1 /* 2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs 3 * Copyright (C) 2013, Intel Corporation 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <linux/bitops.h> 17 #include <linux/init.h> 18 #include <linux/module.h> 19 #include <linux/device.h> 20 #include <linux/ioport.h> 21 #include <linux/errno.h> 22 #include <linux/err.h> 23 #include <linux/interrupt.h> 24 #include <linux/kernel.h> 25 #include <linux/pci.h> 26 #include <linux/platform_device.h> 27 #include <linux/spi/pxa2xx_spi.h> 28 #include <linux/spi/spi.h> 29 #include <linux/delay.h> 30 #include <linux/gpio.h> 31 #include <linux/slab.h> 32 #include <linux/clk.h> 33 #include <linux/pm_runtime.h> 34 #include <linux/acpi.h> 35 36 #include "spi-pxa2xx.h" 37 38 MODULE_AUTHOR("Stephen Street"); 39 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller"); 40 MODULE_LICENSE("GPL"); 41 MODULE_ALIAS("platform:pxa2xx-spi"); 42 43 #define TIMOUT_DFLT 1000 44 45 /* 46 * for testing SSCR1 changes that require SSP restart, basically 47 * everything except the service and interrupt enables, the pxa270 developer 48 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this 49 * list, but the PXA255 dev man says all bits without really meaning the 50 * service and interrupt enables 51 */ 52 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \ 53 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \ 54 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \ 55 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \ 56 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \ 57 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) 58 59 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \ 60 | QUARK_X1000_SSCR1_EFWR \ 61 | QUARK_X1000_SSCR1_RFT \ 62 | QUARK_X1000_SSCR1_TFT \ 63 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) 64 65 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24) 66 #define LPSS_CS_CONTROL_SW_MODE BIT(0) 67 #define LPSS_CS_CONTROL_CS_HIGH BIT(1) 68 #define LPSS_CAPS_CS_EN_SHIFT 9 69 #define LPSS_CAPS_CS_EN_MASK (0xf << LPSS_CAPS_CS_EN_SHIFT) 70 71 struct lpss_config { 72 /* LPSS offset from drv_data->ioaddr */ 73 unsigned offset; 74 /* Register offsets from drv_data->lpss_base or -1 */ 75 int reg_general; 76 int reg_ssp; 77 int reg_cs_ctrl; 78 int reg_capabilities; 79 /* FIFO thresholds */ 80 u32 rx_threshold; 81 u32 tx_threshold_lo; 82 u32 tx_threshold_hi; 83 /* Chip select control */ 84 unsigned cs_sel_shift; 85 unsigned cs_sel_mask; 86 unsigned cs_num; 87 }; 88 89 /* Keep these sorted with enum pxa_ssp_type */ 90 static const struct lpss_config lpss_platforms[] = { 91 { /* LPSS_LPT_SSP */ 92 .offset = 0x800, 93 .reg_general = 0x08, 94 .reg_ssp = 0x0c, 95 .reg_cs_ctrl = 0x18, 96 .reg_capabilities = -1, 97 .rx_threshold = 64, 98 .tx_threshold_lo = 160, 99 .tx_threshold_hi = 224, 100 }, 101 { /* LPSS_BYT_SSP */ 102 .offset = 0x400, 103 .reg_general = 0x08, 104 .reg_ssp = 0x0c, 105 .reg_cs_ctrl = 0x18, 106 .reg_capabilities = -1, 107 .rx_threshold = 64, 108 .tx_threshold_lo = 160, 109 .tx_threshold_hi = 224, 110 }, 111 { /* LPSS_BSW_SSP */ 112 .offset = 0x400, 113 .reg_general = 0x08, 114 .reg_ssp = 0x0c, 115 .reg_cs_ctrl = 0x18, 116 .reg_capabilities = -1, 117 .rx_threshold = 64, 118 .tx_threshold_lo = 160, 119 .tx_threshold_hi = 224, 120 .cs_sel_shift = 2, 121 .cs_sel_mask = 1 << 2, 122 .cs_num = 2, 123 }, 124 { /* LPSS_SPT_SSP */ 125 .offset = 0x200, 126 .reg_general = -1, 127 .reg_ssp = 0x20, 128 .reg_cs_ctrl = 0x24, 129 .reg_capabilities = -1, 130 .rx_threshold = 1, 131 .tx_threshold_lo = 32, 132 .tx_threshold_hi = 56, 133 }, 134 { /* LPSS_BXT_SSP */ 135 .offset = 0x200, 136 .reg_general = -1, 137 .reg_ssp = 0x20, 138 .reg_cs_ctrl = 0x24, 139 .reg_capabilities = 0xfc, 140 .rx_threshold = 1, 141 .tx_threshold_lo = 16, 142 .tx_threshold_hi = 48, 143 .cs_sel_shift = 8, 144 .cs_sel_mask = 3 << 8, 145 }, 146 }; 147 148 static inline const struct lpss_config 149 *lpss_get_config(const struct driver_data *drv_data) 150 { 151 return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP]; 152 } 153 154 static bool is_lpss_ssp(const struct driver_data *drv_data) 155 { 156 switch (drv_data->ssp_type) { 157 case LPSS_LPT_SSP: 158 case LPSS_BYT_SSP: 159 case LPSS_BSW_SSP: 160 case LPSS_SPT_SSP: 161 case LPSS_BXT_SSP: 162 return true; 163 default: 164 return false; 165 } 166 } 167 168 static bool is_quark_x1000_ssp(const struct driver_data *drv_data) 169 { 170 return drv_data->ssp_type == QUARK_X1000_SSP; 171 } 172 173 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data) 174 { 175 switch (drv_data->ssp_type) { 176 case QUARK_X1000_SSP: 177 return QUARK_X1000_SSCR1_CHANGE_MASK; 178 default: 179 return SSCR1_CHANGE_MASK; 180 } 181 } 182 183 static u32 184 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data) 185 { 186 switch (drv_data->ssp_type) { 187 case QUARK_X1000_SSP: 188 return RX_THRESH_QUARK_X1000_DFLT; 189 default: 190 return RX_THRESH_DFLT; 191 } 192 } 193 194 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data) 195 { 196 u32 mask; 197 198 switch (drv_data->ssp_type) { 199 case QUARK_X1000_SSP: 200 mask = QUARK_X1000_SSSR_TFL_MASK; 201 break; 202 default: 203 mask = SSSR_TFL_MASK; 204 break; 205 } 206 207 return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask; 208 } 209 210 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data, 211 u32 *sccr1_reg) 212 { 213 u32 mask; 214 215 switch (drv_data->ssp_type) { 216 case QUARK_X1000_SSP: 217 mask = QUARK_X1000_SSCR1_RFT; 218 break; 219 default: 220 mask = SSCR1_RFT; 221 break; 222 } 223 *sccr1_reg &= ~mask; 224 } 225 226 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data, 227 u32 *sccr1_reg, u32 threshold) 228 { 229 switch (drv_data->ssp_type) { 230 case QUARK_X1000_SSP: 231 *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold); 232 break; 233 default: 234 *sccr1_reg |= SSCR1_RxTresh(threshold); 235 break; 236 } 237 } 238 239 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data, 240 u32 clk_div, u8 bits) 241 { 242 switch (drv_data->ssp_type) { 243 case QUARK_X1000_SSP: 244 return clk_div 245 | QUARK_X1000_SSCR0_Motorola 246 | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits) 247 | SSCR0_SSE; 248 default: 249 return clk_div 250 | SSCR0_Motorola 251 | SSCR0_DataSize(bits > 16 ? bits - 16 : bits) 252 | SSCR0_SSE 253 | (bits > 16 ? SSCR0_EDSS : 0); 254 } 255 } 256 257 /* 258 * Read and write LPSS SSP private registers. Caller must first check that 259 * is_lpss_ssp() returns true before these can be called. 260 */ 261 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset) 262 { 263 WARN_ON(!drv_data->lpss_base); 264 return readl(drv_data->lpss_base + offset); 265 } 266 267 static void __lpss_ssp_write_priv(struct driver_data *drv_data, 268 unsigned offset, u32 value) 269 { 270 WARN_ON(!drv_data->lpss_base); 271 writel(value, drv_data->lpss_base + offset); 272 } 273 274 /* 275 * lpss_ssp_setup - perform LPSS SSP specific setup 276 * @drv_data: pointer to the driver private data 277 * 278 * Perform LPSS SSP specific setup. This function must be called first if 279 * one is going to use LPSS SSP private registers. 280 */ 281 static void lpss_ssp_setup(struct driver_data *drv_data) 282 { 283 const struct lpss_config *config; 284 u32 value; 285 286 config = lpss_get_config(drv_data); 287 drv_data->lpss_base = drv_data->ioaddr + config->offset; 288 289 /* Enable software chip select control */ 290 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); 291 value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH); 292 value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH; 293 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value); 294 295 /* Enable multiblock DMA transfers */ 296 if (drv_data->master_info->enable_dma) { 297 __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1); 298 299 if (config->reg_general >= 0) { 300 value = __lpss_ssp_read_priv(drv_data, 301 config->reg_general); 302 value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE; 303 __lpss_ssp_write_priv(drv_data, 304 config->reg_general, value); 305 } 306 } 307 } 308 309 static void lpss_ssp_select_cs(struct driver_data *drv_data, 310 const struct lpss_config *config) 311 { 312 u32 value, cs; 313 314 if (!config->cs_sel_mask) 315 return; 316 317 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); 318 319 cs = drv_data->cur_msg->spi->chip_select; 320 cs <<= config->cs_sel_shift; 321 if (cs != (value & config->cs_sel_mask)) { 322 /* 323 * When switching another chip select output active the 324 * output must be selected first and wait 2 ssp_clk cycles 325 * before changing state to active. Otherwise a short 326 * glitch will occur on the previous chip select since 327 * output select is latched but state control is not. 328 */ 329 value &= ~config->cs_sel_mask; 330 value |= cs; 331 __lpss_ssp_write_priv(drv_data, 332 config->reg_cs_ctrl, value); 333 ndelay(1000000000 / 334 (drv_data->master->max_speed_hz / 2)); 335 } 336 } 337 338 static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable) 339 { 340 const struct lpss_config *config; 341 u32 value; 342 343 config = lpss_get_config(drv_data); 344 345 if (enable) 346 lpss_ssp_select_cs(drv_data, config); 347 348 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); 349 if (enable) 350 value &= ~LPSS_CS_CONTROL_CS_HIGH; 351 else 352 value |= LPSS_CS_CONTROL_CS_HIGH; 353 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value); 354 } 355 356 static void cs_assert(struct driver_data *drv_data) 357 { 358 struct chip_data *chip = drv_data->cur_chip; 359 360 if (drv_data->ssp_type == CE4100_SSP) { 361 pxa2xx_spi_write(drv_data, SSSR, drv_data->cur_chip->frm); 362 return; 363 } 364 365 if (chip->cs_control) { 366 chip->cs_control(PXA2XX_CS_ASSERT); 367 return; 368 } 369 370 if (gpio_is_valid(chip->gpio_cs)) { 371 gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted); 372 return; 373 } 374 375 if (is_lpss_ssp(drv_data)) 376 lpss_ssp_cs_control(drv_data, true); 377 } 378 379 static void cs_deassert(struct driver_data *drv_data) 380 { 381 struct chip_data *chip = drv_data->cur_chip; 382 383 if (drv_data->ssp_type == CE4100_SSP) 384 return; 385 386 if (chip->cs_control) { 387 chip->cs_control(PXA2XX_CS_DEASSERT); 388 return; 389 } 390 391 if (gpio_is_valid(chip->gpio_cs)) { 392 gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted); 393 return; 394 } 395 396 if (is_lpss_ssp(drv_data)) 397 lpss_ssp_cs_control(drv_data, false); 398 } 399 400 int pxa2xx_spi_flush(struct driver_data *drv_data) 401 { 402 unsigned long limit = loops_per_jiffy << 1; 403 404 do { 405 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 406 pxa2xx_spi_read(drv_data, SSDR); 407 } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit); 408 write_SSSR_CS(drv_data, SSSR_ROR); 409 410 return limit; 411 } 412 413 static int null_writer(struct driver_data *drv_data) 414 { 415 u8 n_bytes = drv_data->n_bytes; 416 417 if (pxa2xx_spi_txfifo_full(drv_data) 418 || (drv_data->tx == drv_data->tx_end)) 419 return 0; 420 421 pxa2xx_spi_write(drv_data, SSDR, 0); 422 drv_data->tx += n_bytes; 423 424 return 1; 425 } 426 427 static int null_reader(struct driver_data *drv_data) 428 { 429 u8 n_bytes = drv_data->n_bytes; 430 431 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 432 && (drv_data->rx < drv_data->rx_end)) { 433 pxa2xx_spi_read(drv_data, SSDR); 434 drv_data->rx += n_bytes; 435 } 436 437 return drv_data->rx == drv_data->rx_end; 438 } 439 440 static int u8_writer(struct driver_data *drv_data) 441 { 442 if (pxa2xx_spi_txfifo_full(drv_data) 443 || (drv_data->tx == drv_data->tx_end)) 444 return 0; 445 446 pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx)); 447 ++drv_data->tx; 448 449 return 1; 450 } 451 452 static int u8_reader(struct driver_data *drv_data) 453 { 454 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 455 && (drv_data->rx < drv_data->rx_end)) { 456 *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); 457 ++drv_data->rx; 458 } 459 460 return drv_data->rx == drv_data->rx_end; 461 } 462 463 static int u16_writer(struct driver_data *drv_data) 464 { 465 if (pxa2xx_spi_txfifo_full(drv_data) 466 || (drv_data->tx == drv_data->tx_end)) 467 return 0; 468 469 pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx)); 470 drv_data->tx += 2; 471 472 return 1; 473 } 474 475 static int u16_reader(struct driver_data *drv_data) 476 { 477 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 478 && (drv_data->rx < drv_data->rx_end)) { 479 *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); 480 drv_data->rx += 2; 481 } 482 483 return drv_data->rx == drv_data->rx_end; 484 } 485 486 static int u32_writer(struct driver_data *drv_data) 487 { 488 if (pxa2xx_spi_txfifo_full(drv_data) 489 || (drv_data->tx == drv_data->tx_end)) 490 return 0; 491 492 pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx)); 493 drv_data->tx += 4; 494 495 return 1; 496 } 497 498 static int u32_reader(struct driver_data *drv_data) 499 { 500 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 501 && (drv_data->rx < drv_data->rx_end)) { 502 *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); 503 drv_data->rx += 4; 504 } 505 506 return drv_data->rx == drv_data->rx_end; 507 } 508 509 void *pxa2xx_spi_next_transfer(struct driver_data *drv_data) 510 { 511 struct spi_message *msg = drv_data->cur_msg; 512 struct spi_transfer *trans = drv_data->cur_transfer; 513 514 /* Move to next transfer */ 515 if (trans->transfer_list.next != &msg->transfers) { 516 drv_data->cur_transfer = 517 list_entry(trans->transfer_list.next, 518 struct spi_transfer, 519 transfer_list); 520 return RUNNING_STATE; 521 } else 522 return DONE_STATE; 523 } 524 525 /* caller already set message->status; dma and pio irqs are blocked */ 526 static void giveback(struct driver_data *drv_data) 527 { 528 struct spi_transfer* last_transfer; 529 struct spi_message *msg; 530 unsigned long timeout; 531 532 msg = drv_data->cur_msg; 533 drv_data->cur_msg = NULL; 534 drv_data->cur_transfer = NULL; 535 536 last_transfer = list_last_entry(&msg->transfers, struct spi_transfer, 537 transfer_list); 538 539 /* Delay if requested before any change in chip select */ 540 if (last_transfer->delay_usecs) 541 udelay(last_transfer->delay_usecs); 542 543 /* Wait until SSP becomes idle before deasserting the CS */ 544 timeout = jiffies + msecs_to_jiffies(10); 545 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY && 546 !time_after(jiffies, timeout)) 547 cpu_relax(); 548 549 /* Drop chip select UNLESS cs_change is true or we are returning 550 * a message with an error, or next message is for another chip 551 */ 552 if (!last_transfer->cs_change) 553 cs_deassert(drv_data); 554 else { 555 struct spi_message *next_msg; 556 557 /* Holding of cs was hinted, but we need to make sure 558 * the next message is for the same chip. Don't waste 559 * time with the following tests unless this was hinted. 560 * 561 * We cannot postpone this until pump_messages, because 562 * after calling msg->complete (below) the driver that 563 * sent the current message could be unloaded, which 564 * could invalidate the cs_control() callback... 565 */ 566 567 /* get a pointer to the next message, if any */ 568 next_msg = spi_get_next_queued_message(drv_data->master); 569 570 /* see if the next and current messages point 571 * to the same chip 572 */ 573 if ((next_msg && next_msg->spi != msg->spi) || 574 msg->state == ERROR_STATE) 575 cs_deassert(drv_data); 576 } 577 578 drv_data->cur_chip = NULL; 579 spi_finalize_current_message(drv_data->master); 580 } 581 582 static void reset_sccr1(struct driver_data *drv_data) 583 { 584 struct chip_data *chip = drv_data->cur_chip; 585 u32 sccr1_reg; 586 587 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1; 588 sccr1_reg &= ~SSCR1_RFT; 589 sccr1_reg |= chip->threshold; 590 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); 591 } 592 593 static void int_error_stop(struct driver_data *drv_data, const char* msg) 594 { 595 /* Stop and reset SSP */ 596 write_SSSR_CS(drv_data, drv_data->clear_sr); 597 reset_sccr1(drv_data); 598 if (!pxa25x_ssp_comp(drv_data)) 599 pxa2xx_spi_write(drv_data, SSTO, 0); 600 pxa2xx_spi_flush(drv_data); 601 pxa2xx_spi_write(drv_data, SSCR0, 602 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE); 603 604 dev_err(&drv_data->pdev->dev, "%s\n", msg); 605 606 drv_data->cur_msg->state = ERROR_STATE; 607 tasklet_schedule(&drv_data->pump_transfers); 608 } 609 610 static void int_transfer_complete(struct driver_data *drv_data) 611 { 612 /* Clear and disable interrupts */ 613 write_SSSR_CS(drv_data, drv_data->clear_sr); 614 reset_sccr1(drv_data); 615 if (!pxa25x_ssp_comp(drv_data)) 616 pxa2xx_spi_write(drv_data, SSTO, 0); 617 618 /* Update total byte transferred return count actual bytes read */ 619 drv_data->cur_msg->actual_length += drv_data->len - 620 (drv_data->rx_end - drv_data->rx); 621 622 /* Transfer delays and chip select release are 623 * handled in pump_transfers or giveback 624 */ 625 626 /* Move to next transfer */ 627 drv_data->cur_msg->state = pxa2xx_spi_next_transfer(drv_data); 628 629 /* Schedule transfer tasklet */ 630 tasklet_schedule(&drv_data->pump_transfers); 631 } 632 633 static irqreturn_t interrupt_transfer(struct driver_data *drv_data) 634 { 635 u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ? 636 drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS; 637 638 u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask; 639 640 if (irq_status & SSSR_ROR) { 641 int_error_stop(drv_data, "interrupt_transfer: fifo overrun"); 642 return IRQ_HANDLED; 643 } 644 645 if (irq_status & SSSR_TINT) { 646 pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT); 647 if (drv_data->read(drv_data)) { 648 int_transfer_complete(drv_data); 649 return IRQ_HANDLED; 650 } 651 } 652 653 /* Drain rx fifo, Fill tx fifo and prevent overruns */ 654 do { 655 if (drv_data->read(drv_data)) { 656 int_transfer_complete(drv_data); 657 return IRQ_HANDLED; 658 } 659 } while (drv_data->write(drv_data)); 660 661 if (drv_data->read(drv_data)) { 662 int_transfer_complete(drv_data); 663 return IRQ_HANDLED; 664 } 665 666 if (drv_data->tx == drv_data->tx_end) { 667 u32 bytes_left; 668 u32 sccr1_reg; 669 670 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1); 671 sccr1_reg &= ~SSCR1_TIE; 672 673 /* 674 * PXA25x_SSP has no timeout, set up rx threshould for the 675 * remaining RX bytes. 676 */ 677 if (pxa25x_ssp_comp(drv_data)) { 678 u32 rx_thre; 679 680 pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg); 681 682 bytes_left = drv_data->rx_end - drv_data->rx; 683 switch (drv_data->n_bytes) { 684 case 4: 685 bytes_left >>= 1; 686 case 2: 687 bytes_left >>= 1; 688 } 689 690 rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data); 691 if (rx_thre > bytes_left) 692 rx_thre = bytes_left; 693 694 pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre); 695 } 696 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); 697 } 698 699 /* We did something */ 700 return IRQ_HANDLED; 701 } 702 703 static irqreturn_t ssp_int(int irq, void *dev_id) 704 { 705 struct driver_data *drv_data = dev_id; 706 u32 sccr1_reg; 707 u32 mask = drv_data->mask_sr; 708 u32 status; 709 710 /* 711 * The IRQ might be shared with other peripherals so we must first 712 * check that are we RPM suspended or not. If we are we assume that 713 * the IRQ was not for us (we shouldn't be RPM suspended when the 714 * interrupt is enabled). 715 */ 716 if (pm_runtime_suspended(&drv_data->pdev->dev)) 717 return IRQ_NONE; 718 719 /* 720 * If the device is not yet in RPM suspended state and we get an 721 * interrupt that is meant for another device, check if status bits 722 * are all set to one. That means that the device is already 723 * powered off. 724 */ 725 status = pxa2xx_spi_read(drv_data, SSSR); 726 if (status == ~0) 727 return IRQ_NONE; 728 729 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1); 730 731 /* Ignore possible writes if we don't need to write */ 732 if (!(sccr1_reg & SSCR1_TIE)) 733 mask &= ~SSSR_TFS; 734 735 /* Ignore RX timeout interrupt if it is disabled */ 736 if (!(sccr1_reg & SSCR1_TINTE)) 737 mask &= ~SSSR_TINT; 738 739 if (!(status & mask)) 740 return IRQ_NONE; 741 742 if (!drv_data->cur_msg) { 743 744 pxa2xx_spi_write(drv_data, SSCR0, 745 pxa2xx_spi_read(drv_data, SSCR0) 746 & ~SSCR0_SSE); 747 pxa2xx_spi_write(drv_data, SSCR1, 748 pxa2xx_spi_read(drv_data, SSCR1) 749 & ~drv_data->int_cr1); 750 if (!pxa25x_ssp_comp(drv_data)) 751 pxa2xx_spi_write(drv_data, SSTO, 0); 752 write_SSSR_CS(drv_data, drv_data->clear_sr); 753 754 dev_err(&drv_data->pdev->dev, 755 "bad message state in interrupt handler\n"); 756 757 /* Never fail */ 758 return IRQ_HANDLED; 759 } 760 761 return drv_data->transfer_handler(drv_data); 762 } 763 764 /* 765 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply 766 * input frequency by fractions of 2^24. It also has a divider by 5. 767 * 768 * There are formulas to get baud rate value for given input frequency and 769 * divider parameters, such as DDS_CLK_RATE and SCR: 770 * 771 * Fsys = 200MHz 772 * 773 * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1) 774 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2) 775 * 776 * DDS_CLK_RATE either 2^n or 2^n / 5. 777 * SCR is in range 0 .. 255 778 * 779 * Divisor = 5^i * 2^j * 2 * k 780 * i = [0, 1] i = 1 iff j = 0 or j > 3 781 * j = [0, 23] j = 0 iff i = 1 782 * k = [1, 256] 783 * Special case: j = 0, i = 1: Divisor = 2 / 5 784 * 785 * Accordingly to the specification the recommended values for DDS_CLK_RATE 786 * are: 787 * Case 1: 2^n, n = [0, 23] 788 * Case 2: 2^24 * 2 / 5 (0x666666) 789 * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333) 790 * 791 * In all cases the lowest possible value is better. 792 * 793 * The function calculates parameters for all cases and chooses the one closest 794 * to the asked baud rate. 795 */ 796 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds) 797 { 798 unsigned long xtal = 200000000; 799 unsigned long fref = xtal / 2; /* mandatory division by 2, 800 see (2) */ 801 /* case 3 */ 802 unsigned long fref1 = fref / 2; /* case 1 */ 803 unsigned long fref2 = fref * 2 / 5; /* case 2 */ 804 unsigned long scale; 805 unsigned long q, q1, q2; 806 long r, r1, r2; 807 u32 mul; 808 809 /* Case 1 */ 810 811 /* Set initial value for DDS_CLK_RATE */ 812 mul = (1 << 24) >> 1; 813 814 /* Calculate initial quot */ 815 q1 = DIV_ROUND_UP(fref1, rate); 816 817 /* Scale q1 if it's too big */ 818 if (q1 > 256) { 819 /* Scale q1 to range [1, 512] */ 820 scale = fls_long(q1 - 1); 821 if (scale > 9) { 822 q1 >>= scale - 9; 823 mul >>= scale - 9; 824 } 825 826 /* Round the result if we have a remainder */ 827 q1 += q1 & 1; 828 } 829 830 /* Decrease DDS_CLK_RATE as much as we can without loss in precision */ 831 scale = __ffs(q1); 832 q1 >>= scale; 833 mul >>= scale; 834 835 /* Get the remainder */ 836 r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate); 837 838 /* Case 2 */ 839 840 q2 = DIV_ROUND_UP(fref2, rate); 841 r2 = abs(fref2 / q2 - rate); 842 843 /* 844 * Choose the best between two: less remainder we have the better. We 845 * can't go case 2 if q2 is greater than 256 since SCR register can 846 * hold only values 0 .. 255. 847 */ 848 if (r2 >= r1 || q2 > 256) { 849 /* case 1 is better */ 850 r = r1; 851 q = q1; 852 } else { 853 /* case 2 is better */ 854 r = r2; 855 q = q2; 856 mul = (1 << 24) * 2 / 5; 857 } 858 859 /* Check case 3 only if the divisor is big enough */ 860 if (fref / rate >= 80) { 861 u64 fssp; 862 u32 m; 863 864 /* Calculate initial quot */ 865 q1 = DIV_ROUND_UP(fref, rate); 866 m = (1 << 24) / q1; 867 868 /* Get the remainder */ 869 fssp = (u64)fref * m; 870 do_div(fssp, 1 << 24); 871 r1 = abs(fssp - rate); 872 873 /* Choose this one if it suits better */ 874 if (r1 < r) { 875 /* case 3 is better */ 876 q = 1; 877 mul = m; 878 } 879 } 880 881 *dds = mul; 882 return q - 1; 883 } 884 885 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate) 886 { 887 unsigned long ssp_clk = drv_data->master->max_speed_hz; 888 const struct ssp_device *ssp = drv_data->ssp; 889 890 rate = min_t(int, ssp_clk, rate); 891 892 if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP) 893 return (ssp_clk / (2 * rate) - 1) & 0xff; 894 else 895 return (ssp_clk / rate - 1) & 0xfff; 896 } 897 898 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data, 899 int rate) 900 { 901 struct chip_data *chip = drv_data->cur_chip; 902 unsigned int clk_div; 903 904 switch (drv_data->ssp_type) { 905 case QUARK_X1000_SSP: 906 clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate); 907 break; 908 default: 909 clk_div = ssp_get_clk_div(drv_data, rate); 910 break; 911 } 912 return clk_div << 8; 913 } 914 915 static void pump_transfers(unsigned long data) 916 { 917 struct driver_data *drv_data = (struct driver_data *)data; 918 struct spi_message *message = NULL; 919 struct spi_transfer *transfer = NULL; 920 struct spi_transfer *previous = NULL; 921 struct chip_data *chip = NULL; 922 u32 clk_div = 0; 923 u8 bits = 0; 924 u32 speed = 0; 925 u32 cr0; 926 u32 cr1; 927 u32 dma_thresh = drv_data->cur_chip->dma_threshold; 928 u32 dma_burst = drv_data->cur_chip->dma_burst_size; 929 u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data); 930 int err; 931 932 /* Get current state information */ 933 message = drv_data->cur_msg; 934 transfer = drv_data->cur_transfer; 935 chip = drv_data->cur_chip; 936 937 /* Handle for abort */ 938 if (message->state == ERROR_STATE) { 939 message->status = -EIO; 940 giveback(drv_data); 941 return; 942 } 943 944 /* Handle end of message */ 945 if (message->state == DONE_STATE) { 946 message->status = 0; 947 giveback(drv_data); 948 return; 949 } 950 951 /* Delay if requested at end of transfer before CS change */ 952 if (message->state == RUNNING_STATE) { 953 previous = list_entry(transfer->transfer_list.prev, 954 struct spi_transfer, 955 transfer_list); 956 if (previous->delay_usecs) 957 udelay(previous->delay_usecs); 958 959 /* Drop chip select only if cs_change is requested */ 960 if (previous->cs_change) 961 cs_deassert(drv_data); 962 } 963 964 /* Check if we can DMA this transfer */ 965 if (!pxa2xx_spi_dma_is_possible(transfer->len) && chip->enable_dma) { 966 967 /* reject already-mapped transfers; PIO won't always work */ 968 if (message->is_dma_mapped 969 || transfer->rx_dma || transfer->tx_dma) { 970 dev_err(&drv_data->pdev->dev, 971 "pump_transfers: mapped transfer length of " 972 "%u is greater than %d\n", 973 transfer->len, MAX_DMA_LEN); 974 message->status = -EINVAL; 975 giveback(drv_data); 976 return; 977 } 978 979 /* warn ... we force this to PIO mode */ 980 dev_warn_ratelimited(&message->spi->dev, 981 "pump_transfers: DMA disabled for transfer length %ld " 982 "greater than %d\n", 983 (long)drv_data->len, MAX_DMA_LEN); 984 } 985 986 /* Setup the transfer state based on the type of transfer */ 987 if (pxa2xx_spi_flush(drv_data) == 0) { 988 dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n"); 989 message->status = -EIO; 990 giveback(drv_data); 991 return; 992 } 993 drv_data->n_bytes = chip->n_bytes; 994 drv_data->tx = (void *)transfer->tx_buf; 995 drv_data->tx_end = drv_data->tx + transfer->len; 996 drv_data->rx = transfer->rx_buf; 997 drv_data->rx_end = drv_data->rx + transfer->len; 998 drv_data->len = transfer->len; 999 drv_data->write = drv_data->tx ? chip->write : null_writer; 1000 drv_data->read = drv_data->rx ? chip->read : null_reader; 1001 1002 /* Change speed and bit per word on a per transfer */ 1003 bits = transfer->bits_per_word; 1004 speed = transfer->speed_hz; 1005 1006 clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed); 1007 1008 if (bits <= 8) { 1009 drv_data->n_bytes = 1; 1010 drv_data->read = drv_data->read != null_reader ? 1011 u8_reader : null_reader; 1012 drv_data->write = drv_data->write != null_writer ? 1013 u8_writer : null_writer; 1014 } else if (bits <= 16) { 1015 drv_data->n_bytes = 2; 1016 drv_data->read = drv_data->read != null_reader ? 1017 u16_reader : null_reader; 1018 drv_data->write = drv_data->write != null_writer ? 1019 u16_writer : null_writer; 1020 } else if (bits <= 32) { 1021 drv_data->n_bytes = 4; 1022 drv_data->read = drv_data->read != null_reader ? 1023 u32_reader : null_reader; 1024 drv_data->write = drv_data->write != null_writer ? 1025 u32_writer : null_writer; 1026 } 1027 /* 1028 * if bits/word is changed in dma mode, then must check the 1029 * thresholds and burst also 1030 */ 1031 if (chip->enable_dma) { 1032 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, 1033 message->spi, 1034 bits, &dma_burst, 1035 &dma_thresh)) 1036 dev_warn_ratelimited(&message->spi->dev, 1037 "pump_transfers: DMA burst size reduced to match bits_per_word\n"); 1038 } 1039 1040 message->state = RUNNING_STATE; 1041 1042 drv_data->dma_mapped = 0; 1043 if (pxa2xx_spi_dma_is_possible(drv_data->len)) 1044 drv_data->dma_mapped = pxa2xx_spi_map_dma_buffers(drv_data); 1045 if (drv_data->dma_mapped) { 1046 1047 /* Ensure we have the correct interrupt handler */ 1048 drv_data->transfer_handler = pxa2xx_spi_dma_transfer; 1049 1050 err = pxa2xx_spi_dma_prepare(drv_data, dma_burst); 1051 if (err) { 1052 message->status = err; 1053 giveback(drv_data); 1054 return; 1055 } 1056 1057 /* Clear status and start DMA engine */ 1058 cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1; 1059 pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr); 1060 1061 pxa2xx_spi_dma_start(drv_data); 1062 } else { 1063 /* Ensure we have the correct interrupt handler */ 1064 drv_data->transfer_handler = interrupt_transfer; 1065 1066 /* Clear status */ 1067 cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1; 1068 write_SSSR_CS(drv_data, drv_data->clear_sr); 1069 } 1070 1071 /* NOTE: PXA25x_SSP _could_ use external clocking ... */ 1072 cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits); 1073 if (!pxa25x_ssp_comp(drv_data)) 1074 dev_dbg(&message->spi->dev, "%u Hz actual, %s\n", 1075 drv_data->master->max_speed_hz 1076 / (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)), 1077 drv_data->dma_mapped ? "DMA" : "PIO"); 1078 else 1079 dev_dbg(&message->spi->dev, "%u Hz actual, %s\n", 1080 drv_data->master->max_speed_hz / 2 1081 / (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)), 1082 drv_data->dma_mapped ? "DMA" : "PIO"); 1083 1084 if (is_lpss_ssp(drv_data)) { 1085 if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff) 1086 != chip->lpss_rx_threshold) 1087 pxa2xx_spi_write(drv_data, SSIRF, 1088 chip->lpss_rx_threshold); 1089 if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff) 1090 != chip->lpss_tx_threshold) 1091 pxa2xx_spi_write(drv_data, SSITF, 1092 chip->lpss_tx_threshold); 1093 } 1094 1095 if (is_quark_x1000_ssp(drv_data) && 1096 (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate)) 1097 pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate); 1098 1099 /* see if we need to reload the config registers */ 1100 if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0) 1101 || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask) 1102 != (cr1 & change_mask)) { 1103 /* stop the SSP, and update the other bits */ 1104 pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE); 1105 if (!pxa25x_ssp_comp(drv_data)) 1106 pxa2xx_spi_write(drv_data, SSTO, chip->timeout); 1107 /* first set CR1 without interrupt and service enables */ 1108 pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask); 1109 /* restart the SSP */ 1110 pxa2xx_spi_write(drv_data, SSCR0, cr0); 1111 1112 } else { 1113 if (!pxa25x_ssp_comp(drv_data)) 1114 pxa2xx_spi_write(drv_data, SSTO, chip->timeout); 1115 } 1116 1117 cs_assert(drv_data); 1118 1119 /* after chip select, release the data by enabling service 1120 * requests and interrupts, without changing any mode bits */ 1121 pxa2xx_spi_write(drv_data, SSCR1, cr1); 1122 } 1123 1124 static int pxa2xx_spi_transfer_one_message(struct spi_master *master, 1125 struct spi_message *msg) 1126 { 1127 struct driver_data *drv_data = spi_master_get_devdata(master); 1128 1129 drv_data->cur_msg = msg; 1130 /* Initial message state*/ 1131 drv_data->cur_msg->state = START_STATE; 1132 drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next, 1133 struct spi_transfer, 1134 transfer_list); 1135 1136 /* prepare to setup the SSP, in pump_transfers, using the per 1137 * chip configuration */ 1138 drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi); 1139 1140 /* Mark as busy and launch transfers */ 1141 tasklet_schedule(&drv_data->pump_transfers); 1142 return 0; 1143 } 1144 1145 static int pxa2xx_spi_unprepare_transfer(struct spi_master *master) 1146 { 1147 struct driver_data *drv_data = spi_master_get_devdata(master); 1148 1149 /* Disable the SSP now */ 1150 pxa2xx_spi_write(drv_data, SSCR0, 1151 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE); 1152 1153 return 0; 1154 } 1155 1156 static int setup_cs(struct spi_device *spi, struct chip_data *chip, 1157 struct pxa2xx_spi_chip *chip_info) 1158 { 1159 int err = 0; 1160 1161 if (chip == NULL || chip_info == NULL) 1162 return 0; 1163 1164 /* NOTE: setup() can be called multiple times, possibly with 1165 * different chip_info, release previously requested GPIO 1166 */ 1167 if (gpio_is_valid(chip->gpio_cs)) 1168 gpio_free(chip->gpio_cs); 1169 1170 /* If (*cs_control) is provided, ignore GPIO chip select */ 1171 if (chip_info->cs_control) { 1172 chip->cs_control = chip_info->cs_control; 1173 return 0; 1174 } 1175 1176 if (gpio_is_valid(chip_info->gpio_cs)) { 1177 err = gpio_request(chip_info->gpio_cs, "SPI_CS"); 1178 if (err) { 1179 dev_err(&spi->dev, "failed to request chip select GPIO%d\n", 1180 chip_info->gpio_cs); 1181 return err; 1182 } 1183 1184 chip->gpio_cs = chip_info->gpio_cs; 1185 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH; 1186 1187 err = gpio_direction_output(chip->gpio_cs, 1188 !chip->gpio_cs_inverted); 1189 } 1190 1191 return err; 1192 } 1193 1194 static int setup(struct spi_device *spi) 1195 { 1196 struct pxa2xx_spi_chip *chip_info = NULL; 1197 struct chip_data *chip; 1198 const struct lpss_config *config; 1199 struct driver_data *drv_data = spi_master_get_devdata(spi->master); 1200 uint tx_thres, tx_hi_thres, rx_thres; 1201 1202 switch (drv_data->ssp_type) { 1203 case QUARK_X1000_SSP: 1204 tx_thres = TX_THRESH_QUARK_X1000_DFLT; 1205 tx_hi_thres = 0; 1206 rx_thres = RX_THRESH_QUARK_X1000_DFLT; 1207 break; 1208 case LPSS_LPT_SSP: 1209 case LPSS_BYT_SSP: 1210 case LPSS_BSW_SSP: 1211 case LPSS_SPT_SSP: 1212 case LPSS_BXT_SSP: 1213 config = lpss_get_config(drv_data); 1214 tx_thres = config->tx_threshold_lo; 1215 tx_hi_thres = config->tx_threshold_hi; 1216 rx_thres = config->rx_threshold; 1217 break; 1218 default: 1219 tx_thres = TX_THRESH_DFLT; 1220 tx_hi_thres = 0; 1221 rx_thres = RX_THRESH_DFLT; 1222 break; 1223 } 1224 1225 /* Only alloc on first setup */ 1226 chip = spi_get_ctldata(spi); 1227 if (!chip) { 1228 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); 1229 if (!chip) 1230 return -ENOMEM; 1231 1232 if (drv_data->ssp_type == CE4100_SSP) { 1233 if (spi->chip_select > 4) { 1234 dev_err(&spi->dev, 1235 "failed setup: cs number must not be > 4.\n"); 1236 kfree(chip); 1237 return -EINVAL; 1238 } 1239 1240 chip->frm = spi->chip_select; 1241 } else 1242 chip->gpio_cs = -1; 1243 chip->enable_dma = 0; 1244 chip->timeout = TIMOUT_DFLT; 1245 } 1246 1247 /* protocol drivers may change the chip settings, so... 1248 * if chip_info exists, use it */ 1249 chip_info = spi->controller_data; 1250 1251 /* chip_info isn't always needed */ 1252 chip->cr1 = 0; 1253 if (chip_info) { 1254 if (chip_info->timeout) 1255 chip->timeout = chip_info->timeout; 1256 if (chip_info->tx_threshold) 1257 tx_thres = chip_info->tx_threshold; 1258 if (chip_info->tx_hi_threshold) 1259 tx_hi_thres = chip_info->tx_hi_threshold; 1260 if (chip_info->rx_threshold) 1261 rx_thres = chip_info->rx_threshold; 1262 chip->enable_dma = drv_data->master_info->enable_dma; 1263 chip->dma_threshold = 0; 1264 if (chip_info->enable_loopback) 1265 chip->cr1 = SSCR1_LBM; 1266 } else if (ACPI_HANDLE(&spi->dev)) { 1267 /* 1268 * Slave devices enumerated from ACPI namespace don't 1269 * usually have chip_info but we still might want to use 1270 * DMA with them. 1271 */ 1272 chip->enable_dma = drv_data->master_info->enable_dma; 1273 } 1274 1275 chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres); 1276 chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) 1277 | SSITF_TxHiThresh(tx_hi_thres); 1278 1279 /* set dma burst and threshold outside of chip_info path so that if 1280 * chip_info goes away after setting chip->enable_dma, the 1281 * burst and threshold can still respond to changes in bits_per_word */ 1282 if (chip->enable_dma) { 1283 /* set up legal burst and threshold for dma */ 1284 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi, 1285 spi->bits_per_word, 1286 &chip->dma_burst_size, 1287 &chip->dma_threshold)) { 1288 dev_warn(&spi->dev, 1289 "in setup: DMA burst size reduced to match bits_per_word\n"); 1290 } 1291 } 1292 1293 switch (drv_data->ssp_type) { 1294 case QUARK_X1000_SSP: 1295 chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres) 1296 & QUARK_X1000_SSCR1_RFT) 1297 | (QUARK_X1000_SSCR1_TxTresh(tx_thres) 1298 & QUARK_X1000_SSCR1_TFT); 1299 break; 1300 default: 1301 chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) | 1302 (SSCR1_TxTresh(tx_thres) & SSCR1_TFT); 1303 break; 1304 } 1305 1306 chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH); 1307 chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0) 1308 | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0); 1309 1310 if (spi->mode & SPI_LOOP) 1311 chip->cr1 |= SSCR1_LBM; 1312 1313 if (spi->bits_per_word <= 8) { 1314 chip->n_bytes = 1; 1315 chip->read = u8_reader; 1316 chip->write = u8_writer; 1317 } else if (spi->bits_per_word <= 16) { 1318 chip->n_bytes = 2; 1319 chip->read = u16_reader; 1320 chip->write = u16_writer; 1321 } else if (spi->bits_per_word <= 32) { 1322 chip->n_bytes = 4; 1323 chip->read = u32_reader; 1324 chip->write = u32_writer; 1325 } 1326 1327 spi_set_ctldata(spi, chip); 1328 1329 if (drv_data->ssp_type == CE4100_SSP) 1330 return 0; 1331 1332 return setup_cs(spi, chip, chip_info); 1333 } 1334 1335 static void cleanup(struct spi_device *spi) 1336 { 1337 struct chip_data *chip = spi_get_ctldata(spi); 1338 struct driver_data *drv_data = spi_master_get_devdata(spi->master); 1339 1340 if (!chip) 1341 return; 1342 1343 if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs)) 1344 gpio_free(chip->gpio_cs); 1345 1346 kfree(chip); 1347 } 1348 1349 #ifdef CONFIG_PCI 1350 #ifdef CONFIG_ACPI 1351 1352 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = { 1353 { "INT33C0", LPSS_LPT_SSP }, 1354 { "INT33C1", LPSS_LPT_SSP }, 1355 { "INT3430", LPSS_LPT_SSP }, 1356 { "INT3431", LPSS_LPT_SSP }, 1357 { "80860F0E", LPSS_BYT_SSP }, 1358 { "8086228E", LPSS_BSW_SSP }, 1359 { }, 1360 }; 1361 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match); 1362 1363 static int pxa2xx_spi_get_port_id(struct acpi_device *adev) 1364 { 1365 unsigned int devid; 1366 int port_id = -1; 1367 1368 if (adev && adev->pnp.unique_id && 1369 !kstrtouint(adev->pnp.unique_id, 0, &devid)) 1370 port_id = devid; 1371 return port_id; 1372 } 1373 #else /* !CONFIG_ACPI */ 1374 static int pxa2xx_spi_get_port_id(struct acpi_device *adev) 1375 { 1376 return -1; 1377 } 1378 #endif 1379 1380 /* 1381 * PCI IDs of compound devices that integrate both host controller and private 1382 * integrated DMA engine. Please note these are not used in module 1383 * autoloading and probing in this module but matching the LPSS SSP type. 1384 */ 1385 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = { 1386 /* SPT-LP */ 1387 { PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP }, 1388 { PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP }, 1389 /* SPT-H */ 1390 { PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP }, 1391 { PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP }, 1392 /* BXT A-Step */ 1393 { PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP }, 1394 { PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP }, 1395 { PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP }, 1396 /* BXT B-Step */ 1397 { PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP }, 1398 { PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP }, 1399 { PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP }, 1400 /* APL */ 1401 { PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP }, 1402 { PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP }, 1403 { PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP }, 1404 { }, 1405 }; 1406 1407 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param) 1408 { 1409 struct device *dev = param; 1410 1411 if (dev != chan->device->dev->parent) 1412 return false; 1413 1414 return true; 1415 } 1416 1417 static struct pxa2xx_spi_master * 1418 pxa2xx_spi_init_pdata(struct platform_device *pdev) 1419 { 1420 struct pxa2xx_spi_master *pdata; 1421 struct acpi_device *adev; 1422 struct ssp_device *ssp; 1423 struct resource *res; 1424 const struct acpi_device_id *adev_id = NULL; 1425 const struct pci_device_id *pcidev_id = NULL; 1426 int type; 1427 1428 adev = ACPI_COMPANION(&pdev->dev); 1429 1430 if (dev_is_pci(pdev->dev.parent)) 1431 pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match, 1432 to_pci_dev(pdev->dev.parent)); 1433 else if (adev) 1434 adev_id = acpi_match_device(pdev->dev.driver->acpi_match_table, 1435 &pdev->dev); 1436 else 1437 return NULL; 1438 1439 if (adev_id) 1440 type = (int)adev_id->driver_data; 1441 else if (pcidev_id) 1442 type = (int)pcidev_id->driver_data; 1443 else 1444 return NULL; 1445 1446 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); 1447 if (!pdata) 1448 return NULL; 1449 1450 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1451 if (!res) 1452 return NULL; 1453 1454 ssp = &pdata->ssp; 1455 1456 ssp->phys_base = res->start; 1457 ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res); 1458 if (IS_ERR(ssp->mmio_base)) 1459 return NULL; 1460 1461 if (pcidev_id) { 1462 pdata->tx_param = pdev->dev.parent; 1463 pdata->rx_param = pdev->dev.parent; 1464 pdata->dma_filter = pxa2xx_spi_idma_filter; 1465 } 1466 1467 ssp->clk = devm_clk_get(&pdev->dev, NULL); 1468 ssp->irq = platform_get_irq(pdev, 0); 1469 ssp->type = type; 1470 ssp->pdev = pdev; 1471 ssp->port_id = pxa2xx_spi_get_port_id(adev); 1472 1473 pdata->num_chipselect = 1; 1474 pdata->enable_dma = true; 1475 1476 return pdata; 1477 } 1478 1479 #else /* !CONFIG_PCI */ 1480 static inline struct pxa2xx_spi_master * 1481 pxa2xx_spi_init_pdata(struct platform_device *pdev) 1482 { 1483 return NULL; 1484 } 1485 #endif 1486 1487 static int pxa2xx_spi_fw_translate_cs(struct spi_master *master, unsigned cs) 1488 { 1489 struct driver_data *drv_data = spi_master_get_devdata(master); 1490 1491 if (has_acpi_companion(&drv_data->pdev->dev)) { 1492 switch (drv_data->ssp_type) { 1493 /* 1494 * For Atoms the ACPI DeviceSelection used by the Windows 1495 * driver starts from 1 instead of 0 so translate it here 1496 * to match what Linux expects. 1497 */ 1498 case LPSS_BYT_SSP: 1499 case LPSS_BSW_SSP: 1500 return cs - 1; 1501 1502 default: 1503 break; 1504 } 1505 } 1506 1507 return cs; 1508 } 1509 1510 static int pxa2xx_spi_probe(struct platform_device *pdev) 1511 { 1512 struct device *dev = &pdev->dev; 1513 struct pxa2xx_spi_master *platform_info; 1514 struct spi_master *master; 1515 struct driver_data *drv_data; 1516 struct ssp_device *ssp; 1517 const struct lpss_config *config; 1518 int status; 1519 u32 tmp; 1520 1521 platform_info = dev_get_platdata(dev); 1522 if (!platform_info) { 1523 platform_info = pxa2xx_spi_init_pdata(pdev); 1524 if (!platform_info) { 1525 dev_err(&pdev->dev, "missing platform data\n"); 1526 return -ENODEV; 1527 } 1528 } 1529 1530 ssp = pxa_ssp_request(pdev->id, pdev->name); 1531 if (!ssp) 1532 ssp = &platform_info->ssp; 1533 1534 if (!ssp->mmio_base) { 1535 dev_err(&pdev->dev, "failed to get ssp\n"); 1536 return -ENODEV; 1537 } 1538 1539 master = spi_alloc_master(dev, sizeof(struct driver_data)); 1540 if (!master) { 1541 dev_err(&pdev->dev, "cannot alloc spi_master\n"); 1542 pxa_ssp_free(ssp); 1543 return -ENOMEM; 1544 } 1545 drv_data = spi_master_get_devdata(master); 1546 drv_data->master = master; 1547 drv_data->master_info = platform_info; 1548 drv_data->pdev = pdev; 1549 drv_data->ssp = ssp; 1550 1551 master->dev.of_node = pdev->dev.of_node; 1552 /* the spi->mode bits understood by this driver: */ 1553 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP; 1554 1555 master->bus_num = ssp->port_id; 1556 master->dma_alignment = DMA_ALIGNMENT; 1557 master->cleanup = cleanup; 1558 master->setup = setup; 1559 master->transfer_one_message = pxa2xx_spi_transfer_one_message; 1560 master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer; 1561 master->fw_translate_cs = pxa2xx_spi_fw_translate_cs; 1562 master->auto_runtime_pm = true; 1563 master->flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX; 1564 1565 drv_data->ssp_type = ssp->type; 1566 1567 drv_data->ioaddr = ssp->mmio_base; 1568 drv_data->ssdr_physical = ssp->phys_base + SSDR; 1569 if (pxa25x_ssp_comp(drv_data)) { 1570 switch (drv_data->ssp_type) { 1571 case QUARK_X1000_SSP: 1572 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 1573 break; 1574 default: 1575 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); 1576 break; 1577 } 1578 1579 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE; 1580 drv_data->dma_cr1 = 0; 1581 drv_data->clear_sr = SSSR_ROR; 1582 drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR; 1583 } else { 1584 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 1585 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE; 1586 drv_data->dma_cr1 = DEFAULT_DMA_CR1; 1587 drv_data->clear_sr = SSSR_ROR | SSSR_TINT; 1588 drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR; 1589 } 1590 1591 status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev), 1592 drv_data); 1593 if (status < 0) { 1594 dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq); 1595 goto out_error_master_alloc; 1596 } 1597 1598 /* Setup DMA if requested */ 1599 if (platform_info->enable_dma) { 1600 status = pxa2xx_spi_dma_setup(drv_data); 1601 if (status) { 1602 dev_dbg(dev, "no DMA channels available, using PIO\n"); 1603 platform_info->enable_dma = false; 1604 } 1605 } 1606 1607 /* Enable SOC clock */ 1608 clk_prepare_enable(ssp->clk); 1609 1610 master->max_speed_hz = clk_get_rate(ssp->clk); 1611 1612 /* Load default SSP configuration */ 1613 pxa2xx_spi_write(drv_data, SSCR0, 0); 1614 switch (drv_data->ssp_type) { 1615 case QUARK_X1000_SSP: 1616 tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) 1617 | QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT); 1618 pxa2xx_spi_write(drv_data, SSCR1, tmp); 1619 1620 /* using the Motorola SPI protocol and use 8 bit frame */ 1621 pxa2xx_spi_write(drv_data, SSCR0, 1622 QUARK_X1000_SSCR0_Motorola 1623 | QUARK_X1000_SSCR0_DataSize(8)); 1624 break; 1625 default: 1626 tmp = SSCR1_RxTresh(RX_THRESH_DFLT) | 1627 SSCR1_TxTresh(TX_THRESH_DFLT); 1628 pxa2xx_spi_write(drv_data, SSCR1, tmp); 1629 tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8); 1630 pxa2xx_spi_write(drv_data, SSCR0, tmp); 1631 break; 1632 } 1633 1634 if (!pxa25x_ssp_comp(drv_data)) 1635 pxa2xx_spi_write(drv_data, SSTO, 0); 1636 1637 if (!is_quark_x1000_ssp(drv_data)) 1638 pxa2xx_spi_write(drv_data, SSPSP, 0); 1639 1640 if (is_lpss_ssp(drv_data)) { 1641 lpss_ssp_setup(drv_data); 1642 config = lpss_get_config(drv_data); 1643 if (config->reg_capabilities >= 0) { 1644 tmp = __lpss_ssp_read_priv(drv_data, 1645 config->reg_capabilities); 1646 tmp &= LPSS_CAPS_CS_EN_MASK; 1647 tmp >>= LPSS_CAPS_CS_EN_SHIFT; 1648 platform_info->num_chipselect = ffz(tmp); 1649 } else if (config->cs_num) { 1650 platform_info->num_chipselect = config->cs_num; 1651 } 1652 } 1653 master->num_chipselect = platform_info->num_chipselect; 1654 1655 tasklet_init(&drv_data->pump_transfers, pump_transfers, 1656 (unsigned long)drv_data); 1657 1658 pm_runtime_set_autosuspend_delay(&pdev->dev, 50); 1659 pm_runtime_use_autosuspend(&pdev->dev); 1660 pm_runtime_set_active(&pdev->dev); 1661 pm_runtime_enable(&pdev->dev); 1662 1663 /* Register with the SPI framework */ 1664 platform_set_drvdata(pdev, drv_data); 1665 status = devm_spi_register_master(&pdev->dev, master); 1666 if (status != 0) { 1667 dev_err(&pdev->dev, "problem registering spi master\n"); 1668 goto out_error_clock_enabled; 1669 } 1670 1671 return status; 1672 1673 out_error_clock_enabled: 1674 clk_disable_unprepare(ssp->clk); 1675 pxa2xx_spi_dma_release(drv_data); 1676 free_irq(ssp->irq, drv_data); 1677 1678 out_error_master_alloc: 1679 spi_master_put(master); 1680 pxa_ssp_free(ssp); 1681 return status; 1682 } 1683 1684 static int pxa2xx_spi_remove(struct platform_device *pdev) 1685 { 1686 struct driver_data *drv_data = platform_get_drvdata(pdev); 1687 struct ssp_device *ssp; 1688 1689 if (!drv_data) 1690 return 0; 1691 ssp = drv_data->ssp; 1692 1693 pm_runtime_get_sync(&pdev->dev); 1694 1695 /* Disable the SSP at the peripheral and SOC level */ 1696 pxa2xx_spi_write(drv_data, SSCR0, 0); 1697 clk_disable_unprepare(ssp->clk); 1698 1699 /* Release DMA */ 1700 if (drv_data->master_info->enable_dma) 1701 pxa2xx_spi_dma_release(drv_data); 1702 1703 pm_runtime_put_noidle(&pdev->dev); 1704 pm_runtime_disable(&pdev->dev); 1705 1706 /* Release IRQ */ 1707 free_irq(ssp->irq, drv_data); 1708 1709 /* Release SSP */ 1710 pxa_ssp_free(ssp); 1711 1712 return 0; 1713 } 1714 1715 static void pxa2xx_spi_shutdown(struct platform_device *pdev) 1716 { 1717 int status = 0; 1718 1719 if ((status = pxa2xx_spi_remove(pdev)) != 0) 1720 dev_err(&pdev->dev, "shutdown failed with %d\n", status); 1721 } 1722 1723 #ifdef CONFIG_PM_SLEEP 1724 static int pxa2xx_spi_suspend(struct device *dev) 1725 { 1726 struct driver_data *drv_data = dev_get_drvdata(dev); 1727 struct ssp_device *ssp = drv_data->ssp; 1728 int status = 0; 1729 1730 status = spi_master_suspend(drv_data->master); 1731 if (status != 0) 1732 return status; 1733 pxa2xx_spi_write(drv_data, SSCR0, 0); 1734 1735 if (!pm_runtime_suspended(dev)) 1736 clk_disable_unprepare(ssp->clk); 1737 1738 return 0; 1739 } 1740 1741 static int pxa2xx_spi_resume(struct device *dev) 1742 { 1743 struct driver_data *drv_data = dev_get_drvdata(dev); 1744 struct ssp_device *ssp = drv_data->ssp; 1745 int status = 0; 1746 1747 /* Enable the SSP clock */ 1748 if (!pm_runtime_suspended(dev)) 1749 clk_prepare_enable(ssp->clk); 1750 1751 /* Restore LPSS private register bits */ 1752 if (is_lpss_ssp(drv_data)) 1753 lpss_ssp_setup(drv_data); 1754 1755 /* Start the queue running */ 1756 status = spi_master_resume(drv_data->master); 1757 if (status != 0) { 1758 dev_err(dev, "problem starting queue (%d)\n", status); 1759 return status; 1760 } 1761 1762 return 0; 1763 } 1764 #endif 1765 1766 #ifdef CONFIG_PM 1767 static int pxa2xx_spi_runtime_suspend(struct device *dev) 1768 { 1769 struct driver_data *drv_data = dev_get_drvdata(dev); 1770 1771 clk_disable_unprepare(drv_data->ssp->clk); 1772 return 0; 1773 } 1774 1775 static int pxa2xx_spi_runtime_resume(struct device *dev) 1776 { 1777 struct driver_data *drv_data = dev_get_drvdata(dev); 1778 1779 clk_prepare_enable(drv_data->ssp->clk); 1780 return 0; 1781 } 1782 #endif 1783 1784 static const struct dev_pm_ops pxa2xx_spi_pm_ops = { 1785 SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume) 1786 SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend, 1787 pxa2xx_spi_runtime_resume, NULL) 1788 }; 1789 1790 static struct platform_driver driver = { 1791 .driver = { 1792 .name = "pxa2xx-spi", 1793 .pm = &pxa2xx_spi_pm_ops, 1794 .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match), 1795 }, 1796 .probe = pxa2xx_spi_probe, 1797 .remove = pxa2xx_spi_remove, 1798 .shutdown = pxa2xx_spi_shutdown, 1799 }; 1800 1801 static int __init pxa2xx_spi_init(void) 1802 { 1803 return platform_driver_register(&driver); 1804 } 1805 subsys_initcall(pxa2xx_spi_init); 1806 1807 static void __exit pxa2xx_spi_exit(void) 1808 { 1809 platform_driver_unregister(&driver); 1810 } 1811 module_exit(pxa2xx_spi_exit); 1812