1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs 4 * Copyright (C) 2013, Intel Corporation 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/bitops.h> 9 #include <linux/clk.h> 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/err.h> 13 #include <linux/errno.h> 14 #include <linux/gpio/consumer.h> 15 #include <linux/gpio.h> 16 #include <linux/init.h> 17 #include <linux/interrupt.h> 18 #include <linux/ioport.h> 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/mod_devicetable.h> 22 #include <linux/of.h> 23 #include <linux/pci.h> 24 #include <linux/platform_device.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/property.h> 27 #include <linux/slab.h> 28 #include <linux/spi/pxa2xx_spi.h> 29 #include <linux/spi/spi.h> 30 31 #include "spi-pxa2xx.h" 32 33 MODULE_AUTHOR("Stephen Street"); 34 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller"); 35 MODULE_LICENSE("GPL"); 36 MODULE_ALIAS("platform:pxa2xx-spi"); 37 38 #define TIMOUT_DFLT 1000 39 40 /* 41 * for testing SSCR1 changes that require SSP restart, basically 42 * everything except the service and interrupt enables, the pxa270 developer 43 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this 44 * list, but the PXA255 dev man says all bits without really meaning the 45 * service and interrupt enables 46 */ 47 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \ 48 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \ 49 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \ 50 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \ 51 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \ 52 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) 53 54 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \ 55 | QUARK_X1000_SSCR1_EFWR \ 56 | QUARK_X1000_SSCR1_RFT \ 57 | QUARK_X1000_SSCR1_TFT \ 58 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) 59 60 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \ 61 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \ 62 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \ 63 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \ 64 | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \ 65 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) 66 67 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24) 68 #define LPSS_CS_CONTROL_SW_MODE BIT(0) 69 #define LPSS_CS_CONTROL_CS_HIGH BIT(1) 70 #define LPSS_CAPS_CS_EN_SHIFT 9 71 #define LPSS_CAPS_CS_EN_MASK (0xf << LPSS_CAPS_CS_EN_SHIFT) 72 73 struct lpss_config { 74 /* LPSS offset from drv_data->ioaddr */ 75 unsigned offset; 76 /* Register offsets from drv_data->lpss_base or -1 */ 77 int reg_general; 78 int reg_ssp; 79 int reg_cs_ctrl; 80 int reg_capabilities; 81 /* FIFO thresholds */ 82 u32 rx_threshold; 83 u32 tx_threshold_lo; 84 u32 tx_threshold_hi; 85 /* Chip select control */ 86 unsigned cs_sel_shift; 87 unsigned cs_sel_mask; 88 unsigned cs_num; 89 }; 90 91 /* Keep these sorted with enum pxa_ssp_type */ 92 static const struct lpss_config lpss_platforms[] = { 93 { /* LPSS_LPT_SSP */ 94 .offset = 0x800, 95 .reg_general = 0x08, 96 .reg_ssp = 0x0c, 97 .reg_cs_ctrl = 0x18, 98 .reg_capabilities = -1, 99 .rx_threshold = 64, 100 .tx_threshold_lo = 160, 101 .tx_threshold_hi = 224, 102 }, 103 { /* LPSS_BYT_SSP */ 104 .offset = 0x400, 105 .reg_general = 0x08, 106 .reg_ssp = 0x0c, 107 .reg_cs_ctrl = 0x18, 108 .reg_capabilities = -1, 109 .rx_threshold = 64, 110 .tx_threshold_lo = 160, 111 .tx_threshold_hi = 224, 112 }, 113 { /* LPSS_BSW_SSP */ 114 .offset = 0x400, 115 .reg_general = 0x08, 116 .reg_ssp = 0x0c, 117 .reg_cs_ctrl = 0x18, 118 .reg_capabilities = -1, 119 .rx_threshold = 64, 120 .tx_threshold_lo = 160, 121 .tx_threshold_hi = 224, 122 .cs_sel_shift = 2, 123 .cs_sel_mask = 1 << 2, 124 .cs_num = 2, 125 }, 126 { /* LPSS_SPT_SSP */ 127 .offset = 0x200, 128 .reg_general = -1, 129 .reg_ssp = 0x20, 130 .reg_cs_ctrl = 0x24, 131 .reg_capabilities = -1, 132 .rx_threshold = 1, 133 .tx_threshold_lo = 32, 134 .tx_threshold_hi = 56, 135 }, 136 { /* LPSS_BXT_SSP */ 137 .offset = 0x200, 138 .reg_general = -1, 139 .reg_ssp = 0x20, 140 .reg_cs_ctrl = 0x24, 141 .reg_capabilities = 0xfc, 142 .rx_threshold = 1, 143 .tx_threshold_lo = 16, 144 .tx_threshold_hi = 48, 145 .cs_sel_shift = 8, 146 .cs_sel_mask = 3 << 8, 147 }, 148 { /* LPSS_CNL_SSP */ 149 .offset = 0x200, 150 .reg_general = -1, 151 .reg_ssp = 0x20, 152 .reg_cs_ctrl = 0x24, 153 .reg_capabilities = 0xfc, 154 .rx_threshold = 1, 155 .tx_threshold_lo = 32, 156 .tx_threshold_hi = 56, 157 .cs_sel_shift = 8, 158 .cs_sel_mask = 3 << 8, 159 }, 160 }; 161 162 static inline const struct lpss_config 163 *lpss_get_config(const struct driver_data *drv_data) 164 { 165 return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP]; 166 } 167 168 static bool is_lpss_ssp(const struct driver_data *drv_data) 169 { 170 switch (drv_data->ssp_type) { 171 case LPSS_LPT_SSP: 172 case LPSS_BYT_SSP: 173 case LPSS_BSW_SSP: 174 case LPSS_SPT_SSP: 175 case LPSS_BXT_SSP: 176 case LPSS_CNL_SSP: 177 return true; 178 default: 179 return false; 180 } 181 } 182 183 static bool is_quark_x1000_ssp(const struct driver_data *drv_data) 184 { 185 return drv_data->ssp_type == QUARK_X1000_SSP; 186 } 187 188 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data) 189 { 190 switch (drv_data->ssp_type) { 191 case QUARK_X1000_SSP: 192 return QUARK_X1000_SSCR1_CHANGE_MASK; 193 case CE4100_SSP: 194 return CE4100_SSCR1_CHANGE_MASK; 195 default: 196 return SSCR1_CHANGE_MASK; 197 } 198 } 199 200 static u32 201 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data) 202 { 203 switch (drv_data->ssp_type) { 204 case QUARK_X1000_SSP: 205 return RX_THRESH_QUARK_X1000_DFLT; 206 case CE4100_SSP: 207 return RX_THRESH_CE4100_DFLT; 208 default: 209 return RX_THRESH_DFLT; 210 } 211 } 212 213 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data) 214 { 215 u32 mask; 216 217 switch (drv_data->ssp_type) { 218 case QUARK_X1000_SSP: 219 mask = QUARK_X1000_SSSR_TFL_MASK; 220 break; 221 case CE4100_SSP: 222 mask = CE4100_SSSR_TFL_MASK; 223 break; 224 default: 225 mask = SSSR_TFL_MASK; 226 break; 227 } 228 229 return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask; 230 } 231 232 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data, 233 u32 *sccr1_reg) 234 { 235 u32 mask; 236 237 switch (drv_data->ssp_type) { 238 case QUARK_X1000_SSP: 239 mask = QUARK_X1000_SSCR1_RFT; 240 break; 241 case CE4100_SSP: 242 mask = CE4100_SSCR1_RFT; 243 break; 244 default: 245 mask = SSCR1_RFT; 246 break; 247 } 248 *sccr1_reg &= ~mask; 249 } 250 251 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data, 252 u32 *sccr1_reg, u32 threshold) 253 { 254 switch (drv_data->ssp_type) { 255 case QUARK_X1000_SSP: 256 *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold); 257 break; 258 case CE4100_SSP: 259 *sccr1_reg |= CE4100_SSCR1_RxTresh(threshold); 260 break; 261 default: 262 *sccr1_reg |= SSCR1_RxTresh(threshold); 263 break; 264 } 265 } 266 267 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data, 268 u32 clk_div, u8 bits) 269 { 270 switch (drv_data->ssp_type) { 271 case QUARK_X1000_SSP: 272 return clk_div 273 | QUARK_X1000_SSCR0_Motorola 274 | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits) 275 | SSCR0_SSE; 276 default: 277 return clk_div 278 | SSCR0_Motorola 279 | SSCR0_DataSize(bits > 16 ? bits - 16 : bits) 280 | SSCR0_SSE 281 | (bits > 16 ? SSCR0_EDSS : 0); 282 } 283 } 284 285 /* 286 * Read and write LPSS SSP private registers. Caller must first check that 287 * is_lpss_ssp() returns true before these can be called. 288 */ 289 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset) 290 { 291 WARN_ON(!drv_data->lpss_base); 292 return readl(drv_data->lpss_base + offset); 293 } 294 295 static void __lpss_ssp_write_priv(struct driver_data *drv_data, 296 unsigned offset, u32 value) 297 { 298 WARN_ON(!drv_data->lpss_base); 299 writel(value, drv_data->lpss_base + offset); 300 } 301 302 /* 303 * lpss_ssp_setup - perform LPSS SSP specific setup 304 * @drv_data: pointer to the driver private data 305 * 306 * Perform LPSS SSP specific setup. This function must be called first if 307 * one is going to use LPSS SSP private registers. 308 */ 309 static void lpss_ssp_setup(struct driver_data *drv_data) 310 { 311 const struct lpss_config *config; 312 u32 value; 313 314 config = lpss_get_config(drv_data); 315 drv_data->lpss_base = drv_data->ioaddr + config->offset; 316 317 /* Enable software chip select control */ 318 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); 319 value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH); 320 value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH; 321 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value); 322 323 /* Enable multiblock DMA transfers */ 324 if (drv_data->controller_info->enable_dma) { 325 __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1); 326 327 if (config->reg_general >= 0) { 328 value = __lpss_ssp_read_priv(drv_data, 329 config->reg_general); 330 value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE; 331 __lpss_ssp_write_priv(drv_data, 332 config->reg_general, value); 333 } 334 } 335 } 336 337 static void lpss_ssp_select_cs(struct spi_device *spi, 338 const struct lpss_config *config) 339 { 340 struct driver_data *drv_data = 341 spi_controller_get_devdata(spi->controller); 342 u32 value, cs; 343 344 if (!config->cs_sel_mask) 345 return; 346 347 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); 348 349 cs = spi->chip_select; 350 cs <<= config->cs_sel_shift; 351 if (cs != (value & config->cs_sel_mask)) { 352 /* 353 * When switching another chip select output active the 354 * output must be selected first and wait 2 ssp_clk cycles 355 * before changing state to active. Otherwise a short 356 * glitch will occur on the previous chip select since 357 * output select is latched but state control is not. 358 */ 359 value &= ~config->cs_sel_mask; 360 value |= cs; 361 __lpss_ssp_write_priv(drv_data, 362 config->reg_cs_ctrl, value); 363 ndelay(1000000000 / 364 (drv_data->controller->max_speed_hz / 2)); 365 } 366 } 367 368 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable) 369 { 370 struct driver_data *drv_data = 371 spi_controller_get_devdata(spi->controller); 372 const struct lpss_config *config; 373 u32 value; 374 375 config = lpss_get_config(drv_data); 376 377 if (enable) 378 lpss_ssp_select_cs(spi, config); 379 380 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); 381 if (enable) 382 value &= ~LPSS_CS_CONTROL_CS_HIGH; 383 else 384 value |= LPSS_CS_CONTROL_CS_HIGH; 385 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value); 386 } 387 388 static void cs_assert(struct spi_device *spi) 389 { 390 struct chip_data *chip = spi_get_ctldata(spi); 391 struct driver_data *drv_data = 392 spi_controller_get_devdata(spi->controller); 393 394 if (drv_data->ssp_type == CE4100_SSP) { 395 pxa2xx_spi_write(drv_data, SSSR, chip->frm); 396 return; 397 } 398 399 if (chip->cs_control) { 400 chip->cs_control(PXA2XX_CS_ASSERT); 401 return; 402 } 403 404 if (chip->gpiod_cs) { 405 gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted); 406 return; 407 } 408 409 if (is_lpss_ssp(drv_data)) 410 lpss_ssp_cs_control(spi, true); 411 } 412 413 static void cs_deassert(struct spi_device *spi) 414 { 415 struct chip_data *chip = spi_get_ctldata(spi); 416 struct driver_data *drv_data = 417 spi_controller_get_devdata(spi->controller); 418 unsigned long timeout; 419 420 if (drv_data->ssp_type == CE4100_SSP) 421 return; 422 423 /* Wait until SSP becomes idle before deasserting the CS */ 424 timeout = jiffies + msecs_to_jiffies(10); 425 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY && 426 !time_after(jiffies, timeout)) 427 cpu_relax(); 428 429 if (chip->cs_control) { 430 chip->cs_control(PXA2XX_CS_DEASSERT); 431 return; 432 } 433 434 if (chip->gpiod_cs) { 435 gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted); 436 return; 437 } 438 439 if (is_lpss_ssp(drv_data)) 440 lpss_ssp_cs_control(spi, false); 441 } 442 443 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level) 444 { 445 if (level) 446 cs_deassert(spi); 447 else 448 cs_assert(spi); 449 } 450 451 int pxa2xx_spi_flush(struct driver_data *drv_data) 452 { 453 unsigned long limit = loops_per_jiffy << 1; 454 455 do { 456 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 457 pxa2xx_spi_read(drv_data, SSDR); 458 } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit); 459 write_SSSR_CS(drv_data, SSSR_ROR); 460 461 return limit; 462 } 463 464 static void pxa2xx_spi_off(struct driver_data *drv_data) 465 { 466 /* On MMP, disabling SSE seems to corrupt the rx fifo */ 467 if (drv_data->ssp_type == MMP2_SSP) 468 return; 469 470 pxa2xx_spi_write(drv_data, SSCR0, 471 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE); 472 } 473 474 static int null_writer(struct driver_data *drv_data) 475 { 476 u8 n_bytes = drv_data->n_bytes; 477 478 if (pxa2xx_spi_txfifo_full(drv_data) 479 || (drv_data->tx == drv_data->tx_end)) 480 return 0; 481 482 pxa2xx_spi_write(drv_data, SSDR, 0); 483 drv_data->tx += n_bytes; 484 485 return 1; 486 } 487 488 static int null_reader(struct driver_data *drv_data) 489 { 490 u8 n_bytes = drv_data->n_bytes; 491 492 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 493 && (drv_data->rx < drv_data->rx_end)) { 494 pxa2xx_spi_read(drv_data, SSDR); 495 drv_data->rx += n_bytes; 496 } 497 498 return drv_data->rx == drv_data->rx_end; 499 } 500 501 static int u8_writer(struct driver_data *drv_data) 502 { 503 if (pxa2xx_spi_txfifo_full(drv_data) 504 || (drv_data->tx == drv_data->tx_end)) 505 return 0; 506 507 pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx)); 508 ++drv_data->tx; 509 510 return 1; 511 } 512 513 static int u8_reader(struct driver_data *drv_data) 514 { 515 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 516 && (drv_data->rx < drv_data->rx_end)) { 517 *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); 518 ++drv_data->rx; 519 } 520 521 return drv_data->rx == drv_data->rx_end; 522 } 523 524 static int u16_writer(struct driver_data *drv_data) 525 { 526 if (pxa2xx_spi_txfifo_full(drv_data) 527 || (drv_data->tx == drv_data->tx_end)) 528 return 0; 529 530 pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx)); 531 drv_data->tx += 2; 532 533 return 1; 534 } 535 536 static int u16_reader(struct driver_data *drv_data) 537 { 538 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 539 && (drv_data->rx < drv_data->rx_end)) { 540 *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); 541 drv_data->rx += 2; 542 } 543 544 return drv_data->rx == drv_data->rx_end; 545 } 546 547 static int u32_writer(struct driver_data *drv_data) 548 { 549 if (pxa2xx_spi_txfifo_full(drv_data) 550 || (drv_data->tx == drv_data->tx_end)) 551 return 0; 552 553 pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx)); 554 drv_data->tx += 4; 555 556 return 1; 557 } 558 559 static int u32_reader(struct driver_data *drv_data) 560 { 561 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 562 && (drv_data->rx < drv_data->rx_end)) { 563 *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); 564 drv_data->rx += 4; 565 } 566 567 return drv_data->rx == drv_data->rx_end; 568 } 569 570 static void reset_sccr1(struct driver_data *drv_data) 571 { 572 struct chip_data *chip = 573 spi_get_ctldata(drv_data->controller->cur_msg->spi); 574 u32 sccr1_reg; 575 576 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1; 577 switch (drv_data->ssp_type) { 578 case QUARK_X1000_SSP: 579 sccr1_reg &= ~QUARK_X1000_SSCR1_RFT; 580 break; 581 case CE4100_SSP: 582 sccr1_reg &= ~CE4100_SSCR1_RFT; 583 break; 584 default: 585 sccr1_reg &= ~SSCR1_RFT; 586 break; 587 } 588 sccr1_reg |= chip->threshold; 589 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); 590 } 591 592 static void int_error_stop(struct driver_data *drv_data, const char* msg) 593 { 594 /* Stop and reset SSP */ 595 write_SSSR_CS(drv_data, drv_data->clear_sr); 596 reset_sccr1(drv_data); 597 if (!pxa25x_ssp_comp(drv_data)) 598 pxa2xx_spi_write(drv_data, SSTO, 0); 599 pxa2xx_spi_flush(drv_data); 600 pxa2xx_spi_off(drv_data); 601 602 dev_err(&drv_data->pdev->dev, "%s\n", msg); 603 604 drv_data->controller->cur_msg->status = -EIO; 605 spi_finalize_current_transfer(drv_data->controller); 606 } 607 608 static void int_transfer_complete(struct driver_data *drv_data) 609 { 610 /* Clear and disable interrupts */ 611 write_SSSR_CS(drv_data, drv_data->clear_sr); 612 reset_sccr1(drv_data); 613 if (!pxa25x_ssp_comp(drv_data)) 614 pxa2xx_spi_write(drv_data, SSTO, 0); 615 616 spi_finalize_current_transfer(drv_data->controller); 617 } 618 619 static irqreturn_t interrupt_transfer(struct driver_data *drv_data) 620 { 621 u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ? 622 drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS; 623 624 u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask; 625 626 if (irq_status & SSSR_ROR) { 627 int_error_stop(drv_data, "interrupt_transfer: fifo overrun"); 628 return IRQ_HANDLED; 629 } 630 631 if (irq_status & SSSR_TUR) { 632 int_error_stop(drv_data, "interrupt_transfer: fifo underrun"); 633 return IRQ_HANDLED; 634 } 635 636 if (irq_status & SSSR_TINT) { 637 pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT); 638 if (drv_data->read(drv_data)) { 639 int_transfer_complete(drv_data); 640 return IRQ_HANDLED; 641 } 642 } 643 644 /* Drain rx fifo, Fill tx fifo and prevent overruns */ 645 do { 646 if (drv_data->read(drv_data)) { 647 int_transfer_complete(drv_data); 648 return IRQ_HANDLED; 649 } 650 } while (drv_data->write(drv_data)); 651 652 if (drv_data->read(drv_data)) { 653 int_transfer_complete(drv_data); 654 return IRQ_HANDLED; 655 } 656 657 if (drv_data->tx == drv_data->tx_end) { 658 u32 bytes_left; 659 u32 sccr1_reg; 660 661 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1); 662 sccr1_reg &= ~SSCR1_TIE; 663 664 /* 665 * PXA25x_SSP has no timeout, set up rx threshould for the 666 * remaining RX bytes. 667 */ 668 if (pxa25x_ssp_comp(drv_data)) { 669 u32 rx_thre; 670 671 pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg); 672 673 bytes_left = drv_data->rx_end - drv_data->rx; 674 switch (drv_data->n_bytes) { 675 case 4: 676 bytes_left >>= 2; 677 break; 678 case 2: 679 bytes_left >>= 1; 680 break; 681 } 682 683 rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data); 684 if (rx_thre > bytes_left) 685 rx_thre = bytes_left; 686 687 pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre); 688 } 689 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); 690 } 691 692 /* We did something */ 693 return IRQ_HANDLED; 694 } 695 696 static void handle_bad_msg(struct driver_data *drv_data) 697 { 698 pxa2xx_spi_off(drv_data); 699 pxa2xx_spi_write(drv_data, SSCR1, 700 pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1); 701 if (!pxa25x_ssp_comp(drv_data)) 702 pxa2xx_spi_write(drv_data, SSTO, 0); 703 write_SSSR_CS(drv_data, drv_data->clear_sr); 704 705 dev_err(&drv_data->pdev->dev, 706 "bad message state in interrupt handler\n"); 707 } 708 709 static irqreturn_t ssp_int(int irq, void *dev_id) 710 { 711 struct driver_data *drv_data = dev_id; 712 u32 sccr1_reg; 713 u32 mask = drv_data->mask_sr; 714 u32 status; 715 716 /* 717 * The IRQ might be shared with other peripherals so we must first 718 * check that are we RPM suspended or not. If we are we assume that 719 * the IRQ was not for us (we shouldn't be RPM suspended when the 720 * interrupt is enabled). 721 */ 722 if (pm_runtime_suspended(&drv_data->pdev->dev)) 723 return IRQ_NONE; 724 725 /* 726 * If the device is not yet in RPM suspended state and we get an 727 * interrupt that is meant for another device, check if status bits 728 * are all set to one. That means that the device is already 729 * powered off. 730 */ 731 status = pxa2xx_spi_read(drv_data, SSSR); 732 if (status == ~0) 733 return IRQ_NONE; 734 735 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1); 736 737 /* Ignore possible writes if we don't need to write */ 738 if (!(sccr1_reg & SSCR1_TIE)) 739 mask &= ~SSSR_TFS; 740 741 /* Ignore RX timeout interrupt if it is disabled */ 742 if (!(sccr1_reg & SSCR1_TINTE)) 743 mask &= ~SSSR_TINT; 744 745 if (!(status & mask)) 746 return IRQ_NONE; 747 748 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1); 749 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); 750 751 if (!drv_data->controller->cur_msg) { 752 handle_bad_msg(drv_data); 753 /* Never fail */ 754 return IRQ_HANDLED; 755 } 756 757 return drv_data->transfer_handler(drv_data); 758 } 759 760 /* 761 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply 762 * input frequency by fractions of 2^24. It also has a divider by 5. 763 * 764 * There are formulas to get baud rate value for given input frequency and 765 * divider parameters, such as DDS_CLK_RATE and SCR: 766 * 767 * Fsys = 200MHz 768 * 769 * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1) 770 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2) 771 * 772 * DDS_CLK_RATE either 2^n or 2^n / 5. 773 * SCR is in range 0 .. 255 774 * 775 * Divisor = 5^i * 2^j * 2 * k 776 * i = [0, 1] i = 1 iff j = 0 or j > 3 777 * j = [0, 23] j = 0 iff i = 1 778 * k = [1, 256] 779 * Special case: j = 0, i = 1: Divisor = 2 / 5 780 * 781 * Accordingly to the specification the recommended values for DDS_CLK_RATE 782 * are: 783 * Case 1: 2^n, n = [0, 23] 784 * Case 2: 2^24 * 2 / 5 (0x666666) 785 * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333) 786 * 787 * In all cases the lowest possible value is better. 788 * 789 * The function calculates parameters for all cases and chooses the one closest 790 * to the asked baud rate. 791 */ 792 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds) 793 { 794 unsigned long xtal = 200000000; 795 unsigned long fref = xtal / 2; /* mandatory division by 2, 796 see (2) */ 797 /* case 3 */ 798 unsigned long fref1 = fref / 2; /* case 1 */ 799 unsigned long fref2 = fref * 2 / 5; /* case 2 */ 800 unsigned long scale; 801 unsigned long q, q1, q2; 802 long r, r1, r2; 803 u32 mul; 804 805 /* Case 1 */ 806 807 /* Set initial value for DDS_CLK_RATE */ 808 mul = (1 << 24) >> 1; 809 810 /* Calculate initial quot */ 811 q1 = DIV_ROUND_UP(fref1, rate); 812 813 /* Scale q1 if it's too big */ 814 if (q1 > 256) { 815 /* Scale q1 to range [1, 512] */ 816 scale = fls_long(q1 - 1); 817 if (scale > 9) { 818 q1 >>= scale - 9; 819 mul >>= scale - 9; 820 } 821 822 /* Round the result if we have a remainder */ 823 q1 += q1 & 1; 824 } 825 826 /* Decrease DDS_CLK_RATE as much as we can without loss in precision */ 827 scale = __ffs(q1); 828 q1 >>= scale; 829 mul >>= scale; 830 831 /* Get the remainder */ 832 r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate); 833 834 /* Case 2 */ 835 836 q2 = DIV_ROUND_UP(fref2, rate); 837 r2 = abs(fref2 / q2 - rate); 838 839 /* 840 * Choose the best between two: less remainder we have the better. We 841 * can't go case 2 if q2 is greater than 256 since SCR register can 842 * hold only values 0 .. 255. 843 */ 844 if (r2 >= r1 || q2 > 256) { 845 /* case 1 is better */ 846 r = r1; 847 q = q1; 848 } else { 849 /* case 2 is better */ 850 r = r2; 851 q = q2; 852 mul = (1 << 24) * 2 / 5; 853 } 854 855 /* Check case 3 only if the divisor is big enough */ 856 if (fref / rate >= 80) { 857 u64 fssp; 858 u32 m; 859 860 /* Calculate initial quot */ 861 q1 = DIV_ROUND_UP(fref, rate); 862 m = (1 << 24) / q1; 863 864 /* Get the remainder */ 865 fssp = (u64)fref * m; 866 do_div(fssp, 1 << 24); 867 r1 = abs(fssp - rate); 868 869 /* Choose this one if it suits better */ 870 if (r1 < r) { 871 /* case 3 is better */ 872 q = 1; 873 mul = m; 874 } 875 } 876 877 *dds = mul; 878 return q - 1; 879 } 880 881 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate) 882 { 883 unsigned long ssp_clk = drv_data->controller->max_speed_hz; 884 const struct ssp_device *ssp = drv_data->ssp; 885 886 rate = min_t(int, ssp_clk, rate); 887 888 /* 889 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding 890 * that the SSP transmission rate can be greater than the device rate 891 */ 892 if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP) 893 return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff; 894 else 895 return (DIV_ROUND_UP(ssp_clk, rate) - 1) & 0xfff; 896 } 897 898 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data, 899 int rate) 900 { 901 struct chip_data *chip = 902 spi_get_ctldata(drv_data->controller->cur_msg->spi); 903 unsigned int clk_div; 904 905 switch (drv_data->ssp_type) { 906 case QUARK_X1000_SSP: 907 clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate); 908 break; 909 default: 910 clk_div = ssp_get_clk_div(drv_data, rate); 911 break; 912 } 913 return clk_div << 8; 914 } 915 916 static bool pxa2xx_spi_can_dma(struct spi_controller *controller, 917 struct spi_device *spi, 918 struct spi_transfer *xfer) 919 { 920 struct chip_data *chip = spi_get_ctldata(spi); 921 922 return chip->enable_dma && 923 xfer->len <= MAX_DMA_LEN && 924 xfer->len >= chip->dma_burst_size; 925 } 926 927 static int pxa2xx_spi_transfer_one(struct spi_controller *controller, 928 struct spi_device *spi, 929 struct spi_transfer *transfer) 930 { 931 struct driver_data *drv_data = spi_controller_get_devdata(controller); 932 struct spi_message *message = controller->cur_msg; 933 struct chip_data *chip = spi_get_ctldata(spi); 934 u32 dma_thresh = chip->dma_threshold; 935 u32 dma_burst = chip->dma_burst_size; 936 u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data); 937 u32 clk_div; 938 u8 bits; 939 u32 speed; 940 u32 cr0; 941 u32 cr1; 942 int err; 943 int dma_mapped; 944 945 /* Check if we can DMA this transfer */ 946 if (transfer->len > MAX_DMA_LEN && chip->enable_dma) { 947 948 /* reject already-mapped transfers; PIO won't always work */ 949 if (message->is_dma_mapped 950 || transfer->rx_dma || transfer->tx_dma) { 951 dev_err(&spi->dev, 952 "Mapped transfer length of %u is greater than %d\n", 953 transfer->len, MAX_DMA_LEN); 954 return -EINVAL; 955 } 956 957 /* warn ... we force this to PIO mode */ 958 dev_warn_ratelimited(&spi->dev, 959 "DMA disabled for transfer length %ld greater than %d\n", 960 (long)transfer->len, MAX_DMA_LEN); 961 } 962 963 /* Setup the transfer state based on the type of transfer */ 964 if (pxa2xx_spi_flush(drv_data) == 0) { 965 dev_err(&spi->dev, "Flush failed\n"); 966 return -EIO; 967 } 968 drv_data->n_bytes = chip->n_bytes; 969 drv_data->tx = (void *)transfer->tx_buf; 970 drv_data->tx_end = drv_data->tx + transfer->len; 971 drv_data->rx = transfer->rx_buf; 972 drv_data->rx_end = drv_data->rx + transfer->len; 973 drv_data->write = drv_data->tx ? chip->write : null_writer; 974 drv_data->read = drv_data->rx ? chip->read : null_reader; 975 976 /* Change speed and bit per word on a per transfer */ 977 bits = transfer->bits_per_word; 978 speed = transfer->speed_hz; 979 980 clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed); 981 982 if (bits <= 8) { 983 drv_data->n_bytes = 1; 984 drv_data->read = drv_data->read != null_reader ? 985 u8_reader : null_reader; 986 drv_data->write = drv_data->write != null_writer ? 987 u8_writer : null_writer; 988 } else if (bits <= 16) { 989 drv_data->n_bytes = 2; 990 drv_data->read = drv_data->read != null_reader ? 991 u16_reader : null_reader; 992 drv_data->write = drv_data->write != null_writer ? 993 u16_writer : null_writer; 994 } else if (bits <= 32) { 995 drv_data->n_bytes = 4; 996 drv_data->read = drv_data->read != null_reader ? 997 u32_reader : null_reader; 998 drv_data->write = drv_data->write != null_writer ? 999 u32_writer : null_writer; 1000 } 1001 /* 1002 * if bits/word is changed in dma mode, then must check the 1003 * thresholds and burst also 1004 */ 1005 if (chip->enable_dma) { 1006 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, 1007 spi, 1008 bits, &dma_burst, 1009 &dma_thresh)) 1010 dev_warn_ratelimited(&spi->dev, 1011 "DMA burst size reduced to match bits_per_word\n"); 1012 } 1013 1014 dma_mapped = controller->can_dma && 1015 controller->can_dma(controller, spi, transfer) && 1016 controller->cur_msg_mapped; 1017 if (dma_mapped) { 1018 1019 /* Ensure we have the correct interrupt handler */ 1020 drv_data->transfer_handler = pxa2xx_spi_dma_transfer; 1021 1022 err = pxa2xx_spi_dma_prepare(drv_data, transfer); 1023 if (err) 1024 return err; 1025 1026 /* Clear status and start DMA engine */ 1027 cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1; 1028 pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr); 1029 1030 pxa2xx_spi_dma_start(drv_data); 1031 } else { 1032 /* Ensure we have the correct interrupt handler */ 1033 drv_data->transfer_handler = interrupt_transfer; 1034 1035 /* Clear status */ 1036 cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1; 1037 write_SSSR_CS(drv_data, drv_data->clear_sr); 1038 } 1039 1040 /* NOTE: PXA25x_SSP _could_ use external clocking ... */ 1041 cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits); 1042 if (!pxa25x_ssp_comp(drv_data)) 1043 dev_dbg(&spi->dev, "%u Hz actual, %s\n", 1044 controller->max_speed_hz 1045 / (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)), 1046 dma_mapped ? "DMA" : "PIO"); 1047 else 1048 dev_dbg(&spi->dev, "%u Hz actual, %s\n", 1049 controller->max_speed_hz / 2 1050 / (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)), 1051 dma_mapped ? "DMA" : "PIO"); 1052 1053 if (is_lpss_ssp(drv_data)) { 1054 if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff) 1055 != chip->lpss_rx_threshold) 1056 pxa2xx_spi_write(drv_data, SSIRF, 1057 chip->lpss_rx_threshold); 1058 if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff) 1059 != chip->lpss_tx_threshold) 1060 pxa2xx_spi_write(drv_data, SSITF, 1061 chip->lpss_tx_threshold); 1062 } 1063 1064 if (is_quark_x1000_ssp(drv_data) && 1065 (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate)) 1066 pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate); 1067 1068 /* see if we need to reload the config registers */ 1069 if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0) 1070 || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask) 1071 != (cr1 & change_mask)) { 1072 /* stop the SSP, and update the other bits */ 1073 if (drv_data->ssp_type != MMP2_SSP) 1074 pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE); 1075 if (!pxa25x_ssp_comp(drv_data)) 1076 pxa2xx_spi_write(drv_data, SSTO, chip->timeout); 1077 /* first set CR1 without interrupt and service enables */ 1078 pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask); 1079 /* restart the SSP */ 1080 pxa2xx_spi_write(drv_data, SSCR0, cr0); 1081 1082 } else { 1083 if (!pxa25x_ssp_comp(drv_data)) 1084 pxa2xx_spi_write(drv_data, SSTO, chip->timeout); 1085 } 1086 1087 if (drv_data->ssp_type == MMP2_SSP) { 1088 u8 tx_level = (pxa2xx_spi_read(drv_data, SSSR) 1089 & SSSR_TFL_MASK) >> 8; 1090 1091 if (tx_level) { 1092 /* On MMP2, flipping SSE doesn't to empty TXFIFO. */ 1093 dev_warn(&spi->dev, "%d bytes of garbage in TXFIFO!\n", 1094 tx_level); 1095 if (tx_level > transfer->len) 1096 tx_level = transfer->len; 1097 drv_data->tx += tx_level; 1098 } 1099 } 1100 1101 if (spi_controller_is_slave(controller)) { 1102 while (drv_data->write(drv_data)) 1103 ; 1104 if (drv_data->gpiod_ready) { 1105 gpiod_set_value(drv_data->gpiod_ready, 1); 1106 udelay(1); 1107 gpiod_set_value(drv_data->gpiod_ready, 0); 1108 } 1109 } 1110 1111 /* 1112 * Release the data by enabling service requests and interrupts, 1113 * without changing any mode bits 1114 */ 1115 pxa2xx_spi_write(drv_data, SSCR1, cr1); 1116 1117 return 1; 1118 } 1119 1120 static int pxa2xx_spi_slave_abort(struct spi_controller *controller) 1121 { 1122 struct driver_data *drv_data = spi_controller_get_devdata(controller); 1123 1124 /* Stop and reset SSP */ 1125 write_SSSR_CS(drv_data, drv_data->clear_sr); 1126 reset_sccr1(drv_data); 1127 if (!pxa25x_ssp_comp(drv_data)) 1128 pxa2xx_spi_write(drv_data, SSTO, 0); 1129 pxa2xx_spi_flush(drv_data); 1130 pxa2xx_spi_off(drv_data); 1131 1132 dev_dbg(&drv_data->pdev->dev, "transfer aborted\n"); 1133 1134 drv_data->controller->cur_msg->status = -EINTR; 1135 spi_finalize_current_transfer(drv_data->controller); 1136 1137 return 0; 1138 } 1139 1140 static void pxa2xx_spi_handle_err(struct spi_controller *controller, 1141 struct spi_message *msg) 1142 { 1143 struct driver_data *drv_data = spi_controller_get_devdata(controller); 1144 1145 /* Disable the SSP */ 1146 pxa2xx_spi_off(drv_data); 1147 /* Clear and disable interrupts and service requests */ 1148 write_SSSR_CS(drv_data, drv_data->clear_sr); 1149 pxa2xx_spi_write(drv_data, SSCR1, 1150 pxa2xx_spi_read(drv_data, SSCR1) 1151 & ~(drv_data->int_cr1 | drv_data->dma_cr1)); 1152 if (!pxa25x_ssp_comp(drv_data)) 1153 pxa2xx_spi_write(drv_data, SSTO, 0); 1154 1155 /* 1156 * Stop the DMA if running. Note DMA callback handler may have unset 1157 * the dma_running already, which is fine as stopping is not needed 1158 * then but we shouldn't rely this flag for anything else than 1159 * stopping. For instance to differentiate between PIO and DMA 1160 * transfers. 1161 */ 1162 if (atomic_read(&drv_data->dma_running)) 1163 pxa2xx_spi_dma_stop(drv_data); 1164 } 1165 1166 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller) 1167 { 1168 struct driver_data *drv_data = spi_controller_get_devdata(controller); 1169 1170 /* Disable the SSP now */ 1171 pxa2xx_spi_off(drv_data); 1172 1173 return 0; 1174 } 1175 1176 static int setup_cs(struct spi_device *spi, struct chip_data *chip, 1177 struct pxa2xx_spi_chip *chip_info) 1178 { 1179 struct driver_data *drv_data = 1180 spi_controller_get_devdata(spi->controller); 1181 struct gpio_desc *gpiod; 1182 int err = 0; 1183 1184 if (chip == NULL) 1185 return 0; 1186 1187 if (drv_data->cs_gpiods) { 1188 gpiod = drv_data->cs_gpiods[spi->chip_select]; 1189 if (gpiod) { 1190 chip->gpiod_cs = gpiod; 1191 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH; 1192 gpiod_set_value(gpiod, chip->gpio_cs_inverted); 1193 } 1194 1195 return 0; 1196 } 1197 1198 if (chip_info == NULL) 1199 return 0; 1200 1201 /* NOTE: setup() can be called multiple times, possibly with 1202 * different chip_info, release previously requested GPIO 1203 */ 1204 if (chip->gpiod_cs) { 1205 gpiod_put(chip->gpiod_cs); 1206 chip->gpiod_cs = NULL; 1207 } 1208 1209 /* If (*cs_control) is provided, ignore GPIO chip select */ 1210 if (chip_info->cs_control) { 1211 chip->cs_control = chip_info->cs_control; 1212 return 0; 1213 } 1214 1215 if (gpio_is_valid(chip_info->gpio_cs)) { 1216 err = gpio_request(chip_info->gpio_cs, "SPI_CS"); 1217 if (err) { 1218 dev_err(&spi->dev, "failed to request chip select GPIO%d\n", 1219 chip_info->gpio_cs); 1220 return err; 1221 } 1222 1223 gpiod = gpio_to_desc(chip_info->gpio_cs); 1224 chip->gpiod_cs = gpiod; 1225 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH; 1226 1227 err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted); 1228 } 1229 1230 return err; 1231 } 1232 1233 static int setup(struct spi_device *spi) 1234 { 1235 struct pxa2xx_spi_chip *chip_info; 1236 struct chip_data *chip; 1237 const struct lpss_config *config; 1238 struct driver_data *drv_data = 1239 spi_controller_get_devdata(spi->controller); 1240 uint tx_thres, tx_hi_thres, rx_thres; 1241 1242 switch (drv_data->ssp_type) { 1243 case QUARK_X1000_SSP: 1244 tx_thres = TX_THRESH_QUARK_X1000_DFLT; 1245 tx_hi_thres = 0; 1246 rx_thres = RX_THRESH_QUARK_X1000_DFLT; 1247 break; 1248 case CE4100_SSP: 1249 tx_thres = TX_THRESH_CE4100_DFLT; 1250 tx_hi_thres = 0; 1251 rx_thres = RX_THRESH_CE4100_DFLT; 1252 break; 1253 case LPSS_LPT_SSP: 1254 case LPSS_BYT_SSP: 1255 case LPSS_BSW_SSP: 1256 case LPSS_SPT_SSP: 1257 case LPSS_BXT_SSP: 1258 case LPSS_CNL_SSP: 1259 config = lpss_get_config(drv_data); 1260 tx_thres = config->tx_threshold_lo; 1261 tx_hi_thres = config->tx_threshold_hi; 1262 rx_thres = config->rx_threshold; 1263 break; 1264 default: 1265 tx_hi_thres = 0; 1266 if (spi_controller_is_slave(drv_data->controller)) { 1267 tx_thres = 1; 1268 rx_thres = 2; 1269 } else { 1270 tx_thres = TX_THRESH_DFLT; 1271 rx_thres = RX_THRESH_DFLT; 1272 } 1273 break; 1274 } 1275 1276 /* Only alloc on first setup */ 1277 chip = spi_get_ctldata(spi); 1278 if (!chip) { 1279 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); 1280 if (!chip) 1281 return -ENOMEM; 1282 1283 if (drv_data->ssp_type == CE4100_SSP) { 1284 if (spi->chip_select > 4) { 1285 dev_err(&spi->dev, 1286 "failed setup: cs number must not be > 4.\n"); 1287 kfree(chip); 1288 return -EINVAL; 1289 } 1290 1291 chip->frm = spi->chip_select; 1292 } 1293 chip->enable_dma = drv_data->controller_info->enable_dma; 1294 chip->timeout = TIMOUT_DFLT; 1295 } 1296 1297 /* protocol drivers may change the chip settings, so... 1298 * if chip_info exists, use it */ 1299 chip_info = spi->controller_data; 1300 1301 /* chip_info isn't always needed */ 1302 chip->cr1 = 0; 1303 if (chip_info) { 1304 if (chip_info->timeout) 1305 chip->timeout = chip_info->timeout; 1306 if (chip_info->tx_threshold) 1307 tx_thres = chip_info->tx_threshold; 1308 if (chip_info->tx_hi_threshold) 1309 tx_hi_thres = chip_info->tx_hi_threshold; 1310 if (chip_info->rx_threshold) 1311 rx_thres = chip_info->rx_threshold; 1312 chip->dma_threshold = 0; 1313 if (chip_info->enable_loopback) 1314 chip->cr1 = SSCR1_LBM; 1315 } 1316 if (spi_controller_is_slave(drv_data->controller)) { 1317 chip->cr1 |= SSCR1_SCFR; 1318 chip->cr1 |= SSCR1_SCLKDIR; 1319 chip->cr1 |= SSCR1_SFRMDIR; 1320 chip->cr1 |= SSCR1_SPH; 1321 } 1322 1323 chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres); 1324 chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) 1325 | SSITF_TxHiThresh(tx_hi_thres); 1326 1327 /* set dma burst and threshold outside of chip_info path so that if 1328 * chip_info goes away after setting chip->enable_dma, the 1329 * burst and threshold can still respond to changes in bits_per_word */ 1330 if (chip->enable_dma) { 1331 /* set up legal burst and threshold for dma */ 1332 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi, 1333 spi->bits_per_word, 1334 &chip->dma_burst_size, 1335 &chip->dma_threshold)) { 1336 dev_warn(&spi->dev, 1337 "in setup: DMA burst size reduced to match bits_per_word\n"); 1338 } 1339 dev_dbg(&spi->dev, 1340 "in setup: DMA burst size set to %u\n", 1341 chip->dma_burst_size); 1342 } 1343 1344 switch (drv_data->ssp_type) { 1345 case QUARK_X1000_SSP: 1346 chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres) 1347 & QUARK_X1000_SSCR1_RFT) 1348 | (QUARK_X1000_SSCR1_TxTresh(tx_thres) 1349 & QUARK_X1000_SSCR1_TFT); 1350 break; 1351 case CE4100_SSP: 1352 chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) | 1353 (CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT); 1354 break; 1355 default: 1356 chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) | 1357 (SSCR1_TxTresh(tx_thres) & SSCR1_TFT); 1358 break; 1359 } 1360 1361 chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH); 1362 chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0) 1363 | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0); 1364 1365 if (spi->mode & SPI_LOOP) 1366 chip->cr1 |= SSCR1_LBM; 1367 1368 if (spi->bits_per_word <= 8) { 1369 chip->n_bytes = 1; 1370 chip->read = u8_reader; 1371 chip->write = u8_writer; 1372 } else if (spi->bits_per_word <= 16) { 1373 chip->n_bytes = 2; 1374 chip->read = u16_reader; 1375 chip->write = u16_writer; 1376 } else if (spi->bits_per_word <= 32) { 1377 chip->n_bytes = 4; 1378 chip->read = u32_reader; 1379 chip->write = u32_writer; 1380 } 1381 1382 spi_set_ctldata(spi, chip); 1383 1384 if (drv_data->ssp_type == CE4100_SSP) 1385 return 0; 1386 1387 return setup_cs(spi, chip, chip_info); 1388 } 1389 1390 static void cleanup(struct spi_device *spi) 1391 { 1392 struct chip_data *chip = spi_get_ctldata(spi); 1393 struct driver_data *drv_data = 1394 spi_controller_get_devdata(spi->controller); 1395 1396 if (!chip) 1397 return; 1398 1399 if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods && 1400 chip->gpiod_cs) 1401 gpiod_put(chip->gpiod_cs); 1402 1403 kfree(chip); 1404 } 1405 1406 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = { 1407 { "INT33C0", LPSS_LPT_SSP }, 1408 { "INT33C1", LPSS_LPT_SSP }, 1409 { "INT3430", LPSS_LPT_SSP }, 1410 { "INT3431", LPSS_LPT_SSP }, 1411 { "80860F0E", LPSS_BYT_SSP }, 1412 { "8086228E", LPSS_BSW_SSP }, 1413 { }, 1414 }; 1415 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match); 1416 1417 /* 1418 * PCI IDs of compound devices that integrate both host controller and private 1419 * integrated DMA engine. Please note these are not used in module 1420 * autoloading and probing in this module but matching the LPSS SSP type. 1421 */ 1422 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = { 1423 /* SPT-LP */ 1424 { PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP }, 1425 { PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP }, 1426 /* SPT-H */ 1427 { PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP }, 1428 { PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP }, 1429 /* KBL-H */ 1430 { PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP }, 1431 { PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP }, 1432 /* CML-V */ 1433 { PCI_VDEVICE(INTEL, 0xa3a9), LPSS_SPT_SSP }, 1434 { PCI_VDEVICE(INTEL, 0xa3aa), LPSS_SPT_SSP }, 1435 /* BXT A-Step */ 1436 { PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP }, 1437 { PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP }, 1438 { PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP }, 1439 /* BXT B-Step */ 1440 { PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP }, 1441 { PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP }, 1442 { PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP }, 1443 /* GLK */ 1444 { PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP }, 1445 { PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP }, 1446 { PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP }, 1447 /* ICL-LP */ 1448 { PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP }, 1449 { PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP }, 1450 { PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP }, 1451 /* EHL */ 1452 { PCI_VDEVICE(INTEL, 0x4b2a), LPSS_BXT_SSP }, 1453 { PCI_VDEVICE(INTEL, 0x4b2b), LPSS_BXT_SSP }, 1454 { PCI_VDEVICE(INTEL, 0x4b37), LPSS_BXT_SSP }, 1455 /* JSL */ 1456 { PCI_VDEVICE(INTEL, 0x4daa), LPSS_CNL_SSP }, 1457 { PCI_VDEVICE(INTEL, 0x4dab), LPSS_CNL_SSP }, 1458 { PCI_VDEVICE(INTEL, 0x4dfb), LPSS_CNL_SSP }, 1459 /* APL */ 1460 { PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP }, 1461 { PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP }, 1462 { PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP }, 1463 /* CNL-LP */ 1464 { PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP }, 1465 { PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP }, 1466 { PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP }, 1467 /* CNL-H */ 1468 { PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP }, 1469 { PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP }, 1470 { PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP }, 1471 /* CML-LP */ 1472 { PCI_VDEVICE(INTEL, 0x02aa), LPSS_CNL_SSP }, 1473 { PCI_VDEVICE(INTEL, 0x02ab), LPSS_CNL_SSP }, 1474 { PCI_VDEVICE(INTEL, 0x02fb), LPSS_CNL_SSP }, 1475 /* CML-H */ 1476 { PCI_VDEVICE(INTEL, 0x06aa), LPSS_CNL_SSP }, 1477 { PCI_VDEVICE(INTEL, 0x06ab), LPSS_CNL_SSP }, 1478 { PCI_VDEVICE(INTEL, 0x06fb), LPSS_CNL_SSP }, 1479 /* TGL-LP */ 1480 { PCI_VDEVICE(INTEL, 0xa0aa), LPSS_CNL_SSP }, 1481 { PCI_VDEVICE(INTEL, 0xa0ab), LPSS_CNL_SSP }, 1482 { PCI_VDEVICE(INTEL, 0xa0de), LPSS_CNL_SSP }, 1483 { PCI_VDEVICE(INTEL, 0xa0df), LPSS_CNL_SSP }, 1484 { PCI_VDEVICE(INTEL, 0xa0fb), LPSS_CNL_SSP }, 1485 { PCI_VDEVICE(INTEL, 0xa0fd), LPSS_CNL_SSP }, 1486 { PCI_VDEVICE(INTEL, 0xa0fe), LPSS_CNL_SSP }, 1487 { }, 1488 }; 1489 1490 static const struct of_device_id pxa2xx_spi_of_match[] = { 1491 { .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP }, 1492 {}, 1493 }; 1494 MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match); 1495 1496 #ifdef CONFIG_ACPI 1497 1498 static int pxa2xx_spi_get_port_id(struct device *dev) 1499 { 1500 struct acpi_device *adev; 1501 unsigned int devid; 1502 int port_id = -1; 1503 1504 adev = ACPI_COMPANION(dev); 1505 if (adev && adev->pnp.unique_id && 1506 !kstrtouint(adev->pnp.unique_id, 0, &devid)) 1507 port_id = devid; 1508 return port_id; 1509 } 1510 1511 #else /* !CONFIG_ACPI */ 1512 1513 static int pxa2xx_spi_get_port_id(struct device *dev) 1514 { 1515 return -1; 1516 } 1517 1518 #endif /* CONFIG_ACPI */ 1519 1520 1521 #ifdef CONFIG_PCI 1522 1523 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param) 1524 { 1525 return param == chan->device->dev; 1526 } 1527 1528 #endif /* CONFIG_PCI */ 1529 1530 static struct pxa2xx_spi_controller * 1531 pxa2xx_spi_init_pdata(struct platform_device *pdev) 1532 { 1533 struct pxa2xx_spi_controller *pdata; 1534 struct ssp_device *ssp; 1535 struct resource *res; 1536 struct device *parent = pdev->dev.parent; 1537 struct pci_dev *pcidev = dev_is_pci(parent) ? to_pci_dev(parent) : NULL; 1538 const struct pci_device_id *pcidev_id = NULL; 1539 enum pxa_ssp_type type; 1540 const void *match; 1541 1542 if (pcidev) 1543 pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match, pcidev); 1544 1545 match = device_get_match_data(&pdev->dev); 1546 if (match) 1547 type = (enum pxa_ssp_type)match; 1548 else if (pcidev_id) 1549 type = (enum pxa_ssp_type)pcidev_id->driver_data; 1550 else 1551 return NULL; 1552 1553 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); 1554 if (!pdata) 1555 return NULL; 1556 1557 ssp = &pdata->ssp; 1558 1559 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1560 ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res); 1561 if (IS_ERR(ssp->mmio_base)) 1562 return NULL; 1563 1564 ssp->phys_base = res->start; 1565 1566 #ifdef CONFIG_PCI 1567 if (pcidev_id) { 1568 pdata->tx_param = parent; 1569 pdata->rx_param = parent; 1570 pdata->dma_filter = pxa2xx_spi_idma_filter; 1571 } 1572 #endif 1573 1574 ssp->clk = devm_clk_get(&pdev->dev, NULL); 1575 if (IS_ERR(ssp->clk)) 1576 return NULL; 1577 1578 ssp->irq = platform_get_irq(pdev, 0); 1579 if (ssp->irq < 0) 1580 return NULL; 1581 1582 ssp->type = type; 1583 ssp->dev = &pdev->dev; 1584 ssp->port_id = pxa2xx_spi_get_port_id(&pdev->dev); 1585 1586 pdata->is_slave = device_property_read_bool(&pdev->dev, "spi-slave"); 1587 pdata->num_chipselect = 1; 1588 pdata->enable_dma = true; 1589 pdata->dma_burst_size = 1; 1590 1591 return pdata; 1592 } 1593 1594 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller, 1595 unsigned int cs) 1596 { 1597 struct driver_data *drv_data = spi_controller_get_devdata(controller); 1598 1599 if (has_acpi_companion(&drv_data->pdev->dev)) { 1600 switch (drv_data->ssp_type) { 1601 /* 1602 * For Atoms the ACPI DeviceSelection used by the Windows 1603 * driver starts from 1 instead of 0 so translate it here 1604 * to match what Linux expects. 1605 */ 1606 case LPSS_BYT_SSP: 1607 case LPSS_BSW_SSP: 1608 return cs - 1; 1609 1610 default: 1611 break; 1612 } 1613 } 1614 1615 return cs; 1616 } 1617 1618 static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi) 1619 { 1620 return MAX_DMA_LEN; 1621 } 1622 1623 static int pxa2xx_spi_probe(struct platform_device *pdev) 1624 { 1625 struct device *dev = &pdev->dev; 1626 struct pxa2xx_spi_controller *platform_info; 1627 struct spi_controller *controller; 1628 struct driver_data *drv_data; 1629 struct ssp_device *ssp; 1630 const struct lpss_config *config; 1631 int status, count; 1632 u32 tmp; 1633 1634 platform_info = dev_get_platdata(dev); 1635 if (!platform_info) { 1636 platform_info = pxa2xx_spi_init_pdata(pdev); 1637 if (!platform_info) { 1638 dev_err(&pdev->dev, "missing platform data\n"); 1639 return -ENODEV; 1640 } 1641 } 1642 1643 ssp = pxa_ssp_request(pdev->id, pdev->name); 1644 if (!ssp) 1645 ssp = &platform_info->ssp; 1646 1647 if (!ssp->mmio_base) { 1648 dev_err(&pdev->dev, "failed to get ssp\n"); 1649 return -ENODEV; 1650 } 1651 1652 if (platform_info->is_slave) 1653 controller = spi_alloc_slave(dev, sizeof(struct driver_data)); 1654 else 1655 controller = spi_alloc_master(dev, sizeof(struct driver_data)); 1656 1657 if (!controller) { 1658 dev_err(&pdev->dev, "cannot alloc spi_controller\n"); 1659 pxa_ssp_free(ssp); 1660 return -ENOMEM; 1661 } 1662 drv_data = spi_controller_get_devdata(controller); 1663 drv_data->controller = controller; 1664 drv_data->controller_info = platform_info; 1665 drv_data->pdev = pdev; 1666 drv_data->ssp = ssp; 1667 1668 controller->dev.of_node = pdev->dev.of_node; 1669 /* the spi->mode bits understood by this driver: */ 1670 controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP; 1671 1672 controller->bus_num = ssp->port_id; 1673 controller->dma_alignment = DMA_ALIGNMENT; 1674 controller->cleanup = cleanup; 1675 controller->setup = setup; 1676 controller->set_cs = pxa2xx_spi_set_cs; 1677 controller->transfer_one = pxa2xx_spi_transfer_one; 1678 controller->slave_abort = pxa2xx_spi_slave_abort; 1679 controller->handle_err = pxa2xx_spi_handle_err; 1680 controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer; 1681 controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs; 1682 controller->auto_runtime_pm = true; 1683 controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX; 1684 1685 drv_data->ssp_type = ssp->type; 1686 1687 drv_data->ioaddr = ssp->mmio_base; 1688 drv_data->ssdr_physical = ssp->phys_base + SSDR; 1689 if (pxa25x_ssp_comp(drv_data)) { 1690 switch (drv_data->ssp_type) { 1691 case QUARK_X1000_SSP: 1692 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 1693 break; 1694 default: 1695 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); 1696 break; 1697 } 1698 1699 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE; 1700 drv_data->dma_cr1 = 0; 1701 drv_data->clear_sr = SSSR_ROR; 1702 drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR; 1703 } else { 1704 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 1705 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE; 1706 drv_data->dma_cr1 = DEFAULT_DMA_CR1; 1707 drv_data->clear_sr = SSSR_ROR | SSSR_TINT; 1708 drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS 1709 | SSSR_ROR | SSSR_TUR; 1710 } 1711 1712 status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev), 1713 drv_data); 1714 if (status < 0) { 1715 dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq); 1716 goto out_error_controller_alloc; 1717 } 1718 1719 /* Setup DMA if requested */ 1720 if (platform_info->enable_dma) { 1721 status = pxa2xx_spi_dma_setup(drv_data); 1722 if (status) { 1723 dev_warn(dev, "no DMA channels available, using PIO\n"); 1724 platform_info->enable_dma = false; 1725 } else { 1726 controller->can_dma = pxa2xx_spi_can_dma; 1727 controller->max_dma_len = MAX_DMA_LEN; 1728 controller->max_transfer_size = 1729 pxa2xx_spi_max_dma_transfer_size; 1730 } 1731 } 1732 1733 /* Enable SOC clock */ 1734 status = clk_prepare_enable(ssp->clk); 1735 if (status) 1736 goto out_error_dma_irq_alloc; 1737 1738 controller->max_speed_hz = clk_get_rate(ssp->clk); 1739 /* 1740 * Set minimum speed for all other platforms than Intel Quark which is 1741 * able do under 1 Hz transfers. 1742 */ 1743 if (!pxa25x_ssp_comp(drv_data)) 1744 controller->min_speed_hz = 1745 DIV_ROUND_UP(controller->max_speed_hz, 4096); 1746 else if (!is_quark_x1000_ssp(drv_data)) 1747 controller->min_speed_hz = 1748 DIV_ROUND_UP(controller->max_speed_hz, 512); 1749 1750 /* Load default SSP configuration */ 1751 pxa2xx_spi_write(drv_data, SSCR0, 0); 1752 switch (drv_data->ssp_type) { 1753 case QUARK_X1000_SSP: 1754 tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) | 1755 QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT); 1756 pxa2xx_spi_write(drv_data, SSCR1, tmp); 1757 1758 /* using the Motorola SPI protocol and use 8 bit frame */ 1759 tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8); 1760 pxa2xx_spi_write(drv_data, SSCR0, tmp); 1761 break; 1762 case CE4100_SSP: 1763 tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) | 1764 CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT); 1765 pxa2xx_spi_write(drv_data, SSCR1, tmp); 1766 tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8); 1767 pxa2xx_spi_write(drv_data, SSCR0, tmp); 1768 break; 1769 default: 1770 1771 if (spi_controller_is_slave(controller)) { 1772 tmp = SSCR1_SCFR | 1773 SSCR1_SCLKDIR | 1774 SSCR1_SFRMDIR | 1775 SSCR1_RxTresh(2) | 1776 SSCR1_TxTresh(1) | 1777 SSCR1_SPH; 1778 } else { 1779 tmp = SSCR1_RxTresh(RX_THRESH_DFLT) | 1780 SSCR1_TxTresh(TX_THRESH_DFLT); 1781 } 1782 pxa2xx_spi_write(drv_data, SSCR1, tmp); 1783 tmp = SSCR0_Motorola | SSCR0_DataSize(8); 1784 if (!spi_controller_is_slave(controller)) 1785 tmp |= SSCR0_SCR(2); 1786 pxa2xx_spi_write(drv_data, SSCR0, tmp); 1787 break; 1788 } 1789 1790 if (!pxa25x_ssp_comp(drv_data)) 1791 pxa2xx_spi_write(drv_data, SSTO, 0); 1792 1793 if (!is_quark_x1000_ssp(drv_data)) 1794 pxa2xx_spi_write(drv_data, SSPSP, 0); 1795 1796 if (is_lpss_ssp(drv_data)) { 1797 lpss_ssp_setup(drv_data); 1798 config = lpss_get_config(drv_data); 1799 if (config->reg_capabilities >= 0) { 1800 tmp = __lpss_ssp_read_priv(drv_data, 1801 config->reg_capabilities); 1802 tmp &= LPSS_CAPS_CS_EN_MASK; 1803 tmp >>= LPSS_CAPS_CS_EN_SHIFT; 1804 platform_info->num_chipselect = ffz(tmp); 1805 } else if (config->cs_num) { 1806 platform_info->num_chipselect = config->cs_num; 1807 } 1808 } 1809 controller->num_chipselect = platform_info->num_chipselect; 1810 1811 count = gpiod_count(&pdev->dev, "cs"); 1812 if (count > 0) { 1813 int i; 1814 1815 controller->num_chipselect = max_t(int, count, 1816 controller->num_chipselect); 1817 1818 drv_data->cs_gpiods = devm_kcalloc(&pdev->dev, 1819 controller->num_chipselect, sizeof(struct gpio_desc *), 1820 GFP_KERNEL); 1821 if (!drv_data->cs_gpiods) { 1822 status = -ENOMEM; 1823 goto out_error_clock_enabled; 1824 } 1825 1826 for (i = 0; i < controller->num_chipselect; i++) { 1827 struct gpio_desc *gpiod; 1828 1829 gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS); 1830 if (IS_ERR(gpiod)) { 1831 /* Means use native chip select */ 1832 if (PTR_ERR(gpiod) == -ENOENT) 1833 continue; 1834 1835 status = PTR_ERR(gpiod); 1836 goto out_error_clock_enabled; 1837 } else { 1838 drv_data->cs_gpiods[i] = gpiod; 1839 } 1840 } 1841 } 1842 1843 if (platform_info->is_slave) { 1844 drv_data->gpiod_ready = devm_gpiod_get_optional(dev, 1845 "ready", GPIOD_OUT_LOW); 1846 if (IS_ERR(drv_data->gpiod_ready)) { 1847 status = PTR_ERR(drv_data->gpiod_ready); 1848 goto out_error_clock_enabled; 1849 } 1850 } 1851 1852 pm_runtime_set_autosuspend_delay(&pdev->dev, 50); 1853 pm_runtime_use_autosuspend(&pdev->dev); 1854 pm_runtime_set_active(&pdev->dev); 1855 pm_runtime_enable(&pdev->dev); 1856 1857 /* Register with the SPI framework */ 1858 platform_set_drvdata(pdev, drv_data); 1859 status = devm_spi_register_controller(&pdev->dev, controller); 1860 if (status != 0) { 1861 dev_err(&pdev->dev, "problem registering spi controller\n"); 1862 goto out_error_pm_runtime_enabled; 1863 } 1864 1865 return status; 1866 1867 out_error_pm_runtime_enabled: 1868 pm_runtime_put_noidle(&pdev->dev); 1869 pm_runtime_disable(&pdev->dev); 1870 1871 out_error_clock_enabled: 1872 clk_disable_unprepare(ssp->clk); 1873 1874 out_error_dma_irq_alloc: 1875 pxa2xx_spi_dma_release(drv_data); 1876 free_irq(ssp->irq, drv_data); 1877 1878 out_error_controller_alloc: 1879 spi_controller_put(controller); 1880 pxa_ssp_free(ssp); 1881 return status; 1882 } 1883 1884 static int pxa2xx_spi_remove(struct platform_device *pdev) 1885 { 1886 struct driver_data *drv_data = platform_get_drvdata(pdev); 1887 struct ssp_device *ssp; 1888 1889 if (!drv_data) 1890 return 0; 1891 ssp = drv_data->ssp; 1892 1893 pm_runtime_get_sync(&pdev->dev); 1894 1895 /* Disable the SSP at the peripheral and SOC level */ 1896 pxa2xx_spi_write(drv_data, SSCR0, 0); 1897 clk_disable_unprepare(ssp->clk); 1898 1899 /* Release DMA */ 1900 if (drv_data->controller_info->enable_dma) 1901 pxa2xx_spi_dma_release(drv_data); 1902 1903 pm_runtime_put_noidle(&pdev->dev); 1904 pm_runtime_disable(&pdev->dev); 1905 1906 /* Release IRQ */ 1907 free_irq(ssp->irq, drv_data); 1908 1909 /* Release SSP */ 1910 pxa_ssp_free(ssp); 1911 1912 return 0; 1913 } 1914 1915 #ifdef CONFIG_PM_SLEEP 1916 static int pxa2xx_spi_suspend(struct device *dev) 1917 { 1918 struct driver_data *drv_data = dev_get_drvdata(dev); 1919 struct ssp_device *ssp = drv_data->ssp; 1920 int status; 1921 1922 status = spi_controller_suspend(drv_data->controller); 1923 if (status != 0) 1924 return status; 1925 pxa2xx_spi_write(drv_data, SSCR0, 0); 1926 1927 if (!pm_runtime_suspended(dev)) 1928 clk_disable_unprepare(ssp->clk); 1929 1930 return 0; 1931 } 1932 1933 static int pxa2xx_spi_resume(struct device *dev) 1934 { 1935 struct driver_data *drv_data = dev_get_drvdata(dev); 1936 struct ssp_device *ssp = drv_data->ssp; 1937 int status; 1938 1939 /* Enable the SSP clock */ 1940 if (!pm_runtime_suspended(dev)) { 1941 status = clk_prepare_enable(ssp->clk); 1942 if (status) 1943 return status; 1944 } 1945 1946 /* Start the queue running */ 1947 return spi_controller_resume(drv_data->controller); 1948 } 1949 #endif 1950 1951 #ifdef CONFIG_PM 1952 static int pxa2xx_spi_runtime_suspend(struct device *dev) 1953 { 1954 struct driver_data *drv_data = dev_get_drvdata(dev); 1955 1956 clk_disable_unprepare(drv_data->ssp->clk); 1957 return 0; 1958 } 1959 1960 static int pxa2xx_spi_runtime_resume(struct device *dev) 1961 { 1962 struct driver_data *drv_data = dev_get_drvdata(dev); 1963 int status; 1964 1965 status = clk_prepare_enable(drv_data->ssp->clk); 1966 return status; 1967 } 1968 #endif 1969 1970 static const struct dev_pm_ops pxa2xx_spi_pm_ops = { 1971 SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume) 1972 SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend, 1973 pxa2xx_spi_runtime_resume, NULL) 1974 }; 1975 1976 static struct platform_driver driver = { 1977 .driver = { 1978 .name = "pxa2xx-spi", 1979 .pm = &pxa2xx_spi_pm_ops, 1980 .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match), 1981 .of_match_table = of_match_ptr(pxa2xx_spi_of_match), 1982 }, 1983 .probe = pxa2xx_spi_probe, 1984 .remove = pxa2xx_spi_remove, 1985 }; 1986 1987 static int __init pxa2xx_spi_init(void) 1988 { 1989 return platform_driver_register(&driver); 1990 } 1991 subsys_initcall(pxa2xx_spi_init); 1992 1993 static void __exit pxa2xx_spi_exit(void) 1994 { 1995 platform_driver_unregister(&driver); 1996 } 1997 module_exit(pxa2xx_spi_exit); 1998 1999 MODULE_SOFTDEP("pre: dw_dmac"); 2000