818 
1819 	if (is_lpss_ssp(drv_data)) {
1820 		lpss_ssp_setup(drv_data);
1821 		config = lpss_get_config(drv_data);
1822 		if (config->reg_capabilities >= 0) {
1823 			tmp = __lpss_ssp_read_priv(drv_data,
1824 						   config->reg_capabilities);
1825 			tmp &= LPSS_CAPS_CS_EN_MASK;
1826 			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1827 			platform_info->num_chipselect = ffz(tmp);
1828 		} else if (config->cs_num) {
1829 			platform_info->num_chipselect = config->cs_num;
1830 		}
1831 	}
1832 	controller->num_chipselect = platform_info->num_chipselect;
1833 
1834 	count = gpiod_count(&pdev->dev, "cs");
1835 	if (count > 0) {
1836 		int i;
1837 
1838 		controller->num_chipselect = max_t(int, count,
1839 			controller->num_chipselect);
1840 
1841 		drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
1842 			controller->num_chipselect, sizeof(struct gpio_desc *),
1843 			GFP_KERNEL);
1844 		if (!drv_data->cs_gpiods) {
1845 			status = -ENOMEM;
1846 			goto out_error_clock_enabled;
1847 		}
1848 
1849 		for (i = 0; i < controller->num_chipselect; i++) {
1850 			struct gpio_desc *gpiod;
1851 
1852 			gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1853 			if (IS_ERR(gpiod)) {
1854 				/* Means use native chip select */
1855 				if (PTR_ERR(gpiod) == -ENOENT)
1856 					continue;
1857 
1858 				status = PTR_ERR(gpiod);
1859 				goto out_error_clock_enabled;
1860 			} else {
1861 				drv_data->cs_gpiods[i] = gpiod;
1862 			}
1863 		}
1864 	}
1865 
1866 	if (platform_info->is_slave) {
1867 		drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1868 						"ready", GPIOD_OUT_LOW);
1869 		if (IS_ERR(drv_data->gpiod_ready)) {
1870 			status = PTR_ERR(drv_data->gpiod_ready);
1871 			goto out_error_clock_enabled;
1872 		}
1873 	}
1874 
1875 	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1876 	pm_runtime_use_autosuspend(&pdev->dev);
1877 	pm_runtime_set_active(&pdev->dev);
1878 	pm_runtime_enable(&pdev->dev);
1879 
1880 	/* Register with the SPI framework */
1881 	platform_set_drvdata(pdev, drv_data);
1882 	status = devm_spi_register_controller(&pdev->dev, controller);
1883 	if (status != 0) {
1884 		dev_err(&pdev->dev, "problem registering spi controller\n");
1885 		goto out_error_pm_runtime_enabled;
1886 	}
1887 
1888 	return status;
1889 
1890 out_error_pm_runtime_enabled:
1891 	pm_runtime_put_noidle(&pdev->dev);
1892 	pm_runtime_disable(&pdev->dev);
1893 
1894 out_error_clock_enabled:
1895 	clk_disable_unprepare(ssp->clk);
1896 
1897 out_error_dma_irq_alloc:
1898 	pxa2xx_spi_dma_release(drv_data);
1899 	free_irq(ssp->irq, drv_data);
1900 
1901 out_error_controller_alloc:
1902 	spi_controller_put(controller);
1903 	pxa_ssp_free(ssp);
1904 	return status;
1905 }
1906 
1907 static int pxa2xx_spi_remove(struct platform_device *pdev)
1908 {
1909 	struct driver_data *drv_data = platform_get_drvdata(pdev);
1910 	struct ssp_device *ssp;
1911 
1912 	if (!drv_data)
1913 		return 0;
1914 	ssp = drv_data->ssp;
1915 
1916 	pm_runtime_get_sync(&pdev->dev);
1917 
1918 	/* Disable the SSP at the peripheral and SOC level */
1919 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1920 	clk_disable_unprepare(ssp->clk);
1921 
1922 	/* Release DMA */
1923 	if (drv_data->controller_info->enable_dma)
1924 		pxa2xx_spi_dma_release(drv_data);
1925 
1926 	pm_runtime_put_noidle(&pdev->dev);
1927 	pm_runtime_disable(&pdev->dev);
1928 
1929 	/* Release IRQ */
1930 	free_irq(ssp->irq, drv_data);
1931 
1932 	/* Release SSP */
1933 	pxa_ssp_free(ssp);
1934 
1935 	return 0;
1936 }
1937 
1938 #ifdef CONFIG_PM_SLEEP
1939 static int pxa2xx_spi_suspend(struct device *dev)
1940 {
1941 	struct driver_data *drv_data = dev_get_drvdata(dev);
1942 	struct ssp_device *ssp = drv_data->ssp;
1943 	int status;
1944 
1945 	status = spi_controller_suspend(drv_data->controller);
1946 	if (status != 0)
1947 		return status;
1948 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1949 
1950 	if (!pm_runtime_suspended(dev))
1951 		clk_disable_unprepare(ssp->clk);
1952 
1953 	return 0;
1954 }
1955 
1956 static int pxa2xx_spi_resume(struct device *dev)
1957 {
1958 	struct driver_data *drv_data = dev_get_drvdata(dev);
1959 	struct ssp_device *ssp = drv_data->ssp;
1960 	int status;
1961 
1962 	/* Enable the SSP clock */
1963 	if (!pm_runtime_suspended(dev)) {
1964 		status = clk_prepare_enable(ssp->clk);
1965 		if (status)
1966 			return status;
1967 	}
1968 
1969 	/* Start the queue running */
1970 	return spi_controller_resume(drv_data->controller);
1971 }
1972 #endif
1973 
1974 #ifdef CONFIG_PM
1975 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1976 {
1977 	struct driver_data *drv_data = dev_get_drvdata(dev);
1978 
1979 	clk_disable_unprepare(drv_data->ssp->clk);
1980 	return 0;
1981 }
1982 
1983 static int pxa2xx_spi_runtime_resume(struct device *dev)
1984 {
1985 	struct driver_data *drv_data = dev_get_drvdata(dev);
1986 	int status;
1987 
1988 	status = clk_prepare_enable(drv_data->ssp->clk);
1989 	return status;
1990 }
1991 #endif
1992 
1993 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1994 	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1995 	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1996 			   pxa2xx_spi_runtime_resume, NULL)
1997 };
1998 
1999 static struct platform_driver driver = {
2000 	.driver = {
2001 		.name	= "pxa2xx-spi",
2002 		.pm	= &pxa2xx_spi_pm_ops,
2003 		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
2004 		.of_match_table = of_match_ptr(pxa2xx_spi_of_match),
2005 	},
2006 	.probe = pxa2xx_spi_probe,
2007 	.remove = pxa2xx_spi_remove,
2008 };
2009 
2010 static int __init pxa2xx_spi_init(void)
2011 {
2012 	return platform_driver_register(&driver);
2013 }
2014 subsys_initcall(pxa2xx_spi_init);
2015 
2016 static void __exit pxa2xx_spi_exit(void)
2017 {
2018 	platform_driver_unregister(&driver);
2019 }
2020 module_exit(pxa2xx_spi_exit);
2021 
2022 MODULE_SOFTDEP("pre: dw_dmac");
2023