xref: /openbmc/linux/drivers/spi/spi-pxa2xx.c (revision b0e55fef624e511e060fa05e4ca96cae6d902f04)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4  * Copyright (C) 2013, Intel Corporation
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/bitops.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/err.h>
13 #include <linux/errno.h>
14 #include <linux/gpio/consumer.h>
15 #include <linux/gpio.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/ioport.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/mod_devicetable.h>
22 #include <linux/of.h>
23 #include <linux/pci.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/property.h>
27 #include <linux/slab.h>
28 #include <linux/spi/pxa2xx_spi.h>
29 #include <linux/spi/spi.h>
30 
31 #include "spi-pxa2xx.h"
32 
33 MODULE_AUTHOR("Stephen Street");
34 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
35 MODULE_LICENSE("GPL");
36 MODULE_ALIAS("platform:pxa2xx-spi");
37 
38 #define TIMOUT_DFLT		1000
39 
40 /*
41  * for testing SSCR1 changes that require SSP restart, basically
42  * everything except the service and interrupt enables, the pxa270 developer
43  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
44  * list, but the PXA255 dev man says all bits without really meaning the
45  * service and interrupt enables
46  */
47 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
48 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
49 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
50 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
51 				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
52 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
53 
54 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
55 				| QUARK_X1000_SSCR1_EFWR	\
56 				| QUARK_X1000_SSCR1_RFT		\
57 				| QUARK_X1000_SSCR1_TFT		\
58 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
59 
60 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
61 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
62 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
63 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
64 				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
65 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
66 
67 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
68 #define LPSS_CS_CONTROL_SW_MODE			BIT(0)
69 #define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
70 #define LPSS_CAPS_CS_EN_SHIFT			9
71 #define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
72 
73 struct lpss_config {
74 	/* LPSS offset from drv_data->ioaddr */
75 	unsigned offset;
76 	/* Register offsets from drv_data->lpss_base or -1 */
77 	int reg_general;
78 	int reg_ssp;
79 	int reg_cs_ctrl;
80 	int reg_capabilities;
81 	/* FIFO thresholds */
82 	u32 rx_threshold;
83 	u32 tx_threshold_lo;
84 	u32 tx_threshold_hi;
85 	/* Chip select control */
86 	unsigned cs_sel_shift;
87 	unsigned cs_sel_mask;
88 	unsigned cs_num;
89 };
90 
91 /* Keep these sorted with enum pxa_ssp_type */
92 static const struct lpss_config lpss_platforms[] = {
93 	{	/* LPSS_LPT_SSP */
94 		.offset = 0x800,
95 		.reg_general = 0x08,
96 		.reg_ssp = 0x0c,
97 		.reg_cs_ctrl = 0x18,
98 		.reg_capabilities = -1,
99 		.rx_threshold = 64,
100 		.tx_threshold_lo = 160,
101 		.tx_threshold_hi = 224,
102 	},
103 	{	/* LPSS_BYT_SSP */
104 		.offset = 0x400,
105 		.reg_general = 0x08,
106 		.reg_ssp = 0x0c,
107 		.reg_cs_ctrl = 0x18,
108 		.reg_capabilities = -1,
109 		.rx_threshold = 64,
110 		.tx_threshold_lo = 160,
111 		.tx_threshold_hi = 224,
112 	},
113 	{	/* LPSS_BSW_SSP */
114 		.offset = 0x400,
115 		.reg_general = 0x08,
116 		.reg_ssp = 0x0c,
117 		.reg_cs_ctrl = 0x18,
118 		.reg_capabilities = -1,
119 		.rx_threshold = 64,
120 		.tx_threshold_lo = 160,
121 		.tx_threshold_hi = 224,
122 		.cs_sel_shift = 2,
123 		.cs_sel_mask = 1 << 2,
124 		.cs_num = 2,
125 	},
126 	{	/* LPSS_SPT_SSP */
127 		.offset = 0x200,
128 		.reg_general = -1,
129 		.reg_ssp = 0x20,
130 		.reg_cs_ctrl = 0x24,
131 		.reg_capabilities = -1,
132 		.rx_threshold = 1,
133 		.tx_threshold_lo = 32,
134 		.tx_threshold_hi = 56,
135 	},
136 	{	/* LPSS_BXT_SSP */
137 		.offset = 0x200,
138 		.reg_general = -1,
139 		.reg_ssp = 0x20,
140 		.reg_cs_ctrl = 0x24,
141 		.reg_capabilities = 0xfc,
142 		.rx_threshold = 1,
143 		.tx_threshold_lo = 16,
144 		.tx_threshold_hi = 48,
145 		.cs_sel_shift = 8,
146 		.cs_sel_mask = 3 << 8,
147 	},
148 	{	/* LPSS_CNL_SSP */
149 		.offset = 0x200,
150 		.reg_general = -1,
151 		.reg_ssp = 0x20,
152 		.reg_cs_ctrl = 0x24,
153 		.reg_capabilities = 0xfc,
154 		.rx_threshold = 1,
155 		.tx_threshold_lo = 32,
156 		.tx_threshold_hi = 56,
157 		.cs_sel_shift = 8,
158 		.cs_sel_mask = 3 << 8,
159 	},
160 };
161 
162 static inline const struct lpss_config
163 *lpss_get_config(const struct driver_data *drv_data)
164 {
165 	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
166 }
167 
168 static bool is_lpss_ssp(const struct driver_data *drv_data)
169 {
170 	switch (drv_data->ssp_type) {
171 	case LPSS_LPT_SSP:
172 	case LPSS_BYT_SSP:
173 	case LPSS_BSW_SSP:
174 	case LPSS_SPT_SSP:
175 	case LPSS_BXT_SSP:
176 	case LPSS_CNL_SSP:
177 		return true;
178 	default:
179 		return false;
180 	}
181 }
182 
183 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
184 {
185 	return drv_data->ssp_type == QUARK_X1000_SSP;
186 }
187 
188 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
189 {
190 	switch (drv_data->ssp_type) {
191 	case QUARK_X1000_SSP:
192 		return QUARK_X1000_SSCR1_CHANGE_MASK;
193 	case CE4100_SSP:
194 		return CE4100_SSCR1_CHANGE_MASK;
195 	default:
196 		return SSCR1_CHANGE_MASK;
197 	}
198 }
199 
200 static u32
201 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
202 {
203 	switch (drv_data->ssp_type) {
204 	case QUARK_X1000_SSP:
205 		return RX_THRESH_QUARK_X1000_DFLT;
206 	case CE4100_SSP:
207 		return RX_THRESH_CE4100_DFLT;
208 	default:
209 		return RX_THRESH_DFLT;
210 	}
211 }
212 
213 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
214 {
215 	u32 mask;
216 
217 	switch (drv_data->ssp_type) {
218 	case QUARK_X1000_SSP:
219 		mask = QUARK_X1000_SSSR_TFL_MASK;
220 		break;
221 	case CE4100_SSP:
222 		mask = CE4100_SSSR_TFL_MASK;
223 		break;
224 	default:
225 		mask = SSSR_TFL_MASK;
226 		break;
227 	}
228 
229 	return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
230 }
231 
232 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
233 				     u32 *sccr1_reg)
234 {
235 	u32 mask;
236 
237 	switch (drv_data->ssp_type) {
238 	case QUARK_X1000_SSP:
239 		mask = QUARK_X1000_SSCR1_RFT;
240 		break;
241 	case CE4100_SSP:
242 		mask = CE4100_SSCR1_RFT;
243 		break;
244 	default:
245 		mask = SSCR1_RFT;
246 		break;
247 	}
248 	*sccr1_reg &= ~mask;
249 }
250 
251 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
252 				   u32 *sccr1_reg, u32 threshold)
253 {
254 	switch (drv_data->ssp_type) {
255 	case QUARK_X1000_SSP:
256 		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
257 		break;
258 	case CE4100_SSP:
259 		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
260 		break;
261 	default:
262 		*sccr1_reg |= SSCR1_RxTresh(threshold);
263 		break;
264 	}
265 }
266 
267 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
268 				  u32 clk_div, u8 bits)
269 {
270 	switch (drv_data->ssp_type) {
271 	case QUARK_X1000_SSP:
272 		return clk_div
273 			| QUARK_X1000_SSCR0_Motorola
274 			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
275 			| SSCR0_SSE;
276 	default:
277 		return clk_div
278 			| SSCR0_Motorola
279 			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
280 			| SSCR0_SSE
281 			| (bits > 16 ? SSCR0_EDSS : 0);
282 	}
283 }
284 
285 /*
286  * Read and write LPSS SSP private registers. Caller must first check that
287  * is_lpss_ssp() returns true before these can be called.
288  */
289 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
290 {
291 	WARN_ON(!drv_data->lpss_base);
292 	return readl(drv_data->lpss_base + offset);
293 }
294 
295 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
296 				  unsigned offset, u32 value)
297 {
298 	WARN_ON(!drv_data->lpss_base);
299 	writel(value, drv_data->lpss_base + offset);
300 }
301 
302 /*
303  * lpss_ssp_setup - perform LPSS SSP specific setup
304  * @drv_data: pointer to the driver private data
305  *
306  * Perform LPSS SSP specific setup. This function must be called first if
307  * one is going to use LPSS SSP private registers.
308  */
309 static void lpss_ssp_setup(struct driver_data *drv_data)
310 {
311 	const struct lpss_config *config;
312 	u32 value;
313 
314 	config = lpss_get_config(drv_data);
315 	drv_data->lpss_base = drv_data->ioaddr + config->offset;
316 
317 	/* Enable software chip select control */
318 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
319 	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
320 	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
321 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
322 
323 	/* Enable multiblock DMA transfers */
324 	if (drv_data->controller_info->enable_dma) {
325 		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
326 
327 		if (config->reg_general >= 0) {
328 			value = __lpss_ssp_read_priv(drv_data,
329 						     config->reg_general);
330 			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
331 			__lpss_ssp_write_priv(drv_data,
332 					      config->reg_general, value);
333 		}
334 	}
335 }
336 
337 static void lpss_ssp_select_cs(struct spi_device *spi,
338 			       const struct lpss_config *config)
339 {
340 	struct driver_data *drv_data =
341 		spi_controller_get_devdata(spi->controller);
342 	u32 value, cs;
343 
344 	if (!config->cs_sel_mask)
345 		return;
346 
347 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
348 
349 	cs = spi->chip_select;
350 	cs <<= config->cs_sel_shift;
351 	if (cs != (value & config->cs_sel_mask)) {
352 		/*
353 		 * When switching another chip select output active the
354 		 * output must be selected first and wait 2 ssp_clk cycles
355 		 * before changing state to active. Otherwise a short
356 		 * glitch will occur on the previous chip select since
357 		 * output select is latched but state control is not.
358 		 */
359 		value &= ~config->cs_sel_mask;
360 		value |= cs;
361 		__lpss_ssp_write_priv(drv_data,
362 				      config->reg_cs_ctrl, value);
363 		ndelay(1000000000 /
364 		       (drv_data->controller->max_speed_hz / 2));
365 	}
366 }
367 
368 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
369 {
370 	struct driver_data *drv_data =
371 		spi_controller_get_devdata(spi->controller);
372 	const struct lpss_config *config;
373 	u32 value;
374 
375 	config = lpss_get_config(drv_data);
376 
377 	if (enable)
378 		lpss_ssp_select_cs(spi, config);
379 
380 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
381 	if (enable)
382 		value &= ~LPSS_CS_CONTROL_CS_HIGH;
383 	else
384 		value |= LPSS_CS_CONTROL_CS_HIGH;
385 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
386 }
387 
388 static void cs_assert(struct spi_device *spi)
389 {
390 	struct chip_data *chip = spi_get_ctldata(spi);
391 	struct driver_data *drv_data =
392 		spi_controller_get_devdata(spi->controller);
393 
394 	if (drv_data->ssp_type == CE4100_SSP) {
395 		pxa2xx_spi_write(drv_data, SSSR, chip->frm);
396 		return;
397 	}
398 
399 	if (chip->cs_control) {
400 		chip->cs_control(PXA2XX_CS_ASSERT);
401 		return;
402 	}
403 
404 	if (chip->gpiod_cs) {
405 		gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted);
406 		return;
407 	}
408 
409 	if (is_lpss_ssp(drv_data))
410 		lpss_ssp_cs_control(spi, true);
411 }
412 
413 static void cs_deassert(struct spi_device *spi)
414 {
415 	struct chip_data *chip = spi_get_ctldata(spi);
416 	struct driver_data *drv_data =
417 		spi_controller_get_devdata(spi->controller);
418 	unsigned long timeout;
419 
420 	if (drv_data->ssp_type == CE4100_SSP)
421 		return;
422 
423 	/* Wait until SSP becomes idle before deasserting the CS */
424 	timeout = jiffies + msecs_to_jiffies(10);
425 	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
426 	       !time_after(jiffies, timeout))
427 		cpu_relax();
428 
429 	if (chip->cs_control) {
430 		chip->cs_control(PXA2XX_CS_DEASSERT);
431 		return;
432 	}
433 
434 	if (chip->gpiod_cs) {
435 		gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted);
436 		return;
437 	}
438 
439 	if (is_lpss_ssp(drv_data))
440 		lpss_ssp_cs_control(spi, false);
441 }
442 
443 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
444 {
445 	if (level)
446 		cs_deassert(spi);
447 	else
448 		cs_assert(spi);
449 }
450 
451 int pxa2xx_spi_flush(struct driver_data *drv_data)
452 {
453 	unsigned long limit = loops_per_jiffy << 1;
454 
455 	do {
456 		while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
457 			pxa2xx_spi_read(drv_data, SSDR);
458 	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
459 	write_SSSR_CS(drv_data, SSSR_ROR);
460 
461 	return limit;
462 }
463 
464 static int null_writer(struct driver_data *drv_data)
465 {
466 	u8 n_bytes = drv_data->n_bytes;
467 
468 	if (pxa2xx_spi_txfifo_full(drv_data)
469 		|| (drv_data->tx == drv_data->tx_end))
470 		return 0;
471 
472 	pxa2xx_spi_write(drv_data, SSDR, 0);
473 	drv_data->tx += n_bytes;
474 
475 	return 1;
476 }
477 
478 static int null_reader(struct driver_data *drv_data)
479 {
480 	u8 n_bytes = drv_data->n_bytes;
481 
482 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
483 	       && (drv_data->rx < drv_data->rx_end)) {
484 		pxa2xx_spi_read(drv_data, SSDR);
485 		drv_data->rx += n_bytes;
486 	}
487 
488 	return drv_data->rx == drv_data->rx_end;
489 }
490 
491 static int u8_writer(struct driver_data *drv_data)
492 {
493 	if (pxa2xx_spi_txfifo_full(drv_data)
494 		|| (drv_data->tx == drv_data->tx_end))
495 		return 0;
496 
497 	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
498 	++drv_data->tx;
499 
500 	return 1;
501 }
502 
503 static int u8_reader(struct driver_data *drv_data)
504 {
505 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
506 	       && (drv_data->rx < drv_data->rx_end)) {
507 		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
508 		++drv_data->rx;
509 	}
510 
511 	return drv_data->rx == drv_data->rx_end;
512 }
513 
514 static int u16_writer(struct driver_data *drv_data)
515 {
516 	if (pxa2xx_spi_txfifo_full(drv_data)
517 		|| (drv_data->tx == drv_data->tx_end))
518 		return 0;
519 
520 	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
521 	drv_data->tx += 2;
522 
523 	return 1;
524 }
525 
526 static int u16_reader(struct driver_data *drv_data)
527 {
528 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
529 	       && (drv_data->rx < drv_data->rx_end)) {
530 		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
531 		drv_data->rx += 2;
532 	}
533 
534 	return drv_data->rx == drv_data->rx_end;
535 }
536 
537 static int u32_writer(struct driver_data *drv_data)
538 {
539 	if (pxa2xx_spi_txfifo_full(drv_data)
540 		|| (drv_data->tx == drv_data->tx_end))
541 		return 0;
542 
543 	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
544 	drv_data->tx += 4;
545 
546 	return 1;
547 }
548 
549 static int u32_reader(struct driver_data *drv_data)
550 {
551 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
552 	       && (drv_data->rx < drv_data->rx_end)) {
553 		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
554 		drv_data->rx += 4;
555 	}
556 
557 	return drv_data->rx == drv_data->rx_end;
558 }
559 
560 static void reset_sccr1(struct driver_data *drv_data)
561 {
562 	struct chip_data *chip =
563 		spi_get_ctldata(drv_data->controller->cur_msg->spi);
564 	u32 sccr1_reg;
565 
566 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
567 	switch (drv_data->ssp_type) {
568 	case QUARK_X1000_SSP:
569 		sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
570 		break;
571 	case CE4100_SSP:
572 		sccr1_reg &= ~CE4100_SSCR1_RFT;
573 		break;
574 	default:
575 		sccr1_reg &= ~SSCR1_RFT;
576 		break;
577 	}
578 	sccr1_reg |= chip->threshold;
579 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
580 }
581 
582 static void int_error_stop(struct driver_data *drv_data, const char* msg)
583 {
584 	/* Stop and reset SSP */
585 	write_SSSR_CS(drv_data, drv_data->clear_sr);
586 	reset_sccr1(drv_data);
587 	if (!pxa25x_ssp_comp(drv_data))
588 		pxa2xx_spi_write(drv_data, SSTO, 0);
589 	pxa2xx_spi_flush(drv_data);
590 	pxa2xx_spi_write(drv_data, SSCR0,
591 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
592 
593 	dev_err(&drv_data->pdev->dev, "%s\n", msg);
594 
595 	drv_data->controller->cur_msg->status = -EIO;
596 	spi_finalize_current_transfer(drv_data->controller);
597 }
598 
599 static void int_transfer_complete(struct driver_data *drv_data)
600 {
601 	/* Clear and disable interrupts */
602 	write_SSSR_CS(drv_data, drv_data->clear_sr);
603 	reset_sccr1(drv_data);
604 	if (!pxa25x_ssp_comp(drv_data))
605 		pxa2xx_spi_write(drv_data, SSTO, 0);
606 
607 	spi_finalize_current_transfer(drv_data->controller);
608 }
609 
610 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
611 {
612 	u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
613 		       drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
614 
615 	u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
616 
617 	if (irq_status & SSSR_ROR) {
618 		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
619 		return IRQ_HANDLED;
620 	}
621 
622 	if (irq_status & SSSR_TUR) {
623 		int_error_stop(drv_data, "interrupt_transfer: fifo underrun");
624 		return IRQ_HANDLED;
625 	}
626 
627 	if (irq_status & SSSR_TINT) {
628 		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
629 		if (drv_data->read(drv_data)) {
630 			int_transfer_complete(drv_data);
631 			return IRQ_HANDLED;
632 		}
633 	}
634 
635 	/* Drain rx fifo, Fill tx fifo and prevent overruns */
636 	do {
637 		if (drv_data->read(drv_data)) {
638 			int_transfer_complete(drv_data);
639 			return IRQ_HANDLED;
640 		}
641 	} while (drv_data->write(drv_data));
642 
643 	if (drv_data->read(drv_data)) {
644 		int_transfer_complete(drv_data);
645 		return IRQ_HANDLED;
646 	}
647 
648 	if (drv_data->tx == drv_data->tx_end) {
649 		u32 bytes_left;
650 		u32 sccr1_reg;
651 
652 		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
653 		sccr1_reg &= ~SSCR1_TIE;
654 
655 		/*
656 		 * PXA25x_SSP has no timeout, set up rx threshould for the
657 		 * remaining RX bytes.
658 		 */
659 		if (pxa25x_ssp_comp(drv_data)) {
660 			u32 rx_thre;
661 
662 			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
663 
664 			bytes_left = drv_data->rx_end - drv_data->rx;
665 			switch (drv_data->n_bytes) {
666 			case 4:
667 				bytes_left >>= 2;
668 				break;
669 			case 2:
670 				bytes_left >>= 1;
671 				break;
672 			}
673 
674 			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
675 			if (rx_thre > bytes_left)
676 				rx_thre = bytes_left;
677 
678 			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
679 		}
680 		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
681 	}
682 
683 	/* We did something */
684 	return IRQ_HANDLED;
685 }
686 
687 static void handle_bad_msg(struct driver_data *drv_data)
688 {
689 	pxa2xx_spi_write(drv_data, SSCR0,
690 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
691 	pxa2xx_spi_write(drv_data, SSCR1,
692 			 pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1);
693 	if (!pxa25x_ssp_comp(drv_data))
694 		pxa2xx_spi_write(drv_data, SSTO, 0);
695 	write_SSSR_CS(drv_data, drv_data->clear_sr);
696 
697 	dev_err(&drv_data->pdev->dev,
698 		"bad message state in interrupt handler\n");
699 }
700 
701 static irqreturn_t ssp_int(int irq, void *dev_id)
702 {
703 	struct driver_data *drv_data = dev_id;
704 	u32 sccr1_reg;
705 	u32 mask = drv_data->mask_sr;
706 	u32 status;
707 
708 	/*
709 	 * The IRQ might be shared with other peripherals so we must first
710 	 * check that are we RPM suspended or not. If we are we assume that
711 	 * the IRQ was not for us (we shouldn't be RPM suspended when the
712 	 * interrupt is enabled).
713 	 */
714 	if (pm_runtime_suspended(&drv_data->pdev->dev))
715 		return IRQ_NONE;
716 
717 	/*
718 	 * If the device is not yet in RPM suspended state and we get an
719 	 * interrupt that is meant for another device, check if status bits
720 	 * are all set to one. That means that the device is already
721 	 * powered off.
722 	 */
723 	status = pxa2xx_spi_read(drv_data, SSSR);
724 	if (status == ~0)
725 		return IRQ_NONE;
726 
727 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
728 
729 	/* Ignore possible writes if we don't need to write */
730 	if (!(sccr1_reg & SSCR1_TIE))
731 		mask &= ~SSSR_TFS;
732 
733 	/* Ignore RX timeout interrupt if it is disabled */
734 	if (!(sccr1_reg & SSCR1_TINTE))
735 		mask &= ~SSSR_TINT;
736 
737 	if (!(status & mask))
738 		return IRQ_NONE;
739 
740 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
741 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
742 
743 	if (!drv_data->controller->cur_msg) {
744 		handle_bad_msg(drv_data);
745 		/* Never fail */
746 		return IRQ_HANDLED;
747 	}
748 
749 	return drv_data->transfer_handler(drv_data);
750 }
751 
752 /*
753  * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
754  * input frequency by fractions of 2^24. It also has a divider by 5.
755  *
756  * There are formulas to get baud rate value for given input frequency and
757  * divider parameters, such as DDS_CLK_RATE and SCR:
758  *
759  * Fsys = 200MHz
760  *
761  * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
762  * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
763  *
764  * DDS_CLK_RATE either 2^n or 2^n / 5.
765  * SCR is in range 0 .. 255
766  *
767  * Divisor = 5^i * 2^j * 2 * k
768  *       i = [0, 1]      i = 1 iff j = 0 or j > 3
769  *       j = [0, 23]     j = 0 iff i = 1
770  *       k = [1, 256]
771  * Special case: j = 0, i = 1: Divisor = 2 / 5
772  *
773  * Accordingly to the specification the recommended values for DDS_CLK_RATE
774  * are:
775  *	Case 1:		2^n, n = [0, 23]
776  *	Case 2:		2^24 * 2 / 5 (0x666666)
777  *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
778  *
779  * In all cases the lowest possible value is better.
780  *
781  * The function calculates parameters for all cases and chooses the one closest
782  * to the asked baud rate.
783  */
784 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
785 {
786 	unsigned long xtal = 200000000;
787 	unsigned long fref = xtal / 2;		/* mandatory division by 2,
788 						   see (2) */
789 						/* case 3 */
790 	unsigned long fref1 = fref / 2;		/* case 1 */
791 	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
792 	unsigned long scale;
793 	unsigned long q, q1, q2;
794 	long r, r1, r2;
795 	u32 mul;
796 
797 	/* Case 1 */
798 
799 	/* Set initial value for DDS_CLK_RATE */
800 	mul = (1 << 24) >> 1;
801 
802 	/* Calculate initial quot */
803 	q1 = DIV_ROUND_UP(fref1, rate);
804 
805 	/* Scale q1 if it's too big */
806 	if (q1 > 256) {
807 		/* Scale q1 to range [1, 512] */
808 		scale = fls_long(q1 - 1);
809 		if (scale > 9) {
810 			q1 >>= scale - 9;
811 			mul >>= scale - 9;
812 		}
813 
814 		/* Round the result if we have a remainder */
815 		q1 += q1 & 1;
816 	}
817 
818 	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
819 	scale = __ffs(q1);
820 	q1 >>= scale;
821 	mul >>= scale;
822 
823 	/* Get the remainder */
824 	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
825 
826 	/* Case 2 */
827 
828 	q2 = DIV_ROUND_UP(fref2, rate);
829 	r2 = abs(fref2 / q2 - rate);
830 
831 	/*
832 	 * Choose the best between two: less remainder we have the better. We
833 	 * can't go case 2 if q2 is greater than 256 since SCR register can
834 	 * hold only values 0 .. 255.
835 	 */
836 	if (r2 >= r1 || q2 > 256) {
837 		/* case 1 is better */
838 		r = r1;
839 		q = q1;
840 	} else {
841 		/* case 2 is better */
842 		r = r2;
843 		q = q2;
844 		mul = (1 << 24) * 2 / 5;
845 	}
846 
847 	/* Check case 3 only if the divisor is big enough */
848 	if (fref / rate >= 80) {
849 		u64 fssp;
850 		u32 m;
851 
852 		/* Calculate initial quot */
853 		q1 = DIV_ROUND_UP(fref, rate);
854 		m = (1 << 24) / q1;
855 
856 		/* Get the remainder */
857 		fssp = (u64)fref * m;
858 		do_div(fssp, 1 << 24);
859 		r1 = abs(fssp - rate);
860 
861 		/* Choose this one if it suits better */
862 		if (r1 < r) {
863 			/* case 3 is better */
864 			q = 1;
865 			mul = m;
866 		}
867 	}
868 
869 	*dds = mul;
870 	return q - 1;
871 }
872 
873 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
874 {
875 	unsigned long ssp_clk = drv_data->controller->max_speed_hz;
876 	const struct ssp_device *ssp = drv_data->ssp;
877 
878 	rate = min_t(int, ssp_clk, rate);
879 
880 	/*
881 	 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
882 	 * that the SSP transmission rate can be greater than the device rate
883 	 */
884 	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
885 		return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
886 	else
887 		return (DIV_ROUND_UP(ssp_clk, rate) - 1)  & 0xfff;
888 }
889 
890 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
891 					   int rate)
892 {
893 	struct chip_data *chip =
894 		spi_get_ctldata(drv_data->controller->cur_msg->spi);
895 	unsigned int clk_div;
896 
897 	switch (drv_data->ssp_type) {
898 	case QUARK_X1000_SSP:
899 		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
900 		break;
901 	default:
902 		clk_div = ssp_get_clk_div(drv_data, rate);
903 		break;
904 	}
905 	return clk_div << 8;
906 }
907 
908 static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
909 			       struct spi_device *spi,
910 			       struct spi_transfer *xfer)
911 {
912 	struct chip_data *chip = spi_get_ctldata(spi);
913 
914 	return chip->enable_dma &&
915 	       xfer->len <= MAX_DMA_LEN &&
916 	       xfer->len >= chip->dma_burst_size;
917 }
918 
919 static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
920 				   struct spi_device *spi,
921 				   struct spi_transfer *transfer)
922 {
923 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
924 	struct spi_message *message = controller->cur_msg;
925 	struct chip_data *chip = spi_get_ctldata(spi);
926 	u32 dma_thresh = chip->dma_threshold;
927 	u32 dma_burst = chip->dma_burst_size;
928 	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
929 	u32 clk_div;
930 	u8 bits;
931 	u32 speed;
932 	u32 cr0;
933 	u32 cr1;
934 	int err;
935 	int dma_mapped;
936 
937 	/* Check if we can DMA this transfer */
938 	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
939 
940 		/* reject already-mapped transfers; PIO won't always work */
941 		if (message->is_dma_mapped
942 				|| transfer->rx_dma || transfer->tx_dma) {
943 			dev_err(&spi->dev,
944 				"Mapped transfer length of %u is greater than %d\n",
945 				transfer->len, MAX_DMA_LEN);
946 			return -EINVAL;
947 		}
948 
949 		/* warn ... we force this to PIO mode */
950 		dev_warn_ratelimited(&spi->dev,
951 				     "DMA disabled for transfer length %ld greater than %d\n",
952 				     (long)transfer->len, MAX_DMA_LEN);
953 	}
954 
955 	/* Setup the transfer state based on the type of transfer */
956 	if (pxa2xx_spi_flush(drv_data) == 0) {
957 		dev_err(&spi->dev, "Flush failed\n");
958 		return -EIO;
959 	}
960 	drv_data->n_bytes = chip->n_bytes;
961 	drv_data->tx = (void *)transfer->tx_buf;
962 	drv_data->tx_end = drv_data->tx + transfer->len;
963 	drv_data->rx = transfer->rx_buf;
964 	drv_data->rx_end = drv_data->rx + transfer->len;
965 	drv_data->write = drv_data->tx ? chip->write : null_writer;
966 	drv_data->read = drv_data->rx ? chip->read : null_reader;
967 
968 	/* Change speed and bit per word on a per transfer */
969 	bits = transfer->bits_per_word;
970 	speed = transfer->speed_hz;
971 
972 	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
973 
974 	if (bits <= 8) {
975 		drv_data->n_bytes = 1;
976 		drv_data->read = drv_data->read != null_reader ?
977 					u8_reader : null_reader;
978 		drv_data->write = drv_data->write != null_writer ?
979 					u8_writer : null_writer;
980 	} else if (bits <= 16) {
981 		drv_data->n_bytes = 2;
982 		drv_data->read = drv_data->read != null_reader ?
983 					u16_reader : null_reader;
984 		drv_data->write = drv_data->write != null_writer ?
985 					u16_writer : null_writer;
986 	} else if (bits <= 32) {
987 		drv_data->n_bytes = 4;
988 		drv_data->read = drv_data->read != null_reader ?
989 					u32_reader : null_reader;
990 		drv_data->write = drv_data->write != null_writer ?
991 					u32_writer : null_writer;
992 	}
993 	/*
994 	 * if bits/word is changed in dma mode, then must check the
995 	 * thresholds and burst also
996 	 */
997 	if (chip->enable_dma) {
998 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
999 						spi,
1000 						bits, &dma_burst,
1001 						&dma_thresh))
1002 			dev_warn_ratelimited(&spi->dev,
1003 					     "DMA burst size reduced to match bits_per_word\n");
1004 	}
1005 
1006 	dma_mapped = controller->can_dma &&
1007 		     controller->can_dma(controller, spi, transfer) &&
1008 		     controller->cur_msg_mapped;
1009 	if (dma_mapped) {
1010 
1011 		/* Ensure we have the correct interrupt handler */
1012 		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1013 
1014 		err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1015 		if (err)
1016 			return err;
1017 
1018 		/* Clear status and start DMA engine */
1019 		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1020 		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1021 
1022 		pxa2xx_spi_dma_start(drv_data);
1023 	} else {
1024 		/* Ensure we have the correct interrupt handler	*/
1025 		drv_data->transfer_handler = interrupt_transfer;
1026 
1027 		/* Clear status  */
1028 		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1029 		write_SSSR_CS(drv_data, drv_data->clear_sr);
1030 	}
1031 
1032 	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1033 	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1034 	if (!pxa25x_ssp_comp(drv_data))
1035 		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1036 			controller->max_speed_hz
1037 				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1038 			dma_mapped ? "DMA" : "PIO");
1039 	else
1040 		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1041 			controller->max_speed_hz / 2
1042 				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1043 			dma_mapped ? "DMA" : "PIO");
1044 
1045 	if (is_lpss_ssp(drv_data)) {
1046 		if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1047 		    != chip->lpss_rx_threshold)
1048 			pxa2xx_spi_write(drv_data, SSIRF,
1049 					 chip->lpss_rx_threshold);
1050 		if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1051 		    != chip->lpss_tx_threshold)
1052 			pxa2xx_spi_write(drv_data, SSITF,
1053 					 chip->lpss_tx_threshold);
1054 	}
1055 
1056 	if (is_quark_x1000_ssp(drv_data) &&
1057 	    (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1058 		pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1059 
1060 	/* see if we need to reload the config registers */
1061 	if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1062 	    || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1063 	    != (cr1 & change_mask)) {
1064 		/* stop the SSP, and update the other bits */
1065 		pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1066 		if (!pxa25x_ssp_comp(drv_data))
1067 			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1068 		/* first set CR1 without interrupt and service enables */
1069 		pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1070 		/* restart the SSP */
1071 		pxa2xx_spi_write(drv_data, SSCR0, cr0);
1072 
1073 	} else {
1074 		if (!pxa25x_ssp_comp(drv_data))
1075 			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1076 	}
1077 
1078 	if (drv_data->ssp_type == MMP2_SSP) {
1079 		u8 tx_level = (pxa2xx_spi_read(drv_data, SSSR)
1080 					& SSSR_TFL_MASK) >> 8;
1081 
1082 		if (tx_level) {
1083 			/* On MMP2, flipping SSE doesn't to empty TXFIFO. */
1084 			dev_warn(&spi->dev, "%d bytes of garbage in TXFIFO!\n",
1085 								tx_level);
1086 			if (tx_level > transfer->len)
1087 				tx_level = transfer->len;
1088 			drv_data->tx += tx_level;
1089 		}
1090 	}
1091 
1092 	if (spi_controller_is_slave(controller)) {
1093 		while (drv_data->write(drv_data))
1094 			;
1095 		if (drv_data->gpiod_ready) {
1096 			gpiod_set_value(drv_data->gpiod_ready, 1);
1097 			udelay(1);
1098 			gpiod_set_value(drv_data->gpiod_ready, 0);
1099 		}
1100 	}
1101 
1102 	/*
1103 	 * Release the data by enabling service requests and interrupts,
1104 	 * without changing any mode bits
1105 	 */
1106 	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1107 
1108 	return 1;
1109 }
1110 
1111 static int pxa2xx_spi_slave_abort(struct spi_controller *controller)
1112 {
1113 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1114 
1115 	/* Stop and reset SSP */
1116 	write_SSSR_CS(drv_data, drv_data->clear_sr);
1117 	reset_sccr1(drv_data);
1118 	if (!pxa25x_ssp_comp(drv_data))
1119 		pxa2xx_spi_write(drv_data, SSTO, 0);
1120 	pxa2xx_spi_flush(drv_data);
1121 	pxa2xx_spi_write(drv_data, SSCR0,
1122 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1123 
1124 	dev_dbg(&drv_data->pdev->dev, "transfer aborted\n");
1125 
1126 	drv_data->controller->cur_msg->status = -EINTR;
1127 	spi_finalize_current_transfer(drv_data->controller);
1128 
1129 	return 0;
1130 }
1131 
1132 static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1133 				 struct spi_message *msg)
1134 {
1135 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1136 
1137 	/* Disable the SSP */
1138 	pxa2xx_spi_write(drv_data, SSCR0,
1139 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1140 	/* Clear and disable interrupts and service requests */
1141 	write_SSSR_CS(drv_data, drv_data->clear_sr);
1142 	pxa2xx_spi_write(drv_data, SSCR1,
1143 			 pxa2xx_spi_read(drv_data, SSCR1)
1144 			 & ~(drv_data->int_cr1 | drv_data->dma_cr1));
1145 	if (!pxa25x_ssp_comp(drv_data))
1146 		pxa2xx_spi_write(drv_data, SSTO, 0);
1147 
1148 	/*
1149 	 * Stop the DMA if running. Note DMA callback handler may have unset
1150 	 * the dma_running already, which is fine as stopping is not needed
1151 	 * then but we shouldn't rely this flag for anything else than
1152 	 * stopping. For instance to differentiate between PIO and DMA
1153 	 * transfers.
1154 	 */
1155 	if (atomic_read(&drv_data->dma_running))
1156 		pxa2xx_spi_dma_stop(drv_data);
1157 }
1158 
1159 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1160 {
1161 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1162 
1163 	/* Disable the SSP now */
1164 	pxa2xx_spi_write(drv_data, SSCR0,
1165 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1166 
1167 	return 0;
1168 }
1169 
1170 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1171 		    struct pxa2xx_spi_chip *chip_info)
1172 {
1173 	struct driver_data *drv_data =
1174 		spi_controller_get_devdata(spi->controller);
1175 	struct gpio_desc *gpiod;
1176 	int err = 0;
1177 
1178 	if (chip == NULL)
1179 		return 0;
1180 
1181 	if (drv_data->cs_gpiods) {
1182 		gpiod = drv_data->cs_gpiods[spi->chip_select];
1183 		if (gpiod) {
1184 			chip->gpiod_cs = gpiod;
1185 			chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1186 			gpiod_set_value(gpiod, chip->gpio_cs_inverted);
1187 		}
1188 
1189 		return 0;
1190 	}
1191 
1192 	if (chip_info == NULL)
1193 		return 0;
1194 
1195 	/* NOTE: setup() can be called multiple times, possibly with
1196 	 * different chip_info, release previously requested GPIO
1197 	 */
1198 	if (chip->gpiod_cs) {
1199 		gpiod_put(chip->gpiod_cs);
1200 		chip->gpiod_cs = NULL;
1201 	}
1202 
1203 	/* If (*cs_control) is provided, ignore GPIO chip select */
1204 	if (chip_info->cs_control) {
1205 		chip->cs_control = chip_info->cs_control;
1206 		return 0;
1207 	}
1208 
1209 	if (gpio_is_valid(chip_info->gpio_cs)) {
1210 		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1211 		if (err) {
1212 			dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1213 				chip_info->gpio_cs);
1214 			return err;
1215 		}
1216 
1217 		gpiod = gpio_to_desc(chip_info->gpio_cs);
1218 		chip->gpiod_cs = gpiod;
1219 		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1220 
1221 		err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted);
1222 	}
1223 
1224 	return err;
1225 }
1226 
1227 static int setup(struct spi_device *spi)
1228 {
1229 	struct pxa2xx_spi_chip *chip_info;
1230 	struct chip_data *chip;
1231 	const struct lpss_config *config;
1232 	struct driver_data *drv_data =
1233 		spi_controller_get_devdata(spi->controller);
1234 	uint tx_thres, tx_hi_thres, rx_thres;
1235 
1236 	switch (drv_data->ssp_type) {
1237 	case QUARK_X1000_SSP:
1238 		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1239 		tx_hi_thres = 0;
1240 		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1241 		break;
1242 	case CE4100_SSP:
1243 		tx_thres = TX_THRESH_CE4100_DFLT;
1244 		tx_hi_thres = 0;
1245 		rx_thres = RX_THRESH_CE4100_DFLT;
1246 		break;
1247 	case LPSS_LPT_SSP:
1248 	case LPSS_BYT_SSP:
1249 	case LPSS_BSW_SSP:
1250 	case LPSS_SPT_SSP:
1251 	case LPSS_BXT_SSP:
1252 	case LPSS_CNL_SSP:
1253 		config = lpss_get_config(drv_data);
1254 		tx_thres = config->tx_threshold_lo;
1255 		tx_hi_thres = config->tx_threshold_hi;
1256 		rx_thres = config->rx_threshold;
1257 		break;
1258 	default:
1259 		tx_hi_thres = 0;
1260 		if (spi_controller_is_slave(drv_data->controller)) {
1261 			tx_thres = 1;
1262 			rx_thres = 2;
1263 		} else {
1264 			tx_thres = TX_THRESH_DFLT;
1265 			rx_thres = RX_THRESH_DFLT;
1266 		}
1267 		break;
1268 	}
1269 
1270 	/* Only alloc on first setup */
1271 	chip = spi_get_ctldata(spi);
1272 	if (!chip) {
1273 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1274 		if (!chip)
1275 			return -ENOMEM;
1276 
1277 		if (drv_data->ssp_type == CE4100_SSP) {
1278 			if (spi->chip_select > 4) {
1279 				dev_err(&spi->dev,
1280 					"failed setup: cs number must not be > 4.\n");
1281 				kfree(chip);
1282 				return -EINVAL;
1283 			}
1284 
1285 			chip->frm = spi->chip_select;
1286 		}
1287 		chip->enable_dma = drv_data->controller_info->enable_dma;
1288 		chip->timeout = TIMOUT_DFLT;
1289 	}
1290 
1291 	/* protocol drivers may change the chip settings, so...
1292 	 * if chip_info exists, use it */
1293 	chip_info = spi->controller_data;
1294 
1295 	/* chip_info isn't always needed */
1296 	chip->cr1 = 0;
1297 	if (chip_info) {
1298 		if (chip_info->timeout)
1299 			chip->timeout = chip_info->timeout;
1300 		if (chip_info->tx_threshold)
1301 			tx_thres = chip_info->tx_threshold;
1302 		if (chip_info->tx_hi_threshold)
1303 			tx_hi_thres = chip_info->tx_hi_threshold;
1304 		if (chip_info->rx_threshold)
1305 			rx_thres = chip_info->rx_threshold;
1306 		chip->dma_threshold = 0;
1307 		if (chip_info->enable_loopback)
1308 			chip->cr1 = SSCR1_LBM;
1309 	}
1310 	if (spi_controller_is_slave(drv_data->controller)) {
1311 		chip->cr1 |= SSCR1_SCFR;
1312 		chip->cr1 |= SSCR1_SCLKDIR;
1313 		chip->cr1 |= SSCR1_SFRMDIR;
1314 		chip->cr1 |= SSCR1_SPH;
1315 	}
1316 
1317 	chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1318 	chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1319 				| SSITF_TxHiThresh(tx_hi_thres);
1320 
1321 	/* set dma burst and threshold outside of chip_info path so that if
1322 	 * chip_info goes away after setting chip->enable_dma, the
1323 	 * burst and threshold can still respond to changes in bits_per_word */
1324 	if (chip->enable_dma) {
1325 		/* set up legal burst and threshold for dma */
1326 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1327 						spi->bits_per_word,
1328 						&chip->dma_burst_size,
1329 						&chip->dma_threshold)) {
1330 			dev_warn(&spi->dev,
1331 				 "in setup: DMA burst size reduced to match bits_per_word\n");
1332 		}
1333 		dev_dbg(&spi->dev,
1334 			"in setup: DMA burst size set to %u\n",
1335 			chip->dma_burst_size);
1336 	}
1337 
1338 	switch (drv_data->ssp_type) {
1339 	case QUARK_X1000_SSP:
1340 		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1341 				   & QUARK_X1000_SSCR1_RFT)
1342 				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1343 				   & QUARK_X1000_SSCR1_TFT);
1344 		break;
1345 	case CE4100_SSP:
1346 		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1347 			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1348 		break;
1349 	default:
1350 		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1351 			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1352 		break;
1353 	}
1354 
1355 	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1356 	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1357 			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1358 
1359 	if (spi->mode & SPI_LOOP)
1360 		chip->cr1 |= SSCR1_LBM;
1361 
1362 	if (spi->bits_per_word <= 8) {
1363 		chip->n_bytes = 1;
1364 		chip->read = u8_reader;
1365 		chip->write = u8_writer;
1366 	} else if (spi->bits_per_word <= 16) {
1367 		chip->n_bytes = 2;
1368 		chip->read = u16_reader;
1369 		chip->write = u16_writer;
1370 	} else if (spi->bits_per_word <= 32) {
1371 		chip->n_bytes = 4;
1372 		chip->read = u32_reader;
1373 		chip->write = u32_writer;
1374 	}
1375 
1376 	spi_set_ctldata(spi, chip);
1377 
1378 	if (drv_data->ssp_type == CE4100_SSP)
1379 		return 0;
1380 
1381 	return setup_cs(spi, chip, chip_info);
1382 }
1383 
1384 static void cleanup(struct spi_device *spi)
1385 {
1386 	struct chip_data *chip = spi_get_ctldata(spi);
1387 	struct driver_data *drv_data =
1388 		spi_controller_get_devdata(spi->controller);
1389 
1390 	if (!chip)
1391 		return;
1392 
1393 	if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
1394 	    chip->gpiod_cs)
1395 		gpiod_put(chip->gpiod_cs);
1396 
1397 	kfree(chip);
1398 }
1399 
1400 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1401 	{ "INT33C0", LPSS_LPT_SSP },
1402 	{ "INT33C1", LPSS_LPT_SSP },
1403 	{ "INT3430", LPSS_LPT_SSP },
1404 	{ "INT3431", LPSS_LPT_SSP },
1405 	{ "80860F0E", LPSS_BYT_SSP },
1406 	{ "8086228E", LPSS_BSW_SSP },
1407 	{ },
1408 };
1409 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1410 
1411 /*
1412  * PCI IDs of compound devices that integrate both host controller and private
1413  * integrated DMA engine. Please note these are not used in module
1414  * autoloading and probing in this module but matching the LPSS SSP type.
1415  */
1416 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1417 	/* SPT-LP */
1418 	{ PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1419 	{ PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1420 	/* SPT-H */
1421 	{ PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1422 	{ PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1423 	/* KBL-H */
1424 	{ PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1425 	{ PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1426 	/* BXT A-Step */
1427 	{ PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1428 	{ PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1429 	{ PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1430 	/* BXT B-Step */
1431 	{ PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1432 	{ PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1433 	{ PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1434 	/* GLK */
1435 	{ PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1436 	{ PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1437 	{ PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1438 	/* ICL-LP */
1439 	{ PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP },
1440 	{ PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP },
1441 	{ PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP },
1442 	/* EHL */
1443 	{ PCI_VDEVICE(INTEL, 0x4b2a), LPSS_BXT_SSP },
1444 	{ PCI_VDEVICE(INTEL, 0x4b2b), LPSS_BXT_SSP },
1445 	{ PCI_VDEVICE(INTEL, 0x4b37), LPSS_BXT_SSP },
1446 	/* APL */
1447 	{ PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1448 	{ PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1449 	{ PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1450 	/* CNL-LP */
1451 	{ PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1452 	{ PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1453 	{ PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1454 	/* CNL-H */
1455 	{ PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1456 	{ PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1457 	{ PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1458 	/* CML-LP */
1459 	{ PCI_VDEVICE(INTEL, 0x02aa), LPSS_CNL_SSP },
1460 	{ PCI_VDEVICE(INTEL, 0x02ab), LPSS_CNL_SSP },
1461 	{ PCI_VDEVICE(INTEL, 0x02fb), LPSS_CNL_SSP },
1462 	/* CML-H */
1463 	{ PCI_VDEVICE(INTEL, 0x06aa), LPSS_CNL_SSP },
1464 	{ PCI_VDEVICE(INTEL, 0x06ab), LPSS_CNL_SSP },
1465 	{ PCI_VDEVICE(INTEL, 0x06fb), LPSS_CNL_SSP },
1466 	/* TGL-LP */
1467 	{ PCI_VDEVICE(INTEL, 0xa0aa), LPSS_CNL_SSP },
1468 	{ PCI_VDEVICE(INTEL, 0xa0ab), LPSS_CNL_SSP },
1469 	{ PCI_VDEVICE(INTEL, 0xa0de), LPSS_CNL_SSP },
1470 	{ PCI_VDEVICE(INTEL, 0xa0df), LPSS_CNL_SSP },
1471 	{ PCI_VDEVICE(INTEL, 0xa0fb), LPSS_CNL_SSP },
1472 	{ PCI_VDEVICE(INTEL, 0xa0fd), LPSS_CNL_SSP },
1473 	{ PCI_VDEVICE(INTEL, 0xa0fe), LPSS_CNL_SSP },
1474 	{ },
1475 };
1476 
1477 static const struct of_device_id pxa2xx_spi_of_match[] = {
1478 	{ .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1479 	{},
1480 };
1481 MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1482 
1483 #ifdef CONFIG_ACPI
1484 
1485 static int pxa2xx_spi_get_port_id(struct device *dev)
1486 {
1487 	struct acpi_device *adev;
1488 	unsigned int devid;
1489 	int port_id = -1;
1490 
1491 	adev = ACPI_COMPANION(dev);
1492 	if (adev && adev->pnp.unique_id &&
1493 	    !kstrtouint(adev->pnp.unique_id, 0, &devid))
1494 		port_id = devid;
1495 	return port_id;
1496 }
1497 
1498 #else /* !CONFIG_ACPI */
1499 
1500 static int pxa2xx_spi_get_port_id(struct device *dev)
1501 {
1502 	return -1;
1503 }
1504 
1505 #endif /* CONFIG_ACPI */
1506 
1507 
1508 #ifdef CONFIG_PCI
1509 
1510 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1511 {
1512 	return param == chan->device->dev;
1513 }
1514 
1515 #endif /* CONFIG_PCI */
1516 
1517 static struct pxa2xx_spi_controller *
1518 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1519 {
1520 	struct pxa2xx_spi_controller *pdata;
1521 	struct ssp_device *ssp;
1522 	struct resource *res;
1523 	struct device *parent = pdev->dev.parent;
1524 	struct pci_dev *pcidev = dev_is_pci(parent) ? to_pci_dev(parent) : NULL;
1525 	const struct pci_device_id *pcidev_id = NULL;
1526 	enum pxa_ssp_type type;
1527 	const void *match;
1528 
1529 	if (pcidev)
1530 		pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match, pcidev);
1531 
1532 	match = device_get_match_data(&pdev->dev);
1533 	if (match)
1534 		type = (enum pxa_ssp_type)match;
1535 	else if (pcidev_id)
1536 		type = (enum pxa_ssp_type)pcidev_id->driver_data;
1537 	else
1538 		return NULL;
1539 
1540 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1541 	if (!pdata)
1542 		return NULL;
1543 
1544 	ssp = &pdata->ssp;
1545 
1546 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1547 	ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1548 	if (IS_ERR(ssp->mmio_base))
1549 		return NULL;
1550 
1551 	ssp->phys_base = res->start;
1552 
1553 #ifdef CONFIG_PCI
1554 	if (pcidev_id) {
1555 		pdata->tx_param = parent;
1556 		pdata->rx_param = parent;
1557 		pdata->dma_filter = pxa2xx_spi_idma_filter;
1558 	}
1559 #endif
1560 
1561 	ssp->clk = devm_clk_get(&pdev->dev, NULL);
1562 	if (IS_ERR(ssp->clk))
1563 		return NULL;
1564 
1565 	ssp->irq = platform_get_irq(pdev, 0);
1566 	if (ssp->irq < 0)
1567 		return NULL;
1568 
1569 	ssp->type = type;
1570 	ssp->dev = &pdev->dev;
1571 	ssp->port_id = pxa2xx_spi_get_port_id(&pdev->dev);
1572 
1573 	pdata->is_slave = device_property_read_bool(&pdev->dev, "spi-slave");
1574 	pdata->num_chipselect = 1;
1575 	pdata->enable_dma = true;
1576 	pdata->dma_burst_size = 1;
1577 
1578 	return pdata;
1579 }
1580 
1581 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1582 				      unsigned int cs)
1583 {
1584 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1585 
1586 	if (has_acpi_companion(&drv_data->pdev->dev)) {
1587 		switch (drv_data->ssp_type) {
1588 		/*
1589 		 * For Atoms the ACPI DeviceSelection used by the Windows
1590 		 * driver starts from 1 instead of 0 so translate it here
1591 		 * to match what Linux expects.
1592 		 */
1593 		case LPSS_BYT_SSP:
1594 		case LPSS_BSW_SSP:
1595 			return cs - 1;
1596 
1597 		default:
1598 			break;
1599 		}
1600 	}
1601 
1602 	return cs;
1603 }
1604 
1605 static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi)
1606 {
1607 	return MAX_DMA_LEN;
1608 }
1609 
1610 static int pxa2xx_spi_probe(struct platform_device *pdev)
1611 {
1612 	struct device *dev = &pdev->dev;
1613 	struct pxa2xx_spi_controller *platform_info;
1614 	struct spi_controller *controller;
1615 	struct driver_data *drv_data;
1616 	struct ssp_device *ssp;
1617 	const struct lpss_config *config;
1618 	int status, count;
1619 	u32 tmp;
1620 
1621 	platform_info = dev_get_platdata(dev);
1622 	if (!platform_info) {
1623 		platform_info = pxa2xx_spi_init_pdata(pdev);
1624 		if (!platform_info) {
1625 			dev_err(&pdev->dev, "missing platform data\n");
1626 			return -ENODEV;
1627 		}
1628 	}
1629 
1630 	ssp = pxa_ssp_request(pdev->id, pdev->name);
1631 	if (!ssp)
1632 		ssp = &platform_info->ssp;
1633 
1634 	if (!ssp->mmio_base) {
1635 		dev_err(&pdev->dev, "failed to get ssp\n");
1636 		return -ENODEV;
1637 	}
1638 
1639 	if (platform_info->is_slave)
1640 		controller = spi_alloc_slave(dev, sizeof(struct driver_data));
1641 	else
1642 		controller = spi_alloc_master(dev, sizeof(struct driver_data));
1643 
1644 	if (!controller) {
1645 		dev_err(&pdev->dev, "cannot alloc spi_controller\n");
1646 		pxa_ssp_free(ssp);
1647 		return -ENOMEM;
1648 	}
1649 	drv_data = spi_controller_get_devdata(controller);
1650 	drv_data->controller = controller;
1651 	drv_data->controller_info = platform_info;
1652 	drv_data->pdev = pdev;
1653 	drv_data->ssp = ssp;
1654 
1655 	controller->dev.of_node = pdev->dev.of_node;
1656 	/* the spi->mode bits understood by this driver: */
1657 	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1658 
1659 	controller->bus_num = ssp->port_id;
1660 	controller->dma_alignment = DMA_ALIGNMENT;
1661 	controller->cleanup = cleanup;
1662 	controller->setup = setup;
1663 	controller->set_cs = pxa2xx_spi_set_cs;
1664 	controller->transfer_one = pxa2xx_spi_transfer_one;
1665 	controller->slave_abort = pxa2xx_spi_slave_abort;
1666 	controller->handle_err = pxa2xx_spi_handle_err;
1667 	controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1668 	controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1669 	controller->auto_runtime_pm = true;
1670 	controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1671 
1672 	drv_data->ssp_type = ssp->type;
1673 
1674 	drv_data->ioaddr = ssp->mmio_base;
1675 	drv_data->ssdr_physical = ssp->phys_base + SSDR;
1676 	if (pxa25x_ssp_comp(drv_data)) {
1677 		switch (drv_data->ssp_type) {
1678 		case QUARK_X1000_SSP:
1679 			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1680 			break;
1681 		default:
1682 			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1683 			break;
1684 		}
1685 
1686 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1687 		drv_data->dma_cr1 = 0;
1688 		drv_data->clear_sr = SSSR_ROR;
1689 		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1690 	} else {
1691 		controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1692 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1693 		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1694 		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1695 		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1696 						| SSSR_ROR | SSSR_TUR;
1697 	}
1698 
1699 	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1700 			drv_data);
1701 	if (status < 0) {
1702 		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1703 		goto out_error_controller_alloc;
1704 	}
1705 
1706 	/* Setup DMA if requested */
1707 	if (platform_info->enable_dma) {
1708 		status = pxa2xx_spi_dma_setup(drv_data);
1709 		if (status) {
1710 			dev_warn(dev, "no DMA channels available, using PIO\n");
1711 			platform_info->enable_dma = false;
1712 		} else {
1713 			controller->can_dma = pxa2xx_spi_can_dma;
1714 			controller->max_dma_len = MAX_DMA_LEN;
1715 			controller->max_transfer_size =
1716 				pxa2xx_spi_max_dma_transfer_size;
1717 		}
1718 	}
1719 
1720 	/* Enable SOC clock */
1721 	status = clk_prepare_enable(ssp->clk);
1722 	if (status)
1723 		goto out_error_dma_irq_alloc;
1724 
1725 	controller->max_speed_hz = clk_get_rate(ssp->clk);
1726 	/*
1727 	 * Set minimum speed for all other platforms than Intel Quark which is
1728 	 * able do under 1 Hz transfers.
1729 	 */
1730 	if (!pxa25x_ssp_comp(drv_data))
1731 		controller->min_speed_hz =
1732 			DIV_ROUND_UP(controller->max_speed_hz, 4096);
1733 	else if (!is_quark_x1000_ssp(drv_data))
1734 		controller->min_speed_hz =
1735 			DIV_ROUND_UP(controller->max_speed_hz, 512);
1736 
1737 	/* Load default SSP configuration */
1738 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1739 	switch (drv_data->ssp_type) {
1740 	case QUARK_X1000_SSP:
1741 		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1742 		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1743 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1744 
1745 		/* using the Motorola SPI protocol and use 8 bit frame */
1746 		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1747 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1748 		break;
1749 	case CE4100_SSP:
1750 		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1751 		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1752 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1753 		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1754 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1755 		break;
1756 	default:
1757 
1758 		if (spi_controller_is_slave(controller)) {
1759 			tmp = SSCR1_SCFR |
1760 			      SSCR1_SCLKDIR |
1761 			      SSCR1_SFRMDIR |
1762 			      SSCR1_RxTresh(2) |
1763 			      SSCR1_TxTresh(1) |
1764 			      SSCR1_SPH;
1765 		} else {
1766 			tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1767 			      SSCR1_TxTresh(TX_THRESH_DFLT);
1768 		}
1769 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1770 		tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1771 		if (!spi_controller_is_slave(controller))
1772 			tmp |= SSCR0_SCR(2);
1773 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1774 		break;
1775 	}
1776 
1777 	if (!pxa25x_ssp_comp(drv_data))
1778 		pxa2xx_spi_write(drv_data, SSTO, 0);
1779 
1780 	if (!is_quark_x1000_ssp(drv_data))
1781 		pxa2xx_spi_write(drv_data, SSPSP, 0);
1782 
1783 	if (is_lpss_ssp(drv_data)) {
1784 		lpss_ssp_setup(drv_data);
1785 		config = lpss_get_config(drv_data);
1786 		if (config->reg_capabilities >= 0) {
1787 			tmp = __lpss_ssp_read_priv(drv_data,
1788 						   config->reg_capabilities);
1789 			tmp &= LPSS_CAPS_CS_EN_MASK;
1790 			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1791 			platform_info->num_chipselect = ffz(tmp);
1792 		} else if (config->cs_num) {
1793 			platform_info->num_chipselect = config->cs_num;
1794 		}
1795 	}
1796 	controller->num_chipselect = platform_info->num_chipselect;
1797 
1798 	count = gpiod_count(&pdev->dev, "cs");
1799 	if (count > 0) {
1800 		int i;
1801 
1802 		controller->num_chipselect = max_t(int, count,
1803 			controller->num_chipselect);
1804 
1805 		drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
1806 			controller->num_chipselect, sizeof(struct gpio_desc *),
1807 			GFP_KERNEL);
1808 		if (!drv_data->cs_gpiods) {
1809 			status = -ENOMEM;
1810 			goto out_error_clock_enabled;
1811 		}
1812 
1813 		for (i = 0; i < controller->num_chipselect; i++) {
1814 			struct gpio_desc *gpiod;
1815 
1816 			gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1817 			if (IS_ERR(gpiod)) {
1818 				/* Means use native chip select */
1819 				if (PTR_ERR(gpiod) == -ENOENT)
1820 					continue;
1821 
1822 				status = PTR_ERR(gpiod);
1823 				goto out_error_clock_enabled;
1824 			} else {
1825 				drv_data->cs_gpiods[i] = gpiod;
1826 			}
1827 		}
1828 	}
1829 
1830 	if (platform_info->is_slave) {
1831 		drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1832 						"ready", GPIOD_OUT_LOW);
1833 		if (IS_ERR(drv_data->gpiod_ready)) {
1834 			status = PTR_ERR(drv_data->gpiod_ready);
1835 			goto out_error_clock_enabled;
1836 		}
1837 	}
1838 
1839 	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1840 	pm_runtime_use_autosuspend(&pdev->dev);
1841 	pm_runtime_set_active(&pdev->dev);
1842 	pm_runtime_enable(&pdev->dev);
1843 
1844 	/* Register with the SPI framework */
1845 	platform_set_drvdata(pdev, drv_data);
1846 	status = devm_spi_register_controller(&pdev->dev, controller);
1847 	if (status != 0) {
1848 		dev_err(&pdev->dev, "problem registering spi controller\n");
1849 		goto out_error_pm_runtime_enabled;
1850 	}
1851 
1852 	return status;
1853 
1854 out_error_pm_runtime_enabled:
1855 	pm_runtime_put_noidle(&pdev->dev);
1856 	pm_runtime_disable(&pdev->dev);
1857 
1858 out_error_clock_enabled:
1859 	clk_disable_unprepare(ssp->clk);
1860 
1861 out_error_dma_irq_alloc:
1862 	pxa2xx_spi_dma_release(drv_data);
1863 	free_irq(ssp->irq, drv_data);
1864 
1865 out_error_controller_alloc:
1866 	spi_controller_put(controller);
1867 	pxa_ssp_free(ssp);
1868 	return status;
1869 }
1870 
1871 static int pxa2xx_spi_remove(struct platform_device *pdev)
1872 {
1873 	struct driver_data *drv_data = platform_get_drvdata(pdev);
1874 	struct ssp_device *ssp;
1875 
1876 	if (!drv_data)
1877 		return 0;
1878 	ssp = drv_data->ssp;
1879 
1880 	pm_runtime_get_sync(&pdev->dev);
1881 
1882 	/* Disable the SSP at the peripheral and SOC level */
1883 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1884 	clk_disable_unprepare(ssp->clk);
1885 
1886 	/* Release DMA */
1887 	if (drv_data->controller_info->enable_dma)
1888 		pxa2xx_spi_dma_release(drv_data);
1889 
1890 	pm_runtime_put_noidle(&pdev->dev);
1891 	pm_runtime_disable(&pdev->dev);
1892 
1893 	/* Release IRQ */
1894 	free_irq(ssp->irq, drv_data);
1895 
1896 	/* Release SSP */
1897 	pxa_ssp_free(ssp);
1898 
1899 	return 0;
1900 }
1901 
1902 #ifdef CONFIG_PM_SLEEP
1903 static int pxa2xx_spi_suspend(struct device *dev)
1904 {
1905 	struct driver_data *drv_data = dev_get_drvdata(dev);
1906 	struct ssp_device *ssp = drv_data->ssp;
1907 	int status;
1908 
1909 	status = spi_controller_suspend(drv_data->controller);
1910 	if (status != 0)
1911 		return status;
1912 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1913 
1914 	if (!pm_runtime_suspended(dev))
1915 		clk_disable_unprepare(ssp->clk);
1916 
1917 	return 0;
1918 }
1919 
1920 static int pxa2xx_spi_resume(struct device *dev)
1921 {
1922 	struct driver_data *drv_data = dev_get_drvdata(dev);
1923 	struct ssp_device *ssp = drv_data->ssp;
1924 	int status;
1925 
1926 	/* Enable the SSP clock */
1927 	if (!pm_runtime_suspended(dev)) {
1928 		status = clk_prepare_enable(ssp->clk);
1929 		if (status)
1930 			return status;
1931 	}
1932 
1933 	/* Start the queue running */
1934 	return spi_controller_resume(drv_data->controller);
1935 }
1936 #endif
1937 
1938 #ifdef CONFIG_PM
1939 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1940 {
1941 	struct driver_data *drv_data = dev_get_drvdata(dev);
1942 
1943 	clk_disable_unprepare(drv_data->ssp->clk);
1944 	return 0;
1945 }
1946 
1947 static int pxa2xx_spi_runtime_resume(struct device *dev)
1948 {
1949 	struct driver_data *drv_data = dev_get_drvdata(dev);
1950 	int status;
1951 
1952 	status = clk_prepare_enable(drv_data->ssp->clk);
1953 	return status;
1954 }
1955 #endif
1956 
1957 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1958 	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1959 	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1960 			   pxa2xx_spi_runtime_resume, NULL)
1961 };
1962 
1963 static struct platform_driver driver = {
1964 	.driver = {
1965 		.name	= "pxa2xx-spi",
1966 		.pm	= &pxa2xx_spi_pm_ops,
1967 		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1968 		.of_match_table = of_match_ptr(pxa2xx_spi_of_match),
1969 	},
1970 	.probe = pxa2xx_spi_probe,
1971 	.remove = pxa2xx_spi_remove,
1972 };
1973 
1974 static int __init pxa2xx_spi_init(void)
1975 {
1976 	return platform_driver_register(&driver);
1977 }
1978 subsys_initcall(pxa2xx_spi_init);
1979 
1980 static void __exit pxa2xx_spi_exit(void)
1981 {
1982 	platform_driver_unregister(&driver);
1983 }
1984 module_exit(pxa2xx_spi_exit);
1985 
1986 MODULE_SOFTDEP("pre: dw_dmac");
1987