1 /* 2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs 3 * Copyright (C) 2013, Intel Corporation 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/device.h> 19 #include <linux/ioport.h> 20 #include <linux/errno.h> 21 #include <linux/err.h> 22 #include <linux/interrupt.h> 23 #include <linux/kernel.h> 24 #include <linux/pci.h> 25 #include <linux/platform_device.h> 26 #include <linux/spi/pxa2xx_spi.h> 27 #include <linux/spi/spi.h> 28 #include <linux/delay.h> 29 #include <linux/gpio.h> 30 #include <linux/slab.h> 31 #include <linux/clk.h> 32 #include <linux/pm_runtime.h> 33 #include <linux/acpi.h> 34 35 #include "spi-pxa2xx.h" 36 37 MODULE_AUTHOR("Stephen Street"); 38 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller"); 39 MODULE_LICENSE("GPL"); 40 MODULE_ALIAS("platform:pxa2xx-spi"); 41 42 #define TIMOUT_DFLT 1000 43 44 /* 45 * for testing SSCR1 changes that require SSP restart, basically 46 * everything except the service and interrupt enables, the pxa270 developer 47 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this 48 * list, but the PXA255 dev man says all bits without really meaning the 49 * service and interrupt enables 50 */ 51 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \ 52 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \ 53 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \ 54 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \ 55 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \ 56 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) 57 58 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \ 59 | QUARK_X1000_SSCR1_EFWR \ 60 | QUARK_X1000_SSCR1_RFT \ 61 | QUARK_X1000_SSCR1_TFT \ 62 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) 63 64 #define GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24) 65 #define SPI_CS_CONTROL_SW_MODE BIT(0) 66 #define SPI_CS_CONTROL_CS_HIGH BIT(1) 67 68 struct lpss_config { 69 /* LPSS offset from drv_data->ioaddr */ 70 unsigned offset; 71 /* Register offsets from drv_data->lpss_base or -1 */ 72 int reg_general; 73 int reg_ssp; 74 int reg_cs_ctrl; 75 /* FIFO thresholds */ 76 u32 rx_threshold; 77 u32 tx_threshold_lo; 78 u32 tx_threshold_hi; 79 }; 80 81 /* Keep these sorted with enum pxa_ssp_type */ 82 static const struct lpss_config lpss_platforms[] = { 83 { /* LPSS_LPT_SSP */ 84 .offset = 0x800, 85 .reg_general = 0x08, 86 .reg_ssp = 0x0c, 87 .reg_cs_ctrl = 0x18, 88 .rx_threshold = 64, 89 .tx_threshold_lo = 160, 90 .tx_threshold_hi = 224, 91 }, 92 { /* LPSS_BYT_SSP */ 93 .offset = 0x400, 94 .reg_general = 0x08, 95 .reg_ssp = 0x0c, 96 .reg_cs_ctrl = 0x18, 97 .rx_threshold = 64, 98 .tx_threshold_lo = 160, 99 .tx_threshold_hi = 224, 100 }, 101 { /* LPSS_SPT_SSP */ 102 .offset = 0x200, 103 .reg_general = -1, 104 .reg_ssp = 0x20, 105 .reg_cs_ctrl = 0x24, 106 .rx_threshold = 1, 107 .tx_threshold_lo = 32, 108 .tx_threshold_hi = 56, 109 }, 110 }; 111 112 static inline const struct lpss_config 113 *lpss_get_config(const struct driver_data *drv_data) 114 { 115 return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP]; 116 } 117 118 static bool is_lpss_ssp(const struct driver_data *drv_data) 119 { 120 switch (drv_data->ssp_type) { 121 case LPSS_LPT_SSP: 122 case LPSS_BYT_SSP: 123 case LPSS_SPT_SSP: 124 return true; 125 default: 126 return false; 127 } 128 } 129 130 static bool is_quark_x1000_ssp(const struct driver_data *drv_data) 131 { 132 return drv_data->ssp_type == QUARK_X1000_SSP; 133 } 134 135 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data) 136 { 137 switch (drv_data->ssp_type) { 138 case QUARK_X1000_SSP: 139 return QUARK_X1000_SSCR1_CHANGE_MASK; 140 default: 141 return SSCR1_CHANGE_MASK; 142 } 143 } 144 145 static u32 146 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data) 147 { 148 switch (drv_data->ssp_type) { 149 case QUARK_X1000_SSP: 150 return RX_THRESH_QUARK_X1000_DFLT; 151 default: 152 return RX_THRESH_DFLT; 153 } 154 } 155 156 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data) 157 { 158 u32 mask; 159 160 switch (drv_data->ssp_type) { 161 case QUARK_X1000_SSP: 162 mask = QUARK_X1000_SSSR_TFL_MASK; 163 break; 164 default: 165 mask = SSSR_TFL_MASK; 166 break; 167 } 168 169 return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask; 170 } 171 172 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data, 173 u32 *sccr1_reg) 174 { 175 u32 mask; 176 177 switch (drv_data->ssp_type) { 178 case QUARK_X1000_SSP: 179 mask = QUARK_X1000_SSCR1_RFT; 180 break; 181 default: 182 mask = SSCR1_RFT; 183 break; 184 } 185 *sccr1_reg &= ~mask; 186 } 187 188 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data, 189 u32 *sccr1_reg, u32 threshold) 190 { 191 switch (drv_data->ssp_type) { 192 case QUARK_X1000_SSP: 193 *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold); 194 break; 195 default: 196 *sccr1_reg |= SSCR1_RxTresh(threshold); 197 break; 198 } 199 } 200 201 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data, 202 u32 clk_div, u8 bits) 203 { 204 switch (drv_data->ssp_type) { 205 case QUARK_X1000_SSP: 206 return clk_div 207 | QUARK_X1000_SSCR0_Motorola 208 | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits) 209 | SSCR0_SSE; 210 default: 211 return clk_div 212 | SSCR0_Motorola 213 | SSCR0_DataSize(bits > 16 ? bits - 16 : bits) 214 | SSCR0_SSE 215 | (bits > 16 ? SSCR0_EDSS : 0); 216 } 217 } 218 219 /* 220 * Read and write LPSS SSP private registers. Caller must first check that 221 * is_lpss_ssp() returns true before these can be called. 222 */ 223 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset) 224 { 225 WARN_ON(!drv_data->lpss_base); 226 return readl(drv_data->lpss_base + offset); 227 } 228 229 static void __lpss_ssp_write_priv(struct driver_data *drv_data, 230 unsigned offset, u32 value) 231 { 232 WARN_ON(!drv_data->lpss_base); 233 writel(value, drv_data->lpss_base + offset); 234 } 235 236 /* 237 * lpss_ssp_setup - perform LPSS SSP specific setup 238 * @drv_data: pointer to the driver private data 239 * 240 * Perform LPSS SSP specific setup. This function must be called first if 241 * one is going to use LPSS SSP private registers. 242 */ 243 static void lpss_ssp_setup(struct driver_data *drv_data) 244 { 245 const struct lpss_config *config; 246 u32 value; 247 248 config = lpss_get_config(drv_data); 249 drv_data->lpss_base = drv_data->ioaddr + config->offset; 250 251 /* Enable software chip select control */ 252 value = SPI_CS_CONTROL_SW_MODE | SPI_CS_CONTROL_CS_HIGH; 253 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value); 254 255 /* Enable multiblock DMA transfers */ 256 if (drv_data->master_info->enable_dma) { 257 __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1); 258 259 if (config->reg_general >= 0) { 260 value = __lpss_ssp_read_priv(drv_data, 261 config->reg_general); 262 value |= GENERAL_REG_RXTO_HOLDOFF_DISABLE; 263 __lpss_ssp_write_priv(drv_data, 264 config->reg_general, value); 265 } 266 } 267 } 268 269 static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable) 270 { 271 const struct lpss_config *config; 272 u32 value; 273 274 config = lpss_get_config(drv_data); 275 276 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); 277 if (enable) 278 value &= ~SPI_CS_CONTROL_CS_HIGH; 279 else 280 value |= SPI_CS_CONTROL_CS_HIGH; 281 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value); 282 } 283 284 static void cs_assert(struct driver_data *drv_data) 285 { 286 struct chip_data *chip = drv_data->cur_chip; 287 288 if (drv_data->ssp_type == CE4100_SSP) { 289 pxa2xx_spi_write(drv_data, SSSR, drv_data->cur_chip->frm); 290 return; 291 } 292 293 if (chip->cs_control) { 294 chip->cs_control(PXA2XX_CS_ASSERT); 295 return; 296 } 297 298 if (gpio_is_valid(chip->gpio_cs)) { 299 gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted); 300 return; 301 } 302 303 if (is_lpss_ssp(drv_data)) 304 lpss_ssp_cs_control(drv_data, true); 305 } 306 307 static void cs_deassert(struct driver_data *drv_data) 308 { 309 struct chip_data *chip = drv_data->cur_chip; 310 311 if (drv_data->ssp_type == CE4100_SSP) 312 return; 313 314 if (chip->cs_control) { 315 chip->cs_control(PXA2XX_CS_DEASSERT); 316 return; 317 } 318 319 if (gpio_is_valid(chip->gpio_cs)) { 320 gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted); 321 return; 322 } 323 324 if (is_lpss_ssp(drv_data)) 325 lpss_ssp_cs_control(drv_data, false); 326 } 327 328 int pxa2xx_spi_flush(struct driver_data *drv_data) 329 { 330 unsigned long limit = loops_per_jiffy << 1; 331 332 do { 333 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 334 pxa2xx_spi_read(drv_data, SSDR); 335 } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit); 336 write_SSSR_CS(drv_data, SSSR_ROR); 337 338 return limit; 339 } 340 341 static int null_writer(struct driver_data *drv_data) 342 { 343 u8 n_bytes = drv_data->n_bytes; 344 345 if (pxa2xx_spi_txfifo_full(drv_data) 346 || (drv_data->tx == drv_data->tx_end)) 347 return 0; 348 349 pxa2xx_spi_write(drv_data, SSDR, 0); 350 drv_data->tx += n_bytes; 351 352 return 1; 353 } 354 355 static int null_reader(struct driver_data *drv_data) 356 { 357 u8 n_bytes = drv_data->n_bytes; 358 359 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 360 && (drv_data->rx < drv_data->rx_end)) { 361 pxa2xx_spi_read(drv_data, SSDR); 362 drv_data->rx += n_bytes; 363 } 364 365 return drv_data->rx == drv_data->rx_end; 366 } 367 368 static int u8_writer(struct driver_data *drv_data) 369 { 370 if (pxa2xx_spi_txfifo_full(drv_data) 371 || (drv_data->tx == drv_data->tx_end)) 372 return 0; 373 374 pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx)); 375 ++drv_data->tx; 376 377 return 1; 378 } 379 380 static int u8_reader(struct driver_data *drv_data) 381 { 382 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 383 && (drv_data->rx < drv_data->rx_end)) { 384 *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); 385 ++drv_data->rx; 386 } 387 388 return drv_data->rx == drv_data->rx_end; 389 } 390 391 static int u16_writer(struct driver_data *drv_data) 392 { 393 if (pxa2xx_spi_txfifo_full(drv_data) 394 || (drv_data->tx == drv_data->tx_end)) 395 return 0; 396 397 pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx)); 398 drv_data->tx += 2; 399 400 return 1; 401 } 402 403 static int u16_reader(struct driver_data *drv_data) 404 { 405 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 406 && (drv_data->rx < drv_data->rx_end)) { 407 *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); 408 drv_data->rx += 2; 409 } 410 411 return drv_data->rx == drv_data->rx_end; 412 } 413 414 static int u32_writer(struct driver_data *drv_data) 415 { 416 if (pxa2xx_spi_txfifo_full(drv_data) 417 || (drv_data->tx == drv_data->tx_end)) 418 return 0; 419 420 pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx)); 421 drv_data->tx += 4; 422 423 return 1; 424 } 425 426 static int u32_reader(struct driver_data *drv_data) 427 { 428 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 429 && (drv_data->rx < drv_data->rx_end)) { 430 *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); 431 drv_data->rx += 4; 432 } 433 434 return drv_data->rx == drv_data->rx_end; 435 } 436 437 void *pxa2xx_spi_next_transfer(struct driver_data *drv_data) 438 { 439 struct spi_message *msg = drv_data->cur_msg; 440 struct spi_transfer *trans = drv_data->cur_transfer; 441 442 /* Move to next transfer */ 443 if (trans->transfer_list.next != &msg->transfers) { 444 drv_data->cur_transfer = 445 list_entry(trans->transfer_list.next, 446 struct spi_transfer, 447 transfer_list); 448 return RUNNING_STATE; 449 } else 450 return DONE_STATE; 451 } 452 453 /* caller already set message->status; dma and pio irqs are blocked */ 454 static void giveback(struct driver_data *drv_data) 455 { 456 struct spi_transfer* last_transfer; 457 struct spi_message *msg; 458 459 msg = drv_data->cur_msg; 460 drv_data->cur_msg = NULL; 461 drv_data->cur_transfer = NULL; 462 463 last_transfer = list_last_entry(&msg->transfers, struct spi_transfer, 464 transfer_list); 465 466 /* Delay if requested before any change in chip select */ 467 if (last_transfer->delay_usecs) 468 udelay(last_transfer->delay_usecs); 469 470 /* Drop chip select UNLESS cs_change is true or we are returning 471 * a message with an error, or next message is for another chip 472 */ 473 if (!last_transfer->cs_change) 474 cs_deassert(drv_data); 475 else { 476 struct spi_message *next_msg; 477 478 /* Holding of cs was hinted, but we need to make sure 479 * the next message is for the same chip. Don't waste 480 * time with the following tests unless this was hinted. 481 * 482 * We cannot postpone this until pump_messages, because 483 * after calling msg->complete (below) the driver that 484 * sent the current message could be unloaded, which 485 * could invalidate the cs_control() callback... 486 */ 487 488 /* get a pointer to the next message, if any */ 489 next_msg = spi_get_next_queued_message(drv_data->master); 490 491 /* see if the next and current messages point 492 * to the same chip 493 */ 494 if (next_msg && next_msg->spi != msg->spi) 495 next_msg = NULL; 496 if (!next_msg || msg->state == ERROR_STATE) 497 cs_deassert(drv_data); 498 } 499 500 drv_data->cur_chip = NULL; 501 spi_finalize_current_message(drv_data->master); 502 } 503 504 static void reset_sccr1(struct driver_data *drv_data) 505 { 506 struct chip_data *chip = drv_data->cur_chip; 507 u32 sccr1_reg; 508 509 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1; 510 sccr1_reg &= ~SSCR1_RFT; 511 sccr1_reg |= chip->threshold; 512 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); 513 } 514 515 static void int_error_stop(struct driver_data *drv_data, const char* msg) 516 { 517 /* Stop and reset SSP */ 518 write_SSSR_CS(drv_data, drv_data->clear_sr); 519 reset_sccr1(drv_data); 520 if (!pxa25x_ssp_comp(drv_data)) 521 pxa2xx_spi_write(drv_data, SSTO, 0); 522 pxa2xx_spi_flush(drv_data); 523 pxa2xx_spi_write(drv_data, SSCR0, 524 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE); 525 526 dev_err(&drv_data->pdev->dev, "%s\n", msg); 527 528 drv_data->cur_msg->state = ERROR_STATE; 529 tasklet_schedule(&drv_data->pump_transfers); 530 } 531 532 static void int_transfer_complete(struct driver_data *drv_data) 533 { 534 /* Stop SSP */ 535 write_SSSR_CS(drv_data, drv_data->clear_sr); 536 reset_sccr1(drv_data); 537 if (!pxa25x_ssp_comp(drv_data)) 538 pxa2xx_spi_write(drv_data, SSTO, 0); 539 540 /* Update total byte transferred return count actual bytes read */ 541 drv_data->cur_msg->actual_length += drv_data->len - 542 (drv_data->rx_end - drv_data->rx); 543 544 /* Transfer delays and chip select release are 545 * handled in pump_transfers or giveback 546 */ 547 548 /* Move to next transfer */ 549 drv_data->cur_msg->state = pxa2xx_spi_next_transfer(drv_data); 550 551 /* Schedule transfer tasklet */ 552 tasklet_schedule(&drv_data->pump_transfers); 553 } 554 555 static irqreturn_t interrupt_transfer(struct driver_data *drv_data) 556 { 557 u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ? 558 drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS; 559 560 u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask; 561 562 if (irq_status & SSSR_ROR) { 563 int_error_stop(drv_data, "interrupt_transfer: fifo overrun"); 564 return IRQ_HANDLED; 565 } 566 567 if (irq_status & SSSR_TINT) { 568 pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT); 569 if (drv_data->read(drv_data)) { 570 int_transfer_complete(drv_data); 571 return IRQ_HANDLED; 572 } 573 } 574 575 /* Drain rx fifo, Fill tx fifo and prevent overruns */ 576 do { 577 if (drv_data->read(drv_data)) { 578 int_transfer_complete(drv_data); 579 return IRQ_HANDLED; 580 } 581 } while (drv_data->write(drv_data)); 582 583 if (drv_data->read(drv_data)) { 584 int_transfer_complete(drv_data); 585 return IRQ_HANDLED; 586 } 587 588 if (drv_data->tx == drv_data->tx_end) { 589 u32 bytes_left; 590 u32 sccr1_reg; 591 592 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1); 593 sccr1_reg &= ~SSCR1_TIE; 594 595 /* 596 * PXA25x_SSP has no timeout, set up rx threshould for the 597 * remaining RX bytes. 598 */ 599 if (pxa25x_ssp_comp(drv_data)) { 600 u32 rx_thre; 601 602 pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg); 603 604 bytes_left = drv_data->rx_end - drv_data->rx; 605 switch (drv_data->n_bytes) { 606 case 4: 607 bytes_left >>= 1; 608 case 2: 609 bytes_left >>= 1; 610 } 611 612 rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data); 613 if (rx_thre > bytes_left) 614 rx_thre = bytes_left; 615 616 pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre); 617 } 618 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); 619 } 620 621 /* We did something */ 622 return IRQ_HANDLED; 623 } 624 625 static irqreturn_t ssp_int(int irq, void *dev_id) 626 { 627 struct driver_data *drv_data = dev_id; 628 u32 sccr1_reg; 629 u32 mask = drv_data->mask_sr; 630 u32 status; 631 632 /* 633 * The IRQ might be shared with other peripherals so we must first 634 * check that are we RPM suspended or not. If we are we assume that 635 * the IRQ was not for us (we shouldn't be RPM suspended when the 636 * interrupt is enabled). 637 */ 638 if (pm_runtime_suspended(&drv_data->pdev->dev)) 639 return IRQ_NONE; 640 641 /* 642 * If the device is not yet in RPM suspended state and we get an 643 * interrupt that is meant for another device, check if status bits 644 * are all set to one. That means that the device is already 645 * powered off. 646 */ 647 status = pxa2xx_spi_read(drv_data, SSSR); 648 if (status == ~0) 649 return IRQ_NONE; 650 651 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1); 652 653 /* Ignore possible writes if we don't need to write */ 654 if (!(sccr1_reg & SSCR1_TIE)) 655 mask &= ~SSSR_TFS; 656 657 /* Ignore RX timeout interrupt if it is disabled */ 658 if (!(sccr1_reg & SSCR1_TINTE)) 659 mask &= ~SSSR_TINT; 660 661 if (!(status & mask)) 662 return IRQ_NONE; 663 664 if (!drv_data->cur_msg) { 665 666 pxa2xx_spi_write(drv_data, SSCR0, 667 pxa2xx_spi_read(drv_data, SSCR0) 668 & ~SSCR0_SSE); 669 pxa2xx_spi_write(drv_data, SSCR1, 670 pxa2xx_spi_read(drv_data, SSCR1) 671 & ~drv_data->int_cr1); 672 if (!pxa25x_ssp_comp(drv_data)) 673 pxa2xx_spi_write(drv_data, SSTO, 0); 674 write_SSSR_CS(drv_data, drv_data->clear_sr); 675 676 dev_err(&drv_data->pdev->dev, 677 "bad message state in interrupt handler\n"); 678 679 /* Never fail */ 680 return IRQ_HANDLED; 681 } 682 683 return drv_data->transfer_handler(drv_data); 684 } 685 686 /* 687 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply 688 * input frequency by fractions of 2^24. It also has a divider by 5. 689 * 690 * There are formulas to get baud rate value for given input frequency and 691 * divider parameters, such as DDS_CLK_RATE and SCR: 692 * 693 * Fsys = 200MHz 694 * 695 * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1) 696 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2) 697 * 698 * DDS_CLK_RATE either 2^n or 2^n / 5. 699 * SCR is in range 0 .. 255 700 * 701 * Divisor = 5^i * 2^j * 2 * k 702 * i = [0, 1] i = 1 iff j = 0 or j > 3 703 * j = [0, 23] j = 0 iff i = 1 704 * k = [1, 256] 705 * Special case: j = 0, i = 1: Divisor = 2 / 5 706 * 707 * Accordingly to the specification the recommended values for DDS_CLK_RATE 708 * are: 709 * Case 1: 2^n, n = [0, 23] 710 * Case 2: 2^24 * 2 / 5 (0x666666) 711 * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333) 712 * 713 * In all cases the lowest possible value is better. 714 * 715 * The function calculates parameters for all cases and chooses the one closest 716 * to the asked baud rate. 717 */ 718 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds) 719 { 720 unsigned long xtal = 200000000; 721 unsigned long fref = xtal / 2; /* mandatory division by 2, 722 see (2) */ 723 /* case 3 */ 724 unsigned long fref1 = fref / 2; /* case 1 */ 725 unsigned long fref2 = fref * 2 / 5; /* case 2 */ 726 unsigned long scale; 727 unsigned long q, q1, q2; 728 long r, r1, r2; 729 u32 mul; 730 731 /* Case 1 */ 732 733 /* Set initial value for DDS_CLK_RATE */ 734 mul = (1 << 24) >> 1; 735 736 /* Calculate initial quot */ 737 q1 = DIV_ROUND_CLOSEST(fref1, rate); 738 739 /* Scale q1 if it's too big */ 740 if (q1 > 256) { 741 /* Scale q1 to range [1, 512] */ 742 scale = fls_long(q1 - 1); 743 if (scale > 9) { 744 q1 >>= scale - 9; 745 mul >>= scale - 9; 746 } 747 748 /* Round the result if we have a remainder */ 749 q1 += q1 & 1; 750 } 751 752 /* Decrease DDS_CLK_RATE as much as we can without loss in precision */ 753 scale = __ffs(q1); 754 q1 >>= scale; 755 mul >>= scale; 756 757 /* Get the remainder */ 758 r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate); 759 760 /* Case 2 */ 761 762 q2 = DIV_ROUND_CLOSEST(fref2, rate); 763 r2 = abs(fref2 / q2 - rate); 764 765 /* 766 * Choose the best between two: less remainder we have the better. We 767 * can't go case 2 if q2 is greater than 256 since SCR register can 768 * hold only values 0 .. 255. 769 */ 770 if (r2 >= r1 || q2 > 256) { 771 /* case 1 is better */ 772 r = r1; 773 q = q1; 774 } else { 775 /* case 2 is better */ 776 r = r2; 777 q = q2; 778 mul = (1 << 24) * 2 / 5; 779 } 780 781 /* Check case 3 only If the divisor is big enough */ 782 if (fref / rate >= 80) { 783 u64 fssp; 784 u32 m; 785 786 /* Calculate initial quot */ 787 q1 = DIV_ROUND_CLOSEST(fref, rate); 788 m = (1 << 24) / q1; 789 790 /* Get the remainder */ 791 fssp = (u64)fref * m; 792 do_div(fssp, 1 << 24); 793 r1 = abs(fssp - rate); 794 795 /* Choose this one if it suits better */ 796 if (r1 < r) { 797 /* case 3 is better */ 798 q = 1; 799 mul = m; 800 } 801 } 802 803 *dds = mul; 804 return q - 1; 805 } 806 807 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate) 808 { 809 unsigned long ssp_clk = drv_data->max_clk_rate; 810 const struct ssp_device *ssp = drv_data->ssp; 811 812 rate = min_t(int, ssp_clk, rate); 813 814 if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP) 815 return (ssp_clk / (2 * rate) - 1) & 0xff; 816 else 817 return (ssp_clk / rate - 1) & 0xfff; 818 } 819 820 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data, 821 struct chip_data *chip, int rate) 822 { 823 unsigned int clk_div; 824 825 switch (drv_data->ssp_type) { 826 case QUARK_X1000_SSP: 827 clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate); 828 break; 829 default: 830 clk_div = ssp_get_clk_div(drv_data, rate); 831 break; 832 } 833 return clk_div << 8; 834 } 835 836 static void pump_transfers(unsigned long data) 837 { 838 struct driver_data *drv_data = (struct driver_data *)data; 839 struct spi_message *message = NULL; 840 struct spi_transfer *transfer = NULL; 841 struct spi_transfer *previous = NULL; 842 struct chip_data *chip = NULL; 843 u32 clk_div = 0; 844 u8 bits = 0; 845 u32 speed = 0; 846 u32 cr0; 847 u32 cr1; 848 u32 dma_thresh = drv_data->cur_chip->dma_threshold; 849 u32 dma_burst = drv_data->cur_chip->dma_burst_size; 850 u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data); 851 852 /* Get current state information */ 853 message = drv_data->cur_msg; 854 transfer = drv_data->cur_transfer; 855 chip = drv_data->cur_chip; 856 857 /* Handle for abort */ 858 if (message->state == ERROR_STATE) { 859 message->status = -EIO; 860 giveback(drv_data); 861 return; 862 } 863 864 /* Handle end of message */ 865 if (message->state == DONE_STATE) { 866 message->status = 0; 867 giveback(drv_data); 868 return; 869 } 870 871 /* Delay if requested at end of transfer before CS change */ 872 if (message->state == RUNNING_STATE) { 873 previous = list_entry(transfer->transfer_list.prev, 874 struct spi_transfer, 875 transfer_list); 876 if (previous->delay_usecs) 877 udelay(previous->delay_usecs); 878 879 /* Drop chip select only if cs_change is requested */ 880 if (previous->cs_change) 881 cs_deassert(drv_data); 882 } 883 884 /* Check if we can DMA this transfer */ 885 if (!pxa2xx_spi_dma_is_possible(transfer->len) && chip->enable_dma) { 886 887 /* reject already-mapped transfers; PIO won't always work */ 888 if (message->is_dma_mapped 889 || transfer->rx_dma || transfer->tx_dma) { 890 dev_err(&drv_data->pdev->dev, 891 "pump_transfers: mapped transfer length of " 892 "%u is greater than %d\n", 893 transfer->len, MAX_DMA_LEN); 894 message->status = -EINVAL; 895 giveback(drv_data); 896 return; 897 } 898 899 /* warn ... we force this to PIO mode */ 900 dev_warn_ratelimited(&message->spi->dev, 901 "pump_transfers: DMA disabled for transfer length %ld " 902 "greater than %d\n", 903 (long)drv_data->len, MAX_DMA_LEN); 904 } 905 906 /* Setup the transfer state based on the type of transfer */ 907 if (pxa2xx_spi_flush(drv_data) == 0) { 908 dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n"); 909 message->status = -EIO; 910 giveback(drv_data); 911 return; 912 } 913 drv_data->n_bytes = chip->n_bytes; 914 drv_data->tx = (void *)transfer->tx_buf; 915 drv_data->tx_end = drv_data->tx + transfer->len; 916 drv_data->rx = transfer->rx_buf; 917 drv_data->rx_end = drv_data->rx + transfer->len; 918 drv_data->rx_dma = transfer->rx_dma; 919 drv_data->tx_dma = transfer->tx_dma; 920 drv_data->len = transfer->len; 921 drv_data->write = drv_data->tx ? chip->write : null_writer; 922 drv_data->read = drv_data->rx ? chip->read : null_reader; 923 924 /* Change speed and bit per word on a per transfer */ 925 cr0 = chip->cr0; 926 if (transfer->speed_hz || transfer->bits_per_word) { 927 928 bits = chip->bits_per_word; 929 speed = chip->speed_hz; 930 931 if (transfer->speed_hz) 932 speed = transfer->speed_hz; 933 934 if (transfer->bits_per_word) 935 bits = transfer->bits_per_word; 936 937 clk_div = pxa2xx_ssp_get_clk_div(drv_data, chip, speed); 938 939 if (bits <= 8) { 940 drv_data->n_bytes = 1; 941 drv_data->read = drv_data->read != null_reader ? 942 u8_reader : null_reader; 943 drv_data->write = drv_data->write != null_writer ? 944 u8_writer : null_writer; 945 } else if (bits <= 16) { 946 drv_data->n_bytes = 2; 947 drv_data->read = drv_data->read != null_reader ? 948 u16_reader : null_reader; 949 drv_data->write = drv_data->write != null_writer ? 950 u16_writer : null_writer; 951 } else if (bits <= 32) { 952 drv_data->n_bytes = 4; 953 drv_data->read = drv_data->read != null_reader ? 954 u32_reader : null_reader; 955 drv_data->write = drv_data->write != null_writer ? 956 u32_writer : null_writer; 957 } 958 /* if bits/word is changed in dma mode, then must check the 959 * thresholds and burst also */ 960 if (chip->enable_dma) { 961 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, 962 message->spi, 963 bits, &dma_burst, 964 &dma_thresh)) 965 dev_warn_ratelimited(&message->spi->dev, 966 "pump_transfers: DMA burst size reduced to match bits_per_word\n"); 967 } 968 969 cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits); 970 } 971 972 message->state = RUNNING_STATE; 973 974 drv_data->dma_mapped = 0; 975 if (pxa2xx_spi_dma_is_possible(drv_data->len)) 976 drv_data->dma_mapped = pxa2xx_spi_map_dma_buffers(drv_data); 977 if (drv_data->dma_mapped) { 978 979 /* Ensure we have the correct interrupt handler */ 980 drv_data->transfer_handler = pxa2xx_spi_dma_transfer; 981 982 pxa2xx_spi_dma_prepare(drv_data, dma_burst); 983 984 /* Clear status and start DMA engine */ 985 cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1; 986 pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr); 987 988 pxa2xx_spi_dma_start(drv_data); 989 } else { 990 /* Ensure we have the correct interrupt handler */ 991 drv_data->transfer_handler = interrupt_transfer; 992 993 /* Clear status */ 994 cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1; 995 write_SSSR_CS(drv_data, drv_data->clear_sr); 996 } 997 998 if (is_lpss_ssp(drv_data)) { 999 if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff) 1000 != chip->lpss_rx_threshold) 1001 pxa2xx_spi_write(drv_data, SSIRF, 1002 chip->lpss_rx_threshold); 1003 if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff) 1004 != chip->lpss_tx_threshold) 1005 pxa2xx_spi_write(drv_data, SSITF, 1006 chip->lpss_tx_threshold); 1007 } 1008 1009 if (is_quark_x1000_ssp(drv_data) && 1010 (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate)) 1011 pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate); 1012 1013 /* see if we need to reload the config registers */ 1014 if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0) 1015 || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask) 1016 != (cr1 & change_mask)) { 1017 /* stop the SSP, and update the other bits */ 1018 pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE); 1019 if (!pxa25x_ssp_comp(drv_data)) 1020 pxa2xx_spi_write(drv_data, SSTO, chip->timeout); 1021 /* first set CR1 without interrupt and service enables */ 1022 pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask); 1023 /* restart the SSP */ 1024 pxa2xx_spi_write(drv_data, SSCR0, cr0); 1025 1026 } else { 1027 if (!pxa25x_ssp_comp(drv_data)) 1028 pxa2xx_spi_write(drv_data, SSTO, chip->timeout); 1029 } 1030 1031 cs_assert(drv_data); 1032 1033 /* after chip select, release the data by enabling service 1034 * requests and interrupts, without changing any mode bits */ 1035 pxa2xx_spi_write(drv_data, SSCR1, cr1); 1036 } 1037 1038 static int pxa2xx_spi_transfer_one_message(struct spi_master *master, 1039 struct spi_message *msg) 1040 { 1041 struct driver_data *drv_data = spi_master_get_devdata(master); 1042 1043 drv_data->cur_msg = msg; 1044 /* Initial message state*/ 1045 drv_data->cur_msg->state = START_STATE; 1046 drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next, 1047 struct spi_transfer, 1048 transfer_list); 1049 1050 /* prepare to setup the SSP, in pump_transfers, using the per 1051 * chip configuration */ 1052 drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi); 1053 1054 /* Mark as busy and launch transfers */ 1055 tasklet_schedule(&drv_data->pump_transfers); 1056 return 0; 1057 } 1058 1059 static int pxa2xx_spi_unprepare_transfer(struct spi_master *master) 1060 { 1061 struct driver_data *drv_data = spi_master_get_devdata(master); 1062 1063 /* Disable the SSP now */ 1064 pxa2xx_spi_write(drv_data, SSCR0, 1065 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE); 1066 1067 return 0; 1068 } 1069 1070 static int setup_cs(struct spi_device *spi, struct chip_data *chip, 1071 struct pxa2xx_spi_chip *chip_info) 1072 { 1073 int err = 0; 1074 1075 if (chip == NULL || chip_info == NULL) 1076 return 0; 1077 1078 /* NOTE: setup() can be called multiple times, possibly with 1079 * different chip_info, release previously requested GPIO 1080 */ 1081 if (gpio_is_valid(chip->gpio_cs)) 1082 gpio_free(chip->gpio_cs); 1083 1084 /* If (*cs_control) is provided, ignore GPIO chip select */ 1085 if (chip_info->cs_control) { 1086 chip->cs_control = chip_info->cs_control; 1087 return 0; 1088 } 1089 1090 if (gpio_is_valid(chip_info->gpio_cs)) { 1091 err = gpio_request(chip_info->gpio_cs, "SPI_CS"); 1092 if (err) { 1093 dev_err(&spi->dev, "failed to request chip select GPIO%d\n", 1094 chip_info->gpio_cs); 1095 return err; 1096 } 1097 1098 chip->gpio_cs = chip_info->gpio_cs; 1099 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH; 1100 1101 err = gpio_direction_output(chip->gpio_cs, 1102 !chip->gpio_cs_inverted); 1103 } 1104 1105 return err; 1106 } 1107 1108 static int setup(struct spi_device *spi) 1109 { 1110 struct pxa2xx_spi_chip *chip_info = NULL; 1111 struct chip_data *chip; 1112 const struct lpss_config *config; 1113 struct driver_data *drv_data = spi_master_get_devdata(spi->master); 1114 unsigned int clk_div; 1115 uint tx_thres, tx_hi_thres, rx_thres; 1116 1117 switch (drv_data->ssp_type) { 1118 case QUARK_X1000_SSP: 1119 tx_thres = TX_THRESH_QUARK_X1000_DFLT; 1120 tx_hi_thres = 0; 1121 rx_thres = RX_THRESH_QUARK_X1000_DFLT; 1122 break; 1123 case LPSS_LPT_SSP: 1124 case LPSS_BYT_SSP: 1125 case LPSS_SPT_SSP: 1126 config = lpss_get_config(drv_data); 1127 tx_thres = config->tx_threshold_lo; 1128 tx_hi_thres = config->tx_threshold_hi; 1129 rx_thres = config->rx_threshold; 1130 break; 1131 default: 1132 tx_thres = TX_THRESH_DFLT; 1133 tx_hi_thres = 0; 1134 rx_thres = RX_THRESH_DFLT; 1135 break; 1136 } 1137 1138 /* Only alloc on first setup */ 1139 chip = spi_get_ctldata(spi); 1140 if (!chip) { 1141 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); 1142 if (!chip) 1143 return -ENOMEM; 1144 1145 if (drv_data->ssp_type == CE4100_SSP) { 1146 if (spi->chip_select > 4) { 1147 dev_err(&spi->dev, 1148 "failed setup: cs number must not be > 4.\n"); 1149 kfree(chip); 1150 return -EINVAL; 1151 } 1152 1153 chip->frm = spi->chip_select; 1154 } else 1155 chip->gpio_cs = -1; 1156 chip->enable_dma = 0; 1157 chip->timeout = TIMOUT_DFLT; 1158 } 1159 1160 /* protocol drivers may change the chip settings, so... 1161 * if chip_info exists, use it */ 1162 chip_info = spi->controller_data; 1163 1164 /* chip_info isn't always needed */ 1165 chip->cr1 = 0; 1166 if (chip_info) { 1167 if (chip_info->timeout) 1168 chip->timeout = chip_info->timeout; 1169 if (chip_info->tx_threshold) 1170 tx_thres = chip_info->tx_threshold; 1171 if (chip_info->tx_hi_threshold) 1172 tx_hi_thres = chip_info->tx_hi_threshold; 1173 if (chip_info->rx_threshold) 1174 rx_thres = chip_info->rx_threshold; 1175 chip->enable_dma = drv_data->master_info->enable_dma; 1176 chip->dma_threshold = 0; 1177 if (chip_info->enable_loopback) 1178 chip->cr1 = SSCR1_LBM; 1179 } else if (ACPI_HANDLE(&spi->dev)) { 1180 /* 1181 * Slave devices enumerated from ACPI namespace don't 1182 * usually have chip_info but we still might want to use 1183 * DMA with them. 1184 */ 1185 chip->enable_dma = drv_data->master_info->enable_dma; 1186 } 1187 1188 chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres); 1189 chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) 1190 | SSITF_TxHiThresh(tx_hi_thres); 1191 1192 /* set dma burst and threshold outside of chip_info path so that if 1193 * chip_info goes away after setting chip->enable_dma, the 1194 * burst and threshold can still respond to changes in bits_per_word */ 1195 if (chip->enable_dma) { 1196 /* set up legal burst and threshold for dma */ 1197 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi, 1198 spi->bits_per_word, 1199 &chip->dma_burst_size, 1200 &chip->dma_threshold)) { 1201 dev_warn(&spi->dev, 1202 "in setup: DMA burst size reduced to match bits_per_word\n"); 1203 } 1204 } 1205 1206 clk_div = pxa2xx_ssp_get_clk_div(drv_data, chip, spi->max_speed_hz); 1207 chip->speed_hz = spi->max_speed_hz; 1208 1209 chip->cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, 1210 spi->bits_per_word); 1211 switch (drv_data->ssp_type) { 1212 case QUARK_X1000_SSP: 1213 chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres) 1214 & QUARK_X1000_SSCR1_RFT) 1215 | (QUARK_X1000_SSCR1_TxTresh(tx_thres) 1216 & QUARK_X1000_SSCR1_TFT); 1217 break; 1218 default: 1219 chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) | 1220 (SSCR1_TxTresh(tx_thres) & SSCR1_TFT); 1221 break; 1222 } 1223 1224 chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH); 1225 chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0) 1226 | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0); 1227 1228 if (spi->mode & SPI_LOOP) 1229 chip->cr1 |= SSCR1_LBM; 1230 1231 /* NOTE: PXA25x_SSP _could_ use external clocking ... */ 1232 if (!pxa25x_ssp_comp(drv_data)) 1233 dev_dbg(&spi->dev, "%ld Hz actual, %s\n", 1234 drv_data->max_clk_rate 1235 / (1 + ((chip->cr0 & SSCR0_SCR(0xfff)) >> 8)), 1236 chip->enable_dma ? "DMA" : "PIO"); 1237 else 1238 dev_dbg(&spi->dev, "%ld Hz actual, %s\n", 1239 drv_data->max_clk_rate / 2 1240 / (1 + ((chip->cr0 & SSCR0_SCR(0x0ff)) >> 8)), 1241 chip->enable_dma ? "DMA" : "PIO"); 1242 1243 if (spi->bits_per_word <= 8) { 1244 chip->n_bytes = 1; 1245 chip->read = u8_reader; 1246 chip->write = u8_writer; 1247 } else if (spi->bits_per_word <= 16) { 1248 chip->n_bytes = 2; 1249 chip->read = u16_reader; 1250 chip->write = u16_writer; 1251 } else if (spi->bits_per_word <= 32) { 1252 if (!is_quark_x1000_ssp(drv_data)) 1253 chip->cr0 |= SSCR0_EDSS; 1254 chip->n_bytes = 4; 1255 chip->read = u32_reader; 1256 chip->write = u32_writer; 1257 } 1258 chip->bits_per_word = spi->bits_per_word; 1259 1260 spi_set_ctldata(spi, chip); 1261 1262 if (drv_data->ssp_type == CE4100_SSP) 1263 return 0; 1264 1265 return setup_cs(spi, chip, chip_info); 1266 } 1267 1268 static void cleanup(struct spi_device *spi) 1269 { 1270 struct chip_data *chip = spi_get_ctldata(spi); 1271 struct driver_data *drv_data = spi_master_get_devdata(spi->master); 1272 1273 if (!chip) 1274 return; 1275 1276 if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs)) 1277 gpio_free(chip->gpio_cs); 1278 1279 kfree(chip); 1280 } 1281 1282 #ifdef CONFIG_ACPI 1283 1284 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = { 1285 { "INT33C0", LPSS_LPT_SSP }, 1286 { "INT33C1", LPSS_LPT_SSP }, 1287 { "INT3430", LPSS_LPT_SSP }, 1288 { "INT3431", LPSS_LPT_SSP }, 1289 { "80860F0E", LPSS_BYT_SSP }, 1290 { "8086228E", LPSS_BYT_SSP }, 1291 { }, 1292 }; 1293 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match); 1294 1295 /* 1296 * PCI IDs of compound devices that integrate both host controller and private 1297 * integrated DMA engine. Please note these are not used in module 1298 * autoloading and probing in this module but matching the LPSS SSP type. 1299 */ 1300 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = { 1301 /* SPT-LP */ 1302 { PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP }, 1303 { PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP }, 1304 /* SPT-H */ 1305 { PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP }, 1306 { PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP }, 1307 { }, 1308 }; 1309 1310 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param) 1311 { 1312 struct device *dev = param; 1313 1314 if (dev != chan->device->dev->parent) 1315 return false; 1316 1317 return true; 1318 } 1319 1320 static struct pxa2xx_spi_master * 1321 pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev) 1322 { 1323 struct pxa2xx_spi_master *pdata; 1324 struct acpi_device *adev; 1325 struct ssp_device *ssp; 1326 struct resource *res; 1327 const struct acpi_device_id *adev_id = NULL; 1328 const struct pci_device_id *pcidev_id = NULL; 1329 int devid, type; 1330 1331 if (!ACPI_HANDLE(&pdev->dev) || 1332 acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev)) 1333 return NULL; 1334 1335 if (dev_is_pci(pdev->dev.parent)) 1336 pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match, 1337 to_pci_dev(pdev->dev.parent)); 1338 else 1339 adev_id = acpi_match_device(pdev->dev.driver->acpi_match_table, 1340 &pdev->dev); 1341 1342 if (adev_id) 1343 type = (int)adev_id->driver_data; 1344 else if (pcidev_id) 1345 type = (int)pcidev_id->driver_data; 1346 else 1347 return NULL; 1348 1349 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); 1350 if (!pdata) 1351 return NULL; 1352 1353 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1354 if (!res) 1355 return NULL; 1356 1357 ssp = &pdata->ssp; 1358 1359 ssp->phys_base = res->start; 1360 ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res); 1361 if (IS_ERR(ssp->mmio_base)) 1362 return NULL; 1363 1364 if (pcidev_id) { 1365 pdata->tx_param = pdev->dev.parent; 1366 pdata->rx_param = pdev->dev.parent; 1367 pdata->dma_filter = pxa2xx_spi_idma_filter; 1368 } 1369 1370 ssp->clk = devm_clk_get(&pdev->dev, NULL); 1371 ssp->irq = platform_get_irq(pdev, 0); 1372 ssp->type = type; 1373 ssp->pdev = pdev; 1374 1375 ssp->port_id = -1; 1376 if (adev->pnp.unique_id && !kstrtoint(adev->pnp.unique_id, 0, &devid)) 1377 ssp->port_id = devid; 1378 1379 pdata->num_chipselect = 1; 1380 pdata->enable_dma = true; 1381 1382 return pdata; 1383 } 1384 1385 #else 1386 static inline struct pxa2xx_spi_master * 1387 pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev) 1388 { 1389 return NULL; 1390 } 1391 #endif 1392 1393 static int pxa2xx_spi_probe(struct platform_device *pdev) 1394 { 1395 struct device *dev = &pdev->dev; 1396 struct pxa2xx_spi_master *platform_info; 1397 struct spi_master *master; 1398 struct driver_data *drv_data; 1399 struct ssp_device *ssp; 1400 int status; 1401 u32 tmp; 1402 1403 platform_info = dev_get_platdata(dev); 1404 if (!platform_info) { 1405 platform_info = pxa2xx_spi_acpi_get_pdata(pdev); 1406 if (!platform_info) { 1407 dev_err(&pdev->dev, "missing platform data\n"); 1408 return -ENODEV; 1409 } 1410 } 1411 1412 ssp = pxa_ssp_request(pdev->id, pdev->name); 1413 if (!ssp) 1414 ssp = &platform_info->ssp; 1415 1416 if (!ssp->mmio_base) { 1417 dev_err(&pdev->dev, "failed to get ssp\n"); 1418 return -ENODEV; 1419 } 1420 1421 master = spi_alloc_master(dev, sizeof(struct driver_data)); 1422 if (!master) { 1423 dev_err(&pdev->dev, "cannot alloc spi_master\n"); 1424 pxa_ssp_free(ssp); 1425 return -ENOMEM; 1426 } 1427 drv_data = spi_master_get_devdata(master); 1428 drv_data->master = master; 1429 drv_data->master_info = platform_info; 1430 drv_data->pdev = pdev; 1431 drv_data->ssp = ssp; 1432 1433 master->dev.parent = &pdev->dev; 1434 master->dev.of_node = pdev->dev.of_node; 1435 /* the spi->mode bits understood by this driver: */ 1436 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP; 1437 1438 master->bus_num = ssp->port_id; 1439 master->num_chipselect = platform_info->num_chipselect; 1440 master->dma_alignment = DMA_ALIGNMENT; 1441 master->cleanup = cleanup; 1442 master->setup = setup; 1443 master->transfer_one_message = pxa2xx_spi_transfer_one_message; 1444 master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer; 1445 master->auto_runtime_pm = true; 1446 1447 drv_data->ssp_type = ssp->type; 1448 1449 drv_data->ioaddr = ssp->mmio_base; 1450 drv_data->ssdr_physical = ssp->phys_base + SSDR; 1451 if (pxa25x_ssp_comp(drv_data)) { 1452 switch (drv_data->ssp_type) { 1453 case QUARK_X1000_SSP: 1454 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 1455 break; 1456 default: 1457 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); 1458 break; 1459 } 1460 1461 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE; 1462 drv_data->dma_cr1 = 0; 1463 drv_data->clear_sr = SSSR_ROR; 1464 drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR; 1465 } else { 1466 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 1467 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE; 1468 drv_data->dma_cr1 = DEFAULT_DMA_CR1; 1469 drv_data->clear_sr = SSSR_ROR | SSSR_TINT; 1470 drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR; 1471 } 1472 1473 status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev), 1474 drv_data); 1475 if (status < 0) { 1476 dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq); 1477 goto out_error_master_alloc; 1478 } 1479 1480 /* Setup DMA if requested */ 1481 if (platform_info->enable_dma) { 1482 status = pxa2xx_spi_dma_setup(drv_data); 1483 if (status) { 1484 dev_dbg(dev, "no DMA channels available, using PIO\n"); 1485 platform_info->enable_dma = false; 1486 } 1487 } 1488 1489 /* Enable SOC clock */ 1490 clk_prepare_enable(ssp->clk); 1491 1492 drv_data->max_clk_rate = clk_get_rate(ssp->clk); 1493 1494 /* Load default SSP configuration */ 1495 pxa2xx_spi_write(drv_data, SSCR0, 0); 1496 switch (drv_data->ssp_type) { 1497 case QUARK_X1000_SSP: 1498 tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) 1499 | QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT); 1500 pxa2xx_spi_write(drv_data, SSCR1, tmp); 1501 1502 /* using the Motorola SPI protocol and use 8 bit frame */ 1503 pxa2xx_spi_write(drv_data, SSCR0, 1504 QUARK_X1000_SSCR0_Motorola 1505 | QUARK_X1000_SSCR0_DataSize(8)); 1506 break; 1507 default: 1508 tmp = SSCR1_RxTresh(RX_THRESH_DFLT) | 1509 SSCR1_TxTresh(TX_THRESH_DFLT); 1510 pxa2xx_spi_write(drv_data, SSCR1, tmp); 1511 tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8); 1512 pxa2xx_spi_write(drv_data, SSCR0, tmp); 1513 break; 1514 } 1515 1516 if (!pxa25x_ssp_comp(drv_data)) 1517 pxa2xx_spi_write(drv_data, SSTO, 0); 1518 1519 if (!is_quark_x1000_ssp(drv_data)) 1520 pxa2xx_spi_write(drv_data, SSPSP, 0); 1521 1522 if (is_lpss_ssp(drv_data)) 1523 lpss_ssp_setup(drv_data); 1524 1525 tasklet_init(&drv_data->pump_transfers, pump_transfers, 1526 (unsigned long)drv_data); 1527 1528 pm_runtime_set_autosuspend_delay(&pdev->dev, 50); 1529 pm_runtime_use_autosuspend(&pdev->dev); 1530 pm_runtime_set_active(&pdev->dev); 1531 pm_runtime_enable(&pdev->dev); 1532 1533 /* Register with the SPI framework */ 1534 platform_set_drvdata(pdev, drv_data); 1535 status = devm_spi_register_master(&pdev->dev, master); 1536 if (status != 0) { 1537 dev_err(&pdev->dev, "problem registering spi master\n"); 1538 goto out_error_clock_enabled; 1539 } 1540 1541 return status; 1542 1543 out_error_clock_enabled: 1544 clk_disable_unprepare(ssp->clk); 1545 pxa2xx_spi_dma_release(drv_data); 1546 free_irq(ssp->irq, drv_data); 1547 1548 out_error_master_alloc: 1549 spi_master_put(master); 1550 pxa_ssp_free(ssp); 1551 return status; 1552 } 1553 1554 static int pxa2xx_spi_remove(struct platform_device *pdev) 1555 { 1556 struct driver_data *drv_data = platform_get_drvdata(pdev); 1557 struct ssp_device *ssp; 1558 1559 if (!drv_data) 1560 return 0; 1561 ssp = drv_data->ssp; 1562 1563 pm_runtime_get_sync(&pdev->dev); 1564 1565 /* Disable the SSP at the peripheral and SOC level */ 1566 pxa2xx_spi_write(drv_data, SSCR0, 0); 1567 clk_disable_unprepare(ssp->clk); 1568 1569 /* Release DMA */ 1570 if (drv_data->master_info->enable_dma) 1571 pxa2xx_spi_dma_release(drv_data); 1572 1573 pm_runtime_put_noidle(&pdev->dev); 1574 pm_runtime_disable(&pdev->dev); 1575 1576 /* Release IRQ */ 1577 free_irq(ssp->irq, drv_data); 1578 1579 /* Release SSP */ 1580 pxa_ssp_free(ssp); 1581 1582 return 0; 1583 } 1584 1585 static void pxa2xx_spi_shutdown(struct platform_device *pdev) 1586 { 1587 int status = 0; 1588 1589 if ((status = pxa2xx_spi_remove(pdev)) != 0) 1590 dev_err(&pdev->dev, "shutdown failed with %d\n", status); 1591 } 1592 1593 #ifdef CONFIG_PM_SLEEP 1594 static int pxa2xx_spi_suspend(struct device *dev) 1595 { 1596 struct driver_data *drv_data = dev_get_drvdata(dev); 1597 struct ssp_device *ssp = drv_data->ssp; 1598 int status = 0; 1599 1600 status = spi_master_suspend(drv_data->master); 1601 if (status != 0) 1602 return status; 1603 pxa2xx_spi_write(drv_data, SSCR0, 0); 1604 1605 if (!pm_runtime_suspended(dev)) 1606 clk_disable_unprepare(ssp->clk); 1607 1608 return 0; 1609 } 1610 1611 static int pxa2xx_spi_resume(struct device *dev) 1612 { 1613 struct driver_data *drv_data = dev_get_drvdata(dev); 1614 struct ssp_device *ssp = drv_data->ssp; 1615 int status = 0; 1616 1617 pxa2xx_spi_dma_resume(drv_data); 1618 1619 /* Enable the SSP clock */ 1620 if (!pm_runtime_suspended(dev)) 1621 clk_prepare_enable(ssp->clk); 1622 1623 /* Restore LPSS private register bits */ 1624 if (is_lpss_ssp(drv_data)) 1625 lpss_ssp_setup(drv_data); 1626 1627 /* Start the queue running */ 1628 status = spi_master_resume(drv_data->master); 1629 if (status != 0) { 1630 dev_err(dev, "problem starting queue (%d)\n", status); 1631 return status; 1632 } 1633 1634 return 0; 1635 } 1636 #endif 1637 1638 #ifdef CONFIG_PM 1639 static int pxa2xx_spi_runtime_suspend(struct device *dev) 1640 { 1641 struct driver_data *drv_data = dev_get_drvdata(dev); 1642 1643 clk_disable_unprepare(drv_data->ssp->clk); 1644 return 0; 1645 } 1646 1647 static int pxa2xx_spi_runtime_resume(struct device *dev) 1648 { 1649 struct driver_data *drv_data = dev_get_drvdata(dev); 1650 1651 clk_prepare_enable(drv_data->ssp->clk); 1652 return 0; 1653 } 1654 #endif 1655 1656 static const struct dev_pm_ops pxa2xx_spi_pm_ops = { 1657 SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume) 1658 SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend, 1659 pxa2xx_spi_runtime_resume, NULL) 1660 }; 1661 1662 static struct platform_driver driver = { 1663 .driver = { 1664 .name = "pxa2xx-spi", 1665 .pm = &pxa2xx_spi_pm_ops, 1666 .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match), 1667 }, 1668 .probe = pxa2xx_spi_probe, 1669 .remove = pxa2xx_spi_remove, 1670 .shutdown = pxa2xx_spi_shutdown, 1671 }; 1672 1673 static int __init pxa2xx_spi_init(void) 1674 { 1675 return platform_driver_register(&driver); 1676 } 1677 subsys_initcall(pxa2xx_spi_init); 1678 1679 static void __exit pxa2xx_spi_exit(void) 1680 { 1681 platform_driver_unregister(&driver); 1682 } 1683 module_exit(pxa2xx_spi_exit); 1684