xref: /openbmc/linux/drivers/spi/spi-pxa2xx.c (revision 4fc4dca8)
1 /*
2  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
3  * Copyright (C) 2013, Intel Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/bitops.h>
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/device.h>
20 #include <linux/ioport.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/interrupt.h>
24 #include <linux/kernel.h>
25 #include <linux/pci.h>
26 #include <linux/platform_device.h>
27 #include <linux/spi/pxa2xx_spi.h>
28 #include <linux/spi/spi.h>
29 #include <linux/delay.h>
30 #include <linux/gpio.h>
31 #include <linux/gpio/consumer.h>
32 #include <linux/slab.h>
33 #include <linux/clk.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/acpi.h>
36 #include <linux/of_device.h>
37 
38 #include "spi-pxa2xx.h"
39 
40 MODULE_AUTHOR("Stephen Street");
41 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
42 MODULE_LICENSE("GPL");
43 MODULE_ALIAS("platform:pxa2xx-spi");
44 
45 #define TIMOUT_DFLT		1000
46 
47 /*
48  * for testing SSCR1 changes that require SSP restart, basically
49  * everything except the service and interrupt enables, the pxa270 developer
50  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
51  * list, but the PXA255 dev man says all bits without really meaning the
52  * service and interrupt enables
53  */
54 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
55 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
56 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
57 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
58 				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
59 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
60 
61 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
62 				| QUARK_X1000_SSCR1_EFWR	\
63 				| QUARK_X1000_SSCR1_RFT		\
64 				| QUARK_X1000_SSCR1_TFT		\
65 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
66 
67 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
68 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
69 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
70 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
71 				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
72 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
73 
74 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
75 #define LPSS_CS_CONTROL_SW_MODE			BIT(0)
76 #define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
77 #define LPSS_CAPS_CS_EN_SHIFT			9
78 #define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
79 
80 struct lpss_config {
81 	/* LPSS offset from drv_data->ioaddr */
82 	unsigned offset;
83 	/* Register offsets from drv_data->lpss_base or -1 */
84 	int reg_general;
85 	int reg_ssp;
86 	int reg_cs_ctrl;
87 	int reg_capabilities;
88 	/* FIFO thresholds */
89 	u32 rx_threshold;
90 	u32 tx_threshold_lo;
91 	u32 tx_threshold_hi;
92 	/* Chip select control */
93 	unsigned cs_sel_shift;
94 	unsigned cs_sel_mask;
95 	unsigned cs_num;
96 };
97 
98 /* Keep these sorted with enum pxa_ssp_type */
99 static const struct lpss_config lpss_platforms[] = {
100 	{	/* LPSS_LPT_SSP */
101 		.offset = 0x800,
102 		.reg_general = 0x08,
103 		.reg_ssp = 0x0c,
104 		.reg_cs_ctrl = 0x18,
105 		.reg_capabilities = -1,
106 		.rx_threshold = 64,
107 		.tx_threshold_lo = 160,
108 		.tx_threshold_hi = 224,
109 	},
110 	{	/* LPSS_BYT_SSP */
111 		.offset = 0x400,
112 		.reg_general = 0x08,
113 		.reg_ssp = 0x0c,
114 		.reg_cs_ctrl = 0x18,
115 		.reg_capabilities = -1,
116 		.rx_threshold = 64,
117 		.tx_threshold_lo = 160,
118 		.tx_threshold_hi = 224,
119 	},
120 	{	/* LPSS_BSW_SSP */
121 		.offset = 0x400,
122 		.reg_general = 0x08,
123 		.reg_ssp = 0x0c,
124 		.reg_cs_ctrl = 0x18,
125 		.reg_capabilities = -1,
126 		.rx_threshold = 64,
127 		.tx_threshold_lo = 160,
128 		.tx_threshold_hi = 224,
129 		.cs_sel_shift = 2,
130 		.cs_sel_mask = 1 << 2,
131 		.cs_num = 2,
132 	},
133 	{	/* LPSS_SPT_SSP */
134 		.offset = 0x200,
135 		.reg_general = -1,
136 		.reg_ssp = 0x20,
137 		.reg_cs_ctrl = 0x24,
138 		.reg_capabilities = -1,
139 		.rx_threshold = 1,
140 		.tx_threshold_lo = 32,
141 		.tx_threshold_hi = 56,
142 	},
143 	{	/* LPSS_BXT_SSP */
144 		.offset = 0x200,
145 		.reg_general = -1,
146 		.reg_ssp = 0x20,
147 		.reg_cs_ctrl = 0x24,
148 		.reg_capabilities = 0xfc,
149 		.rx_threshold = 1,
150 		.tx_threshold_lo = 16,
151 		.tx_threshold_hi = 48,
152 		.cs_sel_shift = 8,
153 		.cs_sel_mask = 3 << 8,
154 	},
155 	{	/* LPSS_CNL_SSP */
156 		.offset = 0x200,
157 		.reg_general = -1,
158 		.reg_ssp = 0x20,
159 		.reg_cs_ctrl = 0x24,
160 		.reg_capabilities = 0xfc,
161 		.rx_threshold = 1,
162 		.tx_threshold_lo = 32,
163 		.tx_threshold_hi = 56,
164 		.cs_sel_shift = 8,
165 		.cs_sel_mask = 3 << 8,
166 	},
167 };
168 
169 static inline const struct lpss_config
170 *lpss_get_config(const struct driver_data *drv_data)
171 {
172 	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
173 }
174 
175 static bool is_lpss_ssp(const struct driver_data *drv_data)
176 {
177 	switch (drv_data->ssp_type) {
178 	case LPSS_LPT_SSP:
179 	case LPSS_BYT_SSP:
180 	case LPSS_BSW_SSP:
181 	case LPSS_SPT_SSP:
182 	case LPSS_BXT_SSP:
183 	case LPSS_CNL_SSP:
184 		return true;
185 	default:
186 		return false;
187 	}
188 }
189 
190 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
191 {
192 	return drv_data->ssp_type == QUARK_X1000_SSP;
193 }
194 
195 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
196 {
197 	switch (drv_data->ssp_type) {
198 	case QUARK_X1000_SSP:
199 		return QUARK_X1000_SSCR1_CHANGE_MASK;
200 	case CE4100_SSP:
201 		return CE4100_SSCR1_CHANGE_MASK;
202 	default:
203 		return SSCR1_CHANGE_MASK;
204 	}
205 }
206 
207 static u32
208 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
209 {
210 	switch (drv_data->ssp_type) {
211 	case QUARK_X1000_SSP:
212 		return RX_THRESH_QUARK_X1000_DFLT;
213 	case CE4100_SSP:
214 		return RX_THRESH_CE4100_DFLT;
215 	default:
216 		return RX_THRESH_DFLT;
217 	}
218 }
219 
220 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
221 {
222 	u32 mask;
223 
224 	switch (drv_data->ssp_type) {
225 	case QUARK_X1000_SSP:
226 		mask = QUARK_X1000_SSSR_TFL_MASK;
227 		break;
228 	case CE4100_SSP:
229 		mask = CE4100_SSSR_TFL_MASK;
230 		break;
231 	default:
232 		mask = SSSR_TFL_MASK;
233 		break;
234 	}
235 
236 	return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
237 }
238 
239 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
240 				     u32 *sccr1_reg)
241 {
242 	u32 mask;
243 
244 	switch (drv_data->ssp_type) {
245 	case QUARK_X1000_SSP:
246 		mask = QUARK_X1000_SSCR1_RFT;
247 		break;
248 	case CE4100_SSP:
249 		mask = CE4100_SSCR1_RFT;
250 		break;
251 	default:
252 		mask = SSCR1_RFT;
253 		break;
254 	}
255 	*sccr1_reg &= ~mask;
256 }
257 
258 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
259 				   u32 *sccr1_reg, u32 threshold)
260 {
261 	switch (drv_data->ssp_type) {
262 	case QUARK_X1000_SSP:
263 		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
264 		break;
265 	case CE4100_SSP:
266 		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
267 		break;
268 	default:
269 		*sccr1_reg |= SSCR1_RxTresh(threshold);
270 		break;
271 	}
272 }
273 
274 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
275 				  u32 clk_div, u8 bits)
276 {
277 	switch (drv_data->ssp_type) {
278 	case QUARK_X1000_SSP:
279 		return clk_div
280 			| QUARK_X1000_SSCR0_Motorola
281 			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
282 			| SSCR0_SSE;
283 	default:
284 		return clk_div
285 			| SSCR0_Motorola
286 			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
287 			| SSCR0_SSE
288 			| (bits > 16 ? SSCR0_EDSS : 0);
289 	}
290 }
291 
292 /*
293  * Read and write LPSS SSP private registers. Caller must first check that
294  * is_lpss_ssp() returns true before these can be called.
295  */
296 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
297 {
298 	WARN_ON(!drv_data->lpss_base);
299 	return readl(drv_data->lpss_base + offset);
300 }
301 
302 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
303 				  unsigned offset, u32 value)
304 {
305 	WARN_ON(!drv_data->lpss_base);
306 	writel(value, drv_data->lpss_base + offset);
307 }
308 
309 /*
310  * lpss_ssp_setup - perform LPSS SSP specific setup
311  * @drv_data: pointer to the driver private data
312  *
313  * Perform LPSS SSP specific setup. This function must be called first if
314  * one is going to use LPSS SSP private registers.
315  */
316 static void lpss_ssp_setup(struct driver_data *drv_data)
317 {
318 	const struct lpss_config *config;
319 	u32 value;
320 
321 	config = lpss_get_config(drv_data);
322 	drv_data->lpss_base = drv_data->ioaddr + config->offset;
323 
324 	/* Enable software chip select control */
325 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
326 	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
327 	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
328 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
329 
330 	/* Enable multiblock DMA transfers */
331 	if (drv_data->controller_info->enable_dma) {
332 		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
333 
334 		if (config->reg_general >= 0) {
335 			value = __lpss_ssp_read_priv(drv_data,
336 						     config->reg_general);
337 			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
338 			__lpss_ssp_write_priv(drv_data,
339 					      config->reg_general, value);
340 		}
341 	}
342 }
343 
344 static void lpss_ssp_select_cs(struct spi_device *spi,
345 			       const struct lpss_config *config)
346 {
347 	struct driver_data *drv_data =
348 		spi_controller_get_devdata(spi->controller);
349 	u32 value, cs;
350 
351 	if (!config->cs_sel_mask)
352 		return;
353 
354 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
355 
356 	cs = spi->chip_select;
357 	cs <<= config->cs_sel_shift;
358 	if (cs != (value & config->cs_sel_mask)) {
359 		/*
360 		 * When switching another chip select output active the
361 		 * output must be selected first and wait 2 ssp_clk cycles
362 		 * before changing state to active. Otherwise a short
363 		 * glitch will occur on the previous chip select since
364 		 * output select is latched but state control is not.
365 		 */
366 		value &= ~config->cs_sel_mask;
367 		value |= cs;
368 		__lpss_ssp_write_priv(drv_data,
369 				      config->reg_cs_ctrl, value);
370 		ndelay(1000000000 /
371 		       (drv_data->controller->max_speed_hz / 2));
372 	}
373 }
374 
375 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
376 {
377 	struct driver_data *drv_data =
378 		spi_controller_get_devdata(spi->controller);
379 	const struct lpss_config *config;
380 	u32 value;
381 
382 	config = lpss_get_config(drv_data);
383 
384 	if (enable)
385 		lpss_ssp_select_cs(spi, config);
386 
387 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
388 	if (enable)
389 		value &= ~LPSS_CS_CONTROL_CS_HIGH;
390 	else
391 		value |= LPSS_CS_CONTROL_CS_HIGH;
392 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
393 }
394 
395 static void cs_assert(struct spi_device *spi)
396 {
397 	struct chip_data *chip = spi_get_ctldata(spi);
398 	struct driver_data *drv_data =
399 		spi_controller_get_devdata(spi->controller);
400 
401 	if (drv_data->ssp_type == CE4100_SSP) {
402 		pxa2xx_spi_write(drv_data, SSSR, chip->frm);
403 		return;
404 	}
405 
406 	if (chip->cs_control) {
407 		chip->cs_control(PXA2XX_CS_ASSERT);
408 		return;
409 	}
410 
411 	if (chip->gpiod_cs) {
412 		gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted);
413 		return;
414 	}
415 
416 	if (is_lpss_ssp(drv_data))
417 		lpss_ssp_cs_control(spi, true);
418 }
419 
420 static void cs_deassert(struct spi_device *spi)
421 {
422 	struct chip_data *chip = spi_get_ctldata(spi);
423 	struct driver_data *drv_data =
424 		spi_controller_get_devdata(spi->controller);
425 	unsigned long timeout;
426 
427 	if (drv_data->ssp_type == CE4100_SSP)
428 		return;
429 
430 	/* Wait until SSP becomes idle before deasserting the CS */
431 	timeout = jiffies + msecs_to_jiffies(10);
432 	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
433 	       !time_after(jiffies, timeout))
434 		cpu_relax();
435 
436 	if (chip->cs_control) {
437 		chip->cs_control(PXA2XX_CS_DEASSERT);
438 		return;
439 	}
440 
441 	if (chip->gpiod_cs) {
442 		gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted);
443 		return;
444 	}
445 
446 	if (is_lpss_ssp(drv_data))
447 		lpss_ssp_cs_control(spi, false);
448 }
449 
450 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
451 {
452 	if (level)
453 		cs_deassert(spi);
454 	else
455 		cs_assert(spi);
456 }
457 
458 int pxa2xx_spi_flush(struct driver_data *drv_data)
459 {
460 	unsigned long limit = loops_per_jiffy << 1;
461 
462 	do {
463 		while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
464 			pxa2xx_spi_read(drv_data, SSDR);
465 	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
466 	write_SSSR_CS(drv_data, SSSR_ROR);
467 
468 	return limit;
469 }
470 
471 static int null_writer(struct driver_data *drv_data)
472 {
473 	u8 n_bytes = drv_data->n_bytes;
474 
475 	if (pxa2xx_spi_txfifo_full(drv_data)
476 		|| (drv_data->tx == drv_data->tx_end))
477 		return 0;
478 
479 	pxa2xx_spi_write(drv_data, SSDR, 0);
480 	drv_data->tx += n_bytes;
481 
482 	return 1;
483 }
484 
485 static int null_reader(struct driver_data *drv_data)
486 {
487 	u8 n_bytes = drv_data->n_bytes;
488 
489 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
490 	       && (drv_data->rx < drv_data->rx_end)) {
491 		pxa2xx_spi_read(drv_data, SSDR);
492 		drv_data->rx += n_bytes;
493 	}
494 
495 	return drv_data->rx == drv_data->rx_end;
496 }
497 
498 static int u8_writer(struct driver_data *drv_data)
499 {
500 	if (pxa2xx_spi_txfifo_full(drv_data)
501 		|| (drv_data->tx == drv_data->tx_end))
502 		return 0;
503 
504 	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
505 	++drv_data->tx;
506 
507 	return 1;
508 }
509 
510 static int u8_reader(struct driver_data *drv_data)
511 {
512 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
513 	       && (drv_data->rx < drv_data->rx_end)) {
514 		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
515 		++drv_data->rx;
516 	}
517 
518 	return drv_data->rx == drv_data->rx_end;
519 }
520 
521 static int u16_writer(struct driver_data *drv_data)
522 {
523 	if (pxa2xx_spi_txfifo_full(drv_data)
524 		|| (drv_data->tx == drv_data->tx_end))
525 		return 0;
526 
527 	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
528 	drv_data->tx += 2;
529 
530 	return 1;
531 }
532 
533 static int u16_reader(struct driver_data *drv_data)
534 {
535 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
536 	       && (drv_data->rx < drv_data->rx_end)) {
537 		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
538 		drv_data->rx += 2;
539 	}
540 
541 	return drv_data->rx == drv_data->rx_end;
542 }
543 
544 static int u32_writer(struct driver_data *drv_data)
545 {
546 	if (pxa2xx_spi_txfifo_full(drv_data)
547 		|| (drv_data->tx == drv_data->tx_end))
548 		return 0;
549 
550 	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
551 	drv_data->tx += 4;
552 
553 	return 1;
554 }
555 
556 static int u32_reader(struct driver_data *drv_data)
557 {
558 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
559 	       && (drv_data->rx < drv_data->rx_end)) {
560 		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
561 		drv_data->rx += 4;
562 	}
563 
564 	return drv_data->rx == drv_data->rx_end;
565 }
566 
567 static void reset_sccr1(struct driver_data *drv_data)
568 {
569 	struct chip_data *chip =
570 		spi_get_ctldata(drv_data->controller->cur_msg->spi);
571 	u32 sccr1_reg;
572 
573 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
574 	switch (drv_data->ssp_type) {
575 	case QUARK_X1000_SSP:
576 		sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
577 		break;
578 	case CE4100_SSP:
579 		sccr1_reg &= ~CE4100_SSCR1_RFT;
580 		break;
581 	default:
582 		sccr1_reg &= ~SSCR1_RFT;
583 		break;
584 	}
585 	sccr1_reg |= chip->threshold;
586 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
587 }
588 
589 static void int_error_stop(struct driver_data *drv_data, const char* msg)
590 {
591 	/* Stop and reset SSP */
592 	write_SSSR_CS(drv_data, drv_data->clear_sr);
593 	reset_sccr1(drv_data);
594 	if (!pxa25x_ssp_comp(drv_data))
595 		pxa2xx_spi_write(drv_data, SSTO, 0);
596 	pxa2xx_spi_flush(drv_data);
597 	pxa2xx_spi_write(drv_data, SSCR0,
598 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
599 
600 	dev_err(&drv_data->pdev->dev, "%s\n", msg);
601 
602 	drv_data->controller->cur_msg->status = -EIO;
603 	spi_finalize_current_transfer(drv_data->controller);
604 }
605 
606 static void int_transfer_complete(struct driver_data *drv_data)
607 {
608 	/* Clear and disable interrupts */
609 	write_SSSR_CS(drv_data, drv_data->clear_sr);
610 	reset_sccr1(drv_data);
611 	if (!pxa25x_ssp_comp(drv_data))
612 		pxa2xx_spi_write(drv_data, SSTO, 0);
613 
614 	spi_finalize_current_transfer(drv_data->controller);
615 }
616 
617 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
618 {
619 	u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
620 		       drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
621 
622 	u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
623 
624 	if (irq_status & SSSR_ROR) {
625 		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
626 		return IRQ_HANDLED;
627 	}
628 
629 	if (irq_status & SSSR_TUR) {
630 		int_error_stop(drv_data, "interrupt_transfer: fifo underrun");
631 		return IRQ_HANDLED;
632 	}
633 
634 	if (irq_status & SSSR_TINT) {
635 		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
636 		if (drv_data->read(drv_data)) {
637 			int_transfer_complete(drv_data);
638 			return IRQ_HANDLED;
639 		}
640 	}
641 
642 	/* Drain rx fifo, Fill tx fifo and prevent overruns */
643 	do {
644 		if (drv_data->read(drv_data)) {
645 			int_transfer_complete(drv_data);
646 			return IRQ_HANDLED;
647 		}
648 	} while (drv_data->write(drv_data));
649 
650 	if (drv_data->read(drv_data)) {
651 		int_transfer_complete(drv_data);
652 		return IRQ_HANDLED;
653 	}
654 
655 	if (drv_data->tx == drv_data->tx_end) {
656 		u32 bytes_left;
657 		u32 sccr1_reg;
658 
659 		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
660 		sccr1_reg &= ~SSCR1_TIE;
661 
662 		/*
663 		 * PXA25x_SSP has no timeout, set up rx threshould for the
664 		 * remaining RX bytes.
665 		 */
666 		if (pxa25x_ssp_comp(drv_data)) {
667 			u32 rx_thre;
668 
669 			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
670 
671 			bytes_left = drv_data->rx_end - drv_data->rx;
672 			switch (drv_data->n_bytes) {
673 			case 4:
674 				bytes_left >>= 2;
675 				break;
676 			case 2:
677 				bytes_left >>= 1;
678 				break;
679 			}
680 
681 			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
682 			if (rx_thre > bytes_left)
683 				rx_thre = bytes_left;
684 
685 			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
686 		}
687 		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
688 	}
689 
690 	/* We did something */
691 	return IRQ_HANDLED;
692 }
693 
694 static void handle_bad_msg(struct driver_data *drv_data)
695 {
696 	pxa2xx_spi_write(drv_data, SSCR0,
697 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
698 	pxa2xx_spi_write(drv_data, SSCR1,
699 			 pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1);
700 	if (!pxa25x_ssp_comp(drv_data))
701 		pxa2xx_spi_write(drv_data, SSTO, 0);
702 	write_SSSR_CS(drv_data, drv_data->clear_sr);
703 
704 	dev_err(&drv_data->pdev->dev,
705 		"bad message state in interrupt handler\n");
706 }
707 
708 static irqreturn_t ssp_int(int irq, void *dev_id)
709 {
710 	struct driver_data *drv_data = dev_id;
711 	u32 sccr1_reg;
712 	u32 mask = drv_data->mask_sr;
713 	u32 status;
714 
715 	/*
716 	 * The IRQ might be shared with other peripherals so we must first
717 	 * check that are we RPM suspended or not. If we are we assume that
718 	 * the IRQ was not for us (we shouldn't be RPM suspended when the
719 	 * interrupt is enabled).
720 	 */
721 	if (pm_runtime_suspended(&drv_data->pdev->dev))
722 		return IRQ_NONE;
723 
724 	/*
725 	 * If the device is not yet in RPM suspended state and we get an
726 	 * interrupt that is meant for another device, check if status bits
727 	 * are all set to one. That means that the device is already
728 	 * powered off.
729 	 */
730 	status = pxa2xx_spi_read(drv_data, SSSR);
731 	if (status == ~0)
732 		return IRQ_NONE;
733 
734 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
735 
736 	/* Ignore possible writes if we don't need to write */
737 	if (!(sccr1_reg & SSCR1_TIE))
738 		mask &= ~SSSR_TFS;
739 
740 	/* Ignore RX timeout interrupt if it is disabled */
741 	if (!(sccr1_reg & SSCR1_TINTE))
742 		mask &= ~SSSR_TINT;
743 
744 	if (!(status & mask))
745 		return IRQ_NONE;
746 
747 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
748 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
749 
750 	if (!drv_data->controller->cur_msg) {
751 		handle_bad_msg(drv_data);
752 		/* Never fail */
753 		return IRQ_HANDLED;
754 	}
755 
756 	return drv_data->transfer_handler(drv_data);
757 }
758 
759 /*
760  * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
761  * input frequency by fractions of 2^24. It also has a divider by 5.
762  *
763  * There are formulas to get baud rate value for given input frequency and
764  * divider parameters, such as DDS_CLK_RATE and SCR:
765  *
766  * Fsys = 200MHz
767  *
768  * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
769  * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
770  *
771  * DDS_CLK_RATE either 2^n or 2^n / 5.
772  * SCR is in range 0 .. 255
773  *
774  * Divisor = 5^i * 2^j * 2 * k
775  *       i = [0, 1]      i = 1 iff j = 0 or j > 3
776  *       j = [0, 23]     j = 0 iff i = 1
777  *       k = [1, 256]
778  * Special case: j = 0, i = 1: Divisor = 2 / 5
779  *
780  * Accordingly to the specification the recommended values for DDS_CLK_RATE
781  * are:
782  *	Case 1:		2^n, n = [0, 23]
783  *	Case 2:		2^24 * 2 / 5 (0x666666)
784  *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
785  *
786  * In all cases the lowest possible value is better.
787  *
788  * The function calculates parameters for all cases and chooses the one closest
789  * to the asked baud rate.
790  */
791 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
792 {
793 	unsigned long xtal = 200000000;
794 	unsigned long fref = xtal / 2;		/* mandatory division by 2,
795 						   see (2) */
796 						/* case 3 */
797 	unsigned long fref1 = fref / 2;		/* case 1 */
798 	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
799 	unsigned long scale;
800 	unsigned long q, q1, q2;
801 	long r, r1, r2;
802 	u32 mul;
803 
804 	/* Case 1 */
805 
806 	/* Set initial value for DDS_CLK_RATE */
807 	mul = (1 << 24) >> 1;
808 
809 	/* Calculate initial quot */
810 	q1 = DIV_ROUND_UP(fref1, rate);
811 
812 	/* Scale q1 if it's too big */
813 	if (q1 > 256) {
814 		/* Scale q1 to range [1, 512] */
815 		scale = fls_long(q1 - 1);
816 		if (scale > 9) {
817 			q1 >>= scale - 9;
818 			mul >>= scale - 9;
819 		}
820 
821 		/* Round the result if we have a remainder */
822 		q1 += q1 & 1;
823 	}
824 
825 	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
826 	scale = __ffs(q1);
827 	q1 >>= scale;
828 	mul >>= scale;
829 
830 	/* Get the remainder */
831 	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
832 
833 	/* Case 2 */
834 
835 	q2 = DIV_ROUND_UP(fref2, rate);
836 	r2 = abs(fref2 / q2 - rate);
837 
838 	/*
839 	 * Choose the best between two: less remainder we have the better. We
840 	 * can't go case 2 if q2 is greater than 256 since SCR register can
841 	 * hold only values 0 .. 255.
842 	 */
843 	if (r2 >= r1 || q2 > 256) {
844 		/* case 1 is better */
845 		r = r1;
846 		q = q1;
847 	} else {
848 		/* case 2 is better */
849 		r = r2;
850 		q = q2;
851 		mul = (1 << 24) * 2 / 5;
852 	}
853 
854 	/* Check case 3 only if the divisor is big enough */
855 	if (fref / rate >= 80) {
856 		u64 fssp;
857 		u32 m;
858 
859 		/* Calculate initial quot */
860 		q1 = DIV_ROUND_UP(fref, rate);
861 		m = (1 << 24) / q1;
862 
863 		/* Get the remainder */
864 		fssp = (u64)fref * m;
865 		do_div(fssp, 1 << 24);
866 		r1 = abs(fssp - rate);
867 
868 		/* Choose this one if it suits better */
869 		if (r1 < r) {
870 			/* case 3 is better */
871 			q = 1;
872 			mul = m;
873 		}
874 	}
875 
876 	*dds = mul;
877 	return q - 1;
878 }
879 
880 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
881 {
882 	unsigned long ssp_clk = drv_data->controller->max_speed_hz;
883 	const struct ssp_device *ssp = drv_data->ssp;
884 
885 	rate = min_t(int, ssp_clk, rate);
886 
887 	/*
888 	 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
889 	 * that the SSP transmission rate can be greater than the device rate
890 	 */
891 	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
892 		return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
893 	else
894 		return (DIV_ROUND_UP(ssp_clk, rate) - 1)  & 0xfff;
895 }
896 
897 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
898 					   int rate)
899 {
900 	struct chip_data *chip =
901 		spi_get_ctldata(drv_data->controller->cur_msg->spi);
902 	unsigned int clk_div;
903 
904 	switch (drv_data->ssp_type) {
905 	case QUARK_X1000_SSP:
906 		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
907 		break;
908 	default:
909 		clk_div = ssp_get_clk_div(drv_data, rate);
910 		break;
911 	}
912 	return clk_div << 8;
913 }
914 
915 static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
916 			       struct spi_device *spi,
917 			       struct spi_transfer *xfer)
918 {
919 	struct chip_data *chip = spi_get_ctldata(spi);
920 
921 	return chip->enable_dma &&
922 	       xfer->len <= MAX_DMA_LEN &&
923 	       xfer->len >= chip->dma_burst_size;
924 }
925 
926 static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
927 				   struct spi_device *spi,
928 				   struct spi_transfer *transfer)
929 {
930 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
931 	struct spi_message *message = controller->cur_msg;
932 	struct chip_data *chip = spi_get_ctldata(spi);
933 	u32 dma_thresh = chip->dma_threshold;
934 	u32 dma_burst = chip->dma_burst_size;
935 	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
936 	u32 clk_div;
937 	u8 bits;
938 	u32 speed;
939 	u32 cr0;
940 	u32 cr1;
941 	int err;
942 	int dma_mapped;
943 
944 	/* Check if we can DMA this transfer */
945 	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
946 
947 		/* reject already-mapped transfers; PIO won't always work */
948 		if (message->is_dma_mapped
949 				|| transfer->rx_dma || transfer->tx_dma) {
950 			dev_err(&spi->dev,
951 				"Mapped transfer length of %u is greater than %d\n",
952 				transfer->len, MAX_DMA_LEN);
953 			return -EINVAL;
954 		}
955 
956 		/* warn ... we force this to PIO mode */
957 		dev_warn_ratelimited(&spi->dev,
958 				     "DMA disabled for transfer length %ld greater than %d\n",
959 				     (long)transfer->len, MAX_DMA_LEN);
960 	}
961 
962 	/* Setup the transfer state based on the type of transfer */
963 	if (pxa2xx_spi_flush(drv_data) == 0) {
964 		dev_err(&spi->dev, "Flush failed\n");
965 		return -EIO;
966 	}
967 	drv_data->n_bytes = chip->n_bytes;
968 	drv_data->tx = (void *)transfer->tx_buf;
969 	drv_data->tx_end = drv_data->tx + transfer->len;
970 	drv_data->rx = transfer->rx_buf;
971 	drv_data->rx_end = drv_data->rx + transfer->len;
972 	drv_data->write = drv_data->tx ? chip->write : null_writer;
973 	drv_data->read = drv_data->rx ? chip->read : null_reader;
974 
975 	/* Change speed and bit per word on a per transfer */
976 	bits = transfer->bits_per_word;
977 	speed = transfer->speed_hz;
978 
979 	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
980 
981 	if (bits <= 8) {
982 		drv_data->n_bytes = 1;
983 		drv_data->read = drv_data->read != null_reader ?
984 					u8_reader : null_reader;
985 		drv_data->write = drv_data->write != null_writer ?
986 					u8_writer : null_writer;
987 	} else if (bits <= 16) {
988 		drv_data->n_bytes = 2;
989 		drv_data->read = drv_data->read != null_reader ?
990 					u16_reader : null_reader;
991 		drv_data->write = drv_data->write != null_writer ?
992 					u16_writer : null_writer;
993 	} else if (bits <= 32) {
994 		drv_data->n_bytes = 4;
995 		drv_data->read = drv_data->read != null_reader ?
996 					u32_reader : null_reader;
997 		drv_data->write = drv_data->write != null_writer ?
998 					u32_writer : null_writer;
999 	}
1000 	/*
1001 	 * if bits/word is changed in dma mode, then must check the
1002 	 * thresholds and burst also
1003 	 */
1004 	if (chip->enable_dma) {
1005 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1006 						spi,
1007 						bits, &dma_burst,
1008 						&dma_thresh))
1009 			dev_warn_ratelimited(&spi->dev,
1010 					     "DMA burst size reduced to match bits_per_word\n");
1011 	}
1012 
1013 	dma_mapped = controller->can_dma &&
1014 		     controller->can_dma(controller, spi, transfer) &&
1015 		     controller->cur_msg_mapped;
1016 	if (dma_mapped) {
1017 
1018 		/* Ensure we have the correct interrupt handler */
1019 		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1020 
1021 		err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1022 		if (err)
1023 			return err;
1024 
1025 		/* Clear status and start DMA engine */
1026 		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1027 		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1028 
1029 		pxa2xx_spi_dma_start(drv_data);
1030 	} else {
1031 		/* Ensure we have the correct interrupt handler	*/
1032 		drv_data->transfer_handler = interrupt_transfer;
1033 
1034 		/* Clear status  */
1035 		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1036 		write_SSSR_CS(drv_data, drv_data->clear_sr);
1037 	}
1038 
1039 	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1040 	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1041 	if (!pxa25x_ssp_comp(drv_data))
1042 		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1043 			controller->max_speed_hz
1044 				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1045 			dma_mapped ? "DMA" : "PIO");
1046 	else
1047 		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1048 			controller->max_speed_hz / 2
1049 				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1050 			dma_mapped ? "DMA" : "PIO");
1051 
1052 	if (is_lpss_ssp(drv_data)) {
1053 		if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1054 		    != chip->lpss_rx_threshold)
1055 			pxa2xx_spi_write(drv_data, SSIRF,
1056 					 chip->lpss_rx_threshold);
1057 		if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1058 		    != chip->lpss_tx_threshold)
1059 			pxa2xx_spi_write(drv_data, SSITF,
1060 					 chip->lpss_tx_threshold);
1061 	}
1062 
1063 	if (is_quark_x1000_ssp(drv_data) &&
1064 	    (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1065 		pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1066 
1067 	/* see if we need to reload the config registers */
1068 	if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1069 	    || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1070 	    != (cr1 & change_mask)) {
1071 		/* stop the SSP, and update the other bits */
1072 		pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1073 		if (!pxa25x_ssp_comp(drv_data))
1074 			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1075 		/* first set CR1 without interrupt and service enables */
1076 		pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1077 		/* restart the SSP */
1078 		pxa2xx_spi_write(drv_data, SSCR0, cr0);
1079 
1080 	} else {
1081 		if (!pxa25x_ssp_comp(drv_data))
1082 			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1083 	}
1084 
1085 	if (drv_data->ssp_type == MMP2_SSP) {
1086 		u8 tx_level = (pxa2xx_spi_read(drv_data, SSSR)
1087 					& SSSR_TFL_MASK) >> 8;
1088 
1089 		if (tx_level) {
1090 			/* On MMP2, flipping SSE doesn't to empty TXFIFO. */
1091 			dev_warn(&spi->dev, "%d bytes of garbage in TXFIFO!\n",
1092 								tx_level);
1093 			if (tx_level > transfer->len)
1094 				tx_level = transfer->len;
1095 			drv_data->tx += tx_level;
1096 		}
1097 	}
1098 
1099 	if (spi_controller_is_slave(controller)) {
1100 		while (drv_data->write(drv_data))
1101 			;
1102 		if (drv_data->gpiod_ready) {
1103 			gpiod_set_value(drv_data->gpiod_ready, 1);
1104 			udelay(1);
1105 			gpiod_set_value(drv_data->gpiod_ready, 0);
1106 		}
1107 	}
1108 
1109 	/*
1110 	 * Release the data by enabling service requests and interrupts,
1111 	 * without changing any mode bits
1112 	 */
1113 	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1114 
1115 	return 1;
1116 }
1117 
1118 static int pxa2xx_spi_slave_abort(struct spi_controller *controller)
1119 {
1120 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1121 
1122 	/* Stop and reset SSP */
1123 	write_SSSR_CS(drv_data, drv_data->clear_sr);
1124 	reset_sccr1(drv_data);
1125 	if (!pxa25x_ssp_comp(drv_data))
1126 		pxa2xx_spi_write(drv_data, SSTO, 0);
1127 	pxa2xx_spi_flush(drv_data);
1128 	pxa2xx_spi_write(drv_data, SSCR0,
1129 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1130 
1131 	dev_dbg(&drv_data->pdev->dev, "transfer aborted\n");
1132 
1133 	drv_data->controller->cur_msg->status = -EINTR;
1134 	spi_finalize_current_transfer(drv_data->controller);
1135 
1136 	return 0;
1137 }
1138 
1139 static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1140 				 struct spi_message *msg)
1141 {
1142 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1143 
1144 	/* Disable the SSP */
1145 	pxa2xx_spi_write(drv_data, SSCR0,
1146 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1147 	/* Clear and disable interrupts and service requests */
1148 	write_SSSR_CS(drv_data, drv_data->clear_sr);
1149 	pxa2xx_spi_write(drv_data, SSCR1,
1150 			 pxa2xx_spi_read(drv_data, SSCR1)
1151 			 & ~(drv_data->int_cr1 | drv_data->dma_cr1));
1152 	if (!pxa25x_ssp_comp(drv_data))
1153 		pxa2xx_spi_write(drv_data, SSTO, 0);
1154 
1155 	/*
1156 	 * Stop the DMA if running. Note DMA callback handler may have unset
1157 	 * the dma_running already, which is fine as stopping is not needed
1158 	 * then but we shouldn't rely this flag for anything else than
1159 	 * stopping. For instance to differentiate between PIO and DMA
1160 	 * transfers.
1161 	 */
1162 	if (atomic_read(&drv_data->dma_running))
1163 		pxa2xx_spi_dma_stop(drv_data);
1164 }
1165 
1166 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1167 {
1168 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1169 
1170 	/* Disable the SSP now */
1171 	pxa2xx_spi_write(drv_data, SSCR0,
1172 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1173 
1174 	return 0;
1175 }
1176 
1177 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1178 		    struct pxa2xx_spi_chip *chip_info)
1179 {
1180 	struct driver_data *drv_data =
1181 		spi_controller_get_devdata(spi->controller);
1182 	struct gpio_desc *gpiod;
1183 	int err = 0;
1184 
1185 	if (chip == NULL)
1186 		return 0;
1187 
1188 	if (drv_data->cs_gpiods) {
1189 		gpiod = drv_data->cs_gpiods[spi->chip_select];
1190 		if (gpiod) {
1191 			chip->gpiod_cs = gpiod;
1192 			chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1193 			gpiod_set_value(gpiod, chip->gpio_cs_inverted);
1194 		}
1195 
1196 		return 0;
1197 	}
1198 
1199 	if (chip_info == NULL)
1200 		return 0;
1201 
1202 	/* NOTE: setup() can be called multiple times, possibly with
1203 	 * different chip_info, release previously requested GPIO
1204 	 */
1205 	if (chip->gpiod_cs) {
1206 		gpiod_put(chip->gpiod_cs);
1207 		chip->gpiod_cs = NULL;
1208 	}
1209 
1210 	/* If (*cs_control) is provided, ignore GPIO chip select */
1211 	if (chip_info->cs_control) {
1212 		chip->cs_control = chip_info->cs_control;
1213 		return 0;
1214 	}
1215 
1216 	if (gpio_is_valid(chip_info->gpio_cs)) {
1217 		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1218 		if (err) {
1219 			dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1220 				chip_info->gpio_cs);
1221 			return err;
1222 		}
1223 
1224 		gpiod = gpio_to_desc(chip_info->gpio_cs);
1225 		chip->gpiod_cs = gpiod;
1226 		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1227 
1228 		err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted);
1229 	}
1230 
1231 	return err;
1232 }
1233 
1234 static int setup(struct spi_device *spi)
1235 {
1236 	struct pxa2xx_spi_chip *chip_info;
1237 	struct chip_data *chip;
1238 	const struct lpss_config *config;
1239 	struct driver_data *drv_data =
1240 		spi_controller_get_devdata(spi->controller);
1241 	uint tx_thres, tx_hi_thres, rx_thres;
1242 
1243 	switch (drv_data->ssp_type) {
1244 	case QUARK_X1000_SSP:
1245 		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1246 		tx_hi_thres = 0;
1247 		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1248 		break;
1249 	case CE4100_SSP:
1250 		tx_thres = TX_THRESH_CE4100_DFLT;
1251 		tx_hi_thres = 0;
1252 		rx_thres = RX_THRESH_CE4100_DFLT;
1253 		break;
1254 	case LPSS_LPT_SSP:
1255 	case LPSS_BYT_SSP:
1256 	case LPSS_BSW_SSP:
1257 	case LPSS_SPT_SSP:
1258 	case LPSS_BXT_SSP:
1259 	case LPSS_CNL_SSP:
1260 		config = lpss_get_config(drv_data);
1261 		tx_thres = config->tx_threshold_lo;
1262 		tx_hi_thres = config->tx_threshold_hi;
1263 		rx_thres = config->rx_threshold;
1264 		break;
1265 	default:
1266 		tx_hi_thres = 0;
1267 		if (spi_controller_is_slave(drv_data->controller)) {
1268 			tx_thres = 1;
1269 			rx_thres = 2;
1270 		} else {
1271 			tx_thres = TX_THRESH_DFLT;
1272 			rx_thres = RX_THRESH_DFLT;
1273 		}
1274 		break;
1275 	}
1276 
1277 	/* Only alloc on first setup */
1278 	chip = spi_get_ctldata(spi);
1279 	if (!chip) {
1280 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1281 		if (!chip)
1282 			return -ENOMEM;
1283 
1284 		if (drv_data->ssp_type == CE4100_SSP) {
1285 			if (spi->chip_select > 4) {
1286 				dev_err(&spi->dev,
1287 					"failed setup: cs number must not be > 4.\n");
1288 				kfree(chip);
1289 				return -EINVAL;
1290 			}
1291 
1292 			chip->frm = spi->chip_select;
1293 		}
1294 		chip->enable_dma = drv_data->controller_info->enable_dma;
1295 		chip->timeout = TIMOUT_DFLT;
1296 	}
1297 
1298 	/* protocol drivers may change the chip settings, so...
1299 	 * if chip_info exists, use it */
1300 	chip_info = spi->controller_data;
1301 
1302 	/* chip_info isn't always needed */
1303 	chip->cr1 = 0;
1304 	if (chip_info) {
1305 		if (chip_info->timeout)
1306 			chip->timeout = chip_info->timeout;
1307 		if (chip_info->tx_threshold)
1308 			tx_thres = chip_info->tx_threshold;
1309 		if (chip_info->tx_hi_threshold)
1310 			tx_hi_thres = chip_info->tx_hi_threshold;
1311 		if (chip_info->rx_threshold)
1312 			rx_thres = chip_info->rx_threshold;
1313 		chip->dma_threshold = 0;
1314 		if (chip_info->enable_loopback)
1315 			chip->cr1 = SSCR1_LBM;
1316 	}
1317 	if (spi_controller_is_slave(drv_data->controller)) {
1318 		chip->cr1 |= SSCR1_SCFR;
1319 		chip->cr1 |= SSCR1_SCLKDIR;
1320 		chip->cr1 |= SSCR1_SFRMDIR;
1321 		chip->cr1 |= SSCR1_SPH;
1322 	}
1323 
1324 	chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1325 	chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1326 				| SSITF_TxHiThresh(tx_hi_thres);
1327 
1328 	/* set dma burst and threshold outside of chip_info path so that if
1329 	 * chip_info goes away after setting chip->enable_dma, the
1330 	 * burst and threshold can still respond to changes in bits_per_word */
1331 	if (chip->enable_dma) {
1332 		/* set up legal burst and threshold for dma */
1333 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1334 						spi->bits_per_word,
1335 						&chip->dma_burst_size,
1336 						&chip->dma_threshold)) {
1337 			dev_warn(&spi->dev,
1338 				 "in setup: DMA burst size reduced to match bits_per_word\n");
1339 		}
1340 		dev_dbg(&spi->dev,
1341 			"in setup: DMA burst size set to %u\n",
1342 			chip->dma_burst_size);
1343 	}
1344 
1345 	switch (drv_data->ssp_type) {
1346 	case QUARK_X1000_SSP:
1347 		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1348 				   & QUARK_X1000_SSCR1_RFT)
1349 				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1350 				   & QUARK_X1000_SSCR1_TFT);
1351 		break;
1352 	case CE4100_SSP:
1353 		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1354 			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1355 		break;
1356 	default:
1357 		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1358 			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1359 		break;
1360 	}
1361 
1362 	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1363 	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1364 			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1365 
1366 	if (spi->mode & SPI_LOOP)
1367 		chip->cr1 |= SSCR1_LBM;
1368 
1369 	if (spi->bits_per_word <= 8) {
1370 		chip->n_bytes = 1;
1371 		chip->read = u8_reader;
1372 		chip->write = u8_writer;
1373 	} else if (spi->bits_per_word <= 16) {
1374 		chip->n_bytes = 2;
1375 		chip->read = u16_reader;
1376 		chip->write = u16_writer;
1377 	} else if (spi->bits_per_word <= 32) {
1378 		chip->n_bytes = 4;
1379 		chip->read = u32_reader;
1380 		chip->write = u32_writer;
1381 	}
1382 
1383 	spi_set_ctldata(spi, chip);
1384 
1385 	if (drv_data->ssp_type == CE4100_SSP)
1386 		return 0;
1387 
1388 	return setup_cs(spi, chip, chip_info);
1389 }
1390 
1391 static void cleanup(struct spi_device *spi)
1392 {
1393 	struct chip_data *chip = spi_get_ctldata(spi);
1394 	struct driver_data *drv_data =
1395 		spi_controller_get_devdata(spi->controller);
1396 
1397 	if (!chip)
1398 		return;
1399 
1400 	if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
1401 	    chip->gpiod_cs)
1402 		gpiod_put(chip->gpiod_cs);
1403 
1404 	kfree(chip);
1405 }
1406 
1407 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1408 	{ "INT33C0", LPSS_LPT_SSP },
1409 	{ "INT33C1", LPSS_LPT_SSP },
1410 	{ "INT3430", LPSS_LPT_SSP },
1411 	{ "INT3431", LPSS_LPT_SSP },
1412 	{ "80860F0E", LPSS_BYT_SSP },
1413 	{ "8086228E", LPSS_BSW_SSP },
1414 	{ },
1415 };
1416 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1417 
1418 /*
1419  * PCI IDs of compound devices that integrate both host controller and private
1420  * integrated DMA engine. Please note these are not used in module
1421  * autoloading and probing in this module but matching the LPSS SSP type.
1422  */
1423 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1424 	/* SPT-LP */
1425 	{ PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1426 	{ PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1427 	/* SPT-H */
1428 	{ PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1429 	{ PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1430 	/* KBL-H */
1431 	{ PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1432 	{ PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1433 	/* BXT A-Step */
1434 	{ PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1435 	{ PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1436 	{ PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1437 	/* BXT B-Step */
1438 	{ PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1439 	{ PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1440 	{ PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1441 	/* GLK */
1442 	{ PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1443 	{ PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1444 	{ PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1445 	/* ICL-LP */
1446 	{ PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP },
1447 	{ PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP },
1448 	{ PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP },
1449 	/* APL */
1450 	{ PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1451 	{ PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1452 	{ PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1453 	/* CNL-LP */
1454 	{ PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1455 	{ PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1456 	{ PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1457 	/* CNL-H */
1458 	{ PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1459 	{ PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1460 	{ PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1461 	/* CML-LP */
1462 	{ PCI_VDEVICE(INTEL, 0x02aa), LPSS_CNL_SSP },
1463 	{ PCI_VDEVICE(INTEL, 0x02ab), LPSS_CNL_SSP },
1464 	{ PCI_VDEVICE(INTEL, 0x02fb), LPSS_CNL_SSP },
1465 	{ },
1466 };
1467 
1468 static const struct of_device_id pxa2xx_spi_of_match[] = {
1469 	{ .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1470 	{},
1471 };
1472 MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1473 
1474 #ifdef CONFIG_ACPI
1475 
1476 static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1477 {
1478 	unsigned int devid;
1479 	int port_id = -1;
1480 
1481 	if (adev && adev->pnp.unique_id &&
1482 	    !kstrtouint(adev->pnp.unique_id, 0, &devid))
1483 		port_id = devid;
1484 	return port_id;
1485 }
1486 
1487 #else /* !CONFIG_ACPI */
1488 
1489 static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1490 {
1491 	return -1;
1492 }
1493 
1494 #endif /* CONFIG_ACPI */
1495 
1496 
1497 #ifdef CONFIG_PCI
1498 
1499 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1500 {
1501 	return param == chan->device->dev;
1502 }
1503 
1504 #endif /* CONFIG_PCI */
1505 
1506 static struct pxa2xx_spi_controller *
1507 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1508 {
1509 	struct pxa2xx_spi_controller *pdata;
1510 	struct acpi_device *adev;
1511 	struct ssp_device *ssp;
1512 	struct resource *res;
1513 	const struct acpi_device_id *adev_id = NULL;
1514 	const struct pci_device_id *pcidev_id = NULL;
1515 	const struct of_device_id *of_id = NULL;
1516 	enum pxa_ssp_type type;
1517 
1518 	adev = ACPI_COMPANION(&pdev->dev);
1519 
1520 	if (pdev->dev.of_node)
1521 		of_id = of_match_device(pdev->dev.driver->of_match_table,
1522 					&pdev->dev);
1523 	else if (dev_is_pci(pdev->dev.parent))
1524 		pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match,
1525 					 to_pci_dev(pdev->dev.parent));
1526 	else if (adev)
1527 		adev_id = acpi_match_device(pdev->dev.driver->acpi_match_table,
1528 					    &pdev->dev);
1529 	else
1530 		return NULL;
1531 
1532 	if (adev_id)
1533 		type = (enum pxa_ssp_type)adev_id->driver_data;
1534 	else if (pcidev_id)
1535 		type = (enum pxa_ssp_type)pcidev_id->driver_data;
1536 	else if (of_id)
1537 		type = (enum pxa_ssp_type)of_id->data;
1538 	else
1539 		return NULL;
1540 
1541 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1542 	if (!pdata)
1543 		return NULL;
1544 
1545 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1546 	if (!res)
1547 		return NULL;
1548 
1549 	ssp = &pdata->ssp;
1550 
1551 	ssp->phys_base = res->start;
1552 	ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1553 	if (IS_ERR(ssp->mmio_base))
1554 		return NULL;
1555 
1556 #ifdef CONFIG_PCI
1557 	if (pcidev_id) {
1558 		pdata->tx_param = pdev->dev.parent;
1559 		pdata->rx_param = pdev->dev.parent;
1560 		pdata->dma_filter = pxa2xx_spi_idma_filter;
1561 	}
1562 #endif
1563 
1564 	ssp->clk = devm_clk_get(&pdev->dev, NULL);
1565 	ssp->irq = platform_get_irq(pdev, 0);
1566 	ssp->type = type;
1567 	ssp->pdev = pdev;
1568 	ssp->port_id = pxa2xx_spi_get_port_id(adev);
1569 
1570 	pdata->is_slave = of_property_read_bool(pdev->dev.of_node, "spi-slave");
1571 	pdata->num_chipselect = 1;
1572 	pdata->enable_dma = true;
1573 	pdata->dma_burst_size = 1;
1574 
1575 	return pdata;
1576 }
1577 
1578 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1579 				      unsigned int cs)
1580 {
1581 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1582 
1583 	if (has_acpi_companion(&drv_data->pdev->dev)) {
1584 		switch (drv_data->ssp_type) {
1585 		/*
1586 		 * For Atoms the ACPI DeviceSelection used by the Windows
1587 		 * driver starts from 1 instead of 0 so translate it here
1588 		 * to match what Linux expects.
1589 		 */
1590 		case LPSS_BYT_SSP:
1591 		case LPSS_BSW_SSP:
1592 			return cs - 1;
1593 
1594 		default:
1595 			break;
1596 		}
1597 	}
1598 
1599 	return cs;
1600 }
1601 
1602 static int pxa2xx_spi_probe(struct platform_device *pdev)
1603 {
1604 	struct device *dev = &pdev->dev;
1605 	struct pxa2xx_spi_controller *platform_info;
1606 	struct spi_controller *controller;
1607 	struct driver_data *drv_data;
1608 	struct ssp_device *ssp;
1609 	const struct lpss_config *config;
1610 	int status, count;
1611 	u32 tmp;
1612 
1613 	platform_info = dev_get_platdata(dev);
1614 	if (!platform_info) {
1615 		platform_info = pxa2xx_spi_init_pdata(pdev);
1616 		if (!platform_info) {
1617 			dev_err(&pdev->dev, "missing platform data\n");
1618 			return -ENODEV;
1619 		}
1620 	}
1621 
1622 	ssp = pxa_ssp_request(pdev->id, pdev->name);
1623 	if (!ssp)
1624 		ssp = &platform_info->ssp;
1625 
1626 	if (!ssp->mmio_base) {
1627 		dev_err(&pdev->dev, "failed to get ssp\n");
1628 		return -ENODEV;
1629 	}
1630 
1631 	if (platform_info->is_slave)
1632 		controller = spi_alloc_slave(dev, sizeof(struct driver_data));
1633 	else
1634 		controller = spi_alloc_master(dev, sizeof(struct driver_data));
1635 
1636 	if (!controller) {
1637 		dev_err(&pdev->dev, "cannot alloc spi_controller\n");
1638 		pxa_ssp_free(ssp);
1639 		return -ENOMEM;
1640 	}
1641 	drv_data = spi_controller_get_devdata(controller);
1642 	drv_data->controller = controller;
1643 	drv_data->controller_info = platform_info;
1644 	drv_data->pdev = pdev;
1645 	drv_data->ssp = ssp;
1646 
1647 	controller->dev.of_node = pdev->dev.of_node;
1648 	/* the spi->mode bits understood by this driver: */
1649 	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1650 
1651 	controller->bus_num = ssp->port_id;
1652 	controller->dma_alignment = DMA_ALIGNMENT;
1653 	controller->cleanup = cleanup;
1654 	controller->setup = setup;
1655 	controller->set_cs = pxa2xx_spi_set_cs;
1656 	controller->transfer_one = pxa2xx_spi_transfer_one;
1657 	controller->slave_abort = pxa2xx_spi_slave_abort;
1658 	controller->handle_err = pxa2xx_spi_handle_err;
1659 	controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1660 	controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1661 	controller->auto_runtime_pm = true;
1662 	controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1663 
1664 	drv_data->ssp_type = ssp->type;
1665 
1666 	drv_data->ioaddr = ssp->mmio_base;
1667 	drv_data->ssdr_physical = ssp->phys_base + SSDR;
1668 	if (pxa25x_ssp_comp(drv_data)) {
1669 		switch (drv_data->ssp_type) {
1670 		case QUARK_X1000_SSP:
1671 			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1672 			break;
1673 		default:
1674 			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1675 			break;
1676 		}
1677 
1678 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1679 		drv_data->dma_cr1 = 0;
1680 		drv_data->clear_sr = SSSR_ROR;
1681 		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1682 	} else {
1683 		controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1684 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1685 		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1686 		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1687 		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1688 						| SSSR_ROR | SSSR_TUR;
1689 	}
1690 
1691 	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1692 			drv_data);
1693 	if (status < 0) {
1694 		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1695 		goto out_error_controller_alloc;
1696 	}
1697 
1698 	/* Setup DMA if requested */
1699 	if (platform_info->enable_dma) {
1700 		status = pxa2xx_spi_dma_setup(drv_data);
1701 		if (status) {
1702 			dev_warn(dev, "no DMA channels available, using PIO\n");
1703 			platform_info->enable_dma = false;
1704 		} else {
1705 			controller->can_dma = pxa2xx_spi_can_dma;
1706 			controller->max_dma_len = MAX_DMA_LEN;
1707 		}
1708 	}
1709 
1710 	/* Enable SOC clock */
1711 	status = clk_prepare_enable(ssp->clk);
1712 	if (status)
1713 		goto out_error_dma_irq_alloc;
1714 
1715 	controller->max_speed_hz = clk_get_rate(ssp->clk);
1716 
1717 	/* Load default SSP configuration */
1718 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1719 	switch (drv_data->ssp_type) {
1720 	case QUARK_X1000_SSP:
1721 		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1722 		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1723 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1724 
1725 		/* using the Motorola SPI protocol and use 8 bit frame */
1726 		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1727 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1728 		break;
1729 	case CE4100_SSP:
1730 		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1731 		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1732 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1733 		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1734 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1735 		break;
1736 	default:
1737 
1738 		if (spi_controller_is_slave(controller)) {
1739 			tmp = SSCR1_SCFR |
1740 			      SSCR1_SCLKDIR |
1741 			      SSCR1_SFRMDIR |
1742 			      SSCR1_RxTresh(2) |
1743 			      SSCR1_TxTresh(1) |
1744 			      SSCR1_SPH;
1745 		} else {
1746 			tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1747 			      SSCR1_TxTresh(TX_THRESH_DFLT);
1748 		}
1749 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1750 		tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1751 		if (!spi_controller_is_slave(controller))
1752 			tmp |= SSCR0_SCR(2);
1753 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1754 		break;
1755 	}
1756 
1757 	if (!pxa25x_ssp_comp(drv_data))
1758 		pxa2xx_spi_write(drv_data, SSTO, 0);
1759 
1760 	if (!is_quark_x1000_ssp(drv_data))
1761 		pxa2xx_spi_write(drv_data, SSPSP, 0);
1762 
1763 	if (is_lpss_ssp(drv_data)) {
1764 		lpss_ssp_setup(drv_data);
1765 		config = lpss_get_config(drv_data);
1766 		if (config->reg_capabilities >= 0) {
1767 			tmp = __lpss_ssp_read_priv(drv_data,
1768 						   config->reg_capabilities);
1769 			tmp &= LPSS_CAPS_CS_EN_MASK;
1770 			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1771 			platform_info->num_chipselect = ffz(tmp);
1772 		} else if (config->cs_num) {
1773 			platform_info->num_chipselect = config->cs_num;
1774 		}
1775 	}
1776 	controller->num_chipselect = platform_info->num_chipselect;
1777 
1778 	count = gpiod_count(&pdev->dev, "cs");
1779 	if (count > 0) {
1780 		int i;
1781 
1782 		controller->num_chipselect = max_t(int, count,
1783 			controller->num_chipselect);
1784 
1785 		drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
1786 			controller->num_chipselect, sizeof(struct gpio_desc *),
1787 			GFP_KERNEL);
1788 		if (!drv_data->cs_gpiods) {
1789 			status = -ENOMEM;
1790 			goto out_error_clock_enabled;
1791 		}
1792 
1793 		for (i = 0; i < controller->num_chipselect; i++) {
1794 			struct gpio_desc *gpiod;
1795 
1796 			gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1797 			if (IS_ERR(gpiod)) {
1798 				/* Means use native chip select */
1799 				if (PTR_ERR(gpiod) == -ENOENT)
1800 					continue;
1801 
1802 				status = PTR_ERR(gpiod);
1803 				goto out_error_clock_enabled;
1804 			} else {
1805 				drv_data->cs_gpiods[i] = gpiod;
1806 			}
1807 		}
1808 	}
1809 
1810 	if (platform_info->is_slave) {
1811 		drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1812 						"ready", GPIOD_OUT_LOW);
1813 		if (IS_ERR(drv_data->gpiod_ready)) {
1814 			status = PTR_ERR(drv_data->gpiod_ready);
1815 			goto out_error_clock_enabled;
1816 		}
1817 	}
1818 
1819 	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1820 	pm_runtime_use_autosuspend(&pdev->dev);
1821 	pm_runtime_set_active(&pdev->dev);
1822 	pm_runtime_enable(&pdev->dev);
1823 
1824 	/* Register with the SPI framework */
1825 	platform_set_drvdata(pdev, drv_data);
1826 	status = devm_spi_register_controller(&pdev->dev, controller);
1827 	if (status != 0) {
1828 		dev_err(&pdev->dev, "problem registering spi controller\n");
1829 		goto out_error_clock_enabled;
1830 	}
1831 
1832 	return status;
1833 
1834 out_error_clock_enabled:
1835 	pm_runtime_put_noidle(&pdev->dev);
1836 	pm_runtime_disable(&pdev->dev);
1837 	clk_disable_unprepare(ssp->clk);
1838 
1839 out_error_dma_irq_alloc:
1840 	pxa2xx_spi_dma_release(drv_data);
1841 	free_irq(ssp->irq, drv_data);
1842 
1843 out_error_controller_alloc:
1844 	spi_controller_put(controller);
1845 	pxa_ssp_free(ssp);
1846 	return status;
1847 }
1848 
1849 static int pxa2xx_spi_remove(struct platform_device *pdev)
1850 {
1851 	struct driver_data *drv_data = platform_get_drvdata(pdev);
1852 	struct ssp_device *ssp;
1853 
1854 	if (!drv_data)
1855 		return 0;
1856 	ssp = drv_data->ssp;
1857 
1858 	pm_runtime_get_sync(&pdev->dev);
1859 
1860 	/* Disable the SSP at the peripheral and SOC level */
1861 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1862 	clk_disable_unprepare(ssp->clk);
1863 
1864 	/* Release DMA */
1865 	if (drv_data->controller_info->enable_dma)
1866 		pxa2xx_spi_dma_release(drv_data);
1867 
1868 	pm_runtime_put_noidle(&pdev->dev);
1869 	pm_runtime_disable(&pdev->dev);
1870 
1871 	/* Release IRQ */
1872 	free_irq(ssp->irq, drv_data);
1873 
1874 	/* Release SSP */
1875 	pxa_ssp_free(ssp);
1876 
1877 	return 0;
1878 }
1879 
1880 #ifdef CONFIG_PM_SLEEP
1881 static int pxa2xx_spi_suspend(struct device *dev)
1882 {
1883 	struct driver_data *drv_data = dev_get_drvdata(dev);
1884 	struct ssp_device *ssp = drv_data->ssp;
1885 	int status;
1886 
1887 	status = spi_controller_suspend(drv_data->controller);
1888 	if (status != 0)
1889 		return status;
1890 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1891 
1892 	if (!pm_runtime_suspended(dev))
1893 		clk_disable_unprepare(ssp->clk);
1894 
1895 	return 0;
1896 }
1897 
1898 static int pxa2xx_spi_resume(struct device *dev)
1899 {
1900 	struct driver_data *drv_data = dev_get_drvdata(dev);
1901 	struct ssp_device *ssp = drv_data->ssp;
1902 	int status;
1903 
1904 	/* Enable the SSP clock */
1905 	if (!pm_runtime_suspended(dev)) {
1906 		status = clk_prepare_enable(ssp->clk);
1907 		if (status)
1908 			return status;
1909 	}
1910 
1911 	/* Start the queue running */
1912 	return spi_controller_resume(drv_data->controller);
1913 }
1914 #endif
1915 
1916 #ifdef CONFIG_PM
1917 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1918 {
1919 	struct driver_data *drv_data = dev_get_drvdata(dev);
1920 
1921 	clk_disable_unprepare(drv_data->ssp->clk);
1922 	return 0;
1923 }
1924 
1925 static int pxa2xx_spi_runtime_resume(struct device *dev)
1926 {
1927 	struct driver_data *drv_data = dev_get_drvdata(dev);
1928 	int status;
1929 
1930 	status = clk_prepare_enable(drv_data->ssp->clk);
1931 	return status;
1932 }
1933 #endif
1934 
1935 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1936 	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1937 	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1938 			   pxa2xx_spi_runtime_resume, NULL)
1939 };
1940 
1941 static struct platform_driver driver = {
1942 	.driver = {
1943 		.name	= "pxa2xx-spi",
1944 		.pm	= &pxa2xx_spi_pm_ops,
1945 		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1946 		.of_match_table = of_match_ptr(pxa2xx_spi_of_match),
1947 	},
1948 	.probe = pxa2xx_spi_probe,
1949 	.remove = pxa2xx_spi_remove,
1950 };
1951 
1952 static int __init pxa2xx_spi_init(void)
1953 {
1954 	return platform_driver_register(&driver);
1955 }
1956 subsys_initcall(pxa2xx_spi_init);
1957 
1958 static void __exit pxa2xx_spi_exit(void)
1959 {
1960 	platform_driver_unregister(&driver);
1961 }
1962 module_exit(pxa2xx_spi_exit);
1963 
1964 MODULE_SOFTDEP("pre: dw_dmac");
1965