xref: /openbmc/linux/drivers/spi/spi-pxa2xx.c (revision 1f9f6a78)
1 /*
2  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
3  * Copyright (C) 2013, Intel Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  */
19 
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/ioport.h>
24 #include <linux/errno.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
27 #include <linux/platform_device.h>
28 #include <linux/spi/pxa2xx_spi.h>
29 #include <linux/spi/spi.h>
30 #include <linux/delay.h>
31 #include <linux/gpio.h>
32 #include <linux/slab.h>
33 #include <linux/clk.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/acpi.h>
36 
37 #include <asm/io.h>
38 #include <asm/irq.h>
39 #include <asm/delay.h>
40 
41 #include "spi-pxa2xx.h"
42 
43 MODULE_AUTHOR("Stephen Street");
44 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
45 MODULE_LICENSE("GPL");
46 MODULE_ALIAS("platform:pxa2xx-spi");
47 
48 #define MAX_BUSES 3
49 
50 #define TIMOUT_DFLT		1000
51 
52 /*
53  * for testing SSCR1 changes that require SSP restart, basically
54  * everything except the service and interrupt enables, the pxa270 developer
55  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
56  * list, but the PXA255 dev man says all bits without really meaning the
57  * service and interrupt enables
58  */
59 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
60 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
61 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
62 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
63 				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
64 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
65 
66 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
67 				| QUARK_X1000_SSCR1_EFWR	\
68 				| QUARK_X1000_SSCR1_RFT		\
69 				| QUARK_X1000_SSCR1_TFT		\
70 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
71 
72 #define LPSS_RX_THRESH_DFLT	64
73 #define LPSS_TX_LOTHRESH_DFLT	160
74 #define LPSS_TX_HITHRESH_DFLT	224
75 
76 struct quark_spi_rate {
77 	u32 bitrate;
78 	u32 dds_clk_rate;
79 	u32 clk_div;
80 };
81 
82 /*
83  * 'rate', 'dds', 'clk_div' lookup table, which is defined in
84  * the Quark SPI datasheet.
85  */
86 static const struct quark_spi_rate quark_spi_rate_table[] = {
87 /*	bitrate,	dds_clk_rate,	clk_div */
88 	{50000000,	0x800000,	0},
89 	{40000000,	0x666666,	0},
90 	{25000000,	0x400000,	0},
91 	{20000000,	0x666666,	1},
92 	{16667000,	0x800000,	2},
93 	{13333000,	0x666666,	2},
94 	{12500000,	0x200000,	0},
95 	{10000000,	0x800000,	4},
96 	{8000000,	0x666666,	4},
97 	{6250000,	0x400000,	3},
98 	{5000000,	0x400000,	4},
99 	{4000000,	0x666666,	9},
100 	{3125000,	0x80000,	0},
101 	{2500000,	0x400000,	9},
102 	{2000000,	0x666666,	19},
103 	{1563000,	0x40000,	0},
104 	{1250000,	0x200000,	9},
105 	{1000000,	0x400000,	24},
106 	{800000,	0x666666,	49},
107 	{781250,	0x20000,	0},
108 	{625000,	0x200000,	19},
109 	{500000,	0x400000,	49},
110 	{400000,	0x666666,	99},
111 	{390625,	0x10000,	0},
112 	{250000,	0x400000,	99},
113 	{200000,	0x666666,	199},
114 	{195313,	0x8000,		0},
115 	{125000,	0x100000,	49},
116 	{100000,	0x200000,	124},
117 	{50000,		0x100000,	124},
118 	{25000,		0x80000,	124},
119 	{10016,		0x20000,	77},
120 	{5040,		0x20000,	154},
121 	{1002,		0x8000,		194},
122 };
123 
124 /* Offset from drv_data->lpss_base */
125 #define GENERAL_REG		0x08
126 #define GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
127 #define SSP_REG			0x0c
128 #define SPI_CS_CONTROL		0x18
129 #define SPI_CS_CONTROL_SW_MODE	BIT(0)
130 #define SPI_CS_CONTROL_CS_HIGH	BIT(1)
131 
132 static bool is_lpss_ssp(const struct driver_data *drv_data)
133 {
134 	return drv_data->ssp_type == LPSS_SSP;
135 }
136 
137 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
138 {
139 	return drv_data->ssp_type == QUARK_X1000_SSP;
140 }
141 
142 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
143 {
144 	switch (drv_data->ssp_type) {
145 	case QUARK_X1000_SSP:
146 		return QUARK_X1000_SSCR1_CHANGE_MASK;
147 	default:
148 		return SSCR1_CHANGE_MASK;
149 	}
150 }
151 
152 static u32
153 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
154 {
155 	switch (drv_data->ssp_type) {
156 	case QUARK_X1000_SSP:
157 		return RX_THRESH_QUARK_X1000_DFLT;
158 	default:
159 		return RX_THRESH_DFLT;
160 	}
161 }
162 
163 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
164 {
165 	void __iomem *reg = drv_data->ioaddr;
166 	u32 mask;
167 
168 	switch (drv_data->ssp_type) {
169 	case QUARK_X1000_SSP:
170 		mask = QUARK_X1000_SSSR_TFL_MASK;
171 		break;
172 	default:
173 		mask = SSSR_TFL_MASK;
174 		break;
175 	}
176 
177 	return (read_SSSR(reg) & mask) == mask;
178 }
179 
180 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
181 				     u32 *sccr1_reg)
182 {
183 	u32 mask;
184 
185 	switch (drv_data->ssp_type) {
186 	case QUARK_X1000_SSP:
187 		mask = QUARK_X1000_SSCR1_RFT;
188 		break;
189 	default:
190 		mask = SSCR1_RFT;
191 		break;
192 	}
193 	*sccr1_reg &= ~mask;
194 }
195 
196 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
197 				   u32 *sccr1_reg, u32 threshold)
198 {
199 	switch (drv_data->ssp_type) {
200 	case QUARK_X1000_SSP:
201 		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
202 		break;
203 	default:
204 		*sccr1_reg |= SSCR1_RxTresh(threshold);
205 		break;
206 	}
207 }
208 
209 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
210 				  u32 clk_div, u8 bits)
211 {
212 	switch (drv_data->ssp_type) {
213 	case QUARK_X1000_SSP:
214 		return clk_div
215 			| QUARK_X1000_SSCR0_Motorola
216 			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
217 			| SSCR0_SSE;
218 	default:
219 		return clk_div
220 			| SSCR0_Motorola
221 			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
222 			| SSCR0_SSE
223 			| (bits > 16 ? SSCR0_EDSS : 0);
224 	}
225 }
226 
227 /*
228  * Read and write LPSS SSP private registers. Caller must first check that
229  * is_lpss_ssp() returns true before these can be called.
230  */
231 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
232 {
233 	WARN_ON(!drv_data->lpss_base);
234 	return readl(drv_data->lpss_base + offset);
235 }
236 
237 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
238 				  unsigned offset, u32 value)
239 {
240 	WARN_ON(!drv_data->lpss_base);
241 	writel(value, drv_data->lpss_base + offset);
242 }
243 
244 /*
245  * lpss_ssp_setup - perform LPSS SSP specific setup
246  * @drv_data: pointer to the driver private data
247  *
248  * Perform LPSS SSP specific setup. This function must be called first if
249  * one is going to use LPSS SSP private registers.
250  */
251 static void lpss_ssp_setup(struct driver_data *drv_data)
252 {
253 	unsigned offset = 0x400;
254 	u32 value, orig;
255 
256 	if (!is_lpss_ssp(drv_data))
257 		return;
258 
259 	/*
260 	 * Perform auto-detection of the LPSS SSP private registers. They
261 	 * can be either at 1k or 2k offset from the base address.
262 	 */
263 	orig = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
264 
265 	/* Test SPI_CS_CONTROL_SW_MODE bit enabling */
266 	value = orig | SPI_CS_CONTROL_SW_MODE;
267 	writel(value, drv_data->ioaddr + offset + SPI_CS_CONTROL);
268 	value = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
269 	if (value != (orig | SPI_CS_CONTROL_SW_MODE)) {
270 		offset = 0x800;
271 		goto detection_done;
272 	}
273 
274 	orig = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
275 
276 	/* Test SPI_CS_CONTROL_SW_MODE bit disabling */
277 	value = orig & ~SPI_CS_CONTROL_SW_MODE;
278 	writel(value, drv_data->ioaddr + offset + SPI_CS_CONTROL);
279 	value = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
280 	if (value != (orig & ~SPI_CS_CONTROL_SW_MODE)) {
281 		offset = 0x800;
282 		goto detection_done;
283 	}
284 
285 detection_done:
286 	/* Now set the LPSS base */
287 	drv_data->lpss_base = drv_data->ioaddr + offset;
288 
289 	/* Enable software chip select control */
290 	value = SPI_CS_CONTROL_SW_MODE | SPI_CS_CONTROL_CS_HIGH;
291 	__lpss_ssp_write_priv(drv_data, SPI_CS_CONTROL, value);
292 
293 	/* Enable multiblock DMA transfers */
294 	if (drv_data->master_info->enable_dma) {
295 		__lpss_ssp_write_priv(drv_data, SSP_REG, 1);
296 
297 		value = __lpss_ssp_read_priv(drv_data, GENERAL_REG);
298 		value |= GENERAL_REG_RXTO_HOLDOFF_DISABLE;
299 		__lpss_ssp_write_priv(drv_data, GENERAL_REG, value);
300 	}
301 }
302 
303 static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable)
304 {
305 	u32 value;
306 
307 	if (!is_lpss_ssp(drv_data))
308 		return;
309 
310 	value = __lpss_ssp_read_priv(drv_data, SPI_CS_CONTROL);
311 	if (enable)
312 		value &= ~SPI_CS_CONTROL_CS_HIGH;
313 	else
314 		value |= SPI_CS_CONTROL_CS_HIGH;
315 	__lpss_ssp_write_priv(drv_data, SPI_CS_CONTROL, value);
316 }
317 
318 static void cs_assert(struct driver_data *drv_data)
319 {
320 	struct chip_data *chip = drv_data->cur_chip;
321 
322 	if (drv_data->ssp_type == CE4100_SSP) {
323 		write_SSSR(drv_data->cur_chip->frm, drv_data->ioaddr);
324 		return;
325 	}
326 
327 	if (chip->cs_control) {
328 		chip->cs_control(PXA2XX_CS_ASSERT);
329 		return;
330 	}
331 
332 	if (gpio_is_valid(chip->gpio_cs)) {
333 		gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
334 		return;
335 	}
336 
337 	lpss_ssp_cs_control(drv_data, true);
338 }
339 
340 static void cs_deassert(struct driver_data *drv_data)
341 {
342 	struct chip_data *chip = drv_data->cur_chip;
343 
344 	if (drv_data->ssp_type == CE4100_SSP)
345 		return;
346 
347 	if (chip->cs_control) {
348 		chip->cs_control(PXA2XX_CS_DEASSERT);
349 		return;
350 	}
351 
352 	if (gpio_is_valid(chip->gpio_cs)) {
353 		gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
354 		return;
355 	}
356 
357 	lpss_ssp_cs_control(drv_data, false);
358 }
359 
360 int pxa2xx_spi_flush(struct driver_data *drv_data)
361 {
362 	unsigned long limit = loops_per_jiffy << 1;
363 
364 	void __iomem *reg = drv_data->ioaddr;
365 
366 	do {
367 		while (read_SSSR(reg) & SSSR_RNE) {
368 			read_SSDR(reg);
369 		}
370 	} while ((read_SSSR(reg) & SSSR_BSY) && --limit);
371 	write_SSSR_CS(drv_data, SSSR_ROR);
372 
373 	return limit;
374 }
375 
376 static int null_writer(struct driver_data *drv_data)
377 {
378 	void __iomem *reg = drv_data->ioaddr;
379 	u8 n_bytes = drv_data->n_bytes;
380 
381 	if (pxa2xx_spi_txfifo_full(drv_data)
382 		|| (drv_data->tx == drv_data->tx_end))
383 		return 0;
384 
385 	write_SSDR(0, reg);
386 	drv_data->tx += n_bytes;
387 
388 	return 1;
389 }
390 
391 static int null_reader(struct driver_data *drv_data)
392 {
393 	void __iomem *reg = drv_data->ioaddr;
394 	u8 n_bytes = drv_data->n_bytes;
395 
396 	while ((read_SSSR(reg) & SSSR_RNE)
397 		&& (drv_data->rx < drv_data->rx_end)) {
398 		read_SSDR(reg);
399 		drv_data->rx += n_bytes;
400 	}
401 
402 	return drv_data->rx == drv_data->rx_end;
403 }
404 
405 static int u8_writer(struct driver_data *drv_data)
406 {
407 	void __iomem *reg = drv_data->ioaddr;
408 
409 	if (pxa2xx_spi_txfifo_full(drv_data)
410 		|| (drv_data->tx == drv_data->tx_end))
411 		return 0;
412 
413 	write_SSDR(*(u8 *)(drv_data->tx), reg);
414 	++drv_data->tx;
415 
416 	return 1;
417 }
418 
419 static int u8_reader(struct driver_data *drv_data)
420 {
421 	void __iomem *reg = drv_data->ioaddr;
422 
423 	while ((read_SSSR(reg) & SSSR_RNE)
424 		&& (drv_data->rx < drv_data->rx_end)) {
425 		*(u8 *)(drv_data->rx) = read_SSDR(reg);
426 		++drv_data->rx;
427 	}
428 
429 	return drv_data->rx == drv_data->rx_end;
430 }
431 
432 static int u16_writer(struct driver_data *drv_data)
433 {
434 	void __iomem *reg = drv_data->ioaddr;
435 
436 	if (pxa2xx_spi_txfifo_full(drv_data)
437 		|| (drv_data->tx == drv_data->tx_end))
438 		return 0;
439 
440 	write_SSDR(*(u16 *)(drv_data->tx), reg);
441 	drv_data->tx += 2;
442 
443 	return 1;
444 }
445 
446 static int u16_reader(struct driver_data *drv_data)
447 {
448 	void __iomem *reg = drv_data->ioaddr;
449 
450 	while ((read_SSSR(reg) & SSSR_RNE)
451 		&& (drv_data->rx < drv_data->rx_end)) {
452 		*(u16 *)(drv_data->rx) = read_SSDR(reg);
453 		drv_data->rx += 2;
454 	}
455 
456 	return drv_data->rx == drv_data->rx_end;
457 }
458 
459 static int u32_writer(struct driver_data *drv_data)
460 {
461 	void __iomem *reg = drv_data->ioaddr;
462 
463 	if (pxa2xx_spi_txfifo_full(drv_data)
464 		|| (drv_data->tx == drv_data->tx_end))
465 		return 0;
466 
467 	write_SSDR(*(u32 *)(drv_data->tx), reg);
468 	drv_data->tx += 4;
469 
470 	return 1;
471 }
472 
473 static int u32_reader(struct driver_data *drv_data)
474 {
475 	void __iomem *reg = drv_data->ioaddr;
476 
477 	while ((read_SSSR(reg) & SSSR_RNE)
478 		&& (drv_data->rx < drv_data->rx_end)) {
479 		*(u32 *)(drv_data->rx) = read_SSDR(reg);
480 		drv_data->rx += 4;
481 	}
482 
483 	return drv_data->rx == drv_data->rx_end;
484 }
485 
486 void *pxa2xx_spi_next_transfer(struct driver_data *drv_data)
487 {
488 	struct spi_message *msg = drv_data->cur_msg;
489 	struct spi_transfer *trans = drv_data->cur_transfer;
490 
491 	/* Move to next transfer */
492 	if (trans->transfer_list.next != &msg->transfers) {
493 		drv_data->cur_transfer =
494 			list_entry(trans->transfer_list.next,
495 					struct spi_transfer,
496 					transfer_list);
497 		return RUNNING_STATE;
498 	} else
499 		return DONE_STATE;
500 }
501 
502 /* caller already set message->status; dma and pio irqs are blocked */
503 static void giveback(struct driver_data *drv_data)
504 {
505 	struct spi_transfer* last_transfer;
506 	struct spi_message *msg;
507 
508 	msg = drv_data->cur_msg;
509 	drv_data->cur_msg = NULL;
510 	drv_data->cur_transfer = NULL;
511 
512 	last_transfer = list_last_entry(&msg->transfers, struct spi_transfer,
513 					transfer_list);
514 
515 	/* Delay if requested before any change in chip select */
516 	if (last_transfer->delay_usecs)
517 		udelay(last_transfer->delay_usecs);
518 
519 	/* Drop chip select UNLESS cs_change is true or we are returning
520 	 * a message with an error, or next message is for another chip
521 	 */
522 	if (!last_transfer->cs_change)
523 		cs_deassert(drv_data);
524 	else {
525 		struct spi_message *next_msg;
526 
527 		/* Holding of cs was hinted, but we need to make sure
528 		 * the next message is for the same chip.  Don't waste
529 		 * time with the following tests unless this was hinted.
530 		 *
531 		 * We cannot postpone this until pump_messages, because
532 		 * after calling msg->complete (below) the driver that
533 		 * sent the current message could be unloaded, which
534 		 * could invalidate the cs_control() callback...
535 		 */
536 
537 		/* get a pointer to the next message, if any */
538 		next_msg = spi_get_next_queued_message(drv_data->master);
539 
540 		/* see if the next and current messages point
541 		 * to the same chip
542 		 */
543 		if (next_msg && next_msg->spi != msg->spi)
544 			next_msg = NULL;
545 		if (!next_msg || msg->state == ERROR_STATE)
546 			cs_deassert(drv_data);
547 	}
548 
549 	spi_finalize_current_message(drv_data->master);
550 	drv_data->cur_chip = NULL;
551 }
552 
553 static void reset_sccr1(struct driver_data *drv_data)
554 {
555 	void __iomem *reg = drv_data->ioaddr;
556 	struct chip_data *chip = drv_data->cur_chip;
557 	u32 sccr1_reg;
558 
559 	sccr1_reg = read_SSCR1(reg) & ~drv_data->int_cr1;
560 	sccr1_reg &= ~SSCR1_RFT;
561 	sccr1_reg |= chip->threshold;
562 	write_SSCR1(sccr1_reg, reg);
563 }
564 
565 static void int_error_stop(struct driver_data *drv_data, const char* msg)
566 {
567 	void __iomem *reg = drv_data->ioaddr;
568 
569 	/* Stop and reset SSP */
570 	write_SSSR_CS(drv_data, drv_data->clear_sr);
571 	reset_sccr1(drv_data);
572 	if (!pxa25x_ssp_comp(drv_data))
573 		write_SSTO(0, reg);
574 	pxa2xx_spi_flush(drv_data);
575 	write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
576 
577 	dev_err(&drv_data->pdev->dev, "%s\n", msg);
578 
579 	drv_data->cur_msg->state = ERROR_STATE;
580 	tasklet_schedule(&drv_data->pump_transfers);
581 }
582 
583 static void int_transfer_complete(struct driver_data *drv_data)
584 {
585 	void __iomem *reg = drv_data->ioaddr;
586 
587 	/* Stop SSP */
588 	write_SSSR_CS(drv_data, drv_data->clear_sr);
589 	reset_sccr1(drv_data);
590 	if (!pxa25x_ssp_comp(drv_data))
591 		write_SSTO(0, reg);
592 
593 	/* Update total byte transferred return count actual bytes read */
594 	drv_data->cur_msg->actual_length += drv_data->len -
595 				(drv_data->rx_end - drv_data->rx);
596 
597 	/* Transfer delays and chip select release are
598 	 * handled in pump_transfers or giveback
599 	 */
600 
601 	/* Move to next transfer */
602 	drv_data->cur_msg->state = pxa2xx_spi_next_transfer(drv_data);
603 
604 	/* Schedule transfer tasklet */
605 	tasklet_schedule(&drv_data->pump_transfers);
606 }
607 
608 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
609 {
610 	void __iomem *reg = drv_data->ioaddr;
611 
612 	u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
613 			drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
614 
615 	u32 irq_status = read_SSSR(reg) & irq_mask;
616 
617 	if (irq_status & SSSR_ROR) {
618 		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
619 		return IRQ_HANDLED;
620 	}
621 
622 	if (irq_status & SSSR_TINT) {
623 		write_SSSR(SSSR_TINT, reg);
624 		if (drv_data->read(drv_data)) {
625 			int_transfer_complete(drv_data);
626 			return IRQ_HANDLED;
627 		}
628 	}
629 
630 	/* Drain rx fifo, Fill tx fifo and prevent overruns */
631 	do {
632 		if (drv_data->read(drv_data)) {
633 			int_transfer_complete(drv_data);
634 			return IRQ_HANDLED;
635 		}
636 	} while (drv_data->write(drv_data));
637 
638 	if (drv_data->read(drv_data)) {
639 		int_transfer_complete(drv_data);
640 		return IRQ_HANDLED;
641 	}
642 
643 	if (drv_data->tx == drv_data->tx_end) {
644 		u32 bytes_left;
645 		u32 sccr1_reg;
646 
647 		sccr1_reg = read_SSCR1(reg);
648 		sccr1_reg &= ~SSCR1_TIE;
649 
650 		/*
651 		 * PXA25x_SSP has no timeout, set up rx threshould for the
652 		 * remaining RX bytes.
653 		 */
654 		if (pxa25x_ssp_comp(drv_data)) {
655 			u32 rx_thre;
656 
657 			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
658 
659 			bytes_left = drv_data->rx_end - drv_data->rx;
660 			switch (drv_data->n_bytes) {
661 			case 4:
662 				bytes_left >>= 1;
663 			case 2:
664 				bytes_left >>= 1;
665 			}
666 
667 			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
668 			if (rx_thre > bytes_left)
669 				rx_thre = bytes_left;
670 
671 			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
672 		}
673 		write_SSCR1(sccr1_reg, reg);
674 	}
675 
676 	/* We did something */
677 	return IRQ_HANDLED;
678 }
679 
680 static irqreturn_t ssp_int(int irq, void *dev_id)
681 {
682 	struct driver_data *drv_data = dev_id;
683 	void __iomem *reg = drv_data->ioaddr;
684 	u32 sccr1_reg;
685 	u32 mask = drv_data->mask_sr;
686 	u32 status;
687 
688 	/*
689 	 * The IRQ might be shared with other peripherals so we must first
690 	 * check that are we RPM suspended or not. If we are we assume that
691 	 * the IRQ was not for us (we shouldn't be RPM suspended when the
692 	 * interrupt is enabled).
693 	 */
694 	if (pm_runtime_suspended(&drv_data->pdev->dev))
695 		return IRQ_NONE;
696 
697 	/*
698 	 * If the device is not yet in RPM suspended state and we get an
699 	 * interrupt that is meant for another device, check if status bits
700 	 * are all set to one. That means that the device is already
701 	 * powered off.
702 	 */
703 	status = read_SSSR(reg);
704 	if (status == ~0)
705 		return IRQ_NONE;
706 
707 	sccr1_reg = read_SSCR1(reg);
708 
709 	/* Ignore possible writes if we don't need to write */
710 	if (!(sccr1_reg & SSCR1_TIE))
711 		mask &= ~SSSR_TFS;
712 
713 	if (!(status & mask))
714 		return IRQ_NONE;
715 
716 	if (!drv_data->cur_msg) {
717 
718 		write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
719 		write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
720 		if (!pxa25x_ssp_comp(drv_data))
721 			write_SSTO(0, reg);
722 		write_SSSR_CS(drv_data, drv_data->clear_sr);
723 
724 		dev_err(&drv_data->pdev->dev,
725 			"bad message state in interrupt handler\n");
726 
727 		/* Never fail */
728 		return IRQ_HANDLED;
729 	}
730 
731 	return drv_data->transfer_handler(drv_data);
732 }
733 
734 /*
735  * The Quark SPI data sheet gives a table, and for the given 'rate',
736  * the 'dds' and 'clk_div' can be found in the table.
737  */
738 static u32 quark_x1000_set_clk_regvals(u32 rate, u32 *dds, u32 *clk_div)
739 {
740 	unsigned int i;
741 
742 	for (i = 0; i < ARRAY_SIZE(quark_spi_rate_table); i++) {
743 		if (rate >= quark_spi_rate_table[i].bitrate) {
744 			*dds = quark_spi_rate_table[i].dds_clk_rate;
745 			*clk_div = quark_spi_rate_table[i].clk_div;
746 			return quark_spi_rate_table[i].bitrate;
747 		}
748 	}
749 
750 	*dds = quark_spi_rate_table[i-1].dds_clk_rate;
751 	*clk_div = quark_spi_rate_table[i-1].clk_div;
752 
753 	return quark_spi_rate_table[i-1].bitrate;
754 }
755 
756 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
757 {
758 	unsigned long ssp_clk = drv_data->max_clk_rate;
759 	const struct ssp_device *ssp = drv_data->ssp;
760 
761 	rate = min_t(int, ssp_clk, rate);
762 
763 	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
764 		return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
765 	else
766 		return ((ssp_clk / rate - 1) & 0xfff) << 8;
767 }
768 
769 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
770 					   struct chip_data *chip, int rate)
771 {
772 	u32 clk_div;
773 
774 	switch (drv_data->ssp_type) {
775 	case QUARK_X1000_SSP:
776 		quark_x1000_set_clk_regvals(rate, &chip->dds_rate, &clk_div);
777 		return clk_div << 8;
778 	default:
779 		return ssp_get_clk_div(drv_data, rate);
780 	}
781 }
782 
783 static void pump_transfers(unsigned long data)
784 {
785 	struct driver_data *drv_data = (struct driver_data *)data;
786 	struct spi_message *message = NULL;
787 	struct spi_transfer *transfer = NULL;
788 	struct spi_transfer *previous = NULL;
789 	struct chip_data *chip = NULL;
790 	void __iomem *reg = drv_data->ioaddr;
791 	u32 clk_div = 0;
792 	u8 bits = 0;
793 	u32 speed = 0;
794 	u32 cr0;
795 	u32 cr1;
796 	u32 dma_thresh = drv_data->cur_chip->dma_threshold;
797 	u32 dma_burst = drv_data->cur_chip->dma_burst_size;
798 	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
799 
800 	/* Get current state information */
801 	message = drv_data->cur_msg;
802 	transfer = drv_data->cur_transfer;
803 	chip = drv_data->cur_chip;
804 
805 	/* Handle for abort */
806 	if (message->state == ERROR_STATE) {
807 		message->status = -EIO;
808 		giveback(drv_data);
809 		return;
810 	}
811 
812 	/* Handle end of message */
813 	if (message->state == DONE_STATE) {
814 		message->status = 0;
815 		giveback(drv_data);
816 		return;
817 	}
818 
819 	/* Delay if requested at end of transfer before CS change */
820 	if (message->state == RUNNING_STATE) {
821 		previous = list_entry(transfer->transfer_list.prev,
822 					struct spi_transfer,
823 					transfer_list);
824 		if (previous->delay_usecs)
825 			udelay(previous->delay_usecs);
826 
827 		/* Drop chip select only if cs_change is requested */
828 		if (previous->cs_change)
829 			cs_deassert(drv_data);
830 	}
831 
832 	/* Check if we can DMA this transfer */
833 	if (!pxa2xx_spi_dma_is_possible(transfer->len) && chip->enable_dma) {
834 
835 		/* reject already-mapped transfers; PIO won't always work */
836 		if (message->is_dma_mapped
837 				|| transfer->rx_dma || transfer->tx_dma) {
838 			dev_err(&drv_data->pdev->dev,
839 				"pump_transfers: mapped transfer length of "
840 				"%u is greater than %d\n",
841 				transfer->len, MAX_DMA_LEN);
842 			message->status = -EINVAL;
843 			giveback(drv_data);
844 			return;
845 		}
846 
847 		/* warn ... we force this to PIO mode */
848 		dev_warn_ratelimited(&message->spi->dev,
849 				     "pump_transfers: DMA disabled for transfer length %ld "
850 				     "greater than %d\n",
851 				     (long)drv_data->len, MAX_DMA_LEN);
852 	}
853 
854 	/* Setup the transfer state based on the type of transfer */
855 	if (pxa2xx_spi_flush(drv_data) == 0) {
856 		dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
857 		message->status = -EIO;
858 		giveback(drv_data);
859 		return;
860 	}
861 	drv_data->n_bytes = chip->n_bytes;
862 	drv_data->tx = (void *)transfer->tx_buf;
863 	drv_data->tx_end = drv_data->tx + transfer->len;
864 	drv_data->rx = transfer->rx_buf;
865 	drv_data->rx_end = drv_data->rx + transfer->len;
866 	drv_data->rx_dma = transfer->rx_dma;
867 	drv_data->tx_dma = transfer->tx_dma;
868 	drv_data->len = transfer->len;
869 	drv_data->write = drv_data->tx ? chip->write : null_writer;
870 	drv_data->read = drv_data->rx ? chip->read : null_reader;
871 
872 	/* Change speed and bit per word on a per transfer */
873 	cr0 = chip->cr0;
874 	if (transfer->speed_hz || transfer->bits_per_word) {
875 
876 		bits = chip->bits_per_word;
877 		speed = chip->speed_hz;
878 
879 		if (transfer->speed_hz)
880 			speed = transfer->speed_hz;
881 
882 		if (transfer->bits_per_word)
883 			bits = transfer->bits_per_word;
884 
885 		clk_div = pxa2xx_ssp_get_clk_div(drv_data, chip, speed);
886 
887 		if (bits <= 8) {
888 			drv_data->n_bytes = 1;
889 			drv_data->read = drv_data->read != null_reader ?
890 						u8_reader : null_reader;
891 			drv_data->write = drv_data->write != null_writer ?
892 						u8_writer : null_writer;
893 		} else if (bits <= 16) {
894 			drv_data->n_bytes = 2;
895 			drv_data->read = drv_data->read != null_reader ?
896 						u16_reader : null_reader;
897 			drv_data->write = drv_data->write != null_writer ?
898 						u16_writer : null_writer;
899 		} else if (bits <= 32) {
900 			drv_data->n_bytes = 4;
901 			drv_data->read = drv_data->read != null_reader ?
902 						u32_reader : null_reader;
903 			drv_data->write = drv_data->write != null_writer ?
904 						u32_writer : null_writer;
905 		}
906 		/* if bits/word is changed in dma mode, then must check the
907 		 * thresholds and burst also */
908 		if (chip->enable_dma) {
909 			if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
910 							message->spi,
911 							bits, &dma_burst,
912 							&dma_thresh))
913 				dev_warn_ratelimited(&message->spi->dev,
914 						     "pump_transfers: DMA burst size reduced to match bits_per_word\n");
915 		}
916 
917 		cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
918 	}
919 
920 	message->state = RUNNING_STATE;
921 
922 	drv_data->dma_mapped = 0;
923 	if (pxa2xx_spi_dma_is_possible(drv_data->len))
924 		drv_data->dma_mapped = pxa2xx_spi_map_dma_buffers(drv_data);
925 	if (drv_data->dma_mapped) {
926 
927 		/* Ensure we have the correct interrupt handler */
928 		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
929 
930 		pxa2xx_spi_dma_prepare(drv_data, dma_burst);
931 
932 		/* Clear status and start DMA engine */
933 		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
934 		write_SSSR(drv_data->clear_sr, reg);
935 
936 		pxa2xx_spi_dma_start(drv_data);
937 	} else {
938 		/* Ensure we have the correct interrupt handler	*/
939 		drv_data->transfer_handler = interrupt_transfer;
940 
941 		/* Clear status  */
942 		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
943 		write_SSSR_CS(drv_data, drv_data->clear_sr);
944 	}
945 
946 	if (is_lpss_ssp(drv_data)) {
947 		if ((read_SSIRF(reg) & 0xff) != chip->lpss_rx_threshold)
948 			write_SSIRF(chip->lpss_rx_threshold, reg);
949 		if ((read_SSITF(reg) & 0xffff) != chip->lpss_tx_threshold)
950 			write_SSITF(chip->lpss_tx_threshold, reg);
951 	}
952 
953 	if (is_quark_x1000_ssp(drv_data) &&
954 	    (read_DDS_RATE(reg) != chip->dds_rate))
955 		write_DDS_RATE(chip->dds_rate, reg);
956 
957 	/* see if we need to reload the config registers */
958 	if ((read_SSCR0(reg) != cr0) ||
959 	    (read_SSCR1(reg) & change_mask) != (cr1 & change_mask)) {
960 
961 		/* stop the SSP, and update the other bits */
962 		write_SSCR0(cr0 & ~SSCR0_SSE, reg);
963 		if (!pxa25x_ssp_comp(drv_data))
964 			write_SSTO(chip->timeout, reg);
965 		/* first set CR1 without interrupt and service enables */
966 		write_SSCR1(cr1 & change_mask, reg);
967 		/* restart the SSP */
968 		write_SSCR0(cr0, reg);
969 
970 	} else {
971 		if (!pxa25x_ssp_comp(drv_data))
972 			write_SSTO(chip->timeout, reg);
973 	}
974 
975 	cs_assert(drv_data);
976 
977 	/* after chip select, release the data by enabling service
978 	 * requests and interrupts, without changing any mode bits */
979 	write_SSCR1(cr1, reg);
980 }
981 
982 static int pxa2xx_spi_transfer_one_message(struct spi_master *master,
983 					   struct spi_message *msg)
984 {
985 	struct driver_data *drv_data = spi_master_get_devdata(master);
986 
987 	drv_data->cur_msg = msg;
988 	/* Initial message state*/
989 	drv_data->cur_msg->state = START_STATE;
990 	drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
991 						struct spi_transfer,
992 						transfer_list);
993 
994 	/* prepare to setup the SSP, in pump_transfers, using the per
995 	 * chip configuration */
996 	drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
997 
998 	/* Mark as busy and launch transfers */
999 	tasklet_schedule(&drv_data->pump_transfers);
1000 	return 0;
1001 }
1002 
1003 static int pxa2xx_spi_unprepare_transfer(struct spi_master *master)
1004 {
1005 	struct driver_data *drv_data = spi_master_get_devdata(master);
1006 
1007 	/* Disable the SSP now */
1008 	write_SSCR0(read_SSCR0(drv_data->ioaddr) & ~SSCR0_SSE,
1009 		    drv_data->ioaddr);
1010 
1011 	return 0;
1012 }
1013 
1014 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1015 		    struct pxa2xx_spi_chip *chip_info)
1016 {
1017 	int err = 0;
1018 
1019 	if (chip == NULL || chip_info == NULL)
1020 		return 0;
1021 
1022 	/* NOTE: setup() can be called multiple times, possibly with
1023 	 * different chip_info, release previously requested GPIO
1024 	 */
1025 	if (gpio_is_valid(chip->gpio_cs))
1026 		gpio_free(chip->gpio_cs);
1027 
1028 	/* If (*cs_control) is provided, ignore GPIO chip select */
1029 	if (chip_info->cs_control) {
1030 		chip->cs_control = chip_info->cs_control;
1031 		return 0;
1032 	}
1033 
1034 	if (gpio_is_valid(chip_info->gpio_cs)) {
1035 		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1036 		if (err) {
1037 			dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1038 				chip_info->gpio_cs);
1039 			return err;
1040 		}
1041 
1042 		chip->gpio_cs = chip_info->gpio_cs;
1043 		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1044 
1045 		err = gpio_direction_output(chip->gpio_cs,
1046 					!chip->gpio_cs_inverted);
1047 	}
1048 
1049 	return err;
1050 }
1051 
1052 static int setup(struct spi_device *spi)
1053 {
1054 	struct pxa2xx_spi_chip *chip_info = NULL;
1055 	struct chip_data *chip;
1056 	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1057 	unsigned int clk_div;
1058 	uint tx_thres, tx_hi_thres, rx_thres;
1059 
1060 	switch (drv_data->ssp_type) {
1061 	case QUARK_X1000_SSP:
1062 		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1063 		tx_hi_thres = 0;
1064 		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1065 		break;
1066 	case LPSS_SSP:
1067 		tx_thres = LPSS_TX_LOTHRESH_DFLT;
1068 		tx_hi_thres = LPSS_TX_HITHRESH_DFLT;
1069 		rx_thres = LPSS_RX_THRESH_DFLT;
1070 		break;
1071 	default:
1072 		tx_thres = TX_THRESH_DFLT;
1073 		tx_hi_thres = 0;
1074 		rx_thres = RX_THRESH_DFLT;
1075 		break;
1076 	}
1077 
1078 	/* Only alloc on first setup */
1079 	chip = spi_get_ctldata(spi);
1080 	if (!chip) {
1081 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1082 		if (!chip)
1083 			return -ENOMEM;
1084 
1085 		if (drv_data->ssp_type == CE4100_SSP) {
1086 			if (spi->chip_select > 4) {
1087 				dev_err(&spi->dev,
1088 					"failed setup: cs number must not be > 4.\n");
1089 				kfree(chip);
1090 				return -EINVAL;
1091 			}
1092 
1093 			chip->frm = spi->chip_select;
1094 		} else
1095 			chip->gpio_cs = -1;
1096 		chip->enable_dma = 0;
1097 		chip->timeout = TIMOUT_DFLT;
1098 	}
1099 
1100 	/* protocol drivers may change the chip settings, so...
1101 	 * if chip_info exists, use it */
1102 	chip_info = spi->controller_data;
1103 
1104 	/* chip_info isn't always needed */
1105 	chip->cr1 = 0;
1106 	if (chip_info) {
1107 		if (chip_info->timeout)
1108 			chip->timeout = chip_info->timeout;
1109 		if (chip_info->tx_threshold)
1110 			tx_thres = chip_info->tx_threshold;
1111 		if (chip_info->tx_hi_threshold)
1112 			tx_hi_thres = chip_info->tx_hi_threshold;
1113 		if (chip_info->rx_threshold)
1114 			rx_thres = chip_info->rx_threshold;
1115 		chip->enable_dma = drv_data->master_info->enable_dma;
1116 		chip->dma_threshold = 0;
1117 		if (chip_info->enable_loopback)
1118 			chip->cr1 = SSCR1_LBM;
1119 	} else if (ACPI_HANDLE(&spi->dev)) {
1120 		/*
1121 		 * Slave devices enumerated from ACPI namespace don't
1122 		 * usually have chip_info but we still might want to use
1123 		 * DMA with them.
1124 		 */
1125 		chip->enable_dma = drv_data->master_info->enable_dma;
1126 	}
1127 
1128 	chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1129 	chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1130 				| SSITF_TxHiThresh(tx_hi_thres);
1131 
1132 	/* set dma burst and threshold outside of chip_info path so that if
1133 	 * chip_info goes away after setting chip->enable_dma, the
1134 	 * burst and threshold can still respond to changes in bits_per_word */
1135 	if (chip->enable_dma) {
1136 		/* set up legal burst and threshold for dma */
1137 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1138 						spi->bits_per_word,
1139 						&chip->dma_burst_size,
1140 						&chip->dma_threshold)) {
1141 			dev_warn(&spi->dev,
1142 				 "in setup: DMA burst size reduced to match bits_per_word\n");
1143 		}
1144 	}
1145 
1146 	clk_div = pxa2xx_ssp_get_clk_div(drv_data, chip, spi->max_speed_hz);
1147 	chip->speed_hz = spi->max_speed_hz;
1148 
1149 	chip->cr0 = pxa2xx_configure_sscr0(drv_data, clk_div,
1150 					   spi->bits_per_word);
1151 	switch (drv_data->ssp_type) {
1152 	case QUARK_X1000_SSP:
1153 		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1154 				   & QUARK_X1000_SSCR1_RFT)
1155 				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1156 				   & QUARK_X1000_SSCR1_TFT);
1157 		break;
1158 	default:
1159 		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1160 			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1161 		break;
1162 	}
1163 
1164 	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1165 	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1166 			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1167 
1168 	if (spi->mode & SPI_LOOP)
1169 		chip->cr1 |= SSCR1_LBM;
1170 
1171 	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1172 	if (!pxa25x_ssp_comp(drv_data))
1173 		dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
1174 			drv_data->max_clk_rate
1175 				/ (1 + ((chip->cr0 & SSCR0_SCR(0xfff)) >> 8)),
1176 			chip->enable_dma ? "DMA" : "PIO");
1177 	else
1178 		dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
1179 			drv_data->max_clk_rate / 2
1180 				/ (1 + ((chip->cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1181 			chip->enable_dma ? "DMA" : "PIO");
1182 
1183 	if (spi->bits_per_word <= 8) {
1184 		chip->n_bytes = 1;
1185 		chip->read = u8_reader;
1186 		chip->write = u8_writer;
1187 	} else if (spi->bits_per_word <= 16) {
1188 		chip->n_bytes = 2;
1189 		chip->read = u16_reader;
1190 		chip->write = u16_writer;
1191 	} else if (spi->bits_per_word <= 32) {
1192 		if (!is_quark_x1000_ssp(drv_data))
1193 			chip->cr0 |= SSCR0_EDSS;
1194 		chip->n_bytes = 4;
1195 		chip->read = u32_reader;
1196 		chip->write = u32_writer;
1197 	}
1198 	chip->bits_per_word = spi->bits_per_word;
1199 
1200 	spi_set_ctldata(spi, chip);
1201 
1202 	if (drv_data->ssp_type == CE4100_SSP)
1203 		return 0;
1204 
1205 	return setup_cs(spi, chip, chip_info);
1206 }
1207 
1208 static void cleanup(struct spi_device *spi)
1209 {
1210 	struct chip_data *chip = spi_get_ctldata(spi);
1211 	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1212 
1213 	if (!chip)
1214 		return;
1215 
1216 	if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs))
1217 		gpio_free(chip->gpio_cs);
1218 
1219 	kfree(chip);
1220 }
1221 
1222 #ifdef CONFIG_ACPI
1223 static struct pxa2xx_spi_master *
1224 pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
1225 {
1226 	struct pxa2xx_spi_master *pdata;
1227 	struct acpi_device *adev;
1228 	struct ssp_device *ssp;
1229 	struct resource *res;
1230 	int devid;
1231 
1232 	if (!ACPI_HANDLE(&pdev->dev) ||
1233 	    acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
1234 		return NULL;
1235 
1236 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1237 	if (!pdata)
1238 		return NULL;
1239 
1240 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1241 	if (!res)
1242 		return NULL;
1243 
1244 	ssp = &pdata->ssp;
1245 
1246 	ssp->phys_base = res->start;
1247 	ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1248 	if (IS_ERR(ssp->mmio_base))
1249 		return NULL;
1250 
1251 	ssp->clk = devm_clk_get(&pdev->dev, NULL);
1252 	ssp->irq = platform_get_irq(pdev, 0);
1253 	ssp->type = LPSS_SSP;
1254 	ssp->pdev = pdev;
1255 
1256 	ssp->port_id = -1;
1257 	if (adev->pnp.unique_id && !kstrtoint(adev->pnp.unique_id, 0, &devid))
1258 		ssp->port_id = devid;
1259 
1260 	pdata->num_chipselect = 1;
1261 	pdata->enable_dma = true;
1262 
1263 	return pdata;
1264 }
1265 
1266 static struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1267 	{ "INT33C0", 0 },
1268 	{ "INT33C1", 0 },
1269 	{ "INT3430", 0 },
1270 	{ "INT3431", 0 },
1271 	{ "80860F0E", 0 },
1272 	{ "8086228E", 0 },
1273 	{ },
1274 };
1275 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1276 #else
1277 static inline struct pxa2xx_spi_master *
1278 pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
1279 {
1280 	return NULL;
1281 }
1282 #endif
1283 
1284 static int pxa2xx_spi_probe(struct platform_device *pdev)
1285 {
1286 	struct device *dev = &pdev->dev;
1287 	struct pxa2xx_spi_master *platform_info;
1288 	struct spi_master *master;
1289 	struct driver_data *drv_data;
1290 	struct ssp_device *ssp;
1291 	int status;
1292 
1293 	platform_info = dev_get_platdata(dev);
1294 	if (!platform_info) {
1295 		platform_info = pxa2xx_spi_acpi_get_pdata(pdev);
1296 		if (!platform_info) {
1297 			dev_err(&pdev->dev, "missing platform data\n");
1298 			return -ENODEV;
1299 		}
1300 	}
1301 
1302 	ssp = pxa_ssp_request(pdev->id, pdev->name);
1303 	if (!ssp)
1304 		ssp = &platform_info->ssp;
1305 
1306 	if (!ssp->mmio_base) {
1307 		dev_err(&pdev->dev, "failed to get ssp\n");
1308 		return -ENODEV;
1309 	}
1310 
1311 	/* Allocate master with space for drv_data and null dma buffer */
1312 	master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
1313 	if (!master) {
1314 		dev_err(&pdev->dev, "cannot alloc spi_master\n");
1315 		pxa_ssp_free(ssp);
1316 		return -ENOMEM;
1317 	}
1318 	drv_data = spi_master_get_devdata(master);
1319 	drv_data->master = master;
1320 	drv_data->master_info = platform_info;
1321 	drv_data->pdev = pdev;
1322 	drv_data->ssp = ssp;
1323 
1324 	master->dev.parent = &pdev->dev;
1325 	master->dev.of_node = pdev->dev.of_node;
1326 	/* the spi->mode bits understood by this driver: */
1327 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1328 
1329 	master->bus_num = ssp->port_id;
1330 	master->num_chipselect = platform_info->num_chipselect;
1331 	master->dma_alignment = DMA_ALIGNMENT;
1332 	master->cleanup = cleanup;
1333 	master->setup = setup;
1334 	master->transfer_one_message = pxa2xx_spi_transfer_one_message;
1335 	master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1336 	master->auto_runtime_pm = true;
1337 
1338 	drv_data->ssp_type = ssp->type;
1339 	drv_data->null_dma_buf = (u32 *)PTR_ALIGN(&drv_data[1], DMA_ALIGNMENT);
1340 
1341 	drv_data->ioaddr = ssp->mmio_base;
1342 	drv_data->ssdr_physical = ssp->phys_base + SSDR;
1343 	if (pxa25x_ssp_comp(drv_data)) {
1344 		switch (drv_data->ssp_type) {
1345 		case QUARK_X1000_SSP:
1346 			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1347 			break;
1348 		default:
1349 			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1350 			break;
1351 		}
1352 
1353 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1354 		drv_data->dma_cr1 = 0;
1355 		drv_data->clear_sr = SSSR_ROR;
1356 		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1357 	} else {
1358 		master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1359 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1360 		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1361 		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1362 		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1363 	}
1364 
1365 	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1366 			drv_data);
1367 	if (status < 0) {
1368 		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1369 		goto out_error_master_alloc;
1370 	}
1371 
1372 	/* Setup DMA if requested */
1373 	drv_data->tx_channel = -1;
1374 	drv_data->rx_channel = -1;
1375 	if (platform_info->enable_dma) {
1376 		status = pxa2xx_spi_dma_setup(drv_data);
1377 		if (status) {
1378 			dev_dbg(dev, "no DMA channels available, using PIO\n");
1379 			platform_info->enable_dma = false;
1380 		}
1381 	}
1382 
1383 	/* Enable SOC clock */
1384 	clk_prepare_enable(ssp->clk);
1385 
1386 	drv_data->max_clk_rate = clk_get_rate(ssp->clk);
1387 
1388 	/* Load default SSP configuration */
1389 	write_SSCR0(0, drv_data->ioaddr);
1390 	switch (drv_data->ssp_type) {
1391 	case QUARK_X1000_SSP:
1392 		write_SSCR1(QUARK_X1000_SSCR1_RxTresh(
1393 					RX_THRESH_QUARK_X1000_DFLT) |
1394 			    QUARK_X1000_SSCR1_TxTresh(
1395 					TX_THRESH_QUARK_X1000_DFLT),
1396 			    drv_data->ioaddr);
1397 
1398 		/* using the Motorola SPI protocol and use 8 bit frame */
1399 		write_SSCR0(QUARK_X1000_SSCR0_Motorola
1400 			    | QUARK_X1000_SSCR0_DataSize(8),
1401 			    drv_data->ioaddr);
1402 		break;
1403 	default:
1404 		write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT) |
1405 			    SSCR1_TxTresh(TX_THRESH_DFLT),
1406 			    drv_data->ioaddr);
1407 		write_SSCR0(SSCR0_SCR(2)
1408 			    | SSCR0_Motorola
1409 			    | SSCR0_DataSize(8),
1410 			    drv_data->ioaddr);
1411 		break;
1412 	}
1413 
1414 	if (!pxa25x_ssp_comp(drv_data))
1415 		write_SSTO(0, drv_data->ioaddr);
1416 
1417 	if (!is_quark_x1000_ssp(drv_data))
1418 		write_SSPSP(0, drv_data->ioaddr);
1419 
1420 	lpss_ssp_setup(drv_data);
1421 
1422 	tasklet_init(&drv_data->pump_transfers, pump_transfers,
1423 		     (unsigned long)drv_data);
1424 
1425 	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1426 	pm_runtime_use_autosuspend(&pdev->dev);
1427 	pm_runtime_set_active(&pdev->dev);
1428 	pm_runtime_enable(&pdev->dev);
1429 
1430 	/* Register with the SPI framework */
1431 	platform_set_drvdata(pdev, drv_data);
1432 	status = devm_spi_register_master(&pdev->dev, master);
1433 	if (status != 0) {
1434 		dev_err(&pdev->dev, "problem registering spi master\n");
1435 		goto out_error_clock_enabled;
1436 	}
1437 
1438 	return status;
1439 
1440 out_error_clock_enabled:
1441 	clk_disable_unprepare(ssp->clk);
1442 	pxa2xx_spi_dma_release(drv_data);
1443 	free_irq(ssp->irq, drv_data);
1444 
1445 out_error_master_alloc:
1446 	spi_master_put(master);
1447 	pxa_ssp_free(ssp);
1448 	return status;
1449 }
1450 
1451 static int pxa2xx_spi_remove(struct platform_device *pdev)
1452 {
1453 	struct driver_data *drv_data = platform_get_drvdata(pdev);
1454 	struct ssp_device *ssp;
1455 
1456 	if (!drv_data)
1457 		return 0;
1458 	ssp = drv_data->ssp;
1459 
1460 	pm_runtime_get_sync(&pdev->dev);
1461 
1462 	/* Disable the SSP at the peripheral and SOC level */
1463 	write_SSCR0(0, drv_data->ioaddr);
1464 	clk_disable_unprepare(ssp->clk);
1465 
1466 	/* Release DMA */
1467 	if (drv_data->master_info->enable_dma)
1468 		pxa2xx_spi_dma_release(drv_data);
1469 
1470 	pm_runtime_put_noidle(&pdev->dev);
1471 	pm_runtime_disable(&pdev->dev);
1472 
1473 	/* Release IRQ */
1474 	free_irq(ssp->irq, drv_data);
1475 
1476 	/* Release SSP */
1477 	pxa_ssp_free(ssp);
1478 
1479 	return 0;
1480 }
1481 
1482 static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1483 {
1484 	int status = 0;
1485 
1486 	if ((status = pxa2xx_spi_remove(pdev)) != 0)
1487 		dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1488 }
1489 
1490 #ifdef CONFIG_PM_SLEEP
1491 static int pxa2xx_spi_suspend(struct device *dev)
1492 {
1493 	struct driver_data *drv_data = dev_get_drvdata(dev);
1494 	struct ssp_device *ssp = drv_data->ssp;
1495 	int status = 0;
1496 
1497 	status = spi_master_suspend(drv_data->master);
1498 	if (status != 0)
1499 		return status;
1500 	write_SSCR0(0, drv_data->ioaddr);
1501 
1502 	if (!pm_runtime_suspended(dev))
1503 		clk_disable_unprepare(ssp->clk);
1504 
1505 	return 0;
1506 }
1507 
1508 static int pxa2xx_spi_resume(struct device *dev)
1509 {
1510 	struct driver_data *drv_data = dev_get_drvdata(dev);
1511 	struct ssp_device *ssp = drv_data->ssp;
1512 	int status = 0;
1513 
1514 	pxa2xx_spi_dma_resume(drv_data);
1515 
1516 	/* Enable the SSP clock */
1517 	if (!pm_runtime_suspended(dev))
1518 		clk_prepare_enable(ssp->clk);
1519 
1520 	/* Restore LPSS private register bits */
1521 	lpss_ssp_setup(drv_data);
1522 
1523 	/* Start the queue running */
1524 	status = spi_master_resume(drv_data->master);
1525 	if (status != 0) {
1526 		dev_err(dev, "problem starting queue (%d)\n", status);
1527 		return status;
1528 	}
1529 
1530 	return 0;
1531 }
1532 #endif
1533 
1534 #ifdef CONFIG_PM
1535 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1536 {
1537 	struct driver_data *drv_data = dev_get_drvdata(dev);
1538 
1539 	clk_disable_unprepare(drv_data->ssp->clk);
1540 	return 0;
1541 }
1542 
1543 static int pxa2xx_spi_runtime_resume(struct device *dev)
1544 {
1545 	struct driver_data *drv_data = dev_get_drvdata(dev);
1546 
1547 	clk_prepare_enable(drv_data->ssp->clk);
1548 	return 0;
1549 }
1550 #endif
1551 
1552 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1553 	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1554 	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1555 			   pxa2xx_spi_runtime_resume, NULL)
1556 };
1557 
1558 static struct platform_driver driver = {
1559 	.driver = {
1560 		.name	= "pxa2xx-spi",
1561 		.pm	= &pxa2xx_spi_pm_ops,
1562 		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1563 	},
1564 	.probe = pxa2xx_spi_probe,
1565 	.remove = pxa2xx_spi_remove,
1566 	.shutdown = pxa2xx_spi_shutdown,
1567 };
1568 
1569 static int __init pxa2xx_spi_init(void)
1570 {
1571 	return platform_driver_register(&driver);
1572 }
1573 subsys_initcall(pxa2xx_spi_init);
1574 
1575 static void __exit pxa2xx_spi_exit(void)
1576 {
1577 	platform_driver_unregister(&driver);
1578 }
1579 module_exit(pxa2xx_spi_exit);
1580