1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs 4 * Copyright (C) 2013, 2021 Intel Corporation 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/bitops.h> 9 #include <linux/clk.h> 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/dmaengine.h> 13 #include <linux/err.h> 14 #include <linux/errno.h> 15 #include <linux/gpio/consumer.h> 16 #include <linux/gpio.h> 17 #include <linux/init.h> 18 #include <linux/interrupt.h> 19 #include <linux/ioport.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/of.h> 24 #include <linux/pci.h> 25 #include <linux/platform_device.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/property.h> 28 #include <linux/slab.h> 29 30 #include <linux/spi/pxa2xx_spi.h> 31 #include <linux/spi/spi.h> 32 33 #include "spi-pxa2xx.h" 34 35 MODULE_AUTHOR("Stephen Street"); 36 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller"); 37 MODULE_LICENSE("GPL"); 38 MODULE_ALIAS("platform:pxa2xx-spi"); 39 40 #define TIMOUT_DFLT 1000 41 42 /* 43 * For testing SSCR1 changes that require SSP restart, basically 44 * everything except the service and interrupt enables, the PXA270 developer 45 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this 46 * list, but the PXA255 developer manual says all bits without really meaning 47 * the service and interrupt enables. 48 */ 49 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \ 50 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \ 51 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \ 52 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \ 53 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \ 54 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) 55 56 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \ 57 | QUARK_X1000_SSCR1_EFWR \ 58 | QUARK_X1000_SSCR1_RFT \ 59 | QUARK_X1000_SSCR1_TFT \ 60 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) 61 62 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \ 63 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \ 64 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \ 65 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \ 66 | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \ 67 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) 68 69 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24) 70 #define LPSS_CS_CONTROL_SW_MODE BIT(0) 71 #define LPSS_CS_CONTROL_CS_HIGH BIT(1) 72 #define LPSS_CAPS_CS_EN_SHIFT 9 73 #define LPSS_CAPS_CS_EN_MASK (0xf << LPSS_CAPS_CS_EN_SHIFT) 74 75 #define LPSS_PRIV_CLOCK_GATE 0x38 76 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3 77 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3 78 79 struct lpss_config { 80 /* LPSS offset from drv_data->ioaddr */ 81 unsigned offset; 82 /* Register offsets from drv_data->lpss_base or -1 */ 83 int reg_general; 84 int reg_ssp; 85 int reg_cs_ctrl; 86 int reg_capabilities; 87 /* FIFO thresholds */ 88 u32 rx_threshold; 89 u32 tx_threshold_lo; 90 u32 tx_threshold_hi; 91 /* Chip select control */ 92 unsigned cs_sel_shift; 93 unsigned cs_sel_mask; 94 unsigned cs_num; 95 /* Quirks */ 96 unsigned cs_clk_stays_gated : 1; 97 }; 98 99 /* Keep these sorted with enum pxa_ssp_type */ 100 static const struct lpss_config lpss_platforms[] = { 101 { /* LPSS_LPT_SSP */ 102 .offset = 0x800, 103 .reg_general = 0x08, 104 .reg_ssp = 0x0c, 105 .reg_cs_ctrl = 0x18, 106 .reg_capabilities = -1, 107 .rx_threshold = 64, 108 .tx_threshold_lo = 160, 109 .tx_threshold_hi = 224, 110 }, 111 { /* LPSS_BYT_SSP */ 112 .offset = 0x400, 113 .reg_general = 0x08, 114 .reg_ssp = 0x0c, 115 .reg_cs_ctrl = 0x18, 116 .reg_capabilities = -1, 117 .rx_threshold = 64, 118 .tx_threshold_lo = 160, 119 .tx_threshold_hi = 224, 120 }, 121 { /* LPSS_BSW_SSP */ 122 .offset = 0x400, 123 .reg_general = 0x08, 124 .reg_ssp = 0x0c, 125 .reg_cs_ctrl = 0x18, 126 .reg_capabilities = -1, 127 .rx_threshold = 64, 128 .tx_threshold_lo = 160, 129 .tx_threshold_hi = 224, 130 .cs_sel_shift = 2, 131 .cs_sel_mask = 1 << 2, 132 .cs_num = 2, 133 }, 134 { /* LPSS_SPT_SSP */ 135 .offset = 0x200, 136 .reg_general = -1, 137 .reg_ssp = 0x20, 138 .reg_cs_ctrl = 0x24, 139 .reg_capabilities = -1, 140 .rx_threshold = 1, 141 .tx_threshold_lo = 32, 142 .tx_threshold_hi = 56, 143 }, 144 { /* LPSS_BXT_SSP */ 145 .offset = 0x200, 146 .reg_general = -1, 147 .reg_ssp = 0x20, 148 .reg_cs_ctrl = 0x24, 149 .reg_capabilities = 0xfc, 150 .rx_threshold = 1, 151 .tx_threshold_lo = 16, 152 .tx_threshold_hi = 48, 153 .cs_sel_shift = 8, 154 .cs_sel_mask = 3 << 8, 155 .cs_clk_stays_gated = true, 156 }, 157 { /* LPSS_CNL_SSP */ 158 .offset = 0x200, 159 .reg_general = -1, 160 .reg_ssp = 0x20, 161 .reg_cs_ctrl = 0x24, 162 .reg_capabilities = 0xfc, 163 .rx_threshold = 1, 164 .tx_threshold_lo = 32, 165 .tx_threshold_hi = 56, 166 .cs_sel_shift = 8, 167 .cs_sel_mask = 3 << 8, 168 .cs_clk_stays_gated = true, 169 }, 170 }; 171 172 static inline const struct lpss_config 173 *lpss_get_config(const struct driver_data *drv_data) 174 { 175 return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP]; 176 } 177 178 static bool is_lpss_ssp(const struct driver_data *drv_data) 179 { 180 switch (drv_data->ssp_type) { 181 case LPSS_LPT_SSP: 182 case LPSS_BYT_SSP: 183 case LPSS_BSW_SSP: 184 case LPSS_SPT_SSP: 185 case LPSS_BXT_SSP: 186 case LPSS_CNL_SSP: 187 return true; 188 default: 189 return false; 190 } 191 } 192 193 static bool is_quark_x1000_ssp(const struct driver_data *drv_data) 194 { 195 return drv_data->ssp_type == QUARK_X1000_SSP; 196 } 197 198 static bool is_mmp2_ssp(const struct driver_data *drv_data) 199 { 200 return drv_data->ssp_type == MMP2_SSP; 201 } 202 203 static bool is_mrfld_ssp(const struct driver_data *drv_data) 204 { 205 return drv_data->ssp_type == MRFLD_SSP; 206 } 207 208 static void pxa2xx_spi_update(const struct driver_data *drv_data, u32 reg, u32 mask, u32 value) 209 { 210 if ((pxa2xx_spi_read(drv_data, reg) & mask) != value) 211 pxa2xx_spi_write(drv_data, reg, value & mask); 212 } 213 214 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data) 215 { 216 switch (drv_data->ssp_type) { 217 case QUARK_X1000_SSP: 218 return QUARK_X1000_SSCR1_CHANGE_MASK; 219 case CE4100_SSP: 220 return CE4100_SSCR1_CHANGE_MASK; 221 default: 222 return SSCR1_CHANGE_MASK; 223 } 224 } 225 226 static u32 227 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data) 228 { 229 switch (drv_data->ssp_type) { 230 case QUARK_X1000_SSP: 231 return RX_THRESH_QUARK_X1000_DFLT; 232 case CE4100_SSP: 233 return RX_THRESH_CE4100_DFLT; 234 default: 235 return RX_THRESH_DFLT; 236 } 237 } 238 239 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data) 240 { 241 u32 mask; 242 243 switch (drv_data->ssp_type) { 244 case QUARK_X1000_SSP: 245 mask = QUARK_X1000_SSSR_TFL_MASK; 246 break; 247 case CE4100_SSP: 248 mask = CE4100_SSSR_TFL_MASK; 249 break; 250 default: 251 mask = SSSR_TFL_MASK; 252 break; 253 } 254 255 return read_SSSR_bits(drv_data, mask) == mask; 256 } 257 258 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data, 259 u32 *sccr1_reg) 260 { 261 u32 mask; 262 263 switch (drv_data->ssp_type) { 264 case QUARK_X1000_SSP: 265 mask = QUARK_X1000_SSCR1_RFT; 266 break; 267 case CE4100_SSP: 268 mask = CE4100_SSCR1_RFT; 269 break; 270 default: 271 mask = SSCR1_RFT; 272 break; 273 } 274 *sccr1_reg &= ~mask; 275 } 276 277 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data, 278 u32 *sccr1_reg, u32 threshold) 279 { 280 switch (drv_data->ssp_type) { 281 case QUARK_X1000_SSP: 282 *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold); 283 break; 284 case CE4100_SSP: 285 *sccr1_reg |= CE4100_SSCR1_RxTresh(threshold); 286 break; 287 default: 288 *sccr1_reg |= SSCR1_RxTresh(threshold); 289 break; 290 } 291 } 292 293 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data, 294 u32 clk_div, u8 bits) 295 { 296 switch (drv_data->ssp_type) { 297 case QUARK_X1000_SSP: 298 return clk_div 299 | QUARK_X1000_SSCR0_Motorola 300 | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits); 301 default: 302 return clk_div 303 | SSCR0_Motorola 304 | SSCR0_DataSize(bits > 16 ? bits - 16 : bits) 305 | (bits > 16 ? SSCR0_EDSS : 0); 306 } 307 } 308 309 /* 310 * Read and write LPSS SSP private registers. Caller must first check that 311 * is_lpss_ssp() returns true before these can be called. 312 */ 313 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset) 314 { 315 WARN_ON(!drv_data->lpss_base); 316 return readl(drv_data->lpss_base + offset); 317 } 318 319 static void __lpss_ssp_write_priv(struct driver_data *drv_data, 320 unsigned offset, u32 value) 321 { 322 WARN_ON(!drv_data->lpss_base); 323 writel(value, drv_data->lpss_base + offset); 324 } 325 326 /* 327 * lpss_ssp_setup - perform LPSS SSP specific setup 328 * @drv_data: pointer to the driver private data 329 * 330 * Perform LPSS SSP specific setup. This function must be called first if 331 * one is going to use LPSS SSP private registers. 332 */ 333 static void lpss_ssp_setup(struct driver_data *drv_data) 334 { 335 const struct lpss_config *config; 336 u32 value; 337 338 config = lpss_get_config(drv_data); 339 drv_data->lpss_base = drv_data->ssp->mmio_base + config->offset; 340 341 /* Enable software chip select control */ 342 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); 343 value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH); 344 value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH; 345 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value); 346 347 /* Enable multiblock DMA transfers */ 348 if (drv_data->controller_info->enable_dma) { 349 __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1); 350 351 if (config->reg_general >= 0) { 352 value = __lpss_ssp_read_priv(drv_data, 353 config->reg_general); 354 value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE; 355 __lpss_ssp_write_priv(drv_data, 356 config->reg_general, value); 357 } 358 } 359 } 360 361 static void lpss_ssp_select_cs(struct spi_device *spi, 362 const struct lpss_config *config) 363 { 364 struct driver_data *drv_data = 365 spi_controller_get_devdata(spi->controller); 366 u32 value, cs; 367 368 if (!config->cs_sel_mask) 369 return; 370 371 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); 372 373 cs = spi->chip_select; 374 cs <<= config->cs_sel_shift; 375 if (cs != (value & config->cs_sel_mask)) { 376 /* 377 * When switching another chip select output active the 378 * output must be selected first and wait 2 ssp_clk cycles 379 * before changing state to active. Otherwise a short 380 * glitch will occur on the previous chip select since 381 * output select is latched but state control is not. 382 */ 383 value &= ~config->cs_sel_mask; 384 value |= cs; 385 __lpss_ssp_write_priv(drv_data, 386 config->reg_cs_ctrl, value); 387 ndelay(1000000000 / 388 (drv_data->controller->max_speed_hz / 2)); 389 } 390 } 391 392 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable) 393 { 394 struct driver_data *drv_data = 395 spi_controller_get_devdata(spi->controller); 396 const struct lpss_config *config; 397 u32 value; 398 399 config = lpss_get_config(drv_data); 400 401 if (enable) 402 lpss_ssp_select_cs(spi, config); 403 404 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); 405 if (enable) 406 value &= ~LPSS_CS_CONTROL_CS_HIGH; 407 else 408 value |= LPSS_CS_CONTROL_CS_HIGH; 409 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value); 410 if (config->cs_clk_stays_gated) { 411 u32 clkgate; 412 413 /* 414 * Changing CS alone when dynamic clock gating is on won't 415 * actually flip CS at that time. This ruins SPI transfers 416 * that specify delays, or have no data. Toggle the clock mode 417 * to force on briefly to poke the CS pin to move. 418 */ 419 clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE); 420 value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) | 421 LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON; 422 423 __lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value); 424 __lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate); 425 } 426 } 427 428 static void cs_assert(struct spi_device *spi) 429 { 430 struct driver_data *drv_data = 431 spi_controller_get_devdata(spi->controller); 432 433 if (drv_data->ssp_type == CE4100_SSP) { 434 pxa2xx_spi_write(drv_data, SSSR, spi->chip_select); 435 return; 436 } 437 438 if (is_lpss_ssp(drv_data)) 439 lpss_ssp_cs_control(spi, true); 440 } 441 442 static void cs_deassert(struct spi_device *spi) 443 { 444 struct driver_data *drv_data = 445 spi_controller_get_devdata(spi->controller); 446 unsigned long timeout; 447 448 if (drv_data->ssp_type == CE4100_SSP) 449 return; 450 451 /* Wait until SSP becomes idle before deasserting the CS */ 452 timeout = jiffies + msecs_to_jiffies(10); 453 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY && 454 !time_after(jiffies, timeout)) 455 cpu_relax(); 456 457 if (is_lpss_ssp(drv_data)) 458 lpss_ssp_cs_control(spi, false); 459 } 460 461 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level) 462 { 463 if (level) 464 cs_deassert(spi); 465 else 466 cs_assert(spi); 467 } 468 469 int pxa2xx_spi_flush(struct driver_data *drv_data) 470 { 471 unsigned long limit = loops_per_jiffy << 1; 472 473 do { 474 while (read_SSSR_bits(drv_data, SSSR_RNE)) 475 pxa2xx_spi_read(drv_data, SSDR); 476 } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit); 477 write_SSSR_CS(drv_data, SSSR_ROR); 478 479 return limit; 480 } 481 482 static void pxa2xx_spi_off(struct driver_data *drv_data) 483 { 484 /* On MMP, disabling SSE seems to corrupt the Rx FIFO */ 485 if (is_mmp2_ssp(drv_data)) 486 return; 487 488 pxa_ssp_disable(drv_data->ssp); 489 } 490 491 static int null_writer(struct driver_data *drv_data) 492 { 493 u8 n_bytes = drv_data->n_bytes; 494 495 if (pxa2xx_spi_txfifo_full(drv_data) 496 || (drv_data->tx == drv_data->tx_end)) 497 return 0; 498 499 pxa2xx_spi_write(drv_data, SSDR, 0); 500 drv_data->tx += n_bytes; 501 502 return 1; 503 } 504 505 static int null_reader(struct driver_data *drv_data) 506 { 507 u8 n_bytes = drv_data->n_bytes; 508 509 while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) { 510 pxa2xx_spi_read(drv_data, SSDR); 511 drv_data->rx += n_bytes; 512 } 513 514 return drv_data->rx == drv_data->rx_end; 515 } 516 517 static int u8_writer(struct driver_data *drv_data) 518 { 519 if (pxa2xx_spi_txfifo_full(drv_data) 520 || (drv_data->tx == drv_data->tx_end)) 521 return 0; 522 523 pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx)); 524 ++drv_data->tx; 525 526 return 1; 527 } 528 529 static int u8_reader(struct driver_data *drv_data) 530 { 531 while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) { 532 *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); 533 ++drv_data->rx; 534 } 535 536 return drv_data->rx == drv_data->rx_end; 537 } 538 539 static int u16_writer(struct driver_data *drv_data) 540 { 541 if (pxa2xx_spi_txfifo_full(drv_data) 542 || (drv_data->tx == drv_data->tx_end)) 543 return 0; 544 545 pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx)); 546 drv_data->tx += 2; 547 548 return 1; 549 } 550 551 static int u16_reader(struct driver_data *drv_data) 552 { 553 while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) { 554 *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); 555 drv_data->rx += 2; 556 } 557 558 return drv_data->rx == drv_data->rx_end; 559 } 560 561 static int u32_writer(struct driver_data *drv_data) 562 { 563 if (pxa2xx_spi_txfifo_full(drv_data) 564 || (drv_data->tx == drv_data->tx_end)) 565 return 0; 566 567 pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx)); 568 drv_data->tx += 4; 569 570 return 1; 571 } 572 573 static int u32_reader(struct driver_data *drv_data) 574 { 575 while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) { 576 *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); 577 drv_data->rx += 4; 578 } 579 580 return drv_data->rx == drv_data->rx_end; 581 } 582 583 static void reset_sccr1(struct driver_data *drv_data) 584 { 585 u32 mask = drv_data->int_cr1 | drv_data->dma_cr1, threshold; 586 struct chip_data *chip; 587 588 if (drv_data->controller->cur_msg) { 589 chip = spi_get_ctldata(drv_data->controller->cur_msg->spi); 590 threshold = chip->threshold; 591 } else { 592 threshold = 0; 593 } 594 595 switch (drv_data->ssp_type) { 596 case QUARK_X1000_SSP: 597 mask |= QUARK_X1000_SSCR1_RFT; 598 break; 599 case CE4100_SSP: 600 mask |= CE4100_SSCR1_RFT; 601 break; 602 default: 603 mask |= SSCR1_RFT; 604 break; 605 } 606 607 pxa2xx_spi_update(drv_data, SSCR1, mask, threshold); 608 } 609 610 static void int_stop_and_reset(struct driver_data *drv_data) 611 { 612 /* Clear and disable interrupts */ 613 write_SSSR_CS(drv_data, drv_data->clear_sr); 614 reset_sccr1(drv_data); 615 if (pxa25x_ssp_comp(drv_data)) 616 return; 617 618 pxa2xx_spi_write(drv_data, SSTO, 0); 619 } 620 621 static void int_error_stop(struct driver_data *drv_data, const char *msg, int err) 622 { 623 int_stop_and_reset(drv_data); 624 pxa2xx_spi_flush(drv_data); 625 pxa2xx_spi_off(drv_data); 626 627 dev_err(drv_data->ssp->dev, "%s\n", msg); 628 629 drv_data->controller->cur_msg->status = err; 630 spi_finalize_current_transfer(drv_data->controller); 631 } 632 633 static void int_transfer_complete(struct driver_data *drv_data) 634 { 635 int_stop_and_reset(drv_data); 636 637 spi_finalize_current_transfer(drv_data->controller); 638 } 639 640 static irqreturn_t interrupt_transfer(struct driver_data *drv_data) 641 { 642 u32 irq_status; 643 644 irq_status = read_SSSR_bits(drv_data, drv_data->mask_sr); 645 if (!(pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE)) 646 irq_status &= ~SSSR_TFS; 647 648 if (irq_status & SSSR_ROR) { 649 int_error_stop(drv_data, "interrupt_transfer: FIFO overrun", -EIO); 650 return IRQ_HANDLED; 651 } 652 653 if (irq_status & SSSR_TUR) { 654 int_error_stop(drv_data, "interrupt_transfer: FIFO underrun", -EIO); 655 return IRQ_HANDLED; 656 } 657 658 if (irq_status & SSSR_TINT) { 659 pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT); 660 if (drv_data->read(drv_data)) { 661 int_transfer_complete(drv_data); 662 return IRQ_HANDLED; 663 } 664 } 665 666 /* Drain Rx FIFO, Fill Tx FIFO and prevent overruns */ 667 do { 668 if (drv_data->read(drv_data)) { 669 int_transfer_complete(drv_data); 670 return IRQ_HANDLED; 671 } 672 } while (drv_data->write(drv_data)); 673 674 if (drv_data->read(drv_data)) { 675 int_transfer_complete(drv_data); 676 return IRQ_HANDLED; 677 } 678 679 if (drv_data->tx == drv_data->tx_end) { 680 u32 bytes_left; 681 u32 sccr1_reg; 682 683 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1); 684 sccr1_reg &= ~SSCR1_TIE; 685 686 /* 687 * PXA25x_SSP has no timeout, set up Rx threshold for 688 * the remaining Rx bytes. 689 */ 690 if (pxa25x_ssp_comp(drv_data)) { 691 u32 rx_thre; 692 693 pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg); 694 695 bytes_left = drv_data->rx_end - drv_data->rx; 696 switch (drv_data->n_bytes) { 697 case 4: 698 bytes_left >>= 2; 699 break; 700 case 2: 701 bytes_left >>= 1; 702 break; 703 } 704 705 rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data); 706 if (rx_thre > bytes_left) 707 rx_thre = bytes_left; 708 709 pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre); 710 } 711 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); 712 } 713 714 /* We did something */ 715 return IRQ_HANDLED; 716 } 717 718 static void handle_bad_msg(struct driver_data *drv_data) 719 { 720 int_stop_and_reset(drv_data); 721 pxa2xx_spi_off(drv_data); 722 723 dev_err(drv_data->ssp->dev, "bad message state in interrupt handler\n"); 724 } 725 726 static irqreturn_t ssp_int(int irq, void *dev_id) 727 { 728 struct driver_data *drv_data = dev_id; 729 u32 sccr1_reg; 730 u32 mask = drv_data->mask_sr; 731 u32 status; 732 733 /* 734 * The IRQ might be shared with other peripherals so we must first 735 * check that are we RPM suspended or not. If we are we assume that 736 * the IRQ was not for us (we shouldn't be RPM suspended when the 737 * interrupt is enabled). 738 */ 739 if (pm_runtime_suspended(drv_data->ssp->dev)) 740 return IRQ_NONE; 741 742 /* 743 * If the device is not yet in RPM suspended state and we get an 744 * interrupt that is meant for another device, check if status bits 745 * are all set to one. That means that the device is already 746 * powered off. 747 */ 748 status = pxa2xx_spi_read(drv_data, SSSR); 749 if (status == ~0) 750 return IRQ_NONE; 751 752 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1); 753 754 /* Ignore possible writes if we don't need to write */ 755 if (!(sccr1_reg & SSCR1_TIE)) 756 mask &= ~SSSR_TFS; 757 758 /* Ignore RX timeout interrupt if it is disabled */ 759 if (!(sccr1_reg & SSCR1_TINTE)) 760 mask &= ~SSSR_TINT; 761 762 if (!(status & mask)) 763 return IRQ_NONE; 764 765 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1); 766 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); 767 768 if (!drv_data->controller->cur_msg) { 769 handle_bad_msg(drv_data); 770 /* Never fail */ 771 return IRQ_HANDLED; 772 } 773 774 return drv_data->transfer_handler(drv_data); 775 } 776 777 /* 778 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply 779 * input frequency by fractions of 2^24. It also has a divider by 5. 780 * 781 * There are formulas to get baud rate value for given input frequency and 782 * divider parameters, such as DDS_CLK_RATE and SCR: 783 * 784 * Fsys = 200MHz 785 * 786 * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1) 787 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2) 788 * 789 * DDS_CLK_RATE either 2^n or 2^n / 5. 790 * SCR is in range 0 .. 255 791 * 792 * Divisor = 5^i * 2^j * 2 * k 793 * i = [0, 1] i = 1 iff j = 0 or j > 3 794 * j = [0, 23] j = 0 iff i = 1 795 * k = [1, 256] 796 * Special case: j = 0, i = 1: Divisor = 2 / 5 797 * 798 * Accordingly to the specification the recommended values for DDS_CLK_RATE 799 * are: 800 * Case 1: 2^n, n = [0, 23] 801 * Case 2: 2^24 * 2 / 5 (0x666666) 802 * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333) 803 * 804 * In all cases the lowest possible value is better. 805 * 806 * The function calculates parameters for all cases and chooses the one closest 807 * to the asked baud rate. 808 */ 809 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds) 810 { 811 unsigned long xtal = 200000000; 812 unsigned long fref = xtal / 2; /* mandatory division by 2, 813 see (2) */ 814 /* case 3 */ 815 unsigned long fref1 = fref / 2; /* case 1 */ 816 unsigned long fref2 = fref * 2 / 5; /* case 2 */ 817 unsigned long scale; 818 unsigned long q, q1, q2; 819 long r, r1, r2; 820 u32 mul; 821 822 /* Case 1 */ 823 824 /* Set initial value for DDS_CLK_RATE */ 825 mul = (1 << 24) >> 1; 826 827 /* Calculate initial quot */ 828 q1 = DIV_ROUND_UP(fref1, rate); 829 830 /* Scale q1 if it's too big */ 831 if (q1 > 256) { 832 /* Scale q1 to range [1, 512] */ 833 scale = fls_long(q1 - 1); 834 if (scale > 9) { 835 q1 >>= scale - 9; 836 mul >>= scale - 9; 837 } 838 839 /* Round the result if we have a remainder */ 840 q1 += q1 & 1; 841 } 842 843 /* Decrease DDS_CLK_RATE as much as we can without loss in precision */ 844 scale = __ffs(q1); 845 q1 >>= scale; 846 mul >>= scale; 847 848 /* Get the remainder */ 849 r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate); 850 851 /* Case 2 */ 852 853 q2 = DIV_ROUND_UP(fref2, rate); 854 r2 = abs(fref2 / q2 - rate); 855 856 /* 857 * Choose the best between two: less remainder we have the better. We 858 * can't go case 2 if q2 is greater than 256 since SCR register can 859 * hold only values 0 .. 255. 860 */ 861 if (r2 >= r1 || q2 > 256) { 862 /* case 1 is better */ 863 r = r1; 864 q = q1; 865 } else { 866 /* case 2 is better */ 867 r = r2; 868 q = q2; 869 mul = (1 << 24) * 2 / 5; 870 } 871 872 /* Check case 3 only if the divisor is big enough */ 873 if (fref / rate >= 80) { 874 u64 fssp; 875 u32 m; 876 877 /* Calculate initial quot */ 878 q1 = DIV_ROUND_UP(fref, rate); 879 m = (1 << 24) / q1; 880 881 /* Get the remainder */ 882 fssp = (u64)fref * m; 883 do_div(fssp, 1 << 24); 884 r1 = abs(fssp - rate); 885 886 /* Choose this one if it suits better */ 887 if (r1 < r) { 888 /* case 3 is better */ 889 q = 1; 890 mul = m; 891 } 892 } 893 894 *dds = mul; 895 return q - 1; 896 } 897 898 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate) 899 { 900 unsigned long ssp_clk = drv_data->controller->max_speed_hz; 901 const struct ssp_device *ssp = drv_data->ssp; 902 903 rate = min_t(int, ssp_clk, rate); 904 905 /* 906 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding 907 * that the SSP transmission rate can be greater than the device rate. 908 */ 909 if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP) 910 return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff; 911 else 912 return (DIV_ROUND_UP(ssp_clk, rate) - 1) & 0xfff; 913 } 914 915 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data, 916 int rate) 917 { 918 struct chip_data *chip = 919 spi_get_ctldata(drv_data->controller->cur_msg->spi); 920 unsigned int clk_div; 921 922 switch (drv_data->ssp_type) { 923 case QUARK_X1000_SSP: 924 clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate); 925 break; 926 default: 927 clk_div = ssp_get_clk_div(drv_data, rate); 928 break; 929 } 930 return clk_div << 8; 931 } 932 933 static bool pxa2xx_spi_can_dma(struct spi_controller *controller, 934 struct spi_device *spi, 935 struct spi_transfer *xfer) 936 { 937 struct chip_data *chip = spi_get_ctldata(spi); 938 939 return chip->enable_dma && 940 xfer->len <= MAX_DMA_LEN && 941 xfer->len >= chip->dma_burst_size; 942 } 943 944 static int pxa2xx_spi_transfer_one(struct spi_controller *controller, 945 struct spi_device *spi, 946 struct spi_transfer *transfer) 947 { 948 struct driver_data *drv_data = spi_controller_get_devdata(controller); 949 struct spi_message *message = controller->cur_msg; 950 struct chip_data *chip = spi_get_ctldata(spi); 951 u32 dma_thresh = chip->dma_threshold; 952 u32 dma_burst = chip->dma_burst_size; 953 u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data); 954 u32 clk_div; 955 u8 bits; 956 u32 speed; 957 u32 cr0; 958 u32 cr1; 959 int err; 960 int dma_mapped; 961 962 /* Check if we can DMA this transfer */ 963 if (transfer->len > MAX_DMA_LEN && chip->enable_dma) { 964 965 /* Reject already-mapped transfers; PIO won't always work */ 966 if (message->is_dma_mapped 967 || transfer->rx_dma || transfer->tx_dma) { 968 dev_err(&spi->dev, 969 "Mapped transfer length of %u is greater than %d\n", 970 transfer->len, MAX_DMA_LEN); 971 return -EINVAL; 972 } 973 974 /* Warn ... we force this to PIO mode */ 975 dev_warn_ratelimited(&spi->dev, 976 "DMA disabled for transfer length %u greater than %d\n", 977 transfer->len, MAX_DMA_LEN); 978 } 979 980 /* Setup the transfer state based on the type of transfer */ 981 if (pxa2xx_spi_flush(drv_data) == 0) { 982 dev_err(&spi->dev, "Flush failed\n"); 983 return -EIO; 984 } 985 drv_data->tx = (void *)transfer->tx_buf; 986 drv_data->tx_end = drv_data->tx + transfer->len; 987 drv_data->rx = transfer->rx_buf; 988 drv_data->rx_end = drv_data->rx + transfer->len; 989 990 /* Change speed and bit per word on a per transfer */ 991 bits = transfer->bits_per_word; 992 speed = transfer->speed_hz; 993 994 clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed); 995 996 if (bits <= 8) { 997 drv_data->n_bytes = 1; 998 drv_data->read = drv_data->rx ? u8_reader : null_reader; 999 drv_data->write = drv_data->tx ? u8_writer : null_writer; 1000 } else if (bits <= 16) { 1001 drv_data->n_bytes = 2; 1002 drv_data->read = drv_data->rx ? u16_reader : null_reader; 1003 drv_data->write = drv_data->tx ? u16_writer : null_writer; 1004 } else if (bits <= 32) { 1005 drv_data->n_bytes = 4; 1006 drv_data->read = drv_data->rx ? u32_reader : null_reader; 1007 drv_data->write = drv_data->tx ? u32_writer : null_writer; 1008 } 1009 /* 1010 * If bits per word is changed in DMA mode, then must check 1011 * the thresholds and burst also. 1012 */ 1013 if (chip->enable_dma) { 1014 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, 1015 spi, 1016 bits, &dma_burst, 1017 &dma_thresh)) 1018 dev_warn_ratelimited(&spi->dev, 1019 "DMA burst size reduced to match bits_per_word\n"); 1020 } 1021 1022 dma_mapped = controller->can_dma && 1023 controller->can_dma(controller, spi, transfer) && 1024 controller->cur_msg_mapped; 1025 if (dma_mapped) { 1026 1027 /* Ensure we have the correct interrupt handler */ 1028 drv_data->transfer_handler = pxa2xx_spi_dma_transfer; 1029 1030 err = pxa2xx_spi_dma_prepare(drv_data, transfer); 1031 if (err) 1032 return err; 1033 1034 /* Clear status and start DMA engine */ 1035 cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1; 1036 pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr); 1037 1038 pxa2xx_spi_dma_start(drv_data); 1039 } else { 1040 /* Ensure we have the correct interrupt handler */ 1041 drv_data->transfer_handler = interrupt_transfer; 1042 1043 /* Clear status */ 1044 cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1; 1045 write_SSSR_CS(drv_data, drv_data->clear_sr); 1046 } 1047 1048 /* NOTE: PXA25x_SSP _could_ use external clocking ... */ 1049 cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits); 1050 if (!pxa25x_ssp_comp(drv_data)) 1051 dev_dbg(&spi->dev, "%u Hz actual, %s\n", 1052 controller->max_speed_hz 1053 / (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)), 1054 dma_mapped ? "DMA" : "PIO"); 1055 else 1056 dev_dbg(&spi->dev, "%u Hz actual, %s\n", 1057 controller->max_speed_hz / 2 1058 / (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)), 1059 dma_mapped ? "DMA" : "PIO"); 1060 1061 if (is_lpss_ssp(drv_data)) { 1062 pxa2xx_spi_update(drv_data, SSIRF, GENMASK(7, 0), chip->lpss_rx_threshold); 1063 pxa2xx_spi_update(drv_data, SSITF, GENMASK(15, 0), chip->lpss_tx_threshold); 1064 } 1065 1066 if (is_mrfld_ssp(drv_data)) { 1067 u32 mask = SFIFOTT_RFT | SFIFOTT_TFT; 1068 u32 thresh = 0; 1069 1070 thresh |= SFIFOTT_RxThresh(chip->lpss_rx_threshold); 1071 thresh |= SFIFOTT_TxThresh(chip->lpss_tx_threshold); 1072 1073 pxa2xx_spi_update(drv_data, SFIFOTT, mask, thresh); 1074 } 1075 1076 if (is_quark_x1000_ssp(drv_data)) 1077 pxa2xx_spi_update(drv_data, DDS_RATE, GENMASK(23, 0), chip->dds_rate); 1078 1079 /* Stop the SSP */ 1080 if (!is_mmp2_ssp(drv_data)) 1081 pxa_ssp_disable(drv_data->ssp); 1082 1083 if (!pxa25x_ssp_comp(drv_data)) 1084 pxa2xx_spi_write(drv_data, SSTO, chip->timeout); 1085 1086 /* First set CR1 without interrupt and service enables */ 1087 pxa2xx_spi_update(drv_data, SSCR1, change_mask, cr1); 1088 1089 /* See if we need to reload the configuration registers */ 1090 pxa2xx_spi_update(drv_data, SSCR0, GENMASK(31, 0), cr0); 1091 1092 /* Restart the SSP */ 1093 pxa_ssp_enable(drv_data->ssp); 1094 1095 if (is_mmp2_ssp(drv_data)) { 1096 u8 tx_level = read_SSSR_bits(drv_data, SSSR_TFL_MASK) >> 8; 1097 1098 if (tx_level) { 1099 /* On MMP2, flipping SSE doesn't to empty Tx FIFO. */ 1100 dev_warn(&spi->dev, "%u bytes of garbage in Tx FIFO!\n", tx_level); 1101 if (tx_level > transfer->len) 1102 tx_level = transfer->len; 1103 drv_data->tx += tx_level; 1104 } 1105 } 1106 1107 if (spi_controller_is_slave(controller)) { 1108 while (drv_data->write(drv_data)) 1109 ; 1110 if (drv_data->gpiod_ready) { 1111 gpiod_set_value(drv_data->gpiod_ready, 1); 1112 udelay(1); 1113 gpiod_set_value(drv_data->gpiod_ready, 0); 1114 } 1115 } 1116 1117 /* 1118 * Release the data by enabling service requests and interrupts, 1119 * without changing any mode bits. 1120 */ 1121 pxa2xx_spi_write(drv_data, SSCR1, cr1); 1122 1123 return 1; 1124 } 1125 1126 static int pxa2xx_spi_slave_abort(struct spi_controller *controller) 1127 { 1128 struct driver_data *drv_data = spi_controller_get_devdata(controller); 1129 1130 int_error_stop(drv_data, "transfer aborted", -EINTR); 1131 1132 return 0; 1133 } 1134 1135 static void pxa2xx_spi_handle_err(struct spi_controller *controller, 1136 struct spi_message *msg) 1137 { 1138 struct driver_data *drv_data = spi_controller_get_devdata(controller); 1139 1140 int_stop_and_reset(drv_data); 1141 1142 /* Disable the SSP */ 1143 pxa2xx_spi_off(drv_data); 1144 1145 /* 1146 * Stop the DMA if running. Note DMA callback handler may have unset 1147 * the dma_running already, which is fine as stopping is not needed 1148 * then but we shouldn't rely this flag for anything else than 1149 * stopping. For instance to differentiate between PIO and DMA 1150 * transfers. 1151 */ 1152 if (atomic_read(&drv_data->dma_running)) 1153 pxa2xx_spi_dma_stop(drv_data); 1154 } 1155 1156 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller) 1157 { 1158 struct driver_data *drv_data = spi_controller_get_devdata(controller); 1159 1160 /* Disable the SSP now */ 1161 pxa2xx_spi_off(drv_data); 1162 1163 return 0; 1164 } 1165 1166 static void cleanup_cs(struct spi_device *spi) 1167 { 1168 if (!gpio_is_valid(spi->cs_gpio)) 1169 return; 1170 1171 gpio_free(spi->cs_gpio); 1172 spi->cs_gpio = -ENOENT; 1173 } 1174 1175 static int setup_cs(struct spi_device *spi, struct chip_data *chip, 1176 struct pxa2xx_spi_chip *chip_info) 1177 { 1178 struct driver_data *drv_data = spi_controller_get_devdata(spi->controller); 1179 1180 if (chip == NULL) 1181 return 0; 1182 1183 if (chip_info == NULL) 1184 return 0; 1185 1186 if (drv_data->ssp_type == CE4100_SSP) 1187 return 0; 1188 1189 /* 1190 * NOTE: setup() can be called multiple times, possibly with 1191 * different chip_info, release previously requested GPIO. 1192 */ 1193 cleanup_cs(spi); 1194 1195 if (gpio_is_valid(chip_info->gpio_cs)) { 1196 int gpio = chip_info->gpio_cs; 1197 int err; 1198 1199 err = gpio_request(gpio, "SPI_CS"); 1200 if (err) { 1201 dev_err(&spi->dev, "failed to request chip select GPIO%d\n", gpio); 1202 return err; 1203 } 1204 1205 err = gpio_direction_output(gpio, !(spi->mode & SPI_CS_HIGH)); 1206 if (err) { 1207 gpio_free(gpio); 1208 return err; 1209 } 1210 1211 spi->cs_gpio = gpio; 1212 } 1213 1214 return 0; 1215 } 1216 1217 static int setup(struct spi_device *spi) 1218 { 1219 struct pxa2xx_spi_chip *chip_info; 1220 struct chip_data *chip; 1221 const struct lpss_config *config; 1222 struct driver_data *drv_data = 1223 spi_controller_get_devdata(spi->controller); 1224 uint tx_thres, tx_hi_thres, rx_thres; 1225 int err; 1226 1227 switch (drv_data->ssp_type) { 1228 case QUARK_X1000_SSP: 1229 tx_thres = TX_THRESH_QUARK_X1000_DFLT; 1230 tx_hi_thres = 0; 1231 rx_thres = RX_THRESH_QUARK_X1000_DFLT; 1232 break; 1233 case MRFLD_SSP: 1234 tx_thres = TX_THRESH_MRFLD_DFLT; 1235 tx_hi_thres = 0; 1236 rx_thres = RX_THRESH_MRFLD_DFLT; 1237 break; 1238 case CE4100_SSP: 1239 tx_thres = TX_THRESH_CE4100_DFLT; 1240 tx_hi_thres = 0; 1241 rx_thres = RX_THRESH_CE4100_DFLT; 1242 break; 1243 case LPSS_LPT_SSP: 1244 case LPSS_BYT_SSP: 1245 case LPSS_BSW_SSP: 1246 case LPSS_SPT_SSP: 1247 case LPSS_BXT_SSP: 1248 case LPSS_CNL_SSP: 1249 config = lpss_get_config(drv_data); 1250 tx_thres = config->tx_threshold_lo; 1251 tx_hi_thres = config->tx_threshold_hi; 1252 rx_thres = config->rx_threshold; 1253 break; 1254 default: 1255 tx_hi_thres = 0; 1256 if (spi_controller_is_slave(drv_data->controller)) { 1257 tx_thres = 1; 1258 rx_thres = 2; 1259 } else { 1260 tx_thres = TX_THRESH_DFLT; 1261 rx_thres = RX_THRESH_DFLT; 1262 } 1263 break; 1264 } 1265 1266 /* Only allocate on the first setup */ 1267 chip = spi_get_ctldata(spi); 1268 if (!chip) { 1269 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); 1270 if (!chip) 1271 return -ENOMEM; 1272 1273 if (drv_data->ssp_type == CE4100_SSP) { 1274 if (spi->chip_select > 4) { 1275 dev_err(&spi->dev, 1276 "failed setup: cs number must not be > 4.\n"); 1277 kfree(chip); 1278 return -EINVAL; 1279 } 1280 } 1281 chip->enable_dma = drv_data->controller_info->enable_dma; 1282 chip->timeout = TIMOUT_DFLT; 1283 } 1284 1285 /* 1286 * Protocol drivers may change the chip settings, so... 1287 * if chip_info exists, use it. 1288 */ 1289 chip_info = spi->controller_data; 1290 1291 /* chip_info isn't always needed */ 1292 if (chip_info) { 1293 if (chip_info->timeout) 1294 chip->timeout = chip_info->timeout; 1295 if (chip_info->tx_threshold) 1296 tx_thres = chip_info->tx_threshold; 1297 if (chip_info->tx_hi_threshold) 1298 tx_hi_thres = chip_info->tx_hi_threshold; 1299 if (chip_info->rx_threshold) 1300 rx_thres = chip_info->rx_threshold; 1301 chip->dma_threshold = 0; 1302 } 1303 1304 chip->cr1 = 0; 1305 if (spi_controller_is_slave(drv_data->controller)) { 1306 chip->cr1 |= SSCR1_SCFR; 1307 chip->cr1 |= SSCR1_SCLKDIR; 1308 chip->cr1 |= SSCR1_SFRMDIR; 1309 chip->cr1 |= SSCR1_SPH; 1310 } 1311 1312 if (is_lpss_ssp(drv_data)) { 1313 chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres); 1314 chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) | 1315 SSITF_TxHiThresh(tx_hi_thres); 1316 } 1317 1318 if (is_mrfld_ssp(drv_data)) { 1319 chip->lpss_rx_threshold = rx_thres; 1320 chip->lpss_tx_threshold = tx_thres; 1321 } 1322 1323 /* 1324 * Set DMA burst and threshold outside of chip_info path so that if 1325 * chip_info goes away after setting chip->enable_dma, the burst and 1326 * threshold can still respond to changes in bits_per_word. 1327 */ 1328 if (chip->enable_dma) { 1329 /* Set up legal burst and threshold for DMA */ 1330 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi, 1331 spi->bits_per_word, 1332 &chip->dma_burst_size, 1333 &chip->dma_threshold)) { 1334 dev_warn(&spi->dev, 1335 "in setup: DMA burst size reduced to match bits_per_word\n"); 1336 } 1337 dev_dbg(&spi->dev, 1338 "in setup: DMA burst size set to %u\n", 1339 chip->dma_burst_size); 1340 } 1341 1342 switch (drv_data->ssp_type) { 1343 case QUARK_X1000_SSP: 1344 chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres) 1345 & QUARK_X1000_SSCR1_RFT) 1346 | (QUARK_X1000_SSCR1_TxTresh(tx_thres) 1347 & QUARK_X1000_SSCR1_TFT); 1348 break; 1349 case CE4100_SSP: 1350 chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) | 1351 (CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT); 1352 break; 1353 default: 1354 chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) | 1355 (SSCR1_TxTresh(tx_thres) & SSCR1_TFT); 1356 break; 1357 } 1358 1359 chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH); 1360 chip->cr1 |= ((spi->mode & SPI_CPHA) ? SSCR1_SPH : 0) | 1361 ((spi->mode & SPI_CPOL) ? SSCR1_SPO : 0); 1362 1363 if (spi->mode & SPI_LOOP) 1364 chip->cr1 |= SSCR1_LBM; 1365 1366 spi_set_ctldata(spi, chip); 1367 1368 if (drv_data->ssp_type == CE4100_SSP) 1369 return 0; 1370 1371 err = setup_cs(spi, chip, chip_info); 1372 if (err) 1373 kfree(chip); 1374 1375 return err; 1376 } 1377 1378 static void cleanup(struct spi_device *spi) 1379 { 1380 struct chip_data *chip = spi_get_ctldata(spi); 1381 1382 cleanup_cs(spi); 1383 kfree(chip); 1384 } 1385 1386 #ifdef CONFIG_ACPI 1387 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = { 1388 { "INT33C0", LPSS_LPT_SSP }, 1389 { "INT33C1", LPSS_LPT_SSP }, 1390 { "INT3430", LPSS_LPT_SSP }, 1391 { "INT3431", LPSS_LPT_SSP }, 1392 { "80860F0E", LPSS_BYT_SSP }, 1393 { "8086228E", LPSS_BSW_SSP }, 1394 { }, 1395 }; 1396 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match); 1397 #endif 1398 1399 /* 1400 * PCI IDs of compound devices that integrate both host controller and private 1401 * integrated DMA engine. Please note these are not used in module 1402 * autoloading and probing in this module but matching the LPSS SSP type. 1403 */ 1404 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = { 1405 /* SPT-LP */ 1406 { PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP }, 1407 { PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP }, 1408 /* SPT-H */ 1409 { PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP }, 1410 { PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP }, 1411 /* KBL-H */ 1412 { PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP }, 1413 { PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP }, 1414 /* CML-V */ 1415 { PCI_VDEVICE(INTEL, 0xa3a9), LPSS_SPT_SSP }, 1416 { PCI_VDEVICE(INTEL, 0xa3aa), LPSS_SPT_SSP }, 1417 /* BXT A-Step */ 1418 { PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP }, 1419 { PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP }, 1420 { PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP }, 1421 /* BXT B-Step */ 1422 { PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP }, 1423 { PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP }, 1424 { PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP }, 1425 /* GLK */ 1426 { PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP }, 1427 { PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP }, 1428 { PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP }, 1429 /* ICL-LP */ 1430 { PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP }, 1431 { PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP }, 1432 { PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP }, 1433 /* EHL */ 1434 { PCI_VDEVICE(INTEL, 0x4b2a), LPSS_BXT_SSP }, 1435 { PCI_VDEVICE(INTEL, 0x4b2b), LPSS_BXT_SSP }, 1436 { PCI_VDEVICE(INTEL, 0x4b37), LPSS_BXT_SSP }, 1437 /* JSL */ 1438 { PCI_VDEVICE(INTEL, 0x4daa), LPSS_CNL_SSP }, 1439 { PCI_VDEVICE(INTEL, 0x4dab), LPSS_CNL_SSP }, 1440 { PCI_VDEVICE(INTEL, 0x4dfb), LPSS_CNL_SSP }, 1441 /* TGL-H */ 1442 { PCI_VDEVICE(INTEL, 0x43aa), LPSS_CNL_SSP }, 1443 { PCI_VDEVICE(INTEL, 0x43ab), LPSS_CNL_SSP }, 1444 { PCI_VDEVICE(INTEL, 0x43fb), LPSS_CNL_SSP }, 1445 { PCI_VDEVICE(INTEL, 0x43fd), LPSS_CNL_SSP }, 1446 /* ADL-P */ 1447 { PCI_VDEVICE(INTEL, 0x51aa), LPSS_CNL_SSP }, 1448 { PCI_VDEVICE(INTEL, 0x51ab), LPSS_CNL_SSP }, 1449 { PCI_VDEVICE(INTEL, 0x51fb), LPSS_CNL_SSP }, 1450 /* ADL-M */ 1451 { PCI_VDEVICE(INTEL, 0x54aa), LPSS_CNL_SSP }, 1452 { PCI_VDEVICE(INTEL, 0x54ab), LPSS_CNL_SSP }, 1453 { PCI_VDEVICE(INTEL, 0x54fb), LPSS_CNL_SSP }, 1454 /* APL */ 1455 { PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP }, 1456 { PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP }, 1457 { PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP }, 1458 /* ADL-S */ 1459 { PCI_VDEVICE(INTEL, 0x7aaa), LPSS_CNL_SSP }, 1460 { PCI_VDEVICE(INTEL, 0x7aab), LPSS_CNL_SSP }, 1461 { PCI_VDEVICE(INTEL, 0x7af9), LPSS_CNL_SSP }, 1462 { PCI_VDEVICE(INTEL, 0x7afb), LPSS_CNL_SSP }, 1463 /* CNL-LP */ 1464 { PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP }, 1465 { PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP }, 1466 { PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP }, 1467 /* CNL-H */ 1468 { PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP }, 1469 { PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP }, 1470 { PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP }, 1471 /* CML-LP */ 1472 { PCI_VDEVICE(INTEL, 0x02aa), LPSS_CNL_SSP }, 1473 { PCI_VDEVICE(INTEL, 0x02ab), LPSS_CNL_SSP }, 1474 { PCI_VDEVICE(INTEL, 0x02fb), LPSS_CNL_SSP }, 1475 /* CML-H */ 1476 { PCI_VDEVICE(INTEL, 0x06aa), LPSS_CNL_SSP }, 1477 { PCI_VDEVICE(INTEL, 0x06ab), LPSS_CNL_SSP }, 1478 { PCI_VDEVICE(INTEL, 0x06fb), LPSS_CNL_SSP }, 1479 /* TGL-LP */ 1480 { PCI_VDEVICE(INTEL, 0xa0aa), LPSS_CNL_SSP }, 1481 { PCI_VDEVICE(INTEL, 0xa0ab), LPSS_CNL_SSP }, 1482 { PCI_VDEVICE(INTEL, 0xa0de), LPSS_CNL_SSP }, 1483 { PCI_VDEVICE(INTEL, 0xa0df), LPSS_CNL_SSP }, 1484 { PCI_VDEVICE(INTEL, 0xa0fb), LPSS_CNL_SSP }, 1485 { PCI_VDEVICE(INTEL, 0xa0fd), LPSS_CNL_SSP }, 1486 { PCI_VDEVICE(INTEL, 0xa0fe), LPSS_CNL_SSP }, 1487 { }, 1488 }; 1489 1490 static const struct of_device_id pxa2xx_spi_of_match[] = { 1491 { .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP }, 1492 {}, 1493 }; 1494 MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match); 1495 1496 #ifdef CONFIG_ACPI 1497 1498 static int pxa2xx_spi_get_port_id(struct device *dev) 1499 { 1500 struct acpi_device *adev; 1501 unsigned int devid; 1502 int port_id = -1; 1503 1504 adev = ACPI_COMPANION(dev); 1505 if (adev && adev->pnp.unique_id && 1506 !kstrtouint(adev->pnp.unique_id, 0, &devid)) 1507 port_id = devid; 1508 return port_id; 1509 } 1510 1511 #else /* !CONFIG_ACPI */ 1512 1513 static int pxa2xx_spi_get_port_id(struct device *dev) 1514 { 1515 return -1; 1516 } 1517 1518 #endif /* CONFIG_ACPI */ 1519 1520 1521 #ifdef CONFIG_PCI 1522 1523 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param) 1524 { 1525 return param == chan->device->dev; 1526 } 1527 1528 #endif /* CONFIG_PCI */ 1529 1530 static struct pxa2xx_spi_controller * 1531 pxa2xx_spi_init_pdata(struct platform_device *pdev) 1532 { 1533 struct pxa2xx_spi_controller *pdata; 1534 struct ssp_device *ssp; 1535 struct resource *res; 1536 struct device *parent = pdev->dev.parent; 1537 struct pci_dev *pcidev = dev_is_pci(parent) ? to_pci_dev(parent) : NULL; 1538 const struct pci_device_id *pcidev_id = NULL; 1539 enum pxa_ssp_type type; 1540 const void *match; 1541 1542 if (pcidev) 1543 pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match, pcidev); 1544 1545 match = device_get_match_data(&pdev->dev); 1546 if (match) 1547 type = (enum pxa_ssp_type)match; 1548 else if (pcidev_id) 1549 type = (enum pxa_ssp_type)pcidev_id->driver_data; 1550 else 1551 return ERR_PTR(-EINVAL); 1552 1553 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); 1554 if (!pdata) 1555 return ERR_PTR(-ENOMEM); 1556 1557 ssp = &pdata->ssp; 1558 1559 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1560 ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res); 1561 if (IS_ERR(ssp->mmio_base)) 1562 return ERR_CAST(ssp->mmio_base); 1563 1564 ssp->phys_base = res->start; 1565 1566 #ifdef CONFIG_PCI 1567 if (pcidev_id) { 1568 pdata->tx_param = parent; 1569 pdata->rx_param = parent; 1570 pdata->dma_filter = pxa2xx_spi_idma_filter; 1571 } 1572 #endif 1573 1574 ssp->clk = devm_clk_get(&pdev->dev, NULL); 1575 if (IS_ERR(ssp->clk)) 1576 return ERR_CAST(ssp->clk); 1577 1578 ssp->irq = platform_get_irq(pdev, 0); 1579 if (ssp->irq < 0) 1580 return ERR_PTR(ssp->irq); 1581 1582 ssp->type = type; 1583 ssp->dev = &pdev->dev; 1584 ssp->port_id = pxa2xx_spi_get_port_id(&pdev->dev); 1585 1586 pdata->is_slave = device_property_read_bool(&pdev->dev, "spi-slave"); 1587 pdata->num_chipselect = 1; 1588 pdata->enable_dma = true; 1589 pdata->dma_burst_size = 1; 1590 1591 return pdata; 1592 } 1593 1594 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller, 1595 unsigned int cs) 1596 { 1597 struct driver_data *drv_data = spi_controller_get_devdata(controller); 1598 1599 if (has_acpi_companion(drv_data->ssp->dev)) { 1600 switch (drv_data->ssp_type) { 1601 /* 1602 * For Atoms the ACPI DeviceSelection used by the Windows 1603 * driver starts from 1 instead of 0 so translate it here 1604 * to match what Linux expects. 1605 */ 1606 case LPSS_BYT_SSP: 1607 case LPSS_BSW_SSP: 1608 return cs - 1; 1609 1610 default: 1611 break; 1612 } 1613 } 1614 1615 return cs; 1616 } 1617 1618 static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi) 1619 { 1620 return MAX_DMA_LEN; 1621 } 1622 1623 static int pxa2xx_spi_probe(struct platform_device *pdev) 1624 { 1625 struct device *dev = &pdev->dev; 1626 struct pxa2xx_spi_controller *platform_info; 1627 struct spi_controller *controller; 1628 struct driver_data *drv_data; 1629 struct ssp_device *ssp; 1630 const struct lpss_config *config; 1631 int status; 1632 u32 tmp; 1633 1634 platform_info = dev_get_platdata(dev); 1635 if (!platform_info) { 1636 platform_info = pxa2xx_spi_init_pdata(pdev); 1637 if (IS_ERR(platform_info)) { 1638 dev_err(&pdev->dev, "missing platform data\n"); 1639 return PTR_ERR(platform_info); 1640 } 1641 } 1642 1643 ssp = pxa_ssp_request(pdev->id, pdev->name); 1644 if (!ssp) 1645 ssp = &platform_info->ssp; 1646 1647 if (!ssp->mmio_base) { 1648 dev_err(&pdev->dev, "failed to get SSP\n"); 1649 return -ENODEV; 1650 } 1651 1652 if (platform_info->is_slave) 1653 controller = devm_spi_alloc_slave(dev, sizeof(*drv_data)); 1654 else 1655 controller = devm_spi_alloc_master(dev, sizeof(*drv_data)); 1656 1657 if (!controller) { 1658 dev_err(&pdev->dev, "cannot alloc spi_controller\n"); 1659 status = -ENOMEM; 1660 goto out_error_controller_alloc; 1661 } 1662 drv_data = spi_controller_get_devdata(controller); 1663 drv_data->controller = controller; 1664 drv_data->controller_info = platform_info; 1665 drv_data->ssp = ssp; 1666 1667 device_set_node(&controller->dev, dev_fwnode(dev)); 1668 1669 /* The spi->mode bits understood by this driver: */ 1670 controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP; 1671 1672 controller->bus_num = ssp->port_id; 1673 controller->dma_alignment = DMA_ALIGNMENT; 1674 controller->cleanup = cleanup; 1675 controller->setup = setup; 1676 controller->set_cs = pxa2xx_spi_set_cs; 1677 controller->transfer_one = pxa2xx_spi_transfer_one; 1678 controller->slave_abort = pxa2xx_spi_slave_abort; 1679 controller->handle_err = pxa2xx_spi_handle_err; 1680 controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer; 1681 controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs; 1682 controller->auto_runtime_pm = true; 1683 controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX; 1684 1685 drv_data->ssp_type = ssp->type; 1686 1687 if (pxa25x_ssp_comp(drv_data)) { 1688 switch (drv_data->ssp_type) { 1689 case QUARK_X1000_SSP: 1690 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 1691 break; 1692 default: 1693 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); 1694 break; 1695 } 1696 1697 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE; 1698 drv_data->dma_cr1 = 0; 1699 drv_data->clear_sr = SSSR_ROR; 1700 drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR; 1701 } else { 1702 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 1703 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE; 1704 drv_data->dma_cr1 = DEFAULT_DMA_CR1; 1705 drv_data->clear_sr = SSSR_ROR | SSSR_TINT; 1706 drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS 1707 | SSSR_ROR | SSSR_TUR; 1708 } 1709 1710 status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev), 1711 drv_data); 1712 if (status < 0) { 1713 dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq); 1714 goto out_error_controller_alloc; 1715 } 1716 1717 /* Setup DMA if requested */ 1718 if (platform_info->enable_dma) { 1719 status = pxa2xx_spi_dma_setup(drv_data); 1720 if (status) { 1721 dev_warn(dev, "no DMA channels available, using PIO\n"); 1722 platform_info->enable_dma = false; 1723 } else { 1724 controller->can_dma = pxa2xx_spi_can_dma; 1725 controller->max_dma_len = MAX_DMA_LEN; 1726 controller->max_transfer_size = 1727 pxa2xx_spi_max_dma_transfer_size; 1728 } 1729 } 1730 1731 /* Enable SOC clock */ 1732 status = clk_prepare_enable(ssp->clk); 1733 if (status) 1734 goto out_error_dma_irq_alloc; 1735 1736 controller->max_speed_hz = clk_get_rate(ssp->clk); 1737 /* 1738 * Set minimum speed for all other platforms than Intel Quark which is 1739 * able do under 1 Hz transfers. 1740 */ 1741 if (!pxa25x_ssp_comp(drv_data)) 1742 controller->min_speed_hz = 1743 DIV_ROUND_UP(controller->max_speed_hz, 4096); 1744 else if (!is_quark_x1000_ssp(drv_data)) 1745 controller->min_speed_hz = 1746 DIV_ROUND_UP(controller->max_speed_hz, 512); 1747 1748 pxa_ssp_disable(ssp); 1749 1750 /* Load default SSP configuration */ 1751 switch (drv_data->ssp_type) { 1752 case QUARK_X1000_SSP: 1753 tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) | 1754 QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT); 1755 pxa2xx_spi_write(drv_data, SSCR1, tmp); 1756 1757 /* Using the Motorola SPI protocol and use 8 bit frame */ 1758 tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8); 1759 pxa2xx_spi_write(drv_data, SSCR0, tmp); 1760 break; 1761 case CE4100_SSP: 1762 tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) | 1763 CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT); 1764 pxa2xx_spi_write(drv_data, SSCR1, tmp); 1765 tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8); 1766 pxa2xx_spi_write(drv_data, SSCR0, tmp); 1767 break; 1768 default: 1769 1770 if (spi_controller_is_slave(controller)) { 1771 tmp = SSCR1_SCFR | 1772 SSCR1_SCLKDIR | 1773 SSCR1_SFRMDIR | 1774 SSCR1_RxTresh(2) | 1775 SSCR1_TxTresh(1) | 1776 SSCR1_SPH; 1777 } else { 1778 tmp = SSCR1_RxTresh(RX_THRESH_DFLT) | 1779 SSCR1_TxTresh(TX_THRESH_DFLT); 1780 } 1781 pxa2xx_spi_write(drv_data, SSCR1, tmp); 1782 tmp = SSCR0_Motorola | SSCR0_DataSize(8); 1783 if (!spi_controller_is_slave(controller)) 1784 tmp |= SSCR0_SCR(2); 1785 pxa2xx_spi_write(drv_data, SSCR0, tmp); 1786 break; 1787 } 1788 1789 if (!pxa25x_ssp_comp(drv_data)) 1790 pxa2xx_spi_write(drv_data, SSTO, 0); 1791 1792 if (!is_quark_x1000_ssp(drv_data)) 1793 pxa2xx_spi_write(drv_data, SSPSP, 0); 1794 1795 if (is_lpss_ssp(drv_data)) { 1796 lpss_ssp_setup(drv_data); 1797 config = lpss_get_config(drv_data); 1798 if (config->reg_capabilities >= 0) { 1799 tmp = __lpss_ssp_read_priv(drv_data, 1800 config->reg_capabilities); 1801 tmp &= LPSS_CAPS_CS_EN_MASK; 1802 tmp >>= LPSS_CAPS_CS_EN_SHIFT; 1803 platform_info->num_chipselect = ffz(tmp); 1804 } else if (config->cs_num) { 1805 platform_info->num_chipselect = config->cs_num; 1806 } 1807 } 1808 controller->num_chipselect = platform_info->num_chipselect; 1809 controller->use_gpio_descriptors = true; 1810 1811 if (platform_info->is_slave) { 1812 drv_data->gpiod_ready = devm_gpiod_get_optional(dev, 1813 "ready", GPIOD_OUT_LOW); 1814 if (IS_ERR(drv_data->gpiod_ready)) { 1815 status = PTR_ERR(drv_data->gpiod_ready); 1816 goto out_error_clock_enabled; 1817 } 1818 } 1819 1820 pm_runtime_set_autosuspend_delay(&pdev->dev, 50); 1821 pm_runtime_use_autosuspend(&pdev->dev); 1822 pm_runtime_set_active(&pdev->dev); 1823 pm_runtime_enable(&pdev->dev); 1824 1825 /* Register with the SPI framework */ 1826 platform_set_drvdata(pdev, drv_data); 1827 status = spi_register_controller(controller); 1828 if (status) { 1829 dev_err(&pdev->dev, "problem registering SPI controller\n"); 1830 goto out_error_pm_runtime_enabled; 1831 } 1832 1833 return status; 1834 1835 out_error_pm_runtime_enabled: 1836 pm_runtime_disable(&pdev->dev); 1837 1838 out_error_clock_enabled: 1839 clk_disable_unprepare(ssp->clk); 1840 1841 out_error_dma_irq_alloc: 1842 pxa2xx_spi_dma_release(drv_data); 1843 free_irq(ssp->irq, drv_data); 1844 1845 out_error_controller_alloc: 1846 pxa_ssp_free(ssp); 1847 return status; 1848 } 1849 1850 static int pxa2xx_spi_remove(struct platform_device *pdev) 1851 { 1852 struct driver_data *drv_data = platform_get_drvdata(pdev); 1853 struct ssp_device *ssp = drv_data->ssp; 1854 1855 pm_runtime_get_sync(&pdev->dev); 1856 1857 spi_unregister_controller(drv_data->controller); 1858 1859 /* Disable the SSP at the peripheral and SOC level */ 1860 pxa_ssp_disable(ssp); 1861 clk_disable_unprepare(ssp->clk); 1862 1863 /* Release DMA */ 1864 if (drv_data->controller_info->enable_dma) 1865 pxa2xx_spi_dma_release(drv_data); 1866 1867 pm_runtime_put_noidle(&pdev->dev); 1868 pm_runtime_disable(&pdev->dev); 1869 1870 /* Release IRQ */ 1871 free_irq(ssp->irq, drv_data); 1872 1873 /* Release SSP */ 1874 pxa_ssp_free(ssp); 1875 1876 return 0; 1877 } 1878 1879 #ifdef CONFIG_PM_SLEEP 1880 static int pxa2xx_spi_suspend(struct device *dev) 1881 { 1882 struct driver_data *drv_data = dev_get_drvdata(dev); 1883 struct ssp_device *ssp = drv_data->ssp; 1884 int status; 1885 1886 status = spi_controller_suspend(drv_data->controller); 1887 if (status) 1888 return status; 1889 1890 pxa_ssp_disable(ssp); 1891 1892 if (!pm_runtime_suspended(dev)) 1893 clk_disable_unprepare(ssp->clk); 1894 1895 return 0; 1896 } 1897 1898 static int pxa2xx_spi_resume(struct device *dev) 1899 { 1900 struct driver_data *drv_data = dev_get_drvdata(dev); 1901 struct ssp_device *ssp = drv_data->ssp; 1902 int status; 1903 1904 /* Enable the SSP clock */ 1905 if (!pm_runtime_suspended(dev)) { 1906 status = clk_prepare_enable(ssp->clk); 1907 if (status) 1908 return status; 1909 } 1910 1911 /* Start the queue running */ 1912 return spi_controller_resume(drv_data->controller); 1913 } 1914 #endif 1915 1916 #ifdef CONFIG_PM 1917 static int pxa2xx_spi_runtime_suspend(struct device *dev) 1918 { 1919 struct driver_data *drv_data = dev_get_drvdata(dev); 1920 1921 clk_disable_unprepare(drv_data->ssp->clk); 1922 return 0; 1923 } 1924 1925 static int pxa2xx_spi_runtime_resume(struct device *dev) 1926 { 1927 struct driver_data *drv_data = dev_get_drvdata(dev); 1928 int status; 1929 1930 status = clk_prepare_enable(drv_data->ssp->clk); 1931 return status; 1932 } 1933 #endif 1934 1935 static const struct dev_pm_ops pxa2xx_spi_pm_ops = { 1936 SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume) 1937 SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend, 1938 pxa2xx_spi_runtime_resume, NULL) 1939 }; 1940 1941 static struct platform_driver driver = { 1942 .driver = { 1943 .name = "pxa2xx-spi", 1944 .pm = &pxa2xx_spi_pm_ops, 1945 .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match), 1946 .of_match_table = of_match_ptr(pxa2xx_spi_of_match), 1947 }, 1948 .probe = pxa2xx_spi_probe, 1949 .remove = pxa2xx_spi_remove, 1950 }; 1951 1952 static int __init pxa2xx_spi_init(void) 1953 { 1954 return platform_driver_register(&driver); 1955 } 1956 subsys_initcall(pxa2xx_spi_init); 1957 1958 static void __exit pxa2xx_spi_exit(void) 1959 { 1960 platform_driver_unregister(&driver); 1961 } 1962 module_exit(pxa2xx_spi_exit); 1963 1964 MODULE_SOFTDEP("pre: dw_dmac"); 1965