xref: /openbmc/linux/drivers/spi/spi-pxa2xx.c (revision 840ef8b7cc584a23c4f9d05352f4dbaf8e56e5ab)
1 /*
2  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
3  * Copyright (C) 2013, Intel Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  */
19 
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/ioport.h>
24 #include <linux/errno.h>
25 #include <linux/interrupt.h>
26 #include <linux/platform_device.h>
27 #include <linux/spi/pxa2xx_spi.h>
28 #include <linux/spi/spi.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/gpio.h>
32 #include <linux/slab.h>
33 #include <linux/clk.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/acpi.h>
36 
37 #include <asm/io.h>
38 #include <asm/irq.h>
39 #include <asm/delay.h>
40 
41 #include "spi-pxa2xx.h"
42 
43 MODULE_AUTHOR("Stephen Street");
44 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
45 MODULE_LICENSE("GPL");
46 MODULE_ALIAS("platform:pxa2xx-spi");
47 
48 #define MAX_BUSES 3
49 
50 #define TIMOUT_DFLT		1000
51 
52 /*
53  * for testing SSCR1 changes that require SSP restart, basically
54  * everything except the service and interrupt enables, the pxa270 developer
55  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
56  * list, but the PXA255 dev man says all bits without really meaning the
57  * service and interrupt enables
58  */
59 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
60 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
61 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
62 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
63 				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
64 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
65 
66 #define LPSS_RX_THRESH_DFLT	64
67 #define LPSS_TX_LOTHRESH_DFLT	160
68 #define LPSS_TX_HITHRESH_DFLT	224
69 
70 /* Offset from drv_data->lpss_base */
71 #define SPI_CS_CONTROL		0x18
72 #define SPI_CS_CONTROL_SW_MODE	BIT(0)
73 #define SPI_CS_CONTROL_CS_HIGH	BIT(1)
74 
75 static bool is_lpss_ssp(const struct driver_data *drv_data)
76 {
77 	return drv_data->ssp_type == LPSS_SSP;
78 }
79 
80 /*
81  * Read and write LPSS SSP private registers. Caller must first check that
82  * is_lpss_ssp() returns true before these can be called.
83  */
84 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
85 {
86 	WARN_ON(!drv_data->lpss_base);
87 	return readl(drv_data->lpss_base + offset);
88 }
89 
90 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
91 				  unsigned offset, u32 value)
92 {
93 	WARN_ON(!drv_data->lpss_base);
94 	writel(value, drv_data->lpss_base + offset);
95 }
96 
97 /*
98  * lpss_ssp_setup - perform LPSS SSP specific setup
99  * @drv_data: pointer to the driver private data
100  *
101  * Perform LPSS SSP specific setup. This function must be called first if
102  * one is going to use LPSS SSP private registers.
103  */
104 static void lpss_ssp_setup(struct driver_data *drv_data)
105 {
106 	unsigned offset = 0x400;
107 	u32 value, orig;
108 
109 	if (!is_lpss_ssp(drv_data))
110 		return;
111 
112 	/*
113 	 * Perform auto-detection of the LPSS SSP private registers. They
114 	 * can be either at 1k or 2k offset from the base address.
115 	 */
116 	orig = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
117 
118 	value = orig | SPI_CS_CONTROL_SW_MODE;
119 	writel(value, drv_data->ioaddr + offset + SPI_CS_CONTROL);
120 	value = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
121 	if (value != (orig | SPI_CS_CONTROL_SW_MODE)) {
122 		offset = 0x800;
123 		goto detection_done;
124 	}
125 
126 	value &= ~SPI_CS_CONTROL_SW_MODE;
127 	writel(value, drv_data->ioaddr + offset + SPI_CS_CONTROL);
128 	value = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
129 	if (value != orig) {
130 		offset = 0x800;
131 		goto detection_done;
132 	}
133 
134 detection_done:
135 	/* Now set the LPSS base */
136 	drv_data->lpss_base = drv_data->ioaddr + offset;
137 
138 	/* Enable software chip select control */
139 	value = SPI_CS_CONTROL_SW_MODE | SPI_CS_CONTROL_CS_HIGH;
140 	__lpss_ssp_write_priv(drv_data, SPI_CS_CONTROL, value);
141 }
142 
143 static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable)
144 {
145 	u32 value;
146 
147 	if (!is_lpss_ssp(drv_data))
148 		return;
149 
150 	value = __lpss_ssp_read_priv(drv_data, SPI_CS_CONTROL);
151 	if (enable)
152 		value &= ~SPI_CS_CONTROL_CS_HIGH;
153 	else
154 		value |= SPI_CS_CONTROL_CS_HIGH;
155 	__lpss_ssp_write_priv(drv_data, SPI_CS_CONTROL, value);
156 }
157 
158 static void cs_assert(struct driver_data *drv_data)
159 {
160 	struct chip_data *chip = drv_data->cur_chip;
161 
162 	if (drv_data->ssp_type == CE4100_SSP) {
163 		write_SSSR(drv_data->cur_chip->frm, drv_data->ioaddr);
164 		return;
165 	}
166 
167 	if (chip->cs_control) {
168 		chip->cs_control(PXA2XX_CS_ASSERT);
169 		return;
170 	}
171 
172 	if (gpio_is_valid(chip->gpio_cs)) {
173 		gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
174 		return;
175 	}
176 
177 	lpss_ssp_cs_control(drv_data, true);
178 }
179 
180 static void cs_deassert(struct driver_data *drv_data)
181 {
182 	struct chip_data *chip = drv_data->cur_chip;
183 
184 	if (drv_data->ssp_type == CE4100_SSP)
185 		return;
186 
187 	if (chip->cs_control) {
188 		chip->cs_control(PXA2XX_CS_DEASSERT);
189 		return;
190 	}
191 
192 	if (gpio_is_valid(chip->gpio_cs)) {
193 		gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
194 		return;
195 	}
196 
197 	lpss_ssp_cs_control(drv_data, false);
198 }
199 
200 int pxa2xx_spi_flush(struct driver_data *drv_data)
201 {
202 	unsigned long limit = loops_per_jiffy << 1;
203 
204 	void __iomem *reg = drv_data->ioaddr;
205 
206 	do {
207 		while (read_SSSR(reg) & SSSR_RNE) {
208 			read_SSDR(reg);
209 		}
210 	} while ((read_SSSR(reg) & SSSR_BSY) && --limit);
211 	write_SSSR_CS(drv_data, SSSR_ROR);
212 
213 	return limit;
214 }
215 
216 static int null_writer(struct driver_data *drv_data)
217 {
218 	void __iomem *reg = drv_data->ioaddr;
219 	u8 n_bytes = drv_data->n_bytes;
220 
221 	if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
222 		|| (drv_data->tx == drv_data->tx_end))
223 		return 0;
224 
225 	write_SSDR(0, reg);
226 	drv_data->tx += n_bytes;
227 
228 	return 1;
229 }
230 
231 static int null_reader(struct driver_data *drv_data)
232 {
233 	void __iomem *reg = drv_data->ioaddr;
234 	u8 n_bytes = drv_data->n_bytes;
235 
236 	while ((read_SSSR(reg) & SSSR_RNE)
237 		&& (drv_data->rx < drv_data->rx_end)) {
238 		read_SSDR(reg);
239 		drv_data->rx += n_bytes;
240 	}
241 
242 	return drv_data->rx == drv_data->rx_end;
243 }
244 
245 static int u8_writer(struct driver_data *drv_data)
246 {
247 	void __iomem *reg = drv_data->ioaddr;
248 
249 	if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
250 		|| (drv_data->tx == drv_data->tx_end))
251 		return 0;
252 
253 	write_SSDR(*(u8 *)(drv_data->tx), reg);
254 	++drv_data->tx;
255 
256 	return 1;
257 }
258 
259 static int u8_reader(struct driver_data *drv_data)
260 {
261 	void __iomem *reg = drv_data->ioaddr;
262 
263 	while ((read_SSSR(reg) & SSSR_RNE)
264 		&& (drv_data->rx < drv_data->rx_end)) {
265 		*(u8 *)(drv_data->rx) = read_SSDR(reg);
266 		++drv_data->rx;
267 	}
268 
269 	return drv_data->rx == drv_data->rx_end;
270 }
271 
272 static int u16_writer(struct driver_data *drv_data)
273 {
274 	void __iomem *reg = drv_data->ioaddr;
275 
276 	if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
277 		|| (drv_data->tx == drv_data->tx_end))
278 		return 0;
279 
280 	write_SSDR(*(u16 *)(drv_data->tx), reg);
281 	drv_data->tx += 2;
282 
283 	return 1;
284 }
285 
286 static int u16_reader(struct driver_data *drv_data)
287 {
288 	void __iomem *reg = drv_data->ioaddr;
289 
290 	while ((read_SSSR(reg) & SSSR_RNE)
291 		&& (drv_data->rx < drv_data->rx_end)) {
292 		*(u16 *)(drv_data->rx) = read_SSDR(reg);
293 		drv_data->rx += 2;
294 	}
295 
296 	return drv_data->rx == drv_data->rx_end;
297 }
298 
299 static int u32_writer(struct driver_data *drv_data)
300 {
301 	void __iomem *reg = drv_data->ioaddr;
302 
303 	if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
304 		|| (drv_data->tx == drv_data->tx_end))
305 		return 0;
306 
307 	write_SSDR(*(u32 *)(drv_data->tx), reg);
308 	drv_data->tx += 4;
309 
310 	return 1;
311 }
312 
313 static int u32_reader(struct driver_data *drv_data)
314 {
315 	void __iomem *reg = drv_data->ioaddr;
316 
317 	while ((read_SSSR(reg) & SSSR_RNE)
318 		&& (drv_data->rx < drv_data->rx_end)) {
319 		*(u32 *)(drv_data->rx) = read_SSDR(reg);
320 		drv_data->rx += 4;
321 	}
322 
323 	return drv_data->rx == drv_data->rx_end;
324 }
325 
326 void *pxa2xx_spi_next_transfer(struct driver_data *drv_data)
327 {
328 	struct spi_message *msg = drv_data->cur_msg;
329 	struct spi_transfer *trans = drv_data->cur_transfer;
330 
331 	/* Move to next transfer */
332 	if (trans->transfer_list.next != &msg->transfers) {
333 		drv_data->cur_transfer =
334 			list_entry(trans->transfer_list.next,
335 					struct spi_transfer,
336 					transfer_list);
337 		return RUNNING_STATE;
338 	} else
339 		return DONE_STATE;
340 }
341 
342 /* caller already set message->status; dma and pio irqs are blocked */
343 static void giveback(struct driver_data *drv_data)
344 {
345 	struct spi_transfer* last_transfer;
346 	struct spi_message *msg;
347 
348 	msg = drv_data->cur_msg;
349 	drv_data->cur_msg = NULL;
350 	drv_data->cur_transfer = NULL;
351 
352 	last_transfer = list_entry(msg->transfers.prev,
353 					struct spi_transfer,
354 					transfer_list);
355 
356 	/* Delay if requested before any change in chip select */
357 	if (last_transfer->delay_usecs)
358 		udelay(last_transfer->delay_usecs);
359 
360 	/* Drop chip select UNLESS cs_change is true or we are returning
361 	 * a message with an error, or next message is for another chip
362 	 */
363 	if (!last_transfer->cs_change)
364 		cs_deassert(drv_data);
365 	else {
366 		struct spi_message *next_msg;
367 
368 		/* Holding of cs was hinted, but we need to make sure
369 		 * the next message is for the same chip.  Don't waste
370 		 * time with the following tests unless this was hinted.
371 		 *
372 		 * We cannot postpone this until pump_messages, because
373 		 * after calling msg->complete (below) the driver that
374 		 * sent the current message could be unloaded, which
375 		 * could invalidate the cs_control() callback...
376 		 */
377 
378 		/* get a pointer to the next message, if any */
379 		next_msg = spi_get_next_queued_message(drv_data->master);
380 
381 		/* see if the next and current messages point
382 		 * to the same chip
383 		 */
384 		if (next_msg && next_msg->spi != msg->spi)
385 			next_msg = NULL;
386 		if (!next_msg || msg->state == ERROR_STATE)
387 			cs_deassert(drv_data);
388 	}
389 
390 	spi_finalize_current_message(drv_data->master);
391 	drv_data->cur_chip = NULL;
392 }
393 
394 static void reset_sccr1(struct driver_data *drv_data)
395 {
396 	void __iomem *reg = drv_data->ioaddr;
397 	struct chip_data *chip = drv_data->cur_chip;
398 	u32 sccr1_reg;
399 
400 	sccr1_reg = read_SSCR1(reg) & ~drv_data->int_cr1;
401 	sccr1_reg &= ~SSCR1_RFT;
402 	sccr1_reg |= chip->threshold;
403 	write_SSCR1(sccr1_reg, reg);
404 }
405 
406 static void int_error_stop(struct driver_data *drv_data, const char* msg)
407 {
408 	void __iomem *reg = drv_data->ioaddr;
409 
410 	/* Stop and reset SSP */
411 	write_SSSR_CS(drv_data, drv_data->clear_sr);
412 	reset_sccr1(drv_data);
413 	if (!pxa25x_ssp_comp(drv_data))
414 		write_SSTO(0, reg);
415 	pxa2xx_spi_flush(drv_data);
416 	write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
417 
418 	dev_err(&drv_data->pdev->dev, "%s\n", msg);
419 
420 	drv_data->cur_msg->state = ERROR_STATE;
421 	tasklet_schedule(&drv_data->pump_transfers);
422 }
423 
424 static void int_transfer_complete(struct driver_data *drv_data)
425 {
426 	void __iomem *reg = drv_data->ioaddr;
427 
428 	/* Stop SSP */
429 	write_SSSR_CS(drv_data, drv_data->clear_sr);
430 	reset_sccr1(drv_data);
431 	if (!pxa25x_ssp_comp(drv_data))
432 		write_SSTO(0, reg);
433 
434 	/* Update total byte transferred return count actual bytes read */
435 	drv_data->cur_msg->actual_length += drv_data->len -
436 				(drv_data->rx_end - drv_data->rx);
437 
438 	/* Transfer delays and chip select release are
439 	 * handled in pump_transfers or giveback
440 	 */
441 
442 	/* Move to next transfer */
443 	drv_data->cur_msg->state = pxa2xx_spi_next_transfer(drv_data);
444 
445 	/* Schedule transfer tasklet */
446 	tasklet_schedule(&drv_data->pump_transfers);
447 }
448 
449 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
450 {
451 	void __iomem *reg = drv_data->ioaddr;
452 
453 	u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
454 			drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
455 
456 	u32 irq_status = read_SSSR(reg) & irq_mask;
457 
458 	if (irq_status & SSSR_ROR) {
459 		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
460 		return IRQ_HANDLED;
461 	}
462 
463 	if (irq_status & SSSR_TINT) {
464 		write_SSSR(SSSR_TINT, reg);
465 		if (drv_data->read(drv_data)) {
466 			int_transfer_complete(drv_data);
467 			return IRQ_HANDLED;
468 		}
469 	}
470 
471 	/* Drain rx fifo, Fill tx fifo and prevent overruns */
472 	do {
473 		if (drv_data->read(drv_data)) {
474 			int_transfer_complete(drv_data);
475 			return IRQ_HANDLED;
476 		}
477 	} while (drv_data->write(drv_data));
478 
479 	if (drv_data->read(drv_data)) {
480 		int_transfer_complete(drv_data);
481 		return IRQ_HANDLED;
482 	}
483 
484 	if (drv_data->tx == drv_data->tx_end) {
485 		u32 bytes_left;
486 		u32 sccr1_reg;
487 
488 		sccr1_reg = read_SSCR1(reg);
489 		sccr1_reg &= ~SSCR1_TIE;
490 
491 		/*
492 		 * PXA25x_SSP has no timeout, set up rx threshould for the
493 		 * remaining RX bytes.
494 		 */
495 		if (pxa25x_ssp_comp(drv_data)) {
496 
497 			sccr1_reg &= ~SSCR1_RFT;
498 
499 			bytes_left = drv_data->rx_end - drv_data->rx;
500 			switch (drv_data->n_bytes) {
501 			case 4:
502 				bytes_left >>= 1;
503 			case 2:
504 				bytes_left >>= 1;
505 			}
506 
507 			if (bytes_left > RX_THRESH_DFLT)
508 				bytes_left = RX_THRESH_DFLT;
509 
510 			sccr1_reg |= SSCR1_RxTresh(bytes_left);
511 		}
512 		write_SSCR1(sccr1_reg, reg);
513 	}
514 
515 	/* We did something */
516 	return IRQ_HANDLED;
517 }
518 
519 static irqreturn_t ssp_int(int irq, void *dev_id)
520 {
521 	struct driver_data *drv_data = dev_id;
522 	void __iomem *reg = drv_data->ioaddr;
523 	u32 sccr1_reg;
524 	u32 mask = drv_data->mask_sr;
525 	u32 status;
526 
527 	/*
528 	 * The IRQ might be shared with other peripherals so we must first
529 	 * check that are we RPM suspended or not. If we are we assume that
530 	 * the IRQ was not for us (we shouldn't be RPM suspended when the
531 	 * interrupt is enabled).
532 	 */
533 	if (pm_runtime_suspended(&drv_data->pdev->dev))
534 		return IRQ_NONE;
535 
536 	sccr1_reg = read_SSCR1(reg);
537 	status = read_SSSR(reg);
538 
539 	/* Ignore possible writes if we don't need to write */
540 	if (!(sccr1_reg & SSCR1_TIE))
541 		mask &= ~SSSR_TFS;
542 
543 	if (!(status & mask))
544 		return IRQ_NONE;
545 
546 	if (!drv_data->cur_msg) {
547 
548 		write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
549 		write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
550 		if (!pxa25x_ssp_comp(drv_data))
551 			write_SSTO(0, reg);
552 		write_SSSR_CS(drv_data, drv_data->clear_sr);
553 
554 		dev_err(&drv_data->pdev->dev, "bad message state "
555 			"in interrupt handler\n");
556 
557 		/* Never fail */
558 		return IRQ_HANDLED;
559 	}
560 
561 	return drv_data->transfer_handler(drv_data);
562 }
563 
564 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
565 {
566 	unsigned long ssp_clk = drv_data->max_clk_rate;
567 	const struct ssp_device *ssp = drv_data->ssp;
568 
569 	rate = min_t(int, ssp_clk, rate);
570 
571 	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
572 		return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
573 	else
574 		return ((ssp_clk / rate - 1) & 0xfff) << 8;
575 }
576 
577 static void pump_transfers(unsigned long data)
578 {
579 	struct driver_data *drv_data = (struct driver_data *)data;
580 	struct spi_message *message = NULL;
581 	struct spi_transfer *transfer = NULL;
582 	struct spi_transfer *previous = NULL;
583 	struct chip_data *chip = NULL;
584 	void __iomem *reg = drv_data->ioaddr;
585 	u32 clk_div = 0;
586 	u8 bits = 0;
587 	u32 speed = 0;
588 	u32 cr0;
589 	u32 cr1;
590 	u32 dma_thresh = drv_data->cur_chip->dma_threshold;
591 	u32 dma_burst = drv_data->cur_chip->dma_burst_size;
592 
593 	/* Get current state information */
594 	message = drv_data->cur_msg;
595 	transfer = drv_data->cur_transfer;
596 	chip = drv_data->cur_chip;
597 
598 	/* Handle for abort */
599 	if (message->state == ERROR_STATE) {
600 		message->status = -EIO;
601 		giveback(drv_data);
602 		return;
603 	}
604 
605 	/* Handle end of message */
606 	if (message->state == DONE_STATE) {
607 		message->status = 0;
608 		giveback(drv_data);
609 		return;
610 	}
611 
612 	/* Delay if requested at end of transfer before CS change */
613 	if (message->state == RUNNING_STATE) {
614 		previous = list_entry(transfer->transfer_list.prev,
615 					struct spi_transfer,
616 					transfer_list);
617 		if (previous->delay_usecs)
618 			udelay(previous->delay_usecs);
619 
620 		/* Drop chip select only if cs_change is requested */
621 		if (previous->cs_change)
622 			cs_deassert(drv_data);
623 	}
624 
625 	/* Check if we can DMA this transfer */
626 	if (!pxa2xx_spi_dma_is_possible(transfer->len) && chip->enable_dma) {
627 
628 		/* reject already-mapped transfers; PIO won't always work */
629 		if (message->is_dma_mapped
630 				|| transfer->rx_dma || transfer->tx_dma) {
631 			dev_err(&drv_data->pdev->dev,
632 				"pump_transfers: mapped transfer length "
633 				"of %u is greater than %d\n",
634 				transfer->len, MAX_DMA_LEN);
635 			message->status = -EINVAL;
636 			giveback(drv_data);
637 			return;
638 		}
639 
640 		/* warn ... we force this to PIO mode */
641 		if (printk_ratelimit())
642 			dev_warn(&message->spi->dev, "pump_transfers: "
643 				"DMA disabled for transfer length %ld "
644 				"greater than %d\n",
645 				(long)drv_data->len, MAX_DMA_LEN);
646 	}
647 
648 	/* Setup the transfer state based on the type of transfer */
649 	if (pxa2xx_spi_flush(drv_data) == 0) {
650 		dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
651 		message->status = -EIO;
652 		giveback(drv_data);
653 		return;
654 	}
655 	drv_data->n_bytes = chip->n_bytes;
656 	drv_data->tx = (void *)transfer->tx_buf;
657 	drv_data->tx_end = drv_data->tx + transfer->len;
658 	drv_data->rx = transfer->rx_buf;
659 	drv_data->rx_end = drv_data->rx + transfer->len;
660 	drv_data->rx_dma = transfer->rx_dma;
661 	drv_data->tx_dma = transfer->tx_dma;
662 	drv_data->len = transfer->len;
663 	drv_data->write = drv_data->tx ? chip->write : null_writer;
664 	drv_data->read = drv_data->rx ? chip->read : null_reader;
665 
666 	/* Change speed and bit per word on a per transfer */
667 	cr0 = chip->cr0;
668 	if (transfer->speed_hz || transfer->bits_per_word) {
669 
670 		bits = chip->bits_per_word;
671 		speed = chip->speed_hz;
672 
673 		if (transfer->speed_hz)
674 			speed = transfer->speed_hz;
675 
676 		if (transfer->bits_per_word)
677 			bits = transfer->bits_per_word;
678 
679 		clk_div = ssp_get_clk_div(drv_data, speed);
680 
681 		if (bits <= 8) {
682 			drv_data->n_bytes = 1;
683 			drv_data->read = drv_data->read != null_reader ?
684 						u8_reader : null_reader;
685 			drv_data->write = drv_data->write != null_writer ?
686 						u8_writer : null_writer;
687 		} else if (bits <= 16) {
688 			drv_data->n_bytes = 2;
689 			drv_data->read = drv_data->read != null_reader ?
690 						u16_reader : null_reader;
691 			drv_data->write = drv_data->write != null_writer ?
692 						u16_writer : null_writer;
693 		} else if (bits <= 32) {
694 			drv_data->n_bytes = 4;
695 			drv_data->read = drv_data->read != null_reader ?
696 						u32_reader : null_reader;
697 			drv_data->write = drv_data->write != null_writer ?
698 						u32_writer : null_writer;
699 		}
700 		/* if bits/word is changed in dma mode, then must check the
701 		 * thresholds and burst also */
702 		if (chip->enable_dma) {
703 			if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
704 							message->spi,
705 							bits, &dma_burst,
706 							&dma_thresh))
707 				if (printk_ratelimit())
708 					dev_warn(&message->spi->dev,
709 						"pump_transfers: "
710 						"DMA burst size reduced to "
711 						"match bits_per_word\n");
712 		}
713 
714 		cr0 = clk_div
715 			| SSCR0_Motorola
716 			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
717 			| SSCR0_SSE
718 			| (bits > 16 ? SSCR0_EDSS : 0);
719 	}
720 
721 	message->state = RUNNING_STATE;
722 
723 	drv_data->dma_mapped = 0;
724 	if (pxa2xx_spi_dma_is_possible(drv_data->len))
725 		drv_data->dma_mapped = pxa2xx_spi_map_dma_buffers(drv_data);
726 	if (drv_data->dma_mapped) {
727 
728 		/* Ensure we have the correct interrupt handler */
729 		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
730 
731 		pxa2xx_spi_dma_prepare(drv_data, dma_burst);
732 
733 		/* Clear status and start DMA engine */
734 		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
735 		write_SSSR(drv_data->clear_sr, reg);
736 
737 		pxa2xx_spi_dma_start(drv_data);
738 	} else {
739 		/* Ensure we have the correct interrupt handler	*/
740 		drv_data->transfer_handler = interrupt_transfer;
741 
742 		/* Clear status  */
743 		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
744 		write_SSSR_CS(drv_data, drv_data->clear_sr);
745 	}
746 
747 	if (is_lpss_ssp(drv_data)) {
748 		if ((read_SSIRF(reg) & 0xff) != chip->lpss_rx_threshold)
749 			write_SSIRF(chip->lpss_rx_threshold, reg);
750 		if ((read_SSITF(reg) & 0xffff) != chip->lpss_tx_threshold)
751 			write_SSITF(chip->lpss_tx_threshold, reg);
752 	}
753 
754 	/* see if we need to reload the config registers */
755 	if ((read_SSCR0(reg) != cr0)
756 		|| (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
757 			(cr1 & SSCR1_CHANGE_MASK)) {
758 
759 		/* stop the SSP, and update the other bits */
760 		write_SSCR0(cr0 & ~SSCR0_SSE, reg);
761 		if (!pxa25x_ssp_comp(drv_data))
762 			write_SSTO(chip->timeout, reg);
763 		/* first set CR1 without interrupt and service enables */
764 		write_SSCR1(cr1 & SSCR1_CHANGE_MASK, reg);
765 		/* restart the SSP */
766 		write_SSCR0(cr0, reg);
767 
768 	} else {
769 		if (!pxa25x_ssp_comp(drv_data))
770 			write_SSTO(chip->timeout, reg);
771 	}
772 
773 	cs_assert(drv_data);
774 
775 	/* after chip select, release the data by enabling service
776 	 * requests and interrupts, without changing any mode bits */
777 	write_SSCR1(cr1, reg);
778 }
779 
780 static int pxa2xx_spi_transfer_one_message(struct spi_master *master,
781 					   struct spi_message *msg)
782 {
783 	struct driver_data *drv_data = spi_master_get_devdata(master);
784 
785 	drv_data->cur_msg = msg;
786 	/* Initial message state*/
787 	drv_data->cur_msg->state = START_STATE;
788 	drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
789 						struct spi_transfer,
790 						transfer_list);
791 
792 	/* prepare to setup the SSP, in pump_transfers, using the per
793 	 * chip configuration */
794 	drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
795 
796 	/* Mark as busy and launch transfers */
797 	tasklet_schedule(&drv_data->pump_transfers);
798 	return 0;
799 }
800 
801 static int pxa2xx_spi_prepare_transfer(struct spi_master *master)
802 {
803 	struct driver_data *drv_data = spi_master_get_devdata(master);
804 
805 	pm_runtime_get_sync(&drv_data->pdev->dev);
806 	return 0;
807 }
808 
809 static int pxa2xx_spi_unprepare_transfer(struct spi_master *master)
810 {
811 	struct driver_data *drv_data = spi_master_get_devdata(master);
812 
813 	/* Disable the SSP now */
814 	write_SSCR0(read_SSCR0(drv_data->ioaddr) & ~SSCR0_SSE,
815 		    drv_data->ioaddr);
816 
817 	pm_runtime_mark_last_busy(&drv_data->pdev->dev);
818 	pm_runtime_put_autosuspend(&drv_data->pdev->dev);
819 	return 0;
820 }
821 
822 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
823 		    struct pxa2xx_spi_chip *chip_info)
824 {
825 	int err = 0;
826 
827 	if (chip == NULL || chip_info == NULL)
828 		return 0;
829 
830 	/* NOTE: setup() can be called multiple times, possibly with
831 	 * different chip_info, release previously requested GPIO
832 	 */
833 	if (gpio_is_valid(chip->gpio_cs))
834 		gpio_free(chip->gpio_cs);
835 
836 	/* If (*cs_control) is provided, ignore GPIO chip select */
837 	if (chip_info->cs_control) {
838 		chip->cs_control = chip_info->cs_control;
839 		return 0;
840 	}
841 
842 	if (gpio_is_valid(chip_info->gpio_cs)) {
843 		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
844 		if (err) {
845 			dev_err(&spi->dev, "failed to request chip select "
846 					"GPIO%d\n", chip_info->gpio_cs);
847 			return err;
848 		}
849 
850 		chip->gpio_cs = chip_info->gpio_cs;
851 		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
852 
853 		err = gpio_direction_output(chip->gpio_cs,
854 					!chip->gpio_cs_inverted);
855 	}
856 
857 	return err;
858 }
859 
860 static int setup(struct spi_device *spi)
861 {
862 	struct pxa2xx_spi_chip *chip_info = NULL;
863 	struct chip_data *chip;
864 	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
865 	unsigned int clk_div;
866 	uint tx_thres, tx_hi_thres, rx_thres;
867 
868 	if (is_lpss_ssp(drv_data)) {
869 		tx_thres = LPSS_TX_LOTHRESH_DFLT;
870 		tx_hi_thres = LPSS_TX_HITHRESH_DFLT;
871 		rx_thres = LPSS_RX_THRESH_DFLT;
872 	} else {
873 		tx_thres = TX_THRESH_DFLT;
874 		tx_hi_thres = 0;
875 		rx_thres = RX_THRESH_DFLT;
876 	}
877 
878 	if (!pxa25x_ssp_comp(drv_data)
879 		&& (spi->bits_per_word < 4 || spi->bits_per_word > 32)) {
880 		dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
881 				"b/w not 4-32 for type non-PXA25x_SSP\n",
882 				drv_data->ssp_type, spi->bits_per_word);
883 		return -EINVAL;
884 	} else if (pxa25x_ssp_comp(drv_data)
885 			&& (spi->bits_per_word < 4
886 				|| spi->bits_per_word > 16)) {
887 		dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
888 				"b/w not 4-16 for type PXA25x_SSP\n",
889 				drv_data->ssp_type, spi->bits_per_word);
890 		return -EINVAL;
891 	}
892 
893 	/* Only alloc on first setup */
894 	chip = spi_get_ctldata(spi);
895 	if (!chip) {
896 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
897 		if (!chip) {
898 			dev_err(&spi->dev,
899 				"failed setup: can't allocate chip data\n");
900 			return -ENOMEM;
901 		}
902 
903 		if (drv_data->ssp_type == CE4100_SSP) {
904 			if (spi->chip_select > 4) {
905 				dev_err(&spi->dev, "failed setup: "
906 				"cs number must not be > 4.\n");
907 				kfree(chip);
908 				return -EINVAL;
909 			}
910 
911 			chip->frm = spi->chip_select;
912 		} else
913 			chip->gpio_cs = -1;
914 		chip->enable_dma = 0;
915 		chip->timeout = TIMOUT_DFLT;
916 	}
917 
918 	/* protocol drivers may change the chip settings, so...
919 	 * if chip_info exists, use it */
920 	chip_info = spi->controller_data;
921 
922 	/* chip_info isn't always needed */
923 	chip->cr1 = 0;
924 	if (chip_info) {
925 		if (chip_info->timeout)
926 			chip->timeout = chip_info->timeout;
927 		if (chip_info->tx_threshold)
928 			tx_thres = chip_info->tx_threshold;
929 		if (chip_info->tx_hi_threshold)
930 			tx_hi_thres = chip_info->tx_hi_threshold;
931 		if (chip_info->rx_threshold)
932 			rx_thres = chip_info->rx_threshold;
933 		chip->enable_dma = drv_data->master_info->enable_dma;
934 		chip->dma_threshold = 0;
935 		if (chip_info->enable_loopback)
936 			chip->cr1 = SSCR1_LBM;
937 	} else if (ACPI_HANDLE(&spi->dev)) {
938 		/*
939 		 * Slave devices enumerated from ACPI namespace don't
940 		 * usually have chip_info but we still might want to use
941 		 * DMA with them.
942 		 */
943 		chip->enable_dma = drv_data->master_info->enable_dma;
944 	}
945 
946 	chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
947 			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
948 
949 	chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
950 	chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
951 				| SSITF_TxHiThresh(tx_hi_thres);
952 
953 	/* set dma burst and threshold outside of chip_info path so that if
954 	 * chip_info goes away after setting chip->enable_dma, the
955 	 * burst and threshold can still respond to changes in bits_per_word */
956 	if (chip->enable_dma) {
957 		/* set up legal burst and threshold for dma */
958 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
959 						spi->bits_per_word,
960 						&chip->dma_burst_size,
961 						&chip->dma_threshold)) {
962 			dev_warn(&spi->dev, "in setup: DMA burst size reduced "
963 					"to match bits_per_word\n");
964 		}
965 	}
966 
967 	clk_div = ssp_get_clk_div(drv_data, spi->max_speed_hz);
968 	chip->speed_hz = spi->max_speed_hz;
969 
970 	chip->cr0 = clk_div
971 			| SSCR0_Motorola
972 			| SSCR0_DataSize(spi->bits_per_word > 16 ?
973 				spi->bits_per_word - 16 : spi->bits_per_word)
974 			| SSCR0_SSE
975 			| (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
976 	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
977 	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
978 			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
979 
980 	if (spi->mode & SPI_LOOP)
981 		chip->cr1 |= SSCR1_LBM;
982 
983 	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
984 	if (!pxa25x_ssp_comp(drv_data))
985 		dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
986 			drv_data->max_clk_rate
987 				/ (1 + ((chip->cr0 & SSCR0_SCR(0xfff)) >> 8)),
988 			chip->enable_dma ? "DMA" : "PIO");
989 	else
990 		dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
991 			drv_data->max_clk_rate / 2
992 				/ (1 + ((chip->cr0 & SSCR0_SCR(0x0ff)) >> 8)),
993 			chip->enable_dma ? "DMA" : "PIO");
994 
995 	if (spi->bits_per_word <= 8) {
996 		chip->n_bytes = 1;
997 		chip->read = u8_reader;
998 		chip->write = u8_writer;
999 	} else if (spi->bits_per_word <= 16) {
1000 		chip->n_bytes = 2;
1001 		chip->read = u16_reader;
1002 		chip->write = u16_writer;
1003 	} else if (spi->bits_per_word <= 32) {
1004 		chip->cr0 |= SSCR0_EDSS;
1005 		chip->n_bytes = 4;
1006 		chip->read = u32_reader;
1007 		chip->write = u32_writer;
1008 	} else {
1009 		dev_err(&spi->dev, "invalid wordsize\n");
1010 		return -ENODEV;
1011 	}
1012 	chip->bits_per_word = spi->bits_per_word;
1013 
1014 	spi_set_ctldata(spi, chip);
1015 
1016 	if (drv_data->ssp_type == CE4100_SSP)
1017 		return 0;
1018 
1019 	return setup_cs(spi, chip, chip_info);
1020 }
1021 
1022 static void cleanup(struct spi_device *spi)
1023 {
1024 	struct chip_data *chip = spi_get_ctldata(spi);
1025 	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1026 
1027 	if (!chip)
1028 		return;
1029 
1030 	if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs))
1031 		gpio_free(chip->gpio_cs);
1032 
1033 	kfree(chip);
1034 }
1035 
1036 #ifdef CONFIG_ACPI
1037 static int pxa2xx_spi_acpi_add_dma(struct acpi_resource *res, void *data)
1038 {
1039 	struct pxa2xx_spi_master *pdata = data;
1040 
1041 	if (res->type == ACPI_RESOURCE_TYPE_FIXED_DMA) {
1042 		const struct acpi_resource_fixed_dma *dma;
1043 
1044 		dma = &res->data.fixed_dma;
1045 		if (pdata->tx_slave_id < 0) {
1046 			pdata->tx_slave_id = dma->request_lines;
1047 			pdata->tx_chan_id = dma->channels;
1048 		} else if (pdata->rx_slave_id < 0) {
1049 			pdata->rx_slave_id = dma->request_lines;
1050 			pdata->rx_chan_id = dma->channels;
1051 		}
1052 	}
1053 
1054 	/* Tell the ACPI core to skip this resource */
1055 	return 1;
1056 }
1057 
1058 static struct pxa2xx_spi_master *
1059 pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
1060 {
1061 	struct pxa2xx_spi_master *pdata;
1062 	struct list_head resource_list;
1063 	struct acpi_device *adev;
1064 	struct ssp_device *ssp;
1065 	struct resource *res;
1066 	int devid;
1067 
1068 	if (!ACPI_HANDLE(&pdev->dev) ||
1069 	    acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
1070 		return NULL;
1071 
1072 	pdata = devm_kzalloc(&pdev->dev, sizeof(*ssp), GFP_KERNEL);
1073 	if (!pdata) {
1074 		dev_err(&pdev->dev,
1075 			"failed to allocate memory for platform data\n");
1076 		return NULL;
1077 	}
1078 
1079 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1080 	if (!res)
1081 		return NULL;
1082 
1083 	ssp = &pdata->ssp;
1084 
1085 	ssp->phys_base = res->start;
1086 	ssp->mmio_base = devm_request_and_ioremap(&pdev->dev, res);
1087 	if (!ssp->mmio_base) {
1088 		dev_err(&pdev->dev, "failed to ioremap mmio_base\n");
1089 		return NULL;
1090 	}
1091 
1092 	ssp->clk = devm_clk_get(&pdev->dev, NULL);
1093 	ssp->irq = platform_get_irq(pdev, 0);
1094 	ssp->type = LPSS_SSP;
1095 	ssp->pdev = pdev;
1096 
1097 	ssp->port_id = -1;
1098 	if (adev->pnp.unique_id && !kstrtoint(adev->pnp.unique_id, 0, &devid))
1099 		ssp->port_id = devid;
1100 
1101 	pdata->num_chipselect = 1;
1102 	pdata->rx_slave_id = -1;
1103 	pdata->tx_slave_id = -1;
1104 
1105 	INIT_LIST_HEAD(&resource_list);
1106 	acpi_dev_get_resources(adev, &resource_list, pxa2xx_spi_acpi_add_dma,
1107 			       pdata);
1108 	acpi_dev_free_resource_list(&resource_list);
1109 
1110 	pdata->enable_dma = pdata->rx_slave_id >= 0 && pdata->tx_slave_id >= 0;
1111 
1112 	return pdata;
1113 }
1114 
1115 static struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1116 	{ "INT33C0", 0 },
1117 	{ "INT33C1", 0 },
1118 	{ },
1119 };
1120 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1121 #else
1122 static inline struct pxa2xx_spi_master *
1123 pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
1124 {
1125 	return NULL;
1126 }
1127 #endif
1128 
1129 static int pxa2xx_spi_probe(struct platform_device *pdev)
1130 {
1131 	struct device *dev = &pdev->dev;
1132 	struct pxa2xx_spi_master *platform_info;
1133 	struct spi_master *master;
1134 	struct driver_data *drv_data;
1135 	struct ssp_device *ssp;
1136 	int status;
1137 
1138 	platform_info = dev_get_platdata(dev);
1139 	if (!platform_info) {
1140 		platform_info = pxa2xx_spi_acpi_get_pdata(pdev);
1141 		if (!platform_info) {
1142 			dev_err(&pdev->dev, "missing platform data\n");
1143 			return -ENODEV;
1144 		}
1145 	}
1146 
1147 	ssp = pxa_ssp_request(pdev->id, pdev->name);
1148 	if (!ssp)
1149 		ssp = &platform_info->ssp;
1150 
1151 	if (!ssp->mmio_base) {
1152 		dev_err(&pdev->dev, "failed to get ssp\n");
1153 		return -ENODEV;
1154 	}
1155 
1156 	/* Allocate master with space for drv_data and null dma buffer */
1157 	master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
1158 	if (!master) {
1159 		dev_err(&pdev->dev, "cannot alloc spi_master\n");
1160 		pxa_ssp_free(ssp);
1161 		return -ENOMEM;
1162 	}
1163 	drv_data = spi_master_get_devdata(master);
1164 	drv_data->master = master;
1165 	drv_data->master_info = platform_info;
1166 	drv_data->pdev = pdev;
1167 	drv_data->ssp = ssp;
1168 
1169 	master->dev.parent = &pdev->dev;
1170 	master->dev.of_node = pdev->dev.of_node;
1171 	ACPI_HANDLE_SET(&master->dev, ACPI_HANDLE(&pdev->dev));
1172 	/* the spi->mode bits understood by this driver: */
1173 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1174 
1175 	master->bus_num = ssp->port_id;
1176 	master->num_chipselect = platform_info->num_chipselect;
1177 	master->dma_alignment = DMA_ALIGNMENT;
1178 	master->cleanup = cleanup;
1179 	master->setup = setup;
1180 	master->transfer_one_message = pxa2xx_spi_transfer_one_message;
1181 	master->prepare_transfer_hardware = pxa2xx_spi_prepare_transfer;
1182 	master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1183 
1184 	drv_data->ssp_type = ssp->type;
1185 	drv_data->null_dma_buf = (u32 *)PTR_ALIGN(&drv_data[1], DMA_ALIGNMENT);
1186 
1187 	drv_data->ioaddr = ssp->mmio_base;
1188 	drv_data->ssdr_physical = ssp->phys_base + SSDR;
1189 	if (pxa25x_ssp_comp(drv_data)) {
1190 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1191 		drv_data->dma_cr1 = 0;
1192 		drv_data->clear_sr = SSSR_ROR;
1193 		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1194 	} else {
1195 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1196 		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1197 		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1198 		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1199 	}
1200 
1201 	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1202 			drv_data);
1203 	if (status < 0) {
1204 		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1205 		goto out_error_master_alloc;
1206 	}
1207 
1208 	/* Setup DMA if requested */
1209 	drv_data->tx_channel = -1;
1210 	drv_data->rx_channel = -1;
1211 	if (platform_info->enable_dma) {
1212 		status = pxa2xx_spi_dma_setup(drv_data);
1213 		if (status) {
1214 			dev_warn(dev, "failed to setup DMA, using PIO\n");
1215 			platform_info->enable_dma = false;
1216 		}
1217 	}
1218 
1219 	/* Enable SOC clock */
1220 	clk_prepare_enable(ssp->clk);
1221 
1222 	drv_data->max_clk_rate = clk_get_rate(ssp->clk);
1223 
1224 	/* Load default SSP configuration */
1225 	write_SSCR0(0, drv_data->ioaddr);
1226 	write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT) |
1227 				SSCR1_TxTresh(TX_THRESH_DFLT),
1228 				drv_data->ioaddr);
1229 	write_SSCR0(SSCR0_SCR(2)
1230 			| SSCR0_Motorola
1231 			| SSCR0_DataSize(8),
1232 			drv_data->ioaddr);
1233 	if (!pxa25x_ssp_comp(drv_data))
1234 		write_SSTO(0, drv_data->ioaddr);
1235 	write_SSPSP(0, drv_data->ioaddr);
1236 
1237 	lpss_ssp_setup(drv_data);
1238 
1239 	tasklet_init(&drv_data->pump_transfers, pump_transfers,
1240 		     (unsigned long)drv_data);
1241 
1242 	/* Register with the SPI framework */
1243 	platform_set_drvdata(pdev, drv_data);
1244 	status = spi_register_master(master);
1245 	if (status != 0) {
1246 		dev_err(&pdev->dev, "problem registering spi master\n");
1247 		goto out_error_clock_enabled;
1248 	}
1249 
1250 	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1251 	pm_runtime_use_autosuspend(&pdev->dev);
1252 	pm_runtime_set_active(&pdev->dev);
1253 	pm_runtime_enable(&pdev->dev);
1254 
1255 	return status;
1256 
1257 out_error_clock_enabled:
1258 	clk_disable_unprepare(ssp->clk);
1259 	pxa2xx_spi_dma_release(drv_data);
1260 	free_irq(ssp->irq, drv_data);
1261 
1262 out_error_master_alloc:
1263 	spi_master_put(master);
1264 	pxa_ssp_free(ssp);
1265 	return status;
1266 }
1267 
1268 static int pxa2xx_spi_remove(struct platform_device *pdev)
1269 {
1270 	struct driver_data *drv_data = platform_get_drvdata(pdev);
1271 	struct ssp_device *ssp;
1272 
1273 	if (!drv_data)
1274 		return 0;
1275 	ssp = drv_data->ssp;
1276 
1277 	pm_runtime_get_sync(&pdev->dev);
1278 
1279 	/* Disable the SSP at the peripheral and SOC level */
1280 	write_SSCR0(0, drv_data->ioaddr);
1281 	clk_disable_unprepare(ssp->clk);
1282 
1283 	/* Release DMA */
1284 	if (drv_data->master_info->enable_dma)
1285 		pxa2xx_spi_dma_release(drv_data);
1286 
1287 	pm_runtime_put_noidle(&pdev->dev);
1288 	pm_runtime_disable(&pdev->dev);
1289 
1290 	/* Release IRQ */
1291 	free_irq(ssp->irq, drv_data);
1292 
1293 	/* Release SSP */
1294 	pxa_ssp_free(ssp);
1295 
1296 	/* Disconnect from the SPI framework */
1297 	spi_unregister_master(drv_data->master);
1298 
1299 	/* Prevent double remove */
1300 	platform_set_drvdata(pdev, NULL);
1301 
1302 	return 0;
1303 }
1304 
1305 static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1306 {
1307 	int status = 0;
1308 
1309 	if ((status = pxa2xx_spi_remove(pdev)) != 0)
1310 		dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1311 }
1312 
1313 #ifdef CONFIG_PM
1314 static int pxa2xx_spi_suspend(struct device *dev)
1315 {
1316 	struct driver_data *drv_data = dev_get_drvdata(dev);
1317 	struct ssp_device *ssp = drv_data->ssp;
1318 	int status = 0;
1319 
1320 	status = spi_master_suspend(drv_data->master);
1321 	if (status != 0)
1322 		return status;
1323 	write_SSCR0(0, drv_data->ioaddr);
1324 	clk_disable_unprepare(ssp->clk);
1325 
1326 	return 0;
1327 }
1328 
1329 static int pxa2xx_spi_resume(struct device *dev)
1330 {
1331 	struct driver_data *drv_data = dev_get_drvdata(dev);
1332 	struct ssp_device *ssp = drv_data->ssp;
1333 	int status = 0;
1334 
1335 	pxa2xx_spi_dma_resume(drv_data);
1336 
1337 	/* Enable the SSP clock */
1338 	clk_prepare_enable(ssp->clk);
1339 
1340 	/* Start the queue running */
1341 	status = spi_master_resume(drv_data->master);
1342 	if (status != 0) {
1343 		dev_err(dev, "problem starting queue (%d)\n", status);
1344 		return status;
1345 	}
1346 
1347 	return 0;
1348 }
1349 #endif
1350 
1351 #ifdef CONFIG_PM_RUNTIME
1352 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1353 {
1354 	struct driver_data *drv_data = dev_get_drvdata(dev);
1355 
1356 	clk_disable_unprepare(drv_data->ssp->clk);
1357 	return 0;
1358 }
1359 
1360 static int pxa2xx_spi_runtime_resume(struct device *dev)
1361 {
1362 	struct driver_data *drv_data = dev_get_drvdata(dev);
1363 
1364 	clk_prepare_enable(drv_data->ssp->clk);
1365 	return 0;
1366 }
1367 #endif
1368 
1369 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1370 	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1371 	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1372 			   pxa2xx_spi_runtime_resume, NULL)
1373 };
1374 
1375 static struct platform_driver driver = {
1376 	.driver = {
1377 		.name	= "pxa2xx-spi",
1378 		.owner	= THIS_MODULE,
1379 		.pm	= &pxa2xx_spi_pm_ops,
1380 		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1381 	},
1382 	.probe = pxa2xx_spi_probe,
1383 	.remove = pxa2xx_spi_remove,
1384 	.shutdown = pxa2xx_spi_shutdown,
1385 };
1386 
1387 static int __init pxa2xx_spi_init(void)
1388 {
1389 	return platform_driver_register(&driver);
1390 }
1391 subsys_initcall(pxa2xx_spi_init);
1392 
1393 static void __exit pxa2xx_spi_exit(void)
1394 {
1395 	platform_driver_unregister(&driver);
1396 }
1397 module_exit(pxa2xx_spi_exit);
1398