1 /* 2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs 3 * Copyright (C) 2013, Intel Corporation 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 18 */ 19 20 #include <linux/init.h> 21 #include <linux/module.h> 22 #include <linux/device.h> 23 #include <linux/ioport.h> 24 #include <linux/errno.h> 25 #include <linux/err.h> 26 #include <linux/interrupt.h> 27 #include <linux/platform_device.h> 28 #include <linux/spi/pxa2xx_spi.h> 29 #include <linux/spi/spi.h> 30 #include <linux/delay.h> 31 #include <linux/gpio.h> 32 #include <linux/slab.h> 33 #include <linux/clk.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/acpi.h> 36 37 #include <asm/io.h> 38 #include <asm/irq.h> 39 #include <asm/delay.h> 40 41 #include "spi-pxa2xx.h" 42 43 MODULE_AUTHOR("Stephen Street"); 44 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller"); 45 MODULE_LICENSE("GPL"); 46 MODULE_ALIAS("platform:pxa2xx-spi"); 47 48 #define MAX_BUSES 3 49 50 #define TIMOUT_DFLT 1000 51 52 /* 53 * for testing SSCR1 changes that require SSP restart, basically 54 * everything except the service and interrupt enables, the pxa270 developer 55 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this 56 * list, but the PXA255 dev man says all bits without really meaning the 57 * service and interrupt enables 58 */ 59 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \ 60 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \ 61 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \ 62 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \ 63 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \ 64 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) 65 66 #define LPSS_RX_THRESH_DFLT 64 67 #define LPSS_TX_LOTHRESH_DFLT 160 68 #define LPSS_TX_HITHRESH_DFLT 224 69 70 /* Offset from drv_data->lpss_base */ 71 #define GENERAL_REG 0x08 72 #define GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24) 73 #define SSP_REG 0x0c 74 #define SPI_CS_CONTROL 0x18 75 #define SPI_CS_CONTROL_SW_MODE BIT(0) 76 #define SPI_CS_CONTROL_CS_HIGH BIT(1) 77 78 static bool is_lpss_ssp(const struct driver_data *drv_data) 79 { 80 return drv_data->ssp_type == LPSS_SSP; 81 } 82 83 /* 84 * Read and write LPSS SSP private registers. Caller must first check that 85 * is_lpss_ssp() returns true before these can be called. 86 */ 87 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset) 88 { 89 WARN_ON(!drv_data->lpss_base); 90 return readl(drv_data->lpss_base + offset); 91 } 92 93 static void __lpss_ssp_write_priv(struct driver_data *drv_data, 94 unsigned offset, u32 value) 95 { 96 WARN_ON(!drv_data->lpss_base); 97 writel(value, drv_data->lpss_base + offset); 98 } 99 100 /* 101 * lpss_ssp_setup - perform LPSS SSP specific setup 102 * @drv_data: pointer to the driver private data 103 * 104 * Perform LPSS SSP specific setup. This function must be called first if 105 * one is going to use LPSS SSP private registers. 106 */ 107 static void lpss_ssp_setup(struct driver_data *drv_data) 108 { 109 unsigned offset = 0x400; 110 u32 value, orig; 111 112 if (!is_lpss_ssp(drv_data)) 113 return; 114 115 /* 116 * Perform auto-detection of the LPSS SSP private registers. They 117 * can be either at 1k or 2k offset from the base address. 118 */ 119 orig = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL); 120 121 /* Test SPI_CS_CONTROL_SW_MODE bit enabling */ 122 value = orig | SPI_CS_CONTROL_SW_MODE; 123 writel(value, drv_data->ioaddr + offset + SPI_CS_CONTROL); 124 value = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL); 125 if (value != (orig | SPI_CS_CONTROL_SW_MODE)) { 126 offset = 0x800; 127 goto detection_done; 128 } 129 130 orig = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL); 131 132 /* Test SPI_CS_CONTROL_SW_MODE bit disabling */ 133 value = orig & ~SPI_CS_CONTROL_SW_MODE; 134 writel(value, drv_data->ioaddr + offset + SPI_CS_CONTROL); 135 value = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL); 136 if (value != (orig & ~SPI_CS_CONTROL_SW_MODE)) { 137 offset = 0x800; 138 goto detection_done; 139 } 140 141 detection_done: 142 /* Now set the LPSS base */ 143 drv_data->lpss_base = drv_data->ioaddr + offset; 144 145 /* Enable software chip select control */ 146 value = SPI_CS_CONTROL_SW_MODE | SPI_CS_CONTROL_CS_HIGH; 147 __lpss_ssp_write_priv(drv_data, SPI_CS_CONTROL, value); 148 149 /* Enable multiblock DMA transfers */ 150 if (drv_data->master_info->enable_dma) { 151 __lpss_ssp_write_priv(drv_data, SSP_REG, 1); 152 153 value = __lpss_ssp_read_priv(drv_data, GENERAL_REG); 154 value |= GENERAL_REG_RXTO_HOLDOFF_DISABLE; 155 __lpss_ssp_write_priv(drv_data, GENERAL_REG, value); 156 } 157 } 158 159 static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable) 160 { 161 u32 value; 162 163 if (!is_lpss_ssp(drv_data)) 164 return; 165 166 value = __lpss_ssp_read_priv(drv_data, SPI_CS_CONTROL); 167 if (enable) 168 value &= ~SPI_CS_CONTROL_CS_HIGH; 169 else 170 value |= SPI_CS_CONTROL_CS_HIGH; 171 __lpss_ssp_write_priv(drv_data, SPI_CS_CONTROL, value); 172 } 173 174 static void cs_assert(struct driver_data *drv_data) 175 { 176 struct chip_data *chip = drv_data->cur_chip; 177 178 if (drv_data->ssp_type == CE4100_SSP) { 179 write_SSSR(drv_data->cur_chip->frm, drv_data->ioaddr); 180 return; 181 } 182 183 if (chip->cs_control) { 184 chip->cs_control(PXA2XX_CS_ASSERT); 185 return; 186 } 187 188 if (gpio_is_valid(chip->gpio_cs)) { 189 gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted); 190 return; 191 } 192 193 lpss_ssp_cs_control(drv_data, true); 194 } 195 196 static void cs_deassert(struct driver_data *drv_data) 197 { 198 struct chip_data *chip = drv_data->cur_chip; 199 200 if (drv_data->ssp_type == CE4100_SSP) 201 return; 202 203 if (chip->cs_control) { 204 chip->cs_control(PXA2XX_CS_DEASSERT); 205 return; 206 } 207 208 if (gpio_is_valid(chip->gpio_cs)) { 209 gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted); 210 return; 211 } 212 213 lpss_ssp_cs_control(drv_data, false); 214 } 215 216 int pxa2xx_spi_flush(struct driver_data *drv_data) 217 { 218 unsigned long limit = loops_per_jiffy << 1; 219 220 void __iomem *reg = drv_data->ioaddr; 221 222 do { 223 while (read_SSSR(reg) & SSSR_RNE) { 224 read_SSDR(reg); 225 } 226 } while ((read_SSSR(reg) & SSSR_BSY) && --limit); 227 write_SSSR_CS(drv_data, SSSR_ROR); 228 229 return limit; 230 } 231 232 static int null_writer(struct driver_data *drv_data) 233 { 234 void __iomem *reg = drv_data->ioaddr; 235 u8 n_bytes = drv_data->n_bytes; 236 237 if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK) 238 || (drv_data->tx == drv_data->tx_end)) 239 return 0; 240 241 write_SSDR(0, reg); 242 drv_data->tx += n_bytes; 243 244 return 1; 245 } 246 247 static int null_reader(struct driver_data *drv_data) 248 { 249 void __iomem *reg = drv_data->ioaddr; 250 u8 n_bytes = drv_data->n_bytes; 251 252 while ((read_SSSR(reg) & SSSR_RNE) 253 && (drv_data->rx < drv_data->rx_end)) { 254 read_SSDR(reg); 255 drv_data->rx += n_bytes; 256 } 257 258 return drv_data->rx == drv_data->rx_end; 259 } 260 261 static int u8_writer(struct driver_data *drv_data) 262 { 263 void __iomem *reg = drv_data->ioaddr; 264 265 if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK) 266 || (drv_data->tx == drv_data->tx_end)) 267 return 0; 268 269 write_SSDR(*(u8 *)(drv_data->tx), reg); 270 ++drv_data->tx; 271 272 return 1; 273 } 274 275 static int u8_reader(struct driver_data *drv_data) 276 { 277 void __iomem *reg = drv_data->ioaddr; 278 279 while ((read_SSSR(reg) & SSSR_RNE) 280 && (drv_data->rx < drv_data->rx_end)) { 281 *(u8 *)(drv_data->rx) = read_SSDR(reg); 282 ++drv_data->rx; 283 } 284 285 return drv_data->rx == drv_data->rx_end; 286 } 287 288 static int u16_writer(struct driver_data *drv_data) 289 { 290 void __iomem *reg = drv_data->ioaddr; 291 292 if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK) 293 || (drv_data->tx == drv_data->tx_end)) 294 return 0; 295 296 write_SSDR(*(u16 *)(drv_data->tx), reg); 297 drv_data->tx += 2; 298 299 return 1; 300 } 301 302 static int u16_reader(struct driver_data *drv_data) 303 { 304 void __iomem *reg = drv_data->ioaddr; 305 306 while ((read_SSSR(reg) & SSSR_RNE) 307 && (drv_data->rx < drv_data->rx_end)) { 308 *(u16 *)(drv_data->rx) = read_SSDR(reg); 309 drv_data->rx += 2; 310 } 311 312 return drv_data->rx == drv_data->rx_end; 313 } 314 315 static int u32_writer(struct driver_data *drv_data) 316 { 317 void __iomem *reg = drv_data->ioaddr; 318 319 if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK) 320 || (drv_data->tx == drv_data->tx_end)) 321 return 0; 322 323 write_SSDR(*(u32 *)(drv_data->tx), reg); 324 drv_data->tx += 4; 325 326 return 1; 327 } 328 329 static int u32_reader(struct driver_data *drv_data) 330 { 331 void __iomem *reg = drv_data->ioaddr; 332 333 while ((read_SSSR(reg) & SSSR_RNE) 334 && (drv_data->rx < drv_data->rx_end)) { 335 *(u32 *)(drv_data->rx) = read_SSDR(reg); 336 drv_data->rx += 4; 337 } 338 339 return drv_data->rx == drv_data->rx_end; 340 } 341 342 void *pxa2xx_spi_next_transfer(struct driver_data *drv_data) 343 { 344 struct spi_message *msg = drv_data->cur_msg; 345 struct spi_transfer *trans = drv_data->cur_transfer; 346 347 /* Move to next transfer */ 348 if (trans->transfer_list.next != &msg->transfers) { 349 drv_data->cur_transfer = 350 list_entry(trans->transfer_list.next, 351 struct spi_transfer, 352 transfer_list); 353 return RUNNING_STATE; 354 } else 355 return DONE_STATE; 356 } 357 358 /* caller already set message->status; dma and pio irqs are blocked */ 359 static void giveback(struct driver_data *drv_data) 360 { 361 struct spi_transfer* last_transfer; 362 struct spi_message *msg; 363 364 msg = drv_data->cur_msg; 365 drv_data->cur_msg = NULL; 366 drv_data->cur_transfer = NULL; 367 368 last_transfer = list_last_entry(&msg->transfers, struct spi_transfer, 369 transfer_list); 370 371 /* Delay if requested before any change in chip select */ 372 if (last_transfer->delay_usecs) 373 udelay(last_transfer->delay_usecs); 374 375 /* Drop chip select UNLESS cs_change is true or we are returning 376 * a message with an error, or next message is for another chip 377 */ 378 if (!last_transfer->cs_change) 379 cs_deassert(drv_data); 380 else { 381 struct spi_message *next_msg; 382 383 /* Holding of cs was hinted, but we need to make sure 384 * the next message is for the same chip. Don't waste 385 * time with the following tests unless this was hinted. 386 * 387 * We cannot postpone this until pump_messages, because 388 * after calling msg->complete (below) the driver that 389 * sent the current message could be unloaded, which 390 * could invalidate the cs_control() callback... 391 */ 392 393 /* get a pointer to the next message, if any */ 394 next_msg = spi_get_next_queued_message(drv_data->master); 395 396 /* see if the next and current messages point 397 * to the same chip 398 */ 399 if (next_msg && next_msg->spi != msg->spi) 400 next_msg = NULL; 401 if (!next_msg || msg->state == ERROR_STATE) 402 cs_deassert(drv_data); 403 } 404 405 spi_finalize_current_message(drv_data->master); 406 drv_data->cur_chip = NULL; 407 } 408 409 static void reset_sccr1(struct driver_data *drv_data) 410 { 411 void __iomem *reg = drv_data->ioaddr; 412 struct chip_data *chip = drv_data->cur_chip; 413 u32 sccr1_reg; 414 415 sccr1_reg = read_SSCR1(reg) & ~drv_data->int_cr1; 416 sccr1_reg &= ~SSCR1_RFT; 417 sccr1_reg |= chip->threshold; 418 write_SSCR1(sccr1_reg, reg); 419 } 420 421 static void int_error_stop(struct driver_data *drv_data, const char* msg) 422 { 423 void __iomem *reg = drv_data->ioaddr; 424 425 /* Stop and reset SSP */ 426 write_SSSR_CS(drv_data, drv_data->clear_sr); 427 reset_sccr1(drv_data); 428 if (!pxa25x_ssp_comp(drv_data)) 429 write_SSTO(0, reg); 430 pxa2xx_spi_flush(drv_data); 431 write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg); 432 433 dev_err(&drv_data->pdev->dev, "%s\n", msg); 434 435 drv_data->cur_msg->state = ERROR_STATE; 436 tasklet_schedule(&drv_data->pump_transfers); 437 } 438 439 static void int_transfer_complete(struct driver_data *drv_data) 440 { 441 void __iomem *reg = drv_data->ioaddr; 442 443 /* Stop SSP */ 444 write_SSSR_CS(drv_data, drv_data->clear_sr); 445 reset_sccr1(drv_data); 446 if (!pxa25x_ssp_comp(drv_data)) 447 write_SSTO(0, reg); 448 449 /* Update total byte transferred return count actual bytes read */ 450 drv_data->cur_msg->actual_length += drv_data->len - 451 (drv_data->rx_end - drv_data->rx); 452 453 /* Transfer delays and chip select release are 454 * handled in pump_transfers or giveback 455 */ 456 457 /* Move to next transfer */ 458 drv_data->cur_msg->state = pxa2xx_spi_next_transfer(drv_data); 459 460 /* Schedule transfer tasklet */ 461 tasklet_schedule(&drv_data->pump_transfers); 462 } 463 464 static irqreturn_t interrupt_transfer(struct driver_data *drv_data) 465 { 466 void __iomem *reg = drv_data->ioaddr; 467 468 u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ? 469 drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS; 470 471 u32 irq_status = read_SSSR(reg) & irq_mask; 472 473 if (irq_status & SSSR_ROR) { 474 int_error_stop(drv_data, "interrupt_transfer: fifo overrun"); 475 return IRQ_HANDLED; 476 } 477 478 if (irq_status & SSSR_TINT) { 479 write_SSSR(SSSR_TINT, reg); 480 if (drv_data->read(drv_data)) { 481 int_transfer_complete(drv_data); 482 return IRQ_HANDLED; 483 } 484 } 485 486 /* Drain rx fifo, Fill tx fifo and prevent overruns */ 487 do { 488 if (drv_data->read(drv_data)) { 489 int_transfer_complete(drv_data); 490 return IRQ_HANDLED; 491 } 492 } while (drv_data->write(drv_data)); 493 494 if (drv_data->read(drv_data)) { 495 int_transfer_complete(drv_data); 496 return IRQ_HANDLED; 497 } 498 499 if (drv_data->tx == drv_data->tx_end) { 500 u32 bytes_left; 501 u32 sccr1_reg; 502 503 sccr1_reg = read_SSCR1(reg); 504 sccr1_reg &= ~SSCR1_TIE; 505 506 /* 507 * PXA25x_SSP has no timeout, set up rx threshould for the 508 * remaining RX bytes. 509 */ 510 if (pxa25x_ssp_comp(drv_data)) { 511 512 sccr1_reg &= ~SSCR1_RFT; 513 514 bytes_left = drv_data->rx_end - drv_data->rx; 515 switch (drv_data->n_bytes) { 516 case 4: 517 bytes_left >>= 1; 518 case 2: 519 bytes_left >>= 1; 520 } 521 522 if (bytes_left > RX_THRESH_DFLT) 523 bytes_left = RX_THRESH_DFLT; 524 525 sccr1_reg |= SSCR1_RxTresh(bytes_left); 526 } 527 write_SSCR1(sccr1_reg, reg); 528 } 529 530 /* We did something */ 531 return IRQ_HANDLED; 532 } 533 534 static irqreturn_t ssp_int(int irq, void *dev_id) 535 { 536 struct driver_data *drv_data = dev_id; 537 void __iomem *reg = drv_data->ioaddr; 538 u32 sccr1_reg; 539 u32 mask = drv_data->mask_sr; 540 u32 status; 541 542 /* 543 * The IRQ might be shared with other peripherals so we must first 544 * check that are we RPM suspended or not. If we are we assume that 545 * the IRQ was not for us (we shouldn't be RPM suspended when the 546 * interrupt is enabled). 547 */ 548 if (pm_runtime_suspended(&drv_data->pdev->dev)) 549 return IRQ_NONE; 550 551 /* 552 * If the device is not yet in RPM suspended state and we get an 553 * interrupt that is meant for another device, check if status bits 554 * are all set to one. That means that the device is already 555 * powered off. 556 */ 557 status = read_SSSR(reg); 558 if (status == ~0) 559 return IRQ_NONE; 560 561 sccr1_reg = read_SSCR1(reg); 562 563 /* Ignore possible writes if we don't need to write */ 564 if (!(sccr1_reg & SSCR1_TIE)) 565 mask &= ~SSSR_TFS; 566 567 if (!(status & mask)) 568 return IRQ_NONE; 569 570 if (!drv_data->cur_msg) { 571 572 write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg); 573 write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg); 574 if (!pxa25x_ssp_comp(drv_data)) 575 write_SSTO(0, reg); 576 write_SSSR_CS(drv_data, drv_data->clear_sr); 577 578 dev_err(&drv_data->pdev->dev, 579 "bad message state in interrupt handler\n"); 580 581 /* Never fail */ 582 return IRQ_HANDLED; 583 } 584 585 return drv_data->transfer_handler(drv_data); 586 } 587 588 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate) 589 { 590 unsigned long ssp_clk = drv_data->max_clk_rate; 591 const struct ssp_device *ssp = drv_data->ssp; 592 593 rate = min_t(int, ssp_clk, rate); 594 595 if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP) 596 return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8; 597 else 598 return ((ssp_clk / rate - 1) & 0xfff) << 8; 599 } 600 601 static void pump_transfers(unsigned long data) 602 { 603 struct driver_data *drv_data = (struct driver_data *)data; 604 struct spi_message *message = NULL; 605 struct spi_transfer *transfer = NULL; 606 struct spi_transfer *previous = NULL; 607 struct chip_data *chip = NULL; 608 void __iomem *reg = drv_data->ioaddr; 609 u32 clk_div = 0; 610 u8 bits = 0; 611 u32 speed = 0; 612 u32 cr0; 613 u32 cr1; 614 u32 dma_thresh = drv_data->cur_chip->dma_threshold; 615 u32 dma_burst = drv_data->cur_chip->dma_burst_size; 616 617 /* Get current state information */ 618 message = drv_data->cur_msg; 619 transfer = drv_data->cur_transfer; 620 chip = drv_data->cur_chip; 621 622 /* Handle for abort */ 623 if (message->state == ERROR_STATE) { 624 message->status = -EIO; 625 giveback(drv_data); 626 return; 627 } 628 629 /* Handle end of message */ 630 if (message->state == DONE_STATE) { 631 message->status = 0; 632 giveback(drv_data); 633 return; 634 } 635 636 /* Delay if requested at end of transfer before CS change */ 637 if (message->state == RUNNING_STATE) { 638 previous = list_entry(transfer->transfer_list.prev, 639 struct spi_transfer, 640 transfer_list); 641 if (previous->delay_usecs) 642 udelay(previous->delay_usecs); 643 644 /* Drop chip select only if cs_change is requested */ 645 if (previous->cs_change) 646 cs_deassert(drv_data); 647 } 648 649 /* Check if we can DMA this transfer */ 650 if (!pxa2xx_spi_dma_is_possible(transfer->len) && chip->enable_dma) { 651 652 /* reject already-mapped transfers; PIO won't always work */ 653 if (message->is_dma_mapped 654 || transfer->rx_dma || transfer->tx_dma) { 655 dev_err(&drv_data->pdev->dev, 656 "pump_transfers: mapped transfer length of " 657 "%u is greater than %d\n", 658 transfer->len, MAX_DMA_LEN); 659 message->status = -EINVAL; 660 giveback(drv_data); 661 return; 662 } 663 664 /* warn ... we force this to PIO mode */ 665 dev_warn_ratelimited(&message->spi->dev, 666 "pump_transfers: DMA disabled for transfer length %ld " 667 "greater than %d\n", 668 (long)drv_data->len, MAX_DMA_LEN); 669 } 670 671 /* Setup the transfer state based on the type of transfer */ 672 if (pxa2xx_spi_flush(drv_data) == 0) { 673 dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n"); 674 message->status = -EIO; 675 giveback(drv_data); 676 return; 677 } 678 drv_data->n_bytes = chip->n_bytes; 679 drv_data->tx = (void *)transfer->tx_buf; 680 drv_data->tx_end = drv_data->tx + transfer->len; 681 drv_data->rx = transfer->rx_buf; 682 drv_data->rx_end = drv_data->rx + transfer->len; 683 drv_data->rx_dma = transfer->rx_dma; 684 drv_data->tx_dma = transfer->tx_dma; 685 drv_data->len = transfer->len; 686 drv_data->write = drv_data->tx ? chip->write : null_writer; 687 drv_data->read = drv_data->rx ? chip->read : null_reader; 688 689 /* Change speed and bit per word on a per transfer */ 690 cr0 = chip->cr0; 691 if (transfer->speed_hz || transfer->bits_per_word) { 692 693 bits = chip->bits_per_word; 694 speed = chip->speed_hz; 695 696 if (transfer->speed_hz) 697 speed = transfer->speed_hz; 698 699 if (transfer->bits_per_word) 700 bits = transfer->bits_per_word; 701 702 clk_div = ssp_get_clk_div(drv_data, speed); 703 704 if (bits <= 8) { 705 drv_data->n_bytes = 1; 706 drv_data->read = drv_data->read != null_reader ? 707 u8_reader : null_reader; 708 drv_data->write = drv_data->write != null_writer ? 709 u8_writer : null_writer; 710 } else if (bits <= 16) { 711 drv_data->n_bytes = 2; 712 drv_data->read = drv_data->read != null_reader ? 713 u16_reader : null_reader; 714 drv_data->write = drv_data->write != null_writer ? 715 u16_writer : null_writer; 716 } else if (bits <= 32) { 717 drv_data->n_bytes = 4; 718 drv_data->read = drv_data->read != null_reader ? 719 u32_reader : null_reader; 720 drv_data->write = drv_data->write != null_writer ? 721 u32_writer : null_writer; 722 } 723 /* if bits/word is changed in dma mode, then must check the 724 * thresholds and burst also */ 725 if (chip->enable_dma) { 726 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, 727 message->spi, 728 bits, &dma_burst, 729 &dma_thresh)) 730 dev_warn_ratelimited(&message->spi->dev, 731 "pump_transfers: DMA burst size reduced to match bits_per_word\n"); 732 } 733 734 cr0 = clk_div 735 | SSCR0_Motorola 736 | SSCR0_DataSize(bits > 16 ? bits - 16 : bits) 737 | SSCR0_SSE 738 | (bits > 16 ? SSCR0_EDSS : 0); 739 } 740 741 message->state = RUNNING_STATE; 742 743 drv_data->dma_mapped = 0; 744 if (pxa2xx_spi_dma_is_possible(drv_data->len)) 745 drv_data->dma_mapped = pxa2xx_spi_map_dma_buffers(drv_data); 746 if (drv_data->dma_mapped) { 747 748 /* Ensure we have the correct interrupt handler */ 749 drv_data->transfer_handler = pxa2xx_spi_dma_transfer; 750 751 pxa2xx_spi_dma_prepare(drv_data, dma_burst); 752 753 /* Clear status and start DMA engine */ 754 cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1; 755 write_SSSR(drv_data->clear_sr, reg); 756 757 pxa2xx_spi_dma_start(drv_data); 758 } else { 759 /* Ensure we have the correct interrupt handler */ 760 drv_data->transfer_handler = interrupt_transfer; 761 762 /* Clear status */ 763 cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1; 764 write_SSSR_CS(drv_data, drv_data->clear_sr); 765 } 766 767 if (is_lpss_ssp(drv_data)) { 768 if ((read_SSIRF(reg) & 0xff) != chip->lpss_rx_threshold) 769 write_SSIRF(chip->lpss_rx_threshold, reg); 770 if ((read_SSITF(reg) & 0xffff) != chip->lpss_tx_threshold) 771 write_SSITF(chip->lpss_tx_threshold, reg); 772 } 773 774 /* see if we need to reload the config registers */ 775 if ((read_SSCR0(reg) != cr0) 776 || (read_SSCR1(reg) & SSCR1_CHANGE_MASK) != 777 (cr1 & SSCR1_CHANGE_MASK)) { 778 779 /* stop the SSP, and update the other bits */ 780 write_SSCR0(cr0 & ~SSCR0_SSE, reg); 781 if (!pxa25x_ssp_comp(drv_data)) 782 write_SSTO(chip->timeout, reg); 783 /* first set CR1 without interrupt and service enables */ 784 write_SSCR1(cr1 & SSCR1_CHANGE_MASK, reg); 785 /* restart the SSP */ 786 write_SSCR0(cr0, reg); 787 788 } else { 789 if (!pxa25x_ssp_comp(drv_data)) 790 write_SSTO(chip->timeout, reg); 791 } 792 793 cs_assert(drv_data); 794 795 /* after chip select, release the data by enabling service 796 * requests and interrupts, without changing any mode bits */ 797 write_SSCR1(cr1, reg); 798 } 799 800 static int pxa2xx_spi_transfer_one_message(struct spi_master *master, 801 struct spi_message *msg) 802 { 803 struct driver_data *drv_data = spi_master_get_devdata(master); 804 805 drv_data->cur_msg = msg; 806 /* Initial message state*/ 807 drv_data->cur_msg->state = START_STATE; 808 drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next, 809 struct spi_transfer, 810 transfer_list); 811 812 /* prepare to setup the SSP, in pump_transfers, using the per 813 * chip configuration */ 814 drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi); 815 816 /* Mark as busy and launch transfers */ 817 tasklet_schedule(&drv_data->pump_transfers); 818 return 0; 819 } 820 821 static int pxa2xx_spi_unprepare_transfer(struct spi_master *master) 822 { 823 struct driver_data *drv_data = spi_master_get_devdata(master); 824 825 /* Disable the SSP now */ 826 write_SSCR0(read_SSCR0(drv_data->ioaddr) & ~SSCR0_SSE, 827 drv_data->ioaddr); 828 829 return 0; 830 } 831 832 static int setup_cs(struct spi_device *spi, struct chip_data *chip, 833 struct pxa2xx_spi_chip *chip_info) 834 { 835 int err = 0; 836 837 if (chip == NULL || chip_info == NULL) 838 return 0; 839 840 /* NOTE: setup() can be called multiple times, possibly with 841 * different chip_info, release previously requested GPIO 842 */ 843 if (gpio_is_valid(chip->gpio_cs)) 844 gpio_free(chip->gpio_cs); 845 846 /* If (*cs_control) is provided, ignore GPIO chip select */ 847 if (chip_info->cs_control) { 848 chip->cs_control = chip_info->cs_control; 849 return 0; 850 } 851 852 if (gpio_is_valid(chip_info->gpio_cs)) { 853 err = gpio_request(chip_info->gpio_cs, "SPI_CS"); 854 if (err) { 855 dev_err(&spi->dev, "failed to request chip select GPIO%d\n", 856 chip_info->gpio_cs); 857 return err; 858 } 859 860 chip->gpio_cs = chip_info->gpio_cs; 861 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH; 862 863 err = gpio_direction_output(chip->gpio_cs, 864 !chip->gpio_cs_inverted); 865 } 866 867 return err; 868 } 869 870 static int setup(struct spi_device *spi) 871 { 872 struct pxa2xx_spi_chip *chip_info = NULL; 873 struct chip_data *chip; 874 struct driver_data *drv_data = spi_master_get_devdata(spi->master); 875 unsigned int clk_div; 876 uint tx_thres, tx_hi_thres, rx_thres; 877 878 if (is_lpss_ssp(drv_data)) { 879 tx_thres = LPSS_TX_LOTHRESH_DFLT; 880 tx_hi_thres = LPSS_TX_HITHRESH_DFLT; 881 rx_thres = LPSS_RX_THRESH_DFLT; 882 } else { 883 tx_thres = TX_THRESH_DFLT; 884 tx_hi_thres = 0; 885 rx_thres = RX_THRESH_DFLT; 886 } 887 888 /* Only alloc on first setup */ 889 chip = spi_get_ctldata(spi); 890 if (!chip) { 891 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); 892 if (!chip) 893 return -ENOMEM; 894 895 if (drv_data->ssp_type == CE4100_SSP) { 896 if (spi->chip_select > 4) { 897 dev_err(&spi->dev, 898 "failed setup: cs number must not be > 4.\n"); 899 kfree(chip); 900 return -EINVAL; 901 } 902 903 chip->frm = spi->chip_select; 904 } else 905 chip->gpio_cs = -1; 906 chip->enable_dma = 0; 907 chip->timeout = TIMOUT_DFLT; 908 } 909 910 /* protocol drivers may change the chip settings, so... 911 * if chip_info exists, use it */ 912 chip_info = spi->controller_data; 913 914 /* chip_info isn't always needed */ 915 chip->cr1 = 0; 916 if (chip_info) { 917 if (chip_info->timeout) 918 chip->timeout = chip_info->timeout; 919 if (chip_info->tx_threshold) 920 tx_thres = chip_info->tx_threshold; 921 if (chip_info->tx_hi_threshold) 922 tx_hi_thres = chip_info->tx_hi_threshold; 923 if (chip_info->rx_threshold) 924 rx_thres = chip_info->rx_threshold; 925 chip->enable_dma = drv_data->master_info->enable_dma; 926 chip->dma_threshold = 0; 927 if (chip_info->enable_loopback) 928 chip->cr1 = SSCR1_LBM; 929 } else if (ACPI_HANDLE(&spi->dev)) { 930 /* 931 * Slave devices enumerated from ACPI namespace don't 932 * usually have chip_info but we still might want to use 933 * DMA with them. 934 */ 935 chip->enable_dma = drv_data->master_info->enable_dma; 936 } 937 938 chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) | 939 (SSCR1_TxTresh(tx_thres) & SSCR1_TFT); 940 941 chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres); 942 chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) 943 | SSITF_TxHiThresh(tx_hi_thres); 944 945 /* set dma burst and threshold outside of chip_info path so that if 946 * chip_info goes away after setting chip->enable_dma, the 947 * burst and threshold can still respond to changes in bits_per_word */ 948 if (chip->enable_dma) { 949 /* set up legal burst and threshold for dma */ 950 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi, 951 spi->bits_per_word, 952 &chip->dma_burst_size, 953 &chip->dma_threshold)) { 954 dev_warn(&spi->dev, 955 "in setup: DMA burst size reduced to match bits_per_word\n"); 956 } 957 } 958 959 clk_div = ssp_get_clk_div(drv_data, spi->max_speed_hz); 960 chip->speed_hz = spi->max_speed_hz; 961 962 chip->cr0 = clk_div 963 | SSCR0_Motorola 964 | SSCR0_DataSize(spi->bits_per_word > 16 ? 965 spi->bits_per_word - 16 : spi->bits_per_word) 966 | SSCR0_SSE 967 | (spi->bits_per_word > 16 ? SSCR0_EDSS : 0); 968 chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH); 969 chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0) 970 | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0); 971 972 if (spi->mode & SPI_LOOP) 973 chip->cr1 |= SSCR1_LBM; 974 975 /* NOTE: PXA25x_SSP _could_ use external clocking ... */ 976 if (!pxa25x_ssp_comp(drv_data)) 977 dev_dbg(&spi->dev, "%ld Hz actual, %s\n", 978 drv_data->max_clk_rate 979 / (1 + ((chip->cr0 & SSCR0_SCR(0xfff)) >> 8)), 980 chip->enable_dma ? "DMA" : "PIO"); 981 else 982 dev_dbg(&spi->dev, "%ld Hz actual, %s\n", 983 drv_data->max_clk_rate / 2 984 / (1 + ((chip->cr0 & SSCR0_SCR(0x0ff)) >> 8)), 985 chip->enable_dma ? "DMA" : "PIO"); 986 987 if (spi->bits_per_word <= 8) { 988 chip->n_bytes = 1; 989 chip->read = u8_reader; 990 chip->write = u8_writer; 991 } else if (spi->bits_per_word <= 16) { 992 chip->n_bytes = 2; 993 chip->read = u16_reader; 994 chip->write = u16_writer; 995 } else if (spi->bits_per_word <= 32) { 996 chip->cr0 |= SSCR0_EDSS; 997 chip->n_bytes = 4; 998 chip->read = u32_reader; 999 chip->write = u32_writer; 1000 } 1001 chip->bits_per_word = spi->bits_per_word; 1002 1003 spi_set_ctldata(spi, chip); 1004 1005 if (drv_data->ssp_type == CE4100_SSP) 1006 return 0; 1007 1008 return setup_cs(spi, chip, chip_info); 1009 } 1010 1011 static void cleanup(struct spi_device *spi) 1012 { 1013 struct chip_data *chip = spi_get_ctldata(spi); 1014 struct driver_data *drv_data = spi_master_get_devdata(spi->master); 1015 1016 if (!chip) 1017 return; 1018 1019 if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs)) 1020 gpio_free(chip->gpio_cs); 1021 1022 kfree(chip); 1023 } 1024 1025 #ifdef CONFIG_ACPI 1026 static struct pxa2xx_spi_master * 1027 pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev) 1028 { 1029 struct pxa2xx_spi_master *pdata; 1030 struct acpi_device *adev; 1031 struct ssp_device *ssp; 1032 struct resource *res; 1033 int devid; 1034 1035 if (!ACPI_HANDLE(&pdev->dev) || 1036 acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev)) 1037 return NULL; 1038 1039 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); 1040 if (!pdata) 1041 return NULL; 1042 1043 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1044 if (!res) 1045 return NULL; 1046 1047 ssp = &pdata->ssp; 1048 1049 ssp->phys_base = res->start; 1050 ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res); 1051 if (IS_ERR(ssp->mmio_base)) 1052 return NULL; 1053 1054 ssp->clk = devm_clk_get(&pdev->dev, NULL); 1055 ssp->irq = platform_get_irq(pdev, 0); 1056 ssp->type = LPSS_SSP; 1057 ssp->pdev = pdev; 1058 1059 ssp->port_id = -1; 1060 if (adev->pnp.unique_id && !kstrtoint(adev->pnp.unique_id, 0, &devid)) 1061 ssp->port_id = devid; 1062 1063 pdata->num_chipselect = 1; 1064 pdata->enable_dma = true; 1065 1066 return pdata; 1067 } 1068 1069 static struct acpi_device_id pxa2xx_spi_acpi_match[] = { 1070 { "INT33C0", 0 }, 1071 { "INT33C1", 0 }, 1072 { "INT3430", 0 }, 1073 { "INT3431", 0 }, 1074 { "80860F0E", 0 }, 1075 { "8086228E", 0 }, 1076 { }, 1077 }; 1078 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match); 1079 #else 1080 static inline struct pxa2xx_spi_master * 1081 pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev) 1082 { 1083 return NULL; 1084 } 1085 #endif 1086 1087 static int pxa2xx_spi_probe(struct platform_device *pdev) 1088 { 1089 struct device *dev = &pdev->dev; 1090 struct pxa2xx_spi_master *platform_info; 1091 struct spi_master *master; 1092 struct driver_data *drv_data; 1093 struct ssp_device *ssp; 1094 int status; 1095 1096 platform_info = dev_get_platdata(dev); 1097 if (!platform_info) { 1098 platform_info = pxa2xx_spi_acpi_get_pdata(pdev); 1099 if (!platform_info) { 1100 dev_err(&pdev->dev, "missing platform data\n"); 1101 return -ENODEV; 1102 } 1103 } 1104 1105 ssp = pxa_ssp_request(pdev->id, pdev->name); 1106 if (!ssp) 1107 ssp = &platform_info->ssp; 1108 1109 if (!ssp->mmio_base) { 1110 dev_err(&pdev->dev, "failed to get ssp\n"); 1111 return -ENODEV; 1112 } 1113 1114 /* Allocate master with space for drv_data and null dma buffer */ 1115 master = spi_alloc_master(dev, sizeof(struct driver_data) + 16); 1116 if (!master) { 1117 dev_err(&pdev->dev, "cannot alloc spi_master\n"); 1118 pxa_ssp_free(ssp); 1119 return -ENOMEM; 1120 } 1121 drv_data = spi_master_get_devdata(master); 1122 drv_data->master = master; 1123 drv_data->master_info = platform_info; 1124 drv_data->pdev = pdev; 1125 drv_data->ssp = ssp; 1126 1127 master->dev.parent = &pdev->dev; 1128 master->dev.of_node = pdev->dev.of_node; 1129 /* the spi->mode bits understood by this driver: */ 1130 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP; 1131 1132 master->bus_num = ssp->port_id; 1133 master->num_chipselect = platform_info->num_chipselect; 1134 master->dma_alignment = DMA_ALIGNMENT; 1135 master->cleanup = cleanup; 1136 master->setup = setup; 1137 master->transfer_one_message = pxa2xx_spi_transfer_one_message; 1138 master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer; 1139 master->auto_runtime_pm = true; 1140 1141 drv_data->ssp_type = ssp->type; 1142 drv_data->null_dma_buf = (u32 *)PTR_ALIGN(&drv_data[1], DMA_ALIGNMENT); 1143 1144 drv_data->ioaddr = ssp->mmio_base; 1145 drv_data->ssdr_physical = ssp->phys_base + SSDR; 1146 if (pxa25x_ssp_comp(drv_data)) { 1147 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); 1148 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE; 1149 drv_data->dma_cr1 = 0; 1150 drv_data->clear_sr = SSSR_ROR; 1151 drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR; 1152 } else { 1153 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 1154 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE; 1155 drv_data->dma_cr1 = DEFAULT_DMA_CR1; 1156 drv_data->clear_sr = SSSR_ROR | SSSR_TINT; 1157 drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR; 1158 } 1159 1160 status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev), 1161 drv_data); 1162 if (status < 0) { 1163 dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq); 1164 goto out_error_master_alloc; 1165 } 1166 1167 /* Setup DMA if requested */ 1168 drv_data->tx_channel = -1; 1169 drv_data->rx_channel = -1; 1170 if (platform_info->enable_dma) { 1171 status = pxa2xx_spi_dma_setup(drv_data); 1172 if (status) { 1173 dev_dbg(dev, "no DMA channels available, using PIO\n"); 1174 platform_info->enable_dma = false; 1175 } 1176 } 1177 1178 /* Enable SOC clock */ 1179 clk_prepare_enable(ssp->clk); 1180 1181 drv_data->max_clk_rate = clk_get_rate(ssp->clk); 1182 1183 /* Load default SSP configuration */ 1184 write_SSCR0(0, drv_data->ioaddr); 1185 write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT) | 1186 SSCR1_TxTresh(TX_THRESH_DFLT), 1187 drv_data->ioaddr); 1188 write_SSCR0(SSCR0_SCR(2) 1189 | SSCR0_Motorola 1190 | SSCR0_DataSize(8), 1191 drv_data->ioaddr); 1192 if (!pxa25x_ssp_comp(drv_data)) 1193 write_SSTO(0, drv_data->ioaddr); 1194 write_SSPSP(0, drv_data->ioaddr); 1195 1196 lpss_ssp_setup(drv_data); 1197 1198 tasklet_init(&drv_data->pump_transfers, pump_transfers, 1199 (unsigned long)drv_data); 1200 1201 pm_runtime_set_autosuspend_delay(&pdev->dev, 50); 1202 pm_runtime_use_autosuspend(&pdev->dev); 1203 pm_runtime_set_active(&pdev->dev); 1204 pm_runtime_enable(&pdev->dev); 1205 1206 /* Register with the SPI framework */ 1207 platform_set_drvdata(pdev, drv_data); 1208 status = devm_spi_register_master(&pdev->dev, master); 1209 if (status != 0) { 1210 dev_err(&pdev->dev, "problem registering spi master\n"); 1211 goto out_error_clock_enabled; 1212 } 1213 1214 return status; 1215 1216 out_error_clock_enabled: 1217 clk_disable_unprepare(ssp->clk); 1218 pxa2xx_spi_dma_release(drv_data); 1219 free_irq(ssp->irq, drv_data); 1220 1221 out_error_master_alloc: 1222 spi_master_put(master); 1223 pxa_ssp_free(ssp); 1224 return status; 1225 } 1226 1227 static int pxa2xx_spi_remove(struct platform_device *pdev) 1228 { 1229 struct driver_data *drv_data = platform_get_drvdata(pdev); 1230 struct ssp_device *ssp; 1231 1232 if (!drv_data) 1233 return 0; 1234 ssp = drv_data->ssp; 1235 1236 pm_runtime_get_sync(&pdev->dev); 1237 1238 /* Disable the SSP at the peripheral and SOC level */ 1239 write_SSCR0(0, drv_data->ioaddr); 1240 clk_disable_unprepare(ssp->clk); 1241 1242 /* Release DMA */ 1243 if (drv_data->master_info->enable_dma) 1244 pxa2xx_spi_dma_release(drv_data); 1245 1246 pm_runtime_put_noidle(&pdev->dev); 1247 pm_runtime_disable(&pdev->dev); 1248 1249 /* Release IRQ */ 1250 free_irq(ssp->irq, drv_data); 1251 1252 /* Release SSP */ 1253 pxa_ssp_free(ssp); 1254 1255 return 0; 1256 } 1257 1258 static void pxa2xx_spi_shutdown(struct platform_device *pdev) 1259 { 1260 int status = 0; 1261 1262 if ((status = pxa2xx_spi_remove(pdev)) != 0) 1263 dev_err(&pdev->dev, "shutdown failed with %d\n", status); 1264 } 1265 1266 #ifdef CONFIG_PM_SLEEP 1267 static int pxa2xx_spi_suspend(struct device *dev) 1268 { 1269 struct driver_data *drv_data = dev_get_drvdata(dev); 1270 struct ssp_device *ssp = drv_data->ssp; 1271 int status = 0; 1272 1273 status = spi_master_suspend(drv_data->master); 1274 if (status != 0) 1275 return status; 1276 write_SSCR0(0, drv_data->ioaddr); 1277 clk_disable_unprepare(ssp->clk); 1278 1279 return 0; 1280 } 1281 1282 static int pxa2xx_spi_resume(struct device *dev) 1283 { 1284 struct driver_data *drv_data = dev_get_drvdata(dev); 1285 struct ssp_device *ssp = drv_data->ssp; 1286 int status = 0; 1287 1288 pxa2xx_spi_dma_resume(drv_data); 1289 1290 /* Enable the SSP clock */ 1291 clk_prepare_enable(ssp->clk); 1292 1293 /* Restore LPSS private register bits */ 1294 lpss_ssp_setup(drv_data); 1295 1296 /* Start the queue running */ 1297 status = spi_master_resume(drv_data->master); 1298 if (status != 0) { 1299 dev_err(dev, "problem starting queue (%d)\n", status); 1300 return status; 1301 } 1302 1303 return 0; 1304 } 1305 #endif 1306 1307 #ifdef CONFIG_PM_RUNTIME 1308 static int pxa2xx_spi_runtime_suspend(struct device *dev) 1309 { 1310 struct driver_data *drv_data = dev_get_drvdata(dev); 1311 1312 clk_disable_unprepare(drv_data->ssp->clk); 1313 return 0; 1314 } 1315 1316 static int pxa2xx_spi_runtime_resume(struct device *dev) 1317 { 1318 struct driver_data *drv_data = dev_get_drvdata(dev); 1319 1320 clk_prepare_enable(drv_data->ssp->clk); 1321 return 0; 1322 } 1323 #endif 1324 1325 static const struct dev_pm_ops pxa2xx_spi_pm_ops = { 1326 SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume) 1327 SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend, 1328 pxa2xx_spi_runtime_resume, NULL) 1329 }; 1330 1331 static struct platform_driver driver = { 1332 .driver = { 1333 .name = "pxa2xx-spi", 1334 .owner = THIS_MODULE, 1335 .pm = &pxa2xx_spi_pm_ops, 1336 .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match), 1337 }, 1338 .probe = pxa2xx_spi_probe, 1339 .remove = pxa2xx_spi_remove, 1340 .shutdown = pxa2xx_spi_shutdown, 1341 }; 1342 1343 static int __init pxa2xx_spi_init(void) 1344 { 1345 return platform_driver_register(&driver); 1346 } 1347 subsys_initcall(pxa2xx_spi_init); 1348 1349 static void __exit pxa2xx_spi_exit(void) 1350 { 1351 platform_driver_unregister(&driver); 1352 } 1353 module_exit(pxa2xx_spi_exit); 1354