xref: /openbmc/linux/drivers/spi/spi-pxa2xx.c (revision a44f9d6f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4  * Copyright (C) 2013, 2021 Intel Corporation
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/bitops.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/err.h>
14 #include <linux/errno.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/gpio.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/ioport.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/of.h>
24 #include <linux/pci.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/property.h>
28 #include <linux/slab.h>
29 
30 #include <linux/spi/pxa2xx_spi.h>
31 #include <linux/spi/spi.h>
32 
33 #include "spi-pxa2xx.h"
34 
35 MODULE_AUTHOR("Stephen Street");
36 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
37 MODULE_LICENSE("GPL");
38 MODULE_ALIAS("platform:pxa2xx-spi");
39 
40 #define TIMOUT_DFLT		1000
41 
42 /*
43  * For testing SSCR1 changes that require SSP restart, basically
44  * everything except the service and interrupt enables, the PXA270 developer
45  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
46  * list, but the PXA255 developer manual says all bits without really meaning
47  * the service and interrupt enables.
48  */
49 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
50 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
51 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
52 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
53 				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
54 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
55 
56 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
57 				| QUARK_X1000_SSCR1_EFWR	\
58 				| QUARK_X1000_SSCR1_RFT		\
59 				| QUARK_X1000_SSCR1_TFT		\
60 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
61 
62 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
63 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
64 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
65 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
66 				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
67 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
68 
69 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
70 #define LPSS_CS_CONTROL_SW_MODE			BIT(0)
71 #define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
72 #define LPSS_CAPS_CS_EN_SHIFT			9
73 #define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
74 
75 #define LPSS_PRIV_CLOCK_GATE 0x38
76 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3
77 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3
78 
79 struct lpss_config {
80 	/* LPSS offset from drv_data->ioaddr */
81 	unsigned offset;
82 	/* Register offsets from drv_data->lpss_base or -1 */
83 	int reg_general;
84 	int reg_ssp;
85 	int reg_cs_ctrl;
86 	int reg_capabilities;
87 	/* FIFO thresholds */
88 	u32 rx_threshold;
89 	u32 tx_threshold_lo;
90 	u32 tx_threshold_hi;
91 	/* Chip select control */
92 	unsigned cs_sel_shift;
93 	unsigned cs_sel_mask;
94 	unsigned cs_num;
95 	/* Quirks */
96 	unsigned cs_clk_stays_gated : 1;
97 };
98 
99 /* Keep these sorted with enum pxa_ssp_type */
100 static const struct lpss_config lpss_platforms[] = {
101 	{	/* LPSS_LPT_SSP */
102 		.offset = 0x800,
103 		.reg_general = 0x08,
104 		.reg_ssp = 0x0c,
105 		.reg_cs_ctrl = 0x18,
106 		.reg_capabilities = -1,
107 		.rx_threshold = 64,
108 		.tx_threshold_lo = 160,
109 		.tx_threshold_hi = 224,
110 	},
111 	{	/* LPSS_BYT_SSP */
112 		.offset = 0x400,
113 		.reg_general = 0x08,
114 		.reg_ssp = 0x0c,
115 		.reg_cs_ctrl = 0x18,
116 		.reg_capabilities = -1,
117 		.rx_threshold = 64,
118 		.tx_threshold_lo = 160,
119 		.tx_threshold_hi = 224,
120 	},
121 	{	/* LPSS_BSW_SSP */
122 		.offset = 0x400,
123 		.reg_general = 0x08,
124 		.reg_ssp = 0x0c,
125 		.reg_cs_ctrl = 0x18,
126 		.reg_capabilities = -1,
127 		.rx_threshold = 64,
128 		.tx_threshold_lo = 160,
129 		.tx_threshold_hi = 224,
130 		.cs_sel_shift = 2,
131 		.cs_sel_mask = 1 << 2,
132 		.cs_num = 2,
133 	},
134 	{	/* LPSS_SPT_SSP */
135 		.offset = 0x200,
136 		.reg_general = -1,
137 		.reg_ssp = 0x20,
138 		.reg_cs_ctrl = 0x24,
139 		.reg_capabilities = -1,
140 		.rx_threshold = 1,
141 		.tx_threshold_lo = 32,
142 		.tx_threshold_hi = 56,
143 	},
144 	{	/* LPSS_BXT_SSP */
145 		.offset = 0x200,
146 		.reg_general = -1,
147 		.reg_ssp = 0x20,
148 		.reg_cs_ctrl = 0x24,
149 		.reg_capabilities = 0xfc,
150 		.rx_threshold = 1,
151 		.tx_threshold_lo = 16,
152 		.tx_threshold_hi = 48,
153 		.cs_sel_shift = 8,
154 		.cs_sel_mask = 3 << 8,
155 		.cs_clk_stays_gated = true,
156 	},
157 	{	/* LPSS_CNL_SSP */
158 		.offset = 0x200,
159 		.reg_general = -1,
160 		.reg_ssp = 0x20,
161 		.reg_cs_ctrl = 0x24,
162 		.reg_capabilities = 0xfc,
163 		.rx_threshold = 1,
164 		.tx_threshold_lo = 32,
165 		.tx_threshold_hi = 56,
166 		.cs_sel_shift = 8,
167 		.cs_sel_mask = 3 << 8,
168 		.cs_clk_stays_gated = true,
169 	},
170 };
171 
172 static inline const struct lpss_config
173 *lpss_get_config(const struct driver_data *drv_data)
174 {
175 	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
176 }
177 
178 static bool is_lpss_ssp(const struct driver_data *drv_data)
179 {
180 	switch (drv_data->ssp_type) {
181 	case LPSS_LPT_SSP:
182 	case LPSS_BYT_SSP:
183 	case LPSS_BSW_SSP:
184 	case LPSS_SPT_SSP:
185 	case LPSS_BXT_SSP:
186 	case LPSS_CNL_SSP:
187 		return true;
188 	default:
189 		return false;
190 	}
191 }
192 
193 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
194 {
195 	return drv_data->ssp_type == QUARK_X1000_SSP;
196 }
197 
198 static bool is_mmp2_ssp(const struct driver_data *drv_data)
199 {
200 	return drv_data->ssp_type == MMP2_SSP;
201 }
202 
203 static bool is_mrfld_ssp(const struct driver_data *drv_data)
204 {
205 	return drv_data->ssp_type == MRFLD_SSP;
206 }
207 
208 static void pxa2xx_spi_update(const struct driver_data *drv_data, u32 reg, u32 mask, u32 value)
209 {
210 	if ((pxa2xx_spi_read(drv_data, reg) & mask) != value)
211 		pxa2xx_spi_write(drv_data, reg, value & mask);
212 }
213 
214 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
215 {
216 	switch (drv_data->ssp_type) {
217 	case QUARK_X1000_SSP:
218 		return QUARK_X1000_SSCR1_CHANGE_MASK;
219 	case CE4100_SSP:
220 		return CE4100_SSCR1_CHANGE_MASK;
221 	default:
222 		return SSCR1_CHANGE_MASK;
223 	}
224 }
225 
226 static u32
227 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
228 {
229 	switch (drv_data->ssp_type) {
230 	case QUARK_X1000_SSP:
231 		return RX_THRESH_QUARK_X1000_DFLT;
232 	case CE4100_SSP:
233 		return RX_THRESH_CE4100_DFLT;
234 	default:
235 		return RX_THRESH_DFLT;
236 	}
237 }
238 
239 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
240 {
241 	u32 mask;
242 
243 	switch (drv_data->ssp_type) {
244 	case QUARK_X1000_SSP:
245 		mask = QUARK_X1000_SSSR_TFL_MASK;
246 		break;
247 	case CE4100_SSP:
248 		mask = CE4100_SSSR_TFL_MASK;
249 		break;
250 	default:
251 		mask = SSSR_TFL_MASK;
252 		break;
253 	}
254 
255 	return read_SSSR_bits(drv_data, mask) == mask;
256 }
257 
258 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
259 				     u32 *sccr1_reg)
260 {
261 	u32 mask;
262 
263 	switch (drv_data->ssp_type) {
264 	case QUARK_X1000_SSP:
265 		mask = QUARK_X1000_SSCR1_RFT;
266 		break;
267 	case CE4100_SSP:
268 		mask = CE4100_SSCR1_RFT;
269 		break;
270 	default:
271 		mask = SSCR1_RFT;
272 		break;
273 	}
274 	*sccr1_reg &= ~mask;
275 }
276 
277 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
278 				   u32 *sccr1_reg, u32 threshold)
279 {
280 	switch (drv_data->ssp_type) {
281 	case QUARK_X1000_SSP:
282 		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
283 		break;
284 	case CE4100_SSP:
285 		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
286 		break;
287 	default:
288 		*sccr1_reg |= SSCR1_RxTresh(threshold);
289 		break;
290 	}
291 }
292 
293 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
294 				  u32 clk_div, u8 bits)
295 {
296 	switch (drv_data->ssp_type) {
297 	case QUARK_X1000_SSP:
298 		return clk_div
299 			| QUARK_X1000_SSCR0_Motorola
300 			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits);
301 	default:
302 		return clk_div
303 			| SSCR0_Motorola
304 			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
305 			| (bits > 16 ? SSCR0_EDSS : 0);
306 	}
307 }
308 
309 /*
310  * Read and write LPSS SSP private registers. Caller must first check that
311  * is_lpss_ssp() returns true before these can be called.
312  */
313 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
314 {
315 	WARN_ON(!drv_data->lpss_base);
316 	return readl(drv_data->lpss_base + offset);
317 }
318 
319 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
320 				  unsigned offset, u32 value)
321 {
322 	WARN_ON(!drv_data->lpss_base);
323 	writel(value, drv_data->lpss_base + offset);
324 }
325 
326 /*
327  * lpss_ssp_setup - perform LPSS SSP specific setup
328  * @drv_data: pointer to the driver private data
329  *
330  * Perform LPSS SSP specific setup. This function must be called first if
331  * one is going to use LPSS SSP private registers.
332  */
333 static void lpss_ssp_setup(struct driver_data *drv_data)
334 {
335 	const struct lpss_config *config;
336 	u32 value;
337 
338 	config = lpss_get_config(drv_data);
339 	drv_data->lpss_base = drv_data->ssp->mmio_base + config->offset;
340 
341 	/* Enable software chip select control */
342 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
343 	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
344 	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
345 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
346 
347 	/* Enable multiblock DMA transfers */
348 	if (drv_data->controller_info->enable_dma) {
349 		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
350 
351 		if (config->reg_general >= 0) {
352 			value = __lpss_ssp_read_priv(drv_data,
353 						     config->reg_general);
354 			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
355 			__lpss_ssp_write_priv(drv_data,
356 					      config->reg_general, value);
357 		}
358 	}
359 }
360 
361 static void lpss_ssp_select_cs(struct spi_device *spi,
362 			       const struct lpss_config *config)
363 {
364 	struct driver_data *drv_data =
365 		spi_controller_get_devdata(spi->controller);
366 	u32 value, cs;
367 
368 	if (!config->cs_sel_mask)
369 		return;
370 
371 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
372 
373 	cs = spi->chip_select;
374 	cs <<= config->cs_sel_shift;
375 	if (cs != (value & config->cs_sel_mask)) {
376 		/*
377 		 * When switching another chip select output active the
378 		 * output must be selected first and wait 2 ssp_clk cycles
379 		 * before changing state to active. Otherwise a short
380 		 * glitch will occur on the previous chip select since
381 		 * output select is latched but state control is not.
382 		 */
383 		value &= ~config->cs_sel_mask;
384 		value |= cs;
385 		__lpss_ssp_write_priv(drv_data,
386 				      config->reg_cs_ctrl, value);
387 		ndelay(1000000000 /
388 		       (drv_data->controller->max_speed_hz / 2));
389 	}
390 }
391 
392 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
393 {
394 	struct driver_data *drv_data =
395 		spi_controller_get_devdata(spi->controller);
396 	const struct lpss_config *config;
397 	u32 value;
398 
399 	config = lpss_get_config(drv_data);
400 
401 	if (enable)
402 		lpss_ssp_select_cs(spi, config);
403 
404 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
405 	if (enable)
406 		value &= ~LPSS_CS_CONTROL_CS_HIGH;
407 	else
408 		value |= LPSS_CS_CONTROL_CS_HIGH;
409 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
410 	if (config->cs_clk_stays_gated) {
411 		u32 clkgate;
412 
413 		/*
414 		 * Changing CS alone when dynamic clock gating is on won't
415 		 * actually flip CS at that time. This ruins SPI transfers
416 		 * that specify delays, or have no data. Toggle the clock mode
417 		 * to force on briefly to poke the CS pin to move.
418 		 */
419 		clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE);
420 		value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) |
421 			LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON;
422 
423 		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value);
424 		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate);
425 	}
426 }
427 
428 static void cs_assert(struct spi_device *spi)
429 {
430 	struct chip_data *chip = spi_get_ctldata(spi);
431 	struct driver_data *drv_data =
432 		spi_controller_get_devdata(spi->controller);
433 
434 	if (drv_data->ssp_type == CE4100_SSP) {
435 		pxa2xx_spi_write(drv_data, SSSR, spi->chip_select);
436 		return;
437 	}
438 
439 	if (chip->cs_control) {
440 		chip->cs_control(PXA2XX_CS_ASSERT);
441 		return;
442 	}
443 
444 	if (is_lpss_ssp(drv_data))
445 		lpss_ssp_cs_control(spi, true);
446 }
447 
448 static void cs_deassert(struct spi_device *spi)
449 {
450 	struct chip_data *chip = spi_get_ctldata(spi);
451 	struct driver_data *drv_data =
452 		spi_controller_get_devdata(spi->controller);
453 	unsigned long timeout;
454 
455 	if (drv_data->ssp_type == CE4100_SSP)
456 		return;
457 
458 	/* Wait until SSP becomes idle before deasserting the CS */
459 	timeout = jiffies + msecs_to_jiffies(10);
460 	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
461 	       !time_after(jiffies, timeout))
462 		cpu_relax();
463 
464 	if (chip->cs_control) {
465 		chip->cs_control(PXA2XX_CS_DEASSERT);
466 		return;
467 	}
468 
469 	if (is_lpss_ssp(drv_data))
470 		lpss_ssp_cs_control(spi, false);
471 }
472 
473 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
474 {
475 	if (level)
476 		cs_deassert(spi);
477 	else
478 		cs_assert(spi);
479 }
480 
481 int pxa2xx_spi_flush(struct driver_data *drv_data)
482 {
483 	unsigned long limit = loops_per_jiffy << 1;
484 
485 	do {
486 		while (read_SSSR_bits(drv_data, SSSR_RNE))
487 			pxa2xx_spi_read(drv_data, SSDR);
488 	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
489 	write_SSSR_CS(drv_data, SSSR_ROR);
490 
491 	return limit;
492 }
493 
494 static void pxa2xx_spi_off(struct driver_data *drv_data)
495 {
496 	/* On MMP, disabling SSE seems to corrupt the Rx FIFO */
497 	if (is_mmp2_ssp(drv_data))
498 		return;
499 
500 	pxa_ssp_disable(drv_data->ssp);
501 }
502 
503 static int null_writer(struct driver_data *drv_data)
504 {
505 	u8 n_bytes = drv_data->n_bytes;
506 
507 	if (pxa2xx_spi_txfifo_full(drv_data)
508 		|| (drv_data->tx == drv_data->tx_end))
509 		return 0;
510 
511 	pxa2xx_spi_write(drv_data, SSDR, 0);
512 	drv_data->tx += n_bytes;
513 
514 	return 1;
515 }
516 
517 static int null_reader(struct driver_data *drv_data)
518 {
519 	u8 n_bytes = drv_data->n_bytes;
520 
521 	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
522 		pxa2xx_spi_read(drv_data, SSDR);
523 		drv_data->rx += n_bytes;
524 	}
525 
526 	return drv_data->rx == drv_data->rx_end;
527 }
528 
529 static int u8_writer(struct driver_data *drv_data)
530 {
531 	if (pxa2xx_spi_txfifo_full(drv_data)
532 		|| (drv_data->tx == drv_data->tx_end))
533 		return 0;
534 
535 	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
536 	++drv_data->tx;
537 
538 	return 1;
539 }
540 
541 static int u8_reader(struct driver_data *drv_data)
542 {
543 	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
544 		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
545 		++drv_data->rx;
546 	}
547 
548 	return drv_data->rx == drv_data->rx_end;
549 }
550 
551 static int u16_writer(struct driver_data *drv_data)
552 {
553 	if (pxa2xx_spi_txfifo_full(drv_data)
554 		|| (drv_data->tx == drv_data->tx_end))
555 		return 0;
556 
557 	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
558 	drv_data->tx += 2;
559 
560 	return 1;
561 }
562 
563 static int u16_reader(struct driver_data *drv_data)
564 {
565 	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
566 		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
567 		drv_data->rx += 2;
568 	}
569 
570 	return drv_data->rx == drv_data->rx_end;
571 }
572 
573 static int u32_writer(struct driver_data *drv_data)
574 {
575 	if (pxa2xx_spi_txfifo_full(drv_data)
576 		|| (drv_data->tx == drv_data->tx_end))
577 		return 0;
578 
579 	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
580 	drv_data->tx += 4;
581 
582 	return 1;
583 }
584 
585 static int u32_reader(struct driver_data *drv_data)
586 {
587 	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
588 		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
589 		drv_data->rx += 4;
590 	}
591 
592 	return drv_data->rx == drv_data->rx_end;
593 }
594 
595 static void reset_sccr1(struct driver_data *drv_data)
596 {
597 	u32 mask = drv_data->int_cr1 | drv_data->dma_cr1, threshold;
598 	struct chip_data *chip;
599 
600 	if (drv_data->controller->cur_msg) {
601 		chip = spi_get_ctldata(drv_data->controller->cur_msg->spi);
602 		threshold = chip->threshold;
603 	} else {
604 		threshold = 0;
605 	}
606 
607 	switch (drv_data->ssp_type) {
608 	case QUARK_X1000_SSP:
609 		mask |= QUARK_X1000_SSCR1_RFT;
610 		break;
611 	case CE4100_SSP:
612 		mask |= CE4100_SSCR1_RFT;
613 		break;
614 	default:
615 		mask |= SSCR1_RFT;
616 		break;
617 	}
618 
619 	pxa2xx_spi_update(drv_data, SSCR1, mask, threshold);
620 }
621 
622 static void int_stop_and_reset(struct driver_data *drv_data)
623 {
624 	/* Clear and disable interrupts */
625 	write_SSSR_CS(drv_data, drv_data->clear_sr);
626 	reset_sccr1(drv_data);
627 	if (pxa25x_ssp_comp(drv_data))
628 		return;
629 
630 	pxa2xx_spi_write(drv_data, SSTO, 0);
631 }
632 
633 static void int_error_stop(struct driver_data *drv_data, const char *msg, int err)
634 {
635 	int_stop_and_reset(drv_data);
636 	pxa2xx_spi_flush(drv_data);
637 	pxa2xx_spi_off(drv_data);
638 
639 	dev_err(drv_data->ssp->dev, "%s\n", msg);
640 
641 	drv_data->controller->cur_msg->status = err;
642 	spi_finalize_current_transfer(drv_data->controller);
643 }
644 
645 static void int_transfer_complete(struct driver_data *drv_data)
646 {
647 	int_stop_and_reset(drv_data);
648 
649 	spi_finalize_current_transfer(drv_data->controller);
650 }
651 
652 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
653 {
654 	u32 irq_status;
655 
656 	irq_status = read_SSSR_bits(drv_data, drv_data->mask_sr);
657 	if (!(pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE))
658 		irq_status &= ~SSSR_TFS;
659 
660 	if (irq_status & SSSR_ROR) {
661 		int_error_stop(drv_data, "interrupt_transfer: FIFO overrun", -EIO);
662 		return IRQ_HANDLED;
663 	}
664 
665 	if (irq_status & SSSR_TUR) {
666 		int_error_stop(drv_data, "interrupt_transfer: FIFO underrun", -EIO);
667 		return IRQ_HANDLED;
668 	}
669 
670 	if (irq_status & SSSR_TINT) {
671 		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
672 		if (drv_data->read(drv_data)) {
673 			int_transfer_complete(drv_data);
674 			return IRQ_HANDLED;
675 		}
676 	}
677 
678 	/* Drain Rx FIFO, Fill Tx FIFO and prevent overruns */
679 	do {
680 		if (drv_data->read(drv_data)) {
681 			int_transfer_complete(drv_data);
682 			return IRQ_HANDLED;
683 		}
684 	} while (drv_data->write(drv_data));
685 
686 	if (drv_data->read(drv_data)) {
687 		int_transfer_complete(drv_data);
688 		return IRQ_HANDLED;
689 	}
690 
691 	if (drv_data->tx == drv_data->tx_end) {
692 		u32 bytes_left;
693 		u32 sccr1_reg;
694 
695 		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
696 		sccr1_reg &= ~SSCR1_TIE;
697 
698 		/*
699 		 * PXA25x_SSP has no timeout, set up Rx threshold for
700 		 * the remaining Rx bytes.
701 		 */
702 		if (pxa25x_ssp_comp(drv_data)) {
703 			u32 rx_thre;
704 
705 			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
706 
707 			bytes_left = drv_data->rx_end - drv_data->rx;
708 			switch (drv_data->n_bytes) {
709 			case 4:
710 				bytes_left >>= 2;
711 				break;
712 			case 2:
713 				bytes_left >>= 1;
714 				break;
715 			}
716 
717 			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
718 			if (rx_thre > bytes_left)
719 				rx_thre = bytes_left;
720 
721 			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
722 		}
723 		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
724 	}
725 
726 	/* We did something */
727 	return IRQ_HANDLED;
728 }
729 
730 static void handle_bad_msg(struct driver_data *drv_data)
731 {
732 	int_stop_and_reset(drv_data);
733 	pxa2xx_spi_off(drv_data);
734 
735 	dev_err(drv_data->ssp->dev, "bad message state in interrupt handler\n");
736 }
737 
738 static irqreturn_t ssp_int(int irq, void *dev_id)
739 {
740 	struct driver_data *drv_data = dev_id;
741 	u32 sccr1_reg;
742 	u32 mask = drv_data->mask_sr;
743 	u32 status;
744 
745 	/*
746 	 * The IRQ might be shared with other peripherals so we must first
747 	 * check that are we RPM suspended or not. If we are we assume that
748 	 * the IRQ was not for us (we shouldn't be RPM suspended when the
749 	 * interrupt is enabled).
750 	 */
751 	if (pm_runtime_suspended(drv_data->ssp->dev))
752 		return IRQ_NONE;
753 
754 	/*
755 	 * If the device is not yet in RPM suspended state and we get an
756 	 * interrupt that is meant for another device, check if status bits
757 	 * are all set to one. That means that the device is already
758 	 * powered off.
759 	 */
760 	status = pxa2xx_spi_read(drv_data, SSSR);
761 	if (status == ~0)
762 		return IRQ_NONE;
763 
764 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
765 
766 	/* Ignore possible writes if we don't need to write */
767 	if (!(sccr1_reg & SSCR1_TIE))
768 		mask &= ~SSSR_TFS;
769 
770 	/* Ignore RX timeout interrupt if it is disabled */
771 	if (!(sccr1_reg & SSCR1_TINTE))
772 		mask &= ~SSSR_TINT;
773 
774 	if (!(status & mask))
775 		return IRQ_NONE;
776 
777 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
778 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
779 
780 	if (!drv_data->controller->cur_msg) {
781 		handle_bad_msg(drv_data);
782 		/* Never fail */
783 		return IRQ_HANDLED;
784 	}
785 
786 	return drv_data->transfer_handler(drv_data);
787 }
788 
789 /*
790  * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
791  * input frequency by fractions of 2^24. It also has a divider by 5.
792  *
793  * There are formulas to get baud rate value for given input frequency and
794  * divider parameters, such as DDS_CLK_RATE and SCR:
795  *
796  * Fsys = 200MHz
797  *
798  * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
799  * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
800  *
801  * DDS_CLK_RATE either 2^n or 2^n / 5.
802  * SCR is in range 0 .. 255
803  *
804  * Divisor = 5^i * 2^j * 2 * k
805  *       i = [0, 1]      i = 1 iff j = 0 or j > 3
806  *       j = [0, 23]     j = 0 iff i = 1
807  *       k = [1, 256]
808  * Special case: j = 0, i = 1: Divisor = 2 / 5
809  *
810  * Accordingly to the specification the recommended values for DDS_CLK_RATE
811  * are:
812  *	Case 1:		2^n, n = [0, 23]
813  *	Case 2:		2^24 * 2 / 5 (0x666666)
814  *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
815  *
816  * In all cases the lowest possible value is better.
817  *
818  * The function calculates parameters for all cases and chooses the one closest
819  * to the asked baud rate.
820  */
821 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
822 {
823 	unsigned long xtal = 200000000;
824 	unsigned long fref = xtal / 2;		/* mandatory division by 2,
825 						   see (2) */
826 						/* case 3 */
827 	unsigned long fref1 = fref / 2;		/* case 1 */
828 	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
829 	unsigned long scale;
830 	unsigned long q, q1, q2;
831 	long r, r1, r2;
832 	u32 mul;
833 
834 	/* Case 1 */
835 
836 	/* Set initial value for DDS_CLK_RATE */
837 	mul = (1 << 24) >> 1;
838 
839 	/* Calculate initial quot */
840 	q1 = DIV_ROUND_UP(fref1, rate);
841 
842 	/* Scale q1 if it's too big */
843 	if (q1 > 256) {
844 		/* Scale q1 to range [1, 512] */
845 		scale = fls_long(q1 - 1);
846 		if (scale > 9) {
847 			q1 >>= scale - 9;
848 			mul >>= scale - 9;
849 		}
850 
851 		/* Round the result if we have a remainder */
852 		q1 += q1 & 1;
853 	}
854 
855 	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
856 	scale = __ffs(q1);
857 	q1 >>= scale;
858 	mul >>= scale;
859 
860 	/* Get the remainder */
861 	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
862 
863 	/* Case 2 */
864 
865 	q2 = DIV_ROUND_UP(fref2, rate);
866 	r2 = abs(fref2 / q2 - rate);
867 
868 	/*
869 	 * Choose the best between two: less remainder we have the better. We
870 	 * can't go case 2 if q2 is greater than 256 since SCR register can
871 	 * hold only values 0 .. 255.
872 	 */
873 	if (r2 >= r1 || q2 > 256) {
874 		/* case 1 is better */
875 		r = r1;
876 		q = q1;
877 	} else {
878 		/* case 2 is better */
879 		r = r2;
880 		q = q2;
881 		mul = (1 << 24) * 2 / 5;
882 	}
883 
884 	/* Check case 3 only if the divisor is big enough */
885 	if (fref / rate >= 80) {
886 		u64 fssp;
887 		u32 m;
888 
889 		/* Calculate initial quot */
890 		q1 = DIV_ROUND_UP(fref, rate);
891 		m = (1 << 24) / q1;
892 
893 		/* Get the remainder */
894 		fssp = (u64)fref * m;
895 		do_div(fssp, 1 << 24);
896 		r1 = abs(fssp - rate);
897 
898 		/* Choose this one if it suits better */
899 		if (r1 < r) {
900 			/* case 3 is better */
901 			q = 1;
902 			mul = m;
903 		}
904 	}
905 
906 	*dds = mul;
907 	return q - 1;
908 }
909 
910 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
911 {
912 	unsigned long ssp_clk = drv_data->controller->max_speed_hz;
913 	const struct ssp_device *ssp = drv_data->ssp;
914 
915 	rate = min_t(int, ssp_clk, rate);
916 
917 	/*
918 	 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
919 	 * that the SSP transmission rate can be greater than the device rate.
920 	 */
921 	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
922 		return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
923 	else
924 		return (DIV_ROUND_UP(ssp_clk, rate) - 1)  & 0xfff;
925 }
926 
927 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
928 					   int rate)
929 {
930 	struct chip_data *chip =
931 		spi_get_ctldata(drv_data->controller->cur_msg->spi);
932 	unsigned int clk_div;
933 
934 	switch (drv_data->ssp_type) {
935 	case QUARK_X1000_SSP:
936 		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
937 		break;
938 	default:
939 		clk_div = ssp_get_clk_div(drv_data, rate);
940 		break;
941 	}
942 	return clk_div << 8;
943 }
944 
945 static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
946 			       struct spi_device *spi,
947 			       struct spi_transfer *xfer)
948 {
949 	struct chip_data *chip = spi_get_ctldata(spi);
950 
951 	return chip->enable_dma &&
952 	       xfer->len <= MAX_DMA_LEN &&
953 	       xfer->len >= chip->dma_burst_size;
954 }
955 
956 static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
957 				   struct spi_device *spi,
958 				   struct spi_transfer *transfer)
959 {
960 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
961 	struct spi_message *message = controller->cur_msg;
962 	struct chip_data *chip = spi_get_ctldata(spi);
963 	u32 dma_thresh = chip->dma_threshold;
964 	u32 dma_burst = chip->dma_burst_size;
965 	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
966 	u32 clk_div;
967 	u8 bits;
968 	u32 speed;
969 	u32 cr0;
970 	u32 cr1;
971 	int err;
972 	int dma_mapped;
973 
974 	/* Check if we can DMA this transfer */
975 	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
976 
977 		/* Reject already-mapped transfers; PIO won't always work */
978 		if (message->is_dma_mapped
979 				|| transfer->rx_dma || transfer->tx_dma) {
980 			dev_err(&spi->dev,
981 				"Mapped transfer length of %u is greater than %d\n",
982 				transfer->len, MAX_DMA_LEN);
983 			return -EINVAL;
984 		}
985 
986 		/* Warn ... we force this to PIO mode */
987 		dev_warn_ratelimited(&spi->dev,
988 				     "DMA disabled for transfer length %u greater than %d\n",
989 				     transfer->len, MAX_DMA_LEN);
990 	}
991 
992 	/* Setup the transfer state based on the type of transfer */
993 	if (pxa2xx_spi_flush(drv_data) == 0) {
994 		dev_err(&spi->dev, "Flush failed\n");
995 		return -EIO;
996 	}
997 	drv_data->n_bytes = chip->n_bytes;
998 	drv_data->tx = (void *)transfer->tx_buf;
999 	drv_data->tx_end = drv_data->tx + transfer->len;
1000 	drv_data->rx = transfer->rx_buf;
1001 	drv_data->rx_end = drv_data->rx + transfer->len;
1002 	drv_data->write = drv_data->tx ? chip->write : null_writer;
1003 	drv_data->read = drv_data->rx ? chip->read : null_reader;
1004 
1005 	/* Change speed and bit per word on a per transfer */
1006 	bits = transfer->bits_per_word;
1007 	speed = transfer->speed_hz;
1008 
1009 	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
1010 
1011 	if (bits <= 8) {
1012 		drv_data->n_bytes = 1;
1013 		drv_data->read = drv_data->read != null_reader ?
1014 					u8_reader : null_reader;
1015 		drv_data->write = drv_data->write != null_writer ?
1016 					u8_writer : null_writer;
1017 	} else if (bits <= 16) {
1018 		drv_data->n_bytes = 2;
1019 		drv_data->read = drv_data->read != null_reader ?
1020 					u16_reader : null_reader;
1021 		drv_data->write = drv_data->write != null_writer ?
1022 					u16_writer : null_writer;
1023 	} else if (bits <= 32) {
1024 		drv_data->n_bytes = 4;
1025 		drv_data->read = drv_data->read != null_reader ?
1026 					u32_reader : null_reader;
1027 		drv_data->write = drv_data->write != null_writer ?
1028 					u32_writer : null_writer;
1029 	}
1030 	/*
1031 	 * If bits per word is changed in DMA mode, then must check
1032 	 * the thresholds and burst also.
1033 	 */
1034 	if (chip->enable_dma) {
1035 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1036 						spi,
1037 						bits, &dma_burst,
1038 						&dma_thresh))
1039 			dev_warn_ratelimited(&spi->dev,
1040 					     "DMA burst size reduced to match bits_per_word\n");
1041 	}
1042 
1043 	dma_mapped = controller->can_dma &&
1044 		     controller->can_dma(controller, spi, transfer) &&
1045 		     controller->cur_msg_mapped;
1046 	if (dma_mapped) {
1047 
1048 		/* Ensure we have the correct interrupt handler */
1049 		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1050 
1051 		err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1052 		if (err)
1053 			return err;
1054 
1055 		/* Clear status and start DMA engine */
1056 		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1057 		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1058 
1059 		pxa2xx_spi_dma_start(drv_data);
1060 	} else {
1061 		/* Ensure we have the correct interrupt handler	*/
1062 		drv_data->transfer_handler = interrupt_transfer;
1063 
1064 		/* Clear status  */
1065 		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1066 		write_SSSR_CS(drv_data, drv_data->clear_sr);
1067 	}
1068 
1069 	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1070 	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1071 	if (!pxa25x_ssp_comp(drv_data))
1072 		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1073 			controller->max_speed_hz
1074 				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1075 			dma_mapped ? "DMA" : "PIO");
1076 	else
1077 		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1078 			controller->max_speed_hz / 2
1079 				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1080 			dma_mapped ? "DMA" : "PIO");
1081 
1082 	if (is_lpss_ssp(drv_data)) {
1083 		pxa2xx_spi_update(drv_data, SSIRF, GENMASK(7, 0), chip->lpss_rx_threshold);
1084 		pxa2xx_spi_update(drv_data, SSITF, GENMASK(15, 0), chip->lpss_tx_threshold);
1085 	}
1086 
1087 	if (is_mrfld_ssp(drv_data)) {
1088 		u32 mask = SFIFOTT_RFT | SFIFOTT_TFT;
1089 		u32 thresh = 0;
1090 
1091 		thresh |= SFIFOTT_RxThresh(chip->lpss_rx_threshold);
1092 		thresh |= SFIFOTT_TxThresh(chip->lpss_tx_threshold);
1093 
1094 		pxa2xx_spi_update(drv_data, SFIFOTT, mask, thresh);
1095 	}
1096 
1097 	if (is_quark_x1000_ssp(drv_data))
1098 		pxa2xx_spi_update(drv_data, DDS_RATE, GENMASK(23, 0), chip->dds_rate);
1099 
1100 	/* Stop the SSP */
1101 	if (!is_mmp2_ssp(drv_data))
1102 		pxa_ssp_disable(drv_data->ssp);
1103 
1104 	if (!pxa25x_ssp_comp(drv_data))
1105 		pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1106 
1107 	/* First set CR1 without interrupt and service enables */
1108 	pxa2xx_spi_update(drv_data, SSCR1, change_mask, cr1);
1109 
1110 	/* See if we need to reload the configuration registers */
1111 	pxa2xx_spi_update(drv_data, SSCR0, GENMASK(31, 0), cr0);
1112 
1113 	/* Restart the SSP */
1114 	pxa_ssp_enable(drv_data->ssp);
1115 
1116 	if (is_mmp2_ssp(drv_data)) {
1117 		u8 tx_level = read_SSSR_bits(drv_data, SSSR_TFL_MASK) >> 8;
1118 
1119 		if (tx_level) {
1120 			/* On MMP2, flipping SSE doesn't to empty Tx FIFO. */
1121 			dev_warn(&spi->dev, "%u bytes of garbage in Tx FIFO!\n", tx_level);
1122 			if (tx_level > transfer->len)
1123 				tx_level = transfer->len;
1124 			drv_data->tx += tx_level;
1125 		}
1126 	}
1127 
1128 	if (spi_controller_is_slave(controller)) {
1129 		while (drv_data->write(drv_data))
1130 			;
1131 		if (drv_data->gpiod_ready) {
1132 			gpiod_set_value(drv_data->gpiod_ready, 1);
1133 			udelay(1);
1134 			gpiod_set_value(drv_data->gpiod_ready, 0);
1135 		}
1136 	}
1137 
1138 	/*
1139 	 * Release the data by enabling service requests and interrupts,
1140 	 * without changing any mode bits.
1141 	 */
1142 	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1143 
1144 	return 1;
1145 }
1146 
1147 static int pxa2xx_spi_slave_abort(struct spi_controller *controller)
1148 {
1149 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1150 
1151 	int_error_stop(drv_data, "transfer aborted", -EINTR);
1152 
1153 	return 0;
1154 }
1155 
1156 static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1157 				 struct spi_message *msg)
1158 {
1159 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1160 
1161 	int_stop_and_reset(drv_data);
1162 
1163 	/* Disable the SSP */
1164 	pxa2xx_spi_off(drv_data);
1165 
1166 	/*
1167 	 * Stop the DMA if running. Note DMA callback handler may have unset
1168 	 * the dma_running already, which is fine as stopping is not needed
1169 	 * then but we shouldn't rely this flag for anything else than
1170 	 * stopping. For instance to differentiate between PIO and DMA
1171 	 * transfers.
1172 	 */
1173 	if (atomic_read(&drv_data->dma_running))
1174 		pxa2xx_spi_dma_stop(drv_data);
1175 }
1176 
1177 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1178 {
1179 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1180 
1181 	/* Disable the SSP now */
1182 	pxa2xx_spi_off(drv_data);
1183 
1184 	return 0;
1185 }
1186 
1187 static void cleanup_cs(struct spi_device *spi)
1188 {
1189 	if (!gpio_is_valid(spi->cs_gpio))
1190 		return;
1191 
1192 	gpio_free(spi->cs_gpio);
1193 	spi->cs_gpio = -ENOENT;
1194 }
1195 
1196 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1197 		    struct pxa2xx_spi_chip *chip_info)
1198 {
1199 	struct driver_data *drv_data = spi_controller_get_devdata(spi->controller);
1200 
1201 	if (chip == NULL)
1202 		return 0;
1203 
1204 	if (chip_info == NULL)
1205 		return 0;
1206 
1207 	if (drv_data->ssp_type == CE4100_SSP)
1208 		return 0;
1209 
1210 	/*
1211 	 * NOTE: setup() can be called multiple times, possibly with
1212 	 * different chip_info, release previously requested GPIO.
1213 	 */
1214 	cleanup_cs(spi);
1215 
1216 	/* If ->cs_control() is provided, ignore GPIO chip select */
1217 	if (chip_info->cs_control) {
1218 		chip->cs_control = chip_info->cs_control;
1219 		return 0;
1220 	}
1221 
1222 	if (gpio_is_valid(chip_info->gpio_cs)) {
1223 		int gpio = chip_info->gpio_cs;
1224 		int err;
1225 
1226 		err = gpio_request(gpio, "SPI_CS");
1227 		if (err) {
1228 			dev_err(&spi->dev, "failed to request chip select GPIO%d\n", gpio);
1229 			return err;
1230 		}
1231 
1232 		err = gpio_direction_output(gpio, !(spi->mode & SPI_CS_HIGH));
1233 		if (err) {
1234 			gpio_free(gpio);
1235 			return err;
1236 		}
1237 
1238 		spi->cs_gpio = gpio;
1239 	}
1240 
1241 	return 0;
1242 }
1243 
1244 static int setup(struct spi_device *spi)
1245 {
1246 	struct pxa2xx_spi_chip *chip_info;
1247 	struct chip_data *chip;
1248 	const struct lpss_config *config;
1249 	struct driver_data *drv_data =
1250 		spi_controller_get_devdata(spi->controller);
1251 	uint tx_thres, tx_hi_thres, rx_thres;
1252 	int err;
1253 
1254 	switch (drv_data->ssp_type) {
1255 	case QUARK_X1000_SSP:
1256 		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1257 		tx_hi_thres = 0;
1258 		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1259 		break;
1260 	case MRFLD_SSP:
1261 		tx_thres = TX_THRESH_MRFLD_DFLT;
1262 		tx_hi_thres = 0;
1263 		rx_thres = RX_THRESH_MRFLD_DFLT;
1264 		break;
1265 	case CE4100_SSP:
1266 		tx_thres = TX_THRESH_CE4100_DFLT;
1267 		tx_hi_thres = 0;
1268 		rx_thres = RX_THRESH_CE4100_DFLT;
1269 		break;
1270 	case LPSS_LPT_SSP:
1271 	case LPSS_BYT_SSP:
1272 	case LPSS_BSW_SSP:
1273 	case LPSS_SPT_SSP:
1274 	case LPSS_BXT_SSP:
1275 	case LPSS_CNL_SSP:
1276 		config = lpss_get_config(drv_data);
1277 		tx_thres = config->tx_threshold_lo;
1278 		tx_hi_thres = config->tx_threshold_hi;
1279 		rx_thres = config->rx_threshold;
1280 		break;
1281 	default:
1282 		tx_hi_thres = 0;
1283 		if (spi_controller_is_slave(drv_data->controller)) {
1284 			tx_thres = 1;
1285 			rx_thres = 2;
1286 		} else {
1287 			tx_thres = TX_THRESH_DFLT;
1288 			rx_thres = RX_THRESH_DFLT;
1289 		}
1290 		break;
1291 	}
1292 
1293 	/* Only allocate on the first setup */
1294 	chip = spi_get_ctldata(spi);
1295 	if (!chip) {
1296 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1297 		if (!chip)
1298 			return -ENOMEM;
1299 
1300 		if (drv_data->ssp_type == CE4100_SSP) {
1301 			if (spi->chip_select > 4) {
1302 				dev_err(&spi->dev,
1303 					"failed setup: cs number must not be > 4.\n");
1304 				kfree(chip);
1305 				return -EINVAL;
1306 			}
1307 		}
1308 		chip->enable_dma = drv_data->controller_info->enable_dma;
1309 		chip->timeout = TIMOUT_DFLT;
1310 	}
1311 
1312 	/*
1313 	 * Protocol drivers may change the chip settings, so...
1314 	 * if chip_info exists, use it.
1315 	 */
1316 	chip_info = spi->controller_data;
1317 
1318 	/* chip_info isn't always needed */
1319 	chip->cr1 = 0;
1320 	if (chip_info) {
1321 		if (chip_info->timeout)
1322 			chip->timeout = chip_info->timeout;
1323 		if (chip_info->tx_threshold)
1324 			tx_thres = chip_info->tx_threshold;
1325 		if (chip_info->tx_hi_threshold)
1326 			tx_hi_thres = chip_info->tx_hi_threshold;
1327 		if (chip_info->rx_threshold)
1328 			rx_thres = chip_info->rx_threshold;
1329 		chip->dma_threshold = 0;
1330 		if (chip_info->enable_loopback)
1331 			chip->cr1 = SSCR1_LBM;
1332 	}
1333 	if (spi_controller_is_slave(drv_data->controller)) {
1334 		chip->cr1 |= SSCR1_SCFR;
1335 		chip->cr1 |= SSCR1_SCLKDIR;
1336 		chip->cr1 |= SSCR1_SFRMDIR;
1337 		chip->cr1 |= SSCR1_SPH;
1338 	}
1339 
1340 	if (is_lpss_ssp(drv_data)) {
1341 		chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1342 		chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) |
1343 					  SSITF_TxHiThresh(tx_hi_thres);
1344 	}
1345 
1346 	if (is_mrfld_ssp(drv_data)) {
1347 		chip->lpss_rx_threshold = rx_thres;
1348 		chip->lpss_tx_threshold = tx_thres;
1349 	}
1350 
1351 	/*
1352 	 * Set DMA burst and threshold outside of chip_info path so that if
1353 	 * chip_info goes away after setting chip->enable_dma, the burst and
1354 	 * threshold can still respond to changes in bits_per_word.
1355 	 */
1356 	if (chip->enable_dma) {
1357 		/* Set up legal burst and threshold for DMA */
1358 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1359 						spi->bits_per_word,
1360 						&chip->dma_burst_size,
1361 						&chip->dma_threshold)) {
1362 			dev_warn(&spi->dev,
1363 				 "in setup: DMA burst size reduced to match bits_per_word\n");
1364 		}
1365 		dev_dbg(&spi->dev,
1366 			"in setup: DMA burst size set to %u\n",
1367 			chip->dma_burst_size);
1368 	}
1369 
1370 	switch (drv_data->ssp_type) {
1371 	case QUARK_X1000_SSP:
1372 		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1373 				   & QUARK_X1000_SSCR1_RFT)
1374 				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1375 				   & QUARK_X1000_SSCR1_TFT);
1376 		break;
1377 	case CE4100_SSP:
1378 		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1379 			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1380 		break;
1381 	default:
1382 		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1383 			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1384 		break;
1385 	}
1386 
1387 	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1388 	chip->cr1 |= ((spi->mode & SPI_CPHA) ? SSCR1_SPH : 0) |
1389 		     ((spi->mode & SPI_CPOL) ? SSCR1_SPO : 0);
1390 
1391 	if (spi->mode & SPI_LOOP)
1392 		chip->cr1 |= SSCR1_LBM;
1393 
1394 	if (spi->bits_per_word <= 8) {
1395 		chip->n_bytes = 1;
1396 		chip->read = u8_reader;
1397 		chip->write = u8_writer;
1398 	} else if (spi->bits_per_word <= 16) {
1399 		chip->n_bytes = 2;
1400 		chip->read = u16_reader;
1401 		chip->write = u16_writer;
1402 	} else if (spi->bits_per_word <= 32) {
1403 		chip->n_bytes = 4;
1404 		chip->read = u32_reader;
1405 		chip->write = u32_writer;
1406 	}
1407 
1408 	spi_set_ctldata(spi, chip);
1409 
1410 	if (drv_data->ssp_type == CE4100_SSP)
1411 		return 0;
1412 
1413 	err = setup_cs(spi, chip, chip_info);
1414 	if (err)
1415 		kfree(chip);
1416 
1417 	return err;
1418 }
1419 
1420 static void cleanup(struct spi_device *spi)
1421 {
1422 	struct chip_data *chip = spi_get_ctldata(spi);
1423 
1424 	cleanup_cs(spi);
1425 	kfree(chip);
1426 }
1427 
1428 #ifdef CONFIG_ACPI
1429 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1430 	{ "INT33C0", LPSS_LPT_SSP },
1431 	{ "INT33C1", LPSS_LPT_SSP },
1432 	{ "INT3430", LPSS_LPT_SSP },
1433 	{ "INT3431", LPSS_LPT_SSP },
1434 	{ "80860F0E", LPSS_BYT_SSP },
1435 	{ "8086228E", LPSS_BSW_SSP },
1436 	{ },
1437 };
1438 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1439 #endif
1440 
1441 /*
1442  * PCI IDs of compound devices that integrate both host controller and private
1443  * integrated DMA engine. Please note these are not used in module
1444  * autoloading and probing in this module but matching the LPSS SSP type.
1445  */
1446 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1447 	/* SPT-LP */
1448 	{ PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1449 	{ PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1450 	/* SPT-H */
1451 	{ PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1452 	{ PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1453 	/* KBL-H */
1454 	{ PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1455 	{ PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1456 	/* CML-V */
1457 	{ PCI_VDEVICE(INTEL, 0xa3a9), LPSS_SPT_SSP },
1458 	{ PCI_VDEVICE(INTEL, 0xa3aa), LPSS_SPT_SSP },
1459 	/* BXT A-Step */
1460 	{ PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1461 	{ PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1462 	{ PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1463 	/* BXT B-Step */
1464 	{ PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1465 	{ PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1466 	{ PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1467 	/* GLK */
1468 	{ PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1469 	{ PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1470 	{ PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1471 	/* ICL-LP */
1472 	{ PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP },
1473 	{ PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP },
1474 	{ PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP },
1475 	/* EHL */
1476 	{ PCI_VDEVICE(INTEL, 0x4b2a), LPSS_BXT_SSP },
1477 	{ PCI_VDEVICE(INTEL, 0x4b2b), LPSS_BXT_SSP },
1478 	{ PCI_VDEVICE(INTEL, 0x4b37), LPSS_BXT_SSP },
1479 	/* JSL */
1480 	{ PCI_VDEVICE(INTEL, 0x4daa), LPSS_CNL_SSP },
1481 	{ PCI_VDEVICE(INTEL, 0x4dab), LPSS_CNL_SSP },
1482 	{ PCI_VDEVICE(INTEL, 0x4dfb), LPSS_CNL_SSP },
1483 	/* TGL-H */
1484 	{ PCI_VDEVICE(INTEL, 0x43aa), LPSS_CNL_SSP },
1485 	{ PCI_VDEVICE(INTEL, 0x43ab), LPSS_CNL_SSP },
1486 	{ PCI_VDEVICE(INTEL, 0x43fb), LPSS_CNL_SSP },
1487 	{ PCI_VDEVICE(INTEL, 0x43fd), LPSS_CNL_SSP },
1488 	/* ADL-P */
1489 	{ PCI_VDEVICE(INTEL, 0x51aa), LPSS_CNL_SSP },
1490 	{ PCI_VDEVICE(INTEL, 0x51ab), LPSS_CNL_SSP },
1491 	{ PCI_VDEVICE(INTEL, 0x51fb), LPSS_CNL_SSP },
1492 	/* ADL-M */
1493 	{ PCI_VDEVICE(INTEL, 0x54aa), LPSS_CNL_SSP },
1494 	{ PCI_VDEVICE(INTEL, 0x54ab), LPSS_CNL_SSP },
1495 	{ PCI_VDEVICE(INTEL, 0x54fb), LPSS_CNL_SSP },
1496 	/* APL */
1497 	{ PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1498 	{ PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1499 	{ PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1500 	/* ADL-S */
1501 	{ PCI_VDEVICE(INTEL, 0x7aaa), LPSS_CNL_SSP },
1502 	{ PCI_VDEVICE(INTEL, 0x7aab), LPSS_CNL_SSP },
1503 	{ PCI_VDEVICE(INTEL, 0x7af9), LPSS_CNL_SSP },
1504 	{ PCI_VDEVICE(INTEL, 0x7afb), LPSS_CNL_SSP },
1505 	/* CNL-LP */
1506 	{ PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1507 	{ PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1508 	{ PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1509 	/* CNL-H */
1510 	{ PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1511 	{ PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1512 	{ PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1513 	/* CML-LP */
1514 	{ PCI_VDEVICE(INTEL, 0x02aa), LPSS_CNL_SSP },
1515 	{ PCI_VDEVICE(INTEL, 0x02ab), LPSS_CNL_SSP },
1516 	{ PCI_VDEVICE(INTEL, 0x02fb), LPSS_CNL_SSP },
1517 	/* CML-H */
1518 	{ PCI_VDEVICE(INTEL, 0x06aa), LPSS_CNL_SSP },
1519 	{ PCI_VDEVICE(INTEL, 0x06ab), LPSS_CNL_SSP },
1520 	{ PCI_VDEVICE(INTEL, 0x06fb), LPSS_CNL_SSP },
1521 	/* TGL-LP */
1522 	{ PCI_VDEVICE(INTEL, 0xa0aa), LPSS_CNL_SSP },
1523 	{ PCI_VDEVICE(INTEL, 0xa0ab), LPSS_CNL_SSP },
1524 	{ PCI_VDEVICE(INTEL, 0xa0de), LPSS_CNL_SSP },
1525 	{ PCI_VDEVICE(INTEL, 0xa0df), LPSS_CNL_SSP },
1526 	{ PCI_VDEVICE(INTEL, 0xa0fb), LPSS_CNL_SSP },
1527 	{ PCI_VDEVICE(INTEL, 0xa0fd), LPSS_CNL_SSP },
1528 	{ PCI_VDEVICE(INTEL, 0xa0fe), LPSS_CNL_SSP },
1529 	{ },
1530 };
1531 
1532 static const struct of_device_id pxa2xx_spi_of_match[] = {
1533 	{ .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1534 	{},
1535 };
1536 MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1537 
1538 #ifdef CONFIG_ACPI
1539 
1540 static int pxa2xx_spi_get_port_id(struct device *dev)
1541 {
1542 	struct acpi_device *adev;
1543 	unsigned int devid;
1544 	int port_id = -1;
1545 
1546 	adev = ACPI_COMPANION(dev);
1547 	if (adev && adev->pnp.unique_id &&
1548 	    !kstrtouint(adev->pnp.unique_id, 0, &devid))
1549 		port_id = devid;
1550 	return port_id;
1551 }
1552 
1553 #else /* !CONFIG_ACPI */
1554 
1555 static int pxa2xx_spi_get_port_id(struct device *dev)
1556 {
1557 	return -1;
1558 }
1559 
1560 #endif /* CONFIG_ACPI */
1561 
1562 
1563 #ifdef CONFIG_PCI
1564 
1565 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1566 {
1567 	return param == chan->device->dev;
1568 }
1569 
1570 #endif /* CONFIG_PCI */
1571 
1572 static struct pxa2xx_spi_controller *
1573 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1574 {
1575 	struct pxa2xx_spi_controller *pdata;
1576 	struct ssp_device *ssp;
1577 	struct resource *res;
1578 	struct device *parent = pdev->dev.parent;
1579 	struct pci_dev *pcidev = dev_is_pci(parent) ? to_pci_dev(parent) : NULL;
1580 	const struct pci_device_id *pcidev_id = NULL;
1581 	enum pxa_ssp_type type;
1582 	const void *match;
1583 
1584 	if (pcidev)
1585 		pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match, pcidev);
1586 
1587 	match = device_get_match_data(&pdev->dev);
1588 	if (match)
1589 		type = (enum pxa_ssp_type)match;
1590 	else if (pcidev_id)
1591 		type = (enum pxa_ssp_type)pcidev_id->driver_data;
1592 	else
1593 		return ERR_PTR(-EINVAL);
1594 
1595 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1596 	if (!pdata)
1597 		return ERR_PTR(-ENOMEM);
1598 
1599 	ssp = &pdata->ssp;
1600 
1601 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1602 	ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1603 	if (IS_ERR(ssp->mmio_base))
1604 		return ERR_CAST(ssp->mmio_base);
1605 
1606 	ssp->phys_base = res->start;
1607 
1608 #ifdef CONFIG_PCI
1609 	if (pcidev_id) {
1610 		pdata->tx_param = parent;
1611 		pdata->rx_param = parent;
1612 		pdata->dma_filter = pxa2xx_spi_idma_filter;
1613 	}
1614 #endif
1615 
1616 	ssp->clk = devm_clk_get(&pdev->dev, NULL);
1617 	if (IS_ERR(ssp->clk))
1618 		return ERR_CAST(ssp->clk);
1619 
1620 	ssp->irq = platform_get_irq(pdev, 0);
1621 	if (ssp->irq < 0)
1622 		return ERR_PTR(ssp->irq);
1623 
1624 	ssp->type = type;
1625 	ssp->dev = &pdev->dev;
1626 	ssp->port_id = pxa2xx_spi_get_port_id(&pdev->dev);
1627 
1628 	pdata->is_slave = device_property_read_bool(&pdev->dev, "spi-slave");
1629 	pdata->num_chipselect = 1;
1630 	pdata->enable_dma = true;
1631 	pdata->dma_burst_size = 1;
1632 
1633 	return pdata;
1634 }
1635 
1636 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1637 				      unsigned int cs)
1638 {
1639 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1640 
1641 	if (has_acpi_companion(drv_data->ssp->dev)) {
1642 		switch (drv_data->ssp_type) {
1643 		/*
1644 		 * For Atoms the ACPI DeviceSelection used by the Windows
1645 		 * driver starts from 1 instead of 0 so translate it here
1646 		 * to match what Linux expects.
1647 		 */
1648 		case LPSS_BYT_SSP:
1649 		case LPSS_BSW_SSP:
1650 			return cs - 1;
1651 
1652 		default:
1653 			break;
1654 		}
1655 	}
1656 
1657 	return cs;
1658 }
1659 
1660 static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi)
1661 {
1662 	return MAX_DMA_LEN;
1663 }
1664 
1665 static int pxa2xx_spi_probe(struct platform_device *pdev)
1666 {
1667 	struct device *dev = &pdev->dev;
1668 	struct pxa2xx_spi_controller *platform_info;
1669 	struct spi_controller *controller;
1670 	struct driver_data *drv_data;
1671 	struct ssp_device *ssp;
1672 	const struct lpss_config *config;
1673 	int status;
1674 	u32 tmp;
1675 
1676 	platform_info = dev_get_platdata(dev);
1677 	if (!platform_info) {
1678 		platform_info = pxa2xx_spi_init_pdata(pdev);
1679 		if (IS_ERR(platform_info)) {
1680 			dev_err(&pdev->dev, "missing platform data\n");
1681 			return PTR_ERR(platform_info);
1682 		}
1683 	}
1684 
1685 	ssp = pxa_ssp_request(pdev->id, pdev->name);
1686 	if (!ssp)
1687 		ssp = &platform_info->ssp;
1688 
1689 	if (!ssp->mmio_base) {
1690 		dev_err(&pdev->dev, "failed to get SSP\n");
1691 		return -ENODEV;
1692 	}
1693 
1694 	if (platform_info->is_slave)
1695 		controller = devm_spi_alloc_slave(dev, sizeof(*drv_data));
1696 	else
1697 		controller = devm_spi_alloc_master(dev, sizeof(*drv_data));
1698 
1699 	if (!controller) {
1700 		dev_err(&pdev->dev, "cannot alloc spi_controller\n");
1701 		status = -ENOMEM;
1702 		goto out_error_controller_alloc;
1703 	}
1704 	drv_data = spi_controller_get_devdata(controller);
1705 	drv_data->controller = controller;
1706 	drv_data->controller_info = platform_info;
1707 	drv_data->ssp = ssp;
1708 
1709 	controller->dev.of_node = dev->of_node;
1710 	controller->dev.fwnode = dev->fwnode;
1711 
1712 	/* The spi->mode bits understood by this driver: */
1713 	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1714 
1715 	controller->bus_num = ssp->port_id;
1716 	controller->dma_alignment = DMA_ALIGNMENT;
1717 	controller->cleanup = cleanup;
1718 	controller->setup = setup;
1719 	controller->set_cs = pxa2xx_spi_set_cs;
1720 	controller->transfer_one = pxa2xx_spi_transfer_one;
1721 	controller->slave_abort = pxa2xx_spi_slave_abort;
1722 	controller->handle_err = pxa2xx_spi_handle_err;
1723 	controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1724 	controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1725 	controller->auto_runtime_pm = true;
1726 	controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1727 
1728 	drv_data->ssp_type = ssp->type;
1729 
1730 	if (pxa25x_ssp_comp(drv_data)) {
1731 		switch (drv_data->ssp_type) {
1732 		case QUARK_X1000_SSP:
1733 			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1734 			break;
1735 		default:
1736 			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1737 			break;
1738 		}
1739 
1740 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1741 		drv_data->dma_cr1 = 0;
1742 		drv_data->clear_sr = SSSR_ROR;
1743 		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1744 	} else {
1745 		controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1746 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1747 		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1748 		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1749 		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1750 						| SSSR_ROR | SSSR_TUR;
1751 	}
1752 
1753 	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1754 			drv_data);
1755 	if (status < 0) {
1756 		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1757 		goto out_error_controller_alloc;
1758 	}
1759 
1760 	/* Setup DMA if requested */
1761 	if (platform_info->enable_dma) {
1762 		status = pxa2xx_spi_dma_setup(drv_data);
1763 		if (status) {
1764 			dev_warn(dev, "no DMA channels available, using PIO\n");
1765 			platform_info->enable_dma = false;
1766 		} else {
1767 			controller->can_dma = pxa2xx_spi_can_dma;
1768 			controller->max_dma_len = MAX_DMA_LEN;
1769 			controller->max_transfer_size =
1770 				pxa2xx_spi_max_dma_transfer_size;
1771 		}
1772 	}
1773 
1774 	/* Enable SOC clock */
1775 	status = clk_prepare_enable(ssp->clk);
1776 	if (status)
1777 		goto out_error_dma_irq_alloc;
1778 
1779 	controller->max_speed_hz = clk_get_rate(ssp->clk);
1780 	/*
1781 	 * Set minimum speed for all other platforms than Intel Quark which is
1782 	 * able do under 1 Hz transfers.
1783 	 */
1784 	if (!pxa25x_ssp_comp(drv_data))
1785 		controller->min_speed_hz =
1786 			DIV_ROUND_UP(controller->max_speed_hz, 4096);
1787 	else if (!is_quark_x1000_ssp(drv_data))
1788 		controller->min_speed_hz =
1789 			DIV_ROUND_UP(controller->max_speed_hz, 512);
1790 
1791 	pxa_ssp_disable(ssp);
1792 
1793 	/* Load default SSP configuration */
1794 	switch (drv_data->ssp_type) {
1795 	case QUARK_X1000_SSP:
1796 		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1797 		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1798 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1799 
1800 		/* Using the Motorola SPI protocol and use 8 bit frame */
1801 		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1802 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1803 		break;
1804 	case CE4100_SSP:
1805 		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1806 		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1807 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1808 		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1809 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1810 		break;
1811 	default:
1812 
1813 		if (spi_controller_is_slave(controller)) {
1814 			tmp = SSCR1_SCFR |
1815 			      SSCR1_SCLKDIR |
1816 			      SSCR1_SFRMDIR |
1817 			      SSCR1_RxTresh(2) |
1818 			      SSCR1_TxTresh(1) |
1819 			      SSCR1_SPH;
1820 		} else {
1821 			tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1822 			      SSCR1_TxTresh(TX_THRESH_DFLT);
1823 		}
1824 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1825 		tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1826 		if (!spi_controller_is_slave(controller))
1827 			tmp |= SSCR0_SCR(2);
1828 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1829 		break;
1830 	}
1831 
1832 	if (!pxa25x_ssp_comp(drv_data))
1833 		pxa2xx_spi_write(drv_data, SSTO, 0);
1834 
1835 	if (!is_quark_x1000_ssp(drv_data))
1836 		pxa2xx_spi_write(drv_data, SSPSP, 0);
1837 
1838 	if (is_lpss_ssp(drv_data)) {
1839 		lpss_ssp_setup(drv_data);
1840 		config = lpss_get_config(drv_data);
1841 		if (config->reg_capabilities >= 0) {
1842 			tmp = __lpss_ssp_read_priv(drv_data,
1843 						   config->reg_capabilities);
1844 			tmp &= LPSS_CAPS_CS_EN_MASK;
1845 			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1846 			platform_info->num_chipselect = ffz(tmp);
1847 		} else if (config->cs_num) {
1848 			platform_info->num_chipselect = config->cs_num;
1849 		}
1850 	}
1851 	controller->num_chipselect = platform_info->num_chipselect;
1852 	controller->use_gpio_descriptors = true;
1853 
1854 	if (platform_info->is_slave) {
1855 		drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1856 						"ready", GPIOD_OUT_LOW);
1857 		if (IS_ERR(drv_data->gpiod_ready)) {
1858 			status = PTR_ERR(drv_data->gpiod_ready);
1859 			goto out_error_clock_enabled;
1860 		}
1861 	}
1862 
1863 	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1864 	pm_runtime_use_autosuspend(&pdev->dev);
1865 	pm_runtime_set_active(&pdev->dev);
1866 	pm_runtime_enable(&pdev->dev);
1867 
1868 	/* Register with the SPI framework */
1869 	platform_set_drvdata(pdev, drv_data);
1870 	status = spi_register_controller(controller);
1871 	if (status) {
1872 		dev_err(&pdev->dev, "problem registering SPI controller\n");
1873 		goto out_error_pm_runtime_enabled;
1874 	}
1875 
1876 	return status;
1877 
1878 out_error_pm_runtime_enabled:
1879 	pm_runtime_disable(&pdev->dev);
1880 
1881 out_error_clock_enabled:
1882 	clk_disable_unprepare(ssp->clk);
1883 
1884 out_error_dma_irq_alloc:
1885 	pxa2xx_spi_dma_release(drv_data);
1886 	free_irq(ssp->irq, drv_data);
1887 
1888 out_error_controller_alloc:
1889 	pxa_ssp_free(ssp);
1890 	return status;
1891 }
1892 
1893 static int pxa2xx_spi_remove(struct platform_device *pdev)
1894 {
1895 	struct driver_data *drv_data = platform_get_drvdata(pdev);
1896 	struct ssp_device *ssp = drv_data->ssp;
1897 
1898 	pm_runtime_get_sync(&pdev->dev);
1899 
1900 	spi_unregister_controller(drv_data->controller);
1901 
1902 	/* Disable the SSP at the peripheral and SOC level */
1903 	pxa_ssp_disable(ssp);
1904 	clk_disable_unprepare(ssp->clk);
1905 
1906 	/* Release DMA */
1907 	if (drv_data->controller_info->enable_dma)
1908 		pxa2xx_spi_dma_release(drv_data);
1909 
1910 	pm_runtime_put_noidle(&pdev->dev);
1911 	pm_runtime_disable(&pdev->dev);
1912 
1913 	/* Release IRQ */
1914 	free_irq(ssp->irq, drv_data);
1915 
1916 	/* Release SSP */
1917 	pxa_ssp_free(ssp);
1918 
1919 	return 0;
1920 }
1921 
1922 #ifdef CONFIG_PM_SLEEP
1923 static int pxa2xx_spi_suspend(struct device *dev)
1924 {
1925 	struct driver_data *drv_data = dev_get_drvdata(dev);
1926 	struct ssp_device *ssp = drv_data->ssp;
1927 	int status;
1928 
1929 	status = spi_controller_suspend(drv_data->controller);
1930 	if (status)
1931 		return status;
1932 
1933 	pxa_ssp_disable(ssp);
1934 
1935 	if (!pm_runtime_suspended(dev))
1936 		clk_disable_unprepare(ssp->clk);
1937 
1938 	return 0;
1939 }
1940 
1941 static int pxa2xx_spi_resume(struct device *dev)
1942 {
1943 	struct driver_data *drv_data = dev_get_drvdata(dev);
1944 	struct ssp_device *ssp = drv_data->ssp;
1945 	int status;
1946 
1947 	/* Enable the SSP clock */
1948 	if (!pm_runtime_suspended(dev)) {
1949 		status = clk_prepare_enable(ssp->clk);
1950 		if (status)
1951 			return status;
1952 	}
1953 
1954 	/* Start the queue running */
1955 	return spi_controller_resume(drv_data->controller);
1956 }
1957 #endif
1958 
1959 #ifdef CONFIG_PM
1960 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1961 {
1962 	struct driver_data *drv_data = dev_get_drvdata(dev);
1963 
1964 	clk_disable_unprepare(drv_data->ssp->clk);
1965 	return 0;
1966 }
1967 
1968 static int pxa2xx_spi_runtime_resume(struct device *dev)
1969 {
1970 	struct driver_data *drv_data = dev_get_drvdata(dev);
1971 	int status;
1972 
1973 	status = clk_prepare_enable(drv_data->ssp->clk);
1974 	return status;
1975 }
1976 #endif
1977 
1978 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1979 	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1980 	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1981 			   pxa2xx_spi_runtime_resume, NULL)
1982 };
1983 
1984 static struct platform_driver driver = {
1985 	.driver = {
1986 		.name	= "pxa2xx-spi",
1987 		.pm	= &pxa2xx_spi_pm_ops,
1988 		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1989 		.of_match_table = of_match_ptr(pxa2xx_spi_of_match),
1990 	},
1991 	.probe = pxa2xx_spi_probe,
1992 	.remove = pxa2xx_spi_remove,
1993 };
1994 
1995 static int __init pxa2xx_spi_init(void)
1996 {
1997 	return platform_driver_register(&driver);
1998 }
1999 subsys_initcall(pxa2xx_spi_init);
2000 
2001 static void __exit pxa2xx_spi_exit(void)
2002 {
2003 	platform_driver_unregister(&driver);
2004 }
2005 module_exit(pxa2xx_spi_exit);
2006 
2007 MODULE_SOFTDEP("pre: dw_dmac");
2008