xref: /openbmc/linux/drivers/spi/spi-pxa2xx.c (revision 1c2dd16a)
1 /*
2  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
3  * Copyright (C) 2013, Intel Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/bitops.h>
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/device.h>
20 #include <linux/ioport.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/interrupt.h>
24 #include <linux/kernel.h>
25 #include <linux/pci.h>
26 #include <linux/platform_device.h>
27 #include <linux/spi/pxa2xx_spi.h>
28 #include <linux/spi/spi.h>
29 #include <linux/delay.h>
30 #include <linux/gpio.h>
31 #include <linux/gpio/consumer.h>
32 #include <linux/slab.h>
33 #include <linux/clk.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/acpi.h>
36 
37 #include "spi-pxa2xx.h"
38 
39 MODULE_AUTHOR("Stephen Street");
40 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
41 MODULE_LICENSE("GPL");
42 MODULE_ALIAS("platform:pxa2xx-spi");
43 
44 #define TIMOUT_DFLT		1000
45 
46 /*
47  * for testing SSCR1 changes that require SSP restart, basically
48  * everything except the service and interrupt enables, the pxa270 developer
49  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
50  * list, but the PXA255 dev man says all bits without really meaning the
51  * service and interrupt enables
52  */
53 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
54 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
55 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
56 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
57 				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
58 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
59 
60 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
61 				| QUARK_X1000_SSCR1_EFWR	\
62 				| QUARK_X1000_SSCR1_RFT		\
63 				| QUARK_X1000_SSCR1_TFT		\
64 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
65 
66 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
67 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
68 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
69 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
70 				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
71 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
72 
73 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
74 #define LPSS_CS_CONTROL_SW_MODE			BIT(0)
75 #define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
76 #define LPSS_CAPS_CS_EN_SHIFT			9
77 #define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
78 
79 struct lpss_config {
80 	/* LPSS offset from drv_data->ioaddr */
81 	unsigned offset;
82 	/* Register offsets from drv_data->lpss_base or -1 */
83 	int reg_general;
84 	int reg_ssp;
85 	int reg_cs_ctrl;
86 	int reg_capabilities;
87 	/* FIFO thresholds */
88 	u32 rx_threshold;
89 	u32 tx_threshold_lo;
90 	u32 tx_threshold_hi;
91 	/* Chip select control */
92 	unsigned cs_sel_shift;
93 	unsigned cs_sel_mask;
94 	unsigned cs_num;
95 };
96 
97 /* Keep these sorted with enum pxa_ssp_type */
98 static const struct lpss_config lpss_platforms[] = {
99 	{	/* LPSS_LPT_SSP */
100 		.offset = 0x800,
101 		.reg_general = 0x08,
102 		.reg_ssp = 0x0c,
103 		.reg_cs_ctrl = 0x18,
104 		.reg_capabilities = -1,
105 		.rx_threshold = 64,
106 		.tx_threshold_lo = 160,
107 		.tx_threshold_hi = 224,
108 	},
109 	{	/* LPSS_BYT_SSP */
110 		.offset = 0x400,
111 		.reg_general = 0x08,
112 		.reg_ssp = 0x0c,
113 		.reg_cs_ctrl = 0x18,
114 		.reg_capabilities = -1,
115 		.rx_threshold = 64,
116 		.tx_threshold_lo = 160,
117 		.tx_threshold_hi = 224,
118 	},
119 	{	/* LPSS_BSW_SSP */
120 		.offset = 0x400,
121 		.reg_general = 0x08,
122 		.reg_ssp = 0x0c,
123 		.reg_cs_ctrl = 0x18,
124 		.reg_capabilities = -1,
125 		.rx_threshold = 64,
126 		.tx_threshold_lo = 160,
127 		.tx_threshold_hi = 224,
128 		.cs_sel_shift = 2,
129 		.cs_sel_mask = 1 << 2,
130 		.cs_num = 2,
131 	},
132 	{	/* LPSS_SPT_SSP */
133 		.offset = 0x200,
134 		.reg_general = -1,
135 		.reg_ssp = 0x20,
136 		.reg_cs_ctrl = 0x24,
137 		.reg_capabilities = -1,
138 		.rx_threshold = 1,
139 		.tx_threshold_lo = 32,
140 		.tx_threshold_hi = 56,
141 	},
142 	{	/* LPSS_BXT_SSP */
143 		.offset = 0x200,
144 		.reg_general = -1,
145 		.reg_ssp = 0x20,
146 		.reg_cs_ctrl = 0x24,
147 		.reg_capabilities = 0xfc,
148 		.rx_threshold = 1,
149 		.tx_threshold_lo = 16,
150 		.tx_threshold_hi = 48,
151 		.cs_sel_shift = 8,
152 		.cs_sel_mask = 3 << 8,
153 	},
154 };
155 
156 static inline const struct lpss_config
157 *lpss_get_config(const struct driver_data *drv_data)
158 {
159 	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
160 }
161 
162 static bool is_lpss_ssp(const struct driver_data *drv_data)
163 {
164 	switch (drv_data->ssp_type) {
165 	case LPSS_LPT_SSP:
166 	case LPSS_BYT_SSP:
167 	case LPSS_BSW_SSP:
168 	case LPSS_SPT_SSP:
169 	case LPSS_BXT_SSP:
170 		return true;
171 	default:
172 		return false;
173 	}
174 }
175 
176 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
177 {
178 	return drv_data->ssp_type == QUARK_X1000_SSP;
179 }
180 
181 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
182 {
183 	switch (drv_data->ssp_type) {
184 	case QUARK_X1000_SSP:
185 		return QUARK_X1000_SSCR1_CHANGE_MASK;
186 	case CE4100_SSP:
187 		return CE4100_SSCR1_CHANGE_MASK;
188 	default:
189 		return SSCR1_CHANGE_MASK;
190 	}
191 }
192 
193 static u32
194 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
195 {
196 	switch (drv_data->ssp_type) {
197 	case QUARK_X1000_SSP:
198 		return RX_THRESH_QUARK_X1000_DFLT;
199 	case CE4100_SSP:
200 		return RX_THRESH_CE4100_DFLT;
201 	default:
202 		return RX_THRESH_DFLT;
203 	}
204 }
205 
206 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
207 {
208 	u32 mask;
209 
210 	switch (drv_data->ssp_type) {
211 	case QUARK_X1000_SSP:
212 		mask = QUARK_X1000_SSSR_TFL_MASK;
213 		break;
214 	case CE4100_SSP:
215 		mask = CE4100_SSSR_TFL_MASK;
216 		break;
217 	default:
218 		mask = SSSR_TFL_MASK;
219 		break;
220 	}
221 
222 	return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
223 }
224 
225 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
226 				     u32 *sccr1_reg)
227 {
228 	u32 mask;
229 
230 	switch (drv_data->ssp_type) {
231 	case QUARK_X1000_SSP:
232 		mask = QUARK_X1000_SSCR1_RFT;
233 		break;
234 	case CE4100_SSP:
235 		mask = CE4100_SSCR1_RFT;
236 		break;
237 	default:
238 		mask = SSCR1_RFT;
239 		break;
240 	}
241 	*sccr1_reg &= ~mask;
242 }
243 
244 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
245 				   u32 *sccr1_reg, u32 threshold)
246 {
247 	switch (drv_data->ssp_type) {
248 	case QUARK_X1000_SSP:
249 		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
250 		break;
251 	case CE4100_SSP:
252 		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
253 		break;
254 	default:
255 		*sccr1_reg |= SSCR1_RxTresh(threshold);
256 		break;
257 	}
258 }
259 
260 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
261 				  u32 clk_div, u8 bits)
262 {
263 	switch (drv_data->ssp_type) {
264 	case QUARK_X1000_SSP:
265 		return clk_div
266 			| QUARK_X1000_SSCR0_Motorola
267 			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
268 			| SSCR0_SSE;
269 	default:
270 		return clk_div
271 			| SSCR0_Motorola
272 			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
273 			| SSCR0_SSE
274 			| (bits > 16 ? SSCR0_EDSS : 0);
275 	}
276 }
277 
278 /*
279  * Read and write LPSS SSP private registers. Caller must first check that
280  * is_lpss_ssp() returns true before these can be called.
281  */
282 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
283 {
284 	WARN_ON(!drv_data->lpss_base);
285 	return readl(drv_data->lpss_base + offset);
286 }
287 
288 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
289 				  unsigned offset, u32 value)
290 {
291 	WARN_ON(!drv_data->lpss_base);
292 	writel(value, drv_data->lpss_base + offset);
293 }
294 
295 /*
296  * lpss_ssp_setup - perform LPSS SSP specific setup
297  * @drv_data: pointer to the driver private data
298  *
299  * Perform LPSS SSP specific setup. This function must be called first if
300  * one is going to use LPSS SSP private registers.
301  */
302 static void lpss_ssp_setup(struct driver_data *drv_data)
303 {
304 	const struct lpss_config *config;
305 	u32 value;
306 
307 	config = lpss_get_config(drv_data);
308 	drv_data->lpss_base = drv_data->ioaddr + config->offset;
309 
310 	/* Enable software chip select control */
311 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
312 	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
313 	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
314 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
315 
316 	/* Enable multiblock DMA transfers */
317 	if (drv_data->master_info->enable_dma) {
318 		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
319 
320 		if (config->reg_general >= 0) {
321 			value = __lpss_ssp_read_priv(drv_data,
322 						     config->reg_general);
323 			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
324 			__lpss_ssp_write_priv(drv_data,
325 					      config->reg_general, value);
326 		}
327 	}
328 }
329 
330 static void lpss_ssp_select_cs(struct driver_data *drv_data,
331 			       const struct lpss_config *config)
332 {
333 	u32 value, cs;
334 
335 	if (!config->cs_sel_mask)
336 		return;
337 
338 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
339 
340 	cs = drv_data->master->cur_msg->spi->chip_select;
341 	cs <<= config->cs_sel_shift;
342 	if (cs != (value & config->cs_sel_mask)) {
343 		/*
344 		 * When switching another chip select output active the
345 		 * output must be selected first and wait 2 ssp_clk cycles
346 		 * before changing state to active. Otherwise a short
347 		 * glitch will occur on the previous chip select since
348 		 * output select is latched but state control is not.
349 		 */
350 		value &= ~config->cs_sel_mask;
351 		value |= cs;
352 		__lpss_ssp_write_priv(drv_data,
353 				      config->reg_cs_ctrl, value);
354 		ndelay(1000000000 /
355 		       (drv_data->master->max_speed_hz / 2));
356 	}
357 }
358 
359 static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable)
360 {
361 	const struct lpss_config *config;
362 	u32 value;
363 
364 	config = lpss_get_config(drv_data);
365 
366 	if (enable)
367 		lpss_ssp_select_cs(drv_data, config);
368 
369 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
370 	if (enable)
371 		value &= ~LPSS_CS_CONTROL_CS_HIGH;
372 	else
373 		value |= LPSS_CS_CONTROL_CS_HIGH;
374 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
375 }
376 
377 static void cs_assert(struct driver_data *drv_data)
378 {
379 	struct chip_data *chip =
380 		spi_get_ctldata(drv_data->master->cur_msg->spi);
381 
382 	if (drv_data->ssp_type == CE4100_SSP) {
383 		pxa2xx_spi_write(drv_data, SSSR, chip->frm);
384 		return;
385 	}
386 
387 	if (chip->cs_control) {
388 		chip->cs_control(PXA2XX_CS_ASSERT);
389 		return;
390 	}
391 
392 	if (gpio_is_valid(chip->gpio_cs)) {
393 		gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
394 		return;
395 	}
396 
397 	if (is_lpss_ssp(drv_data))
398 		lpss_ssp_cs_control(drv_data, true);
399 }
400 
401 static void cs_deassert(struct driver_data *drv_data)
402 {
403 	struct chip_data *chip =
404 		spi_get_ctldata(drv_data->master->cur_msg->spi);
405 
406 	if (drv_data->ssp_type == CE4100_SSP)
407 		return;
408 
409 	if (chip->cs_control) {
410 		chip->cs_control(PXA2XX_CS_DEASSERT);
411 		return;
412 	}
413 
414 	if (gpio_is_valid(chip->gpio_cs)) {
415 		gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
416 		return;
417 	}
418 
419 	if (is_lpss_ssp(drv_data))
420 		lpss_ssp_cs_control(drv_data, false);
421 }
422 
423 int pxa2xx_spi_flush(struct driver_data *drv_data)
424 {
425 	unsigned long limit = loops_per_jiffy << 1;
426 
427 	do {
428 		while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
429 			pxa2xx_spi_read(drv_data, SSDR);
430 	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
431 	write_SSSR_CS(drv_data, SSSR_ROR);
432 
433 	return limit;
434 }
435 
436 static int null_writer(struct driver_data *drv_data)
437 {
438 	u8 n_bytes = drv_data->n_bytes;
439 
440 	if (pxa2xx_spi_txfifo_full(drv_data)
441 		|| (drv_data->tx == drv_data->tx_end))
442 		return 0;
443 
444 	pxa2xx_spi_write(drv_data, SSDR, 0);
445 	drv_data->tx += n_bytes;
446 
447 	return 1;
448 }
449 
450 static int null_reader(struct driver_data *drv_data)
451 {
452 	u8 n_bytes = drv_data->n_bytes;
453 
454 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
455 	       && (drv_data->rx < drv_data->rx_end)) {
456 		pxa2xx_spi_read(drv_data, SSDR);
457 		drv_data->rx += n_bytes;
458 	}
459 
460 	return drv_data->rx == drv_data->rx_end;
461 }
462 
463 static int u8_writer(struct driver_data *drv_data)
464 {
465 	if (pxa2xx_spi_txfifo_full(drv_data)
466 		|| (drv_data->tx == drv_data->tx_end))
467 		return 0;
468 
469 	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
470 	++drv_data->tx;
471 
472 	return 1;
473 }
474 
475 static int u8_reader(struct driver_data *drv_data)
476 {
477 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
478 	       && (drv_data->rx < drv_data->rx_end)) {
479 		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
480 		++drv_data->rx;
481 	}
482 
483 	return drv_data->rx == drv_data->rx_end;
484 }
485 
486 static int u16_writer(struct driver_data *drv_data)
487 {
488 	if (pxa2xx_spi_txfifo_full(drv_data)
489 		|| (drv_data->tx == drv_data->tx_end))
490 		return 0;
491 
492 	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
493 	drv_data->tx += 2;
494 
495 	return 1;
496 }
497 
498 static int u16_reader(struct driver_data *drv_data)
499 {
500 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
501 	       && (drv_data->rx < drv_data->rx_end)) {
502 		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
503 		drv_data->rx += 2;
504 	}
505 
506 	return drv_data->rx == drv_data->rx_end;
507 }
508 
509 static int u32_writer(struct driver_data *drv_data)
510 {
511 	if (pxa2xx_spi_txfifo_full(drv_data)
512 		|| (drv_data->tx == drv_data->tx_end))
513 		return 0;
514 
515 	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
516 	drv_data->tx += 4;
517 
518 	return 1;
519 }
520 
521 static int u32_reader(struct driver_data *drv_data)
522 {
523 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
524 	       && (drv_data->rx < drv_data->rx_end)) {
525 		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
526 		drv_data->rx += 4;
527 	}
528 
529 	return drv_data->rx == drv_data->rx_end;
530 }
531 
532 void *pxa2xx_spi_next_transfer(struct driver_data *drv_data)
533 {
534 	struct spi_message *msg = drv_data->master->cur_msg;
535 	struct spi_transfer *trans = drv_data->cur_transfer;
536 
537 	/* Move to next transfer */
538 	if (trans->transfer_list.next != &msg->transfers) {
539 		drv_data->cur_transfer =
540 			list_entry(trans->transfer_list.next,
541 					struct spi_transfer,
542 					transfer_list);
543 		return RUNNING_STATE;
544 	} else
545 		return DONE_STATE;
546 }
547 
548 /* caller already set message->status; dma and pio irqs are blocked */
549 static void giveback(struct driver_data *drv_data)
550 {
551 	struct spi_transfer* last_transfer;
552 	struct spi_message *msg;
553 	unsigned long timeout;
554 
555 	msg = drv_data->master->cur_msg;
556 	drv_data->cur_transfer = NULL;
557 
558 	last_transfer = list_last_entry(&msg->transfers, struct spi_transfer,
559 					transfer_list);
560 
561 	/* Delay if requested before any change in chip select */
562 	if (last_transfer->delay_usecs)
563 		udelay(last_transfer->delay_usecs);
564 
565 	/* Wait until SSP becomes idle before deasserting the CS */
566 	timeout = jiffies + msecs_to_jiffies(10);
567 	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
568 	       !time_after(jiffies, timeout))
569 		cpu_relax();
570 
571 	/* Drop chip select UNLESS cs_change is true or we are returning
572 	 * a message with an error, or next message is for another chip
573 	 */
574 	if (!last_transfer->cs_change)
575 		cs_deassert(drv_data);
576 	else {
577 		struct spi_message *next_msg;
578 
579 		/* Holding of cs was hinted, but we need to make sure
580 		 * the next message is for the same chip.  Don't waste
581 		 * time with the following tests unless this was hinted.
582 		 *
583 		 * We cannot postpone this until pump_messages, because
584 		 * after calling msg->complete (below) the driver that
585 		 * sent the current message could be unloaded, which
586 		 * could invalidate the cs_control() callback...
587 		 */
588 
589 		/* get a pointer to the next message, if any */
590 		next_msg = spi_get_next_queued_message(drv_data->master);
591 
592 		/* see if the next and current messages point
593 		 * to the same chip
594 		 */
595 		if ((next_msg && next_msg->spi != msg->spi) ||
596 		    msg->state == ERROR_STATE)
597 			cs_deassert(drv_data);
598 	}
599 
600 	spi_finalize_current_message(drv_data->master);
601 }
602 
603 static void reset_sccr1(struct driver_data *drv_data)
604 {
605 	struct chip_data *chip =
606 		spi_get_ctldata(drv_data->master->cur_msg->spi);
607 	u32 sccr1_reg;
608 
609 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
610 	switch (drv_data->ssp_type) {
611 	case QUARK_X1000_SSP:
612 		sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
613 		break;
614 	case CE4100_SSP:
615 		sccr1_reg &= ~CE4100_SSCR1_RFT;
616 		break;
617 	default:
618 		sccr1_reg &= ~SSCR1_RFT;
619 		break;
620 	}
621 	sccr1_reg |= chip->threshold;
622 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
623 }
624 
625 static void int_error_stop(struct driver_data *drv_data, const char* msg)
626 {
627 	/* Stop and reset SSP */
628 	write_SSSR_CS(drv_data, drv_data->clear_sr);
629 	reset_sccr1(drv_data);
630 	if (!pxa25x_ssp_comp(drv_data))
631 		pxa2xx_spi_write(drv_data, SSTO, 0);
632 	pxa2xx_spi_flush(drv_data);
633 	pxa2xx_spi_write(drv_data, SSCR0,
634 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
635 
636 	dev_err(&drv_data->pdev->dev, "%s\n", msg);
637 
638 	drv_data->master->cur_msg->state = ERROR_STATE;
639 	tasklet_schedule(&drv_data->pump_transfers);
640 }
641 
642 static void int_transfer_complete(struct driver_data *drv_data)
643 {
644 	/* Clear and disable interrupts */
645 	write_SSSR_CS(drv_data, drv_data->clear_sr);
646 	reset_sccr1(drv_data);
647 	if (!pxa25x_ssp_comp(drv_data))
648 		pxa2xx_spi_write(drv_data, SSTO, 0);
649 
650 	/* Update total byte transferred return count actual bytes read */
651 	drv_data->master->cur_msg->actual_length += drv_data->len -
652 				(drv_data->rx_end - drv_data->rx);
653 
654 	/* Transfer delays and chip select release are
655 	 * handled in pump_transfers or giveback
656 	 */
657 
658 	/* Move to next transfer */
659 	drv_data->master->cur_msg->state = pxa2xx_spi_next_transfer(drv_data);
660 
661 	/* Schedule transfer tasklet */
662 	tasklet_schedule(&drv_data->pump_transfers);
663 }
664 
665 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
666 {
667 	u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
668 		       drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
669 
670 	u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
671 
672 	if (irq_status & SSSR_ROR) {
673 		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
674 		return IRQ_HANDLED;
675 	}
676 
677 	if (irq_status & SSSR_TINT) {
678 		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
679 		if (drv_data->read(drv_data)) {
680 			int_transfer_complete(drv_data);
681 			return IRQ_HANDLED;
682 		}
683 	}
684 
685 	/* Drain rx fifo, Fill tx fifo and prevent overruns */
686 	do {
687 		if (drv_data->read(drv_data)) {
688 			int_transfer_complete(drv_data);
689 			return IRQ_HANDLED;
690 		}
691 	} while (drv_data->write(drv_data));
692 
693 	if (drv_data->read(drv_data)) {
694 		int_transfer_complete(drv_data);
695 		return IRQ_HANDLED;
696 	}
697 
698 	if (drv_data->tx == drv_data->tx_end) {
699 		u32 bytes_left;
700 		u32 sccr1_reg;
701 
702 		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
703 		sccr1_reg &= ~SSCR1_TIE;
704 
705 		/*
706 		 * PXA25x_SSP has no timeout, set up rx threshould for the
707 		 * remaining RX bytes.
708 		 */
709 		if (pxa25x_ssp_comp(drv_data)) {
710 			u32 rx_thre;
711 
712 			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
713 
714 			bytes_left = drv_data->rx_end - drv_data->rx;
715 			switch (drv_data->n_bytes) {
716 			case 4:
717 				bytes_left >>= 1;
718 			case 2:
719 				bytes_left >>= 1;
720 			}
721 
722 			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
723 			if (rx_thre > bytes_left)
724 				rx_thre = bytes_left;
725 
726 			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
727 		}
728 		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
729 	}
730 
731 	/* We did something */
732 	return IRQ_HANDLED;
733 }
734 
735 static void handle_bad_msg(struct driver_data *drv_data)
736 {
737 	pxa2xx_spi_write(drv_data, SSCR0,
738 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
739 	pxa2xx_spi_write(drv_data, SSCR1,
740 			 pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1);
741 	if (!pxa25x_ssp_comp(drv_data))
742 		pxa2xx_spi_write(drv_data, SSTO, 0);
743 	write_SSSR_CS(drv_data, drv_data->clear_sr);
744 
745 	dev_err(&drv_data->pdev->dev,
746 		"bad message state in interrupt handler\n");
747 }
748 
749 static irqreturn_t ssp_int(int irq, void *dev_id)
750 {
751 	struct driver_data *drv_data = dev_id;
752 	u32 sccr1_reg;
753 	u32 mask = drv_data->mask_sr;
754 	u32 status;
755 
756 	/*
757 	 * The IRQ might be shared with other peripherals so we must first
758 	 * check that are we RPM suspended or not. If we are we assume that
759 	 * the IRQ was not for us (we shouldn't be RPM suspended when the
760 	 * interrupt is enabled).
761 	 */
762 	if (pm_runtime_suspended(&drv_data->pdev->dev))
763 		return IRQ_NONE;
764 
765 	/*
766 	 * If the device is not yet in RPM suspended state and we get an
767 	 * interrupt that is meant for another device, check if status bits
768 	 * are all set to one. That means that the device is already
769 	 * powered off.
770 	 */
771 	status = pxa2xx_spi_read(drv_data, SSSR);
772 	if (status == ~0)
773 		return IRQ_NONE;
774 
775 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
776 
777 	/* Ignore possible writes if we don't need to write */
778 	if (!(sccr1_reg & SSCR1_TIE))
779 		mask &= ~SSSR_TFS;
780 
781 	/* Ignore RX timeout interrupt if it is disabled */
782 	if (!(sccr1_reg & SSCR1_TINTE))
783 		mask &= ~SSSR_TINT;
784 
785 	if (!(status & mask))
786 		return IRQ_NONE;
787 
788 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
789 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
790 
791 	if (!drv_data->master->cur_msg) {
792 		handle_bad_msg(drv_data);
793 		/* Never fail */
794 		return IRQ_HANDLED;
795 	}
796 
797 	return drv_data->transfer_handler(drv_data);
798 }
799 
800 /*
801  * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
802  * input frequency by fractions of 2^24. It also has a divider by 5.
803  *
804  * There are formulas to get baud rate value for given input frequency and
805  * divider parameters, such as DDS_CLK_RATE and SCR:
806  *
807  * Fsys = 200MHz
808  *
809  * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
810  * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
811  *
812  * DDS_CLK_RATE either 2^n or 2^n / 5.
813  * SCR is in range 0 .. 255
814  *
815  * Divisor = 5^i * 2^j * 2 * k
816  *       i = [0, 1]      i = 1 iff j = 0 or j > 3
817  *       j = [0, 23]     j = 0 iff i = 1
818  *       k = [1, 256]
819  * Special case: j = 0, i = 1: Divisor = 2 / 5
820  *
821  * Accordingly to the specification the recommended values for DDS_CLK_RATE
822  * are:
823  *	Case 1:		2^n, n = [0, 23]
824  *	Case 2:		2^24 * 2 / 5 (0x666666)
825  *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
826  *
827  * In all cases the lowest possible value is better.
828  *
829  * The function calculates parameters for all cases and chooses the one closest
830  * to the asked baud rate.
831  */
832 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
833 {
834 	unsigned long xtal = 200000000;
835 	unsigned long fref = xtal / 2;		/* mandatory division by 2,
836 						   see (2) */
837 						/* case 3 */
838 	unsigned long fref1 = fref / 2;		/* case 1 */
839 	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
840 	unsigned long scale;
841 	unsigned long q, q1, q2;
842 	long r, r1, r2;
843 	u32 mul;
844 
845 	/* Case 1 */
846 
847 	/* Set initial value for DDS_CLK_RATE */
848 	mul = (1 << 24) >> 1;
849 
850 	/* Calculate initial quot */
851 	q1 = DIV_ROUND_UP(fref1, rate);
852 
853 	/* Scale q1 if it's too big */
854 	if (q1 > 256) {
855 		/* Scale q1 to range [1, 512] */
856 		scale = fls_long(q1 - 1);
857 		if (scale > 9) {
858 			q1 >>= scale - 9;
859 			mul >>= scale - 9;
860 		}
861 
862 		/* Round the result if we have a remainder */
863 		q1 += q1 & 1;
864 	}
865 
866 	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
867 	scale = __ffs(q1);
868 	q1 >>= scale;
869 	mul >>= scale;
870 
871 	/* Get the remainder */
872 	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
873 
874 	/* Case 2 */
875 
876 	q2 = DIV_ROUND_UP(fref2, rate);
877 	r2 = abs(fref2 / q2 - rate);
878 
879 	/*
880 	 * Choose the best between two: less remainder we have the better. We
881 	 * can't go case 2 if q2 is greater than 256 since SCR register can
882 	 * hold only values 0 .. 255.
883 	 */
884 	if (r2 >= r1 || q2 > 256) {
885 		/* case 1 is better */
886 		r = r1;
887 		q = q1;
888 	} else {
889 		/* case 2 is better */
890 		r = r2;
891 		q = q2;
892 		mul = (1 << 24) * 2 / 5;
893 	}
894 
895 	/* Check case 3 only if the divisor is big enough */
896 	if (fref / rate >= 80) {
897 		u64 fssp;
898 		u32 m;
899 
900 		/* Calculate initial quot */
901 		q1 = DIV_ROUND_UP(fref, rate);
902 		m = (1 << 24) / q1;
903 
904 		/* Get the remainder */
905 		fssp = (u64)fref * m;
906 		do_div(fssp, 1 << 24);
907 		r1 = abs(fssp - rate);
908 
909 		/* Choose this one if it suits better */
910 		if (r1 < r) {
911 			/* case 3 is better */
912 			q = 1;
913 			mul = m;
914 		}
915 	}
916 
917 	*dds = mul;
918 	return q - 1;
919 }
920 
921 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
922 {
923 	unsigned long ssp_clk = drv_data->master->max_speed_hz;
924 	const struct ssp_device *ssp = drv_data->ssp;
925 
926 	rate = min_t(int, ssp_clk, rate);
927 
928 	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
929 		return (ssp_clk / (2 * rate) - 1) & 0xff;
930 	else
931 		return (ssp_clk / rate - 1) & 0xfff;
932 }
933 
934 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
935 					   int rate)
936 {
937 	struct chip_data *chip =
938 		spi_get_ctldata(drv_data->master->cur_msg->spi);
939 	unsigned int clk_div;
940 
941 	switch (drv_data->ssp_type) {
942 	case QUARK_X1000_SSP:
943 		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
944 		break;
945 	default:
946 		clk_div = ssp_get_clk_div(drv_data, rate);
947 		break;
948 	}
949 	return clk_div << 8;
950 }
951 
952 static bool pxa2xx_spi_can_dma(struct spi_master *master,
953 			       struct spi_device *spi,
954 			       struct spi_transfer *xfer)
955 {
956 	struct chip_data *chip = spi_get_ctldata(spi);
957 
958 	return chip->enable_dma &&
959 	       xfer->len <= MAX_DMA_LEN &&
960 	       xfer->len >= chip->dma_burst_size;
961 }
962 
963 static void pump_transfers(unsigned long data)
964 {
965 	struct driver_data *drv_data = (struct driver_data *)data;
966 	struct spi_master *master = drv_data->master;
967 	struct spi_message *message = master->cur_msg;
968 	struct chip_data *chip = spi_get_ctldata(message->spi);
969 	u32 dma_thresh = chip->dma_threshold;
970 	u32 dma_burst = chip->dma_burst_size;
971 	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
972 	struct spi_transfer *transfer;
973 	struct spi_transfer *previous;
974 	u32 clk_div;
975 	u8 bits;
976 	u32 speed;
977 	u32 cr0;
978 	u32 cr1;
979 	int err;
980 	int dma_mapped;
981 
982 	/* Get current state information */
983 	transfer = drv_data->cur_transfer;
984 
985 	/* Handle for abort */
986 	if (message->state == ERROR_STATE) {
987 		message->status = -EIO;
988 		giveback(drv_data);
989 		return;
990 	}
991 
992 	/* Handle end of message */
993 	if (message->state == DONE_STATE) {
994 		message->status = 0;
995 		giveback(drv_data);
996 		return;
997 	}
998 
999 	/* Delay if requested at end of transfer before CS change */
1000 	if (message->state == RUNNING_STATE) {
1001 		previous = list_entry(transfer->transfer_list.prev,
1002 					struct spi_transfer,
1003 					transfer_list);
1004 		if (previous->delay_usecs)
1005 			udelay(previous->delay_usecs);
1006 
1007 		/* Drop chip select only if cs_change is requested */
1008 		if (previous->cs_change)
1009 			cs_deassert(drv_data);
1010 	}
1011 
1012 	/* Check if we can DMA this transfer */
1013 	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
1014 
1015 		/* reject already-mapped transfers; PIO won't always work */
1016 		if (message->is_dma_mapped
1017 				|| transfer->rx_dma || transfer->tx_dma) {
1018 			dev_err(&drv_data->pdev->dev,
1019 				"pump_transfers: mapped transfer length of "
1020 				"%u is greater than %d\n",
1021 				transfer->len, MAX_DMA_LEN);
1022 			message->status = -EINVAL;
1023 			giveback(drv_data);
1024 			return;
1025 		}
1026 
1027 		/* warn ... we force this to PIO mode */
1028 		dev_warn_ratelimited(&message->spi->dev,
1029 				     "pump_transfers: DMA disabled for transfer length %ld "
1030 				     "greater than %d\n",
1031 				     (long)drv_data->len, MAX_DMA_LEN);
1032 	}
1033 
1034 	/* Setup the transfer state based on the type of transfer */
1035 	if (pxa2xx_spi_flush(drv_data) == 0) {
1036 		dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
1037 		message->status = -EIO;
1038 		giveback(drv_data);
1039 		return;
1040 	}
1041 	drv_data->n_bytes = chip->n_bytes;
1042 	drv_data->tx = (void *)transfer->tx_buf;
1043 	drv_data->tx_end = drv_data->tx + transfer->len;
1044 	drv_data->rx = transfer->rx_buf;
1045 	drv_data->rx_end = drv_data->rx + transfer->len;
1046 	drv_data->len = transfer->len;
1047 	drv_data->write = drv_data->tx ? chip->write : null_writer;
1048 	drv_data->read = drv_data->rx ? chip->read : null_reader;
1049 
1050 	/* Change speed and bit per word on a per transfer */
1051 	bits = transfer->bits_per_word;
1052 	speed = transfer->speed_hz;
1053 
1054 	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
1055 
1056 	if (bits <= 8) {
1057 		drv_data->n_bytes = 1;
1058 		drv_data->read = drv_data->read != null_reader ?
1059 					u8_reader : null_reader;
1060 		drv_data->write = drv_data->write != null_writer ?
1061 					u8_writer : null_writer;
1062 	} else if (bits <= 16) {
1063 		drv_data->n_bytes = 2;
1064 		drv_data->read = drv_data->read != null_reader ?
1065 					u16_reader : null_reader;
1066 		drv_data->write = drv_data->write != null_writer ?
1067 					u16_writer : null_writer;
1068 	} else if (bits <= 32) {
1069 		drv_data->n_bytes = 4;
1070 		drv_data->read = drv_data->read != null_reader ?
1071 					u32_reader : null_reader;
1072 		drv_data->write = drv_data->write != null_writer ?
1073 					u32_writer : null_writer;
1074 	}
1075 	/*
1076 	 * if bits/word is changed in dma mode, then must check the
1077 	 * thresholds and burst also
1078 	 */
1079 	if (chip->enable_dma) {
1080 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1081 						message->spi,
1082 						bits, &dma_burst,
1083 						&dma_thresh))
1084 			dev_warn_ratelimited(&message->spi->dev,
1085 					     "pump_transfers: DMA burst size reduced to match bits_per_word\n");
1086 	}
1087 
1088 	message->state = RUNNING_STATE;
1089 
1090 	dma_mapped = master->can_dma &&
1091 		     master->can_dma(master, message->spi, transfer) &&
1092 		     master->cur_msg_mapped;
1093 	if (dma_mapped) {
1094 
1095 		/* Ensure we have the correct interrupt handler */
1096 		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1097 
1098 		err = pxa2xx_spi_dma_prepare(drv_data, dma_burst);
1099 		if (err) {
1100 			message->status = err;
1101 			giveback(drv_data);
1102 			return;
1103 		}
1104 
1105 		/* Clear status and start DMA engine */
1106 		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1107 		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1108 
1109 		pxa2xx_spi_dma_start(drv_data);
1110 	} else {
1111 		/* Ensure we have the correct interrupt handler	*/
1112 		drv_data->transfer_handler = interrupt_transfer;
1113 
1114 		/* Clear status  */
1115 		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1116 		write_SSSR_CS(drv_data, drv_data->clear_sr);
1117 	}
1118 
1119 	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1120 	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1121 	if (!pxa25x_ssp_comp(drv_data))
1122 		dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1123 			master->max_speed_hz
1124 				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1125 			dma_mapped ? "DMA" : "PIO");
1126 	else
1127 		dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1128 			master->max_speed_hz / 2
1129 				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1130 			dma_mapped ? "DMA" : "PIO");
1131 
1132 	if (is_lpss_ssp(drv_data)) {
1133 		if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1134 		    != chip->lpss_rx_threshold)
1135 			pxa2xx_spi_write(drv_data, SSIRF,
1136 					 chip->lpss_rx_threshold);
1137 		if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1138 		    != chip->lpss_tx_threshold)
1139 			pxa2xx_spi_write(drv_data, SSITF,
1140 					 chip->lpss_tx_threshold);
1141 	}
1142 
1143 	if (is_quark_x1000_ssp(drv_data) &&
1144 	    (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1145 		pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1146 
1147 	/* see if we need to reload the config registers */
1148 	if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1149 	    || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1150 	    != (cr1 & change_mask)) {
1151 		/* stop the SSP, and update the other bits */
1152 		pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1153 		if (!pxa25x_ssp_comp(drv_data))
1154 			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1155 		/* first set CR1 without interrupt and service enables */
1156 		pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1157 		/* restart the SSP */
1158 		pxa2xx_spi_write(drv_data, SSCR0, cr0);
1159 
1160 	} else {
1161 		if (!pxa25x_ssp_comp(drv_data))
1162 			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1163 	}
1164 
1165 	cs_assert(drv_data);
1166 
1167 	/* after chip select, release the data by enabling service
1168 	 * requests and interrupts, without changing any mode bits */
1169 	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1170 }
1171 
1172 static int pxa2xx_spi_transfer_one_message(struct spi_master *master,
1173 					   struct spi_message *msg)
1174 {
1175 	struct driver_data *drv_data = spi_master_get_devdata(master);
1176 
1177 	/* Initial message state*/
1178 	msg->state = START_STATE;
1179 	drv_data->cur_transfer = list_entry(msg->transfers.next,
1180 						struct spi_transfer,
1181 						transfer_list);
1182 
1183 	/* Mark as busy and launch transfers */
1184 	tasklet_schedule(&drv_data->pump_transfers);
1185 	return 0;
1186 }
1187 
1188 static int pxa2xx_spi_unprepare_transfer(struct spi_master *master)
1189 {
1190 	struct driver_data *drv_data = spi_master_get_devdata(master);
1191 
1192 	/* Disable the SSP now */
1193 	pxa2xx_spi_write(drv_data, SSCR0,
1194 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1195 
1196 	return 0;
1197 }
1198 
1199 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1200 		    struct pxa2xx_spi_chip *chip_info)
1201 {
1202 	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1203 	int err = 0;
1204 
1205 	if (chip == NULL)
1206 		return 0;
1207 
1208 	if (drv_data->cs_gpiods) {
1209 		struct gpio_desc *gpiod;
1210 
1211 		gpiod = drv_data->cs_gpiods[spi->chip_select];
1212 		if (gpiod) {
1213 			chip->gpio_cs = desc_to_gpio(gpiod);
1214 			chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1215 			gpiod_set_value(gpiod, chip->gpio_cs_inverted);
1216 		}
1217 
1218 		return 0;
1219 	}
1220 
1221 	if (chip_info == NULL)
1222 		return 0;
1223 
1224 	/* NOTE: setup() can be called multiple times, possibly with
1225 	 * different chip_info, release previously requested GPIO
1226 	 */
1227 	if (gpio_is_valid(chip->gpio_cs))
1228 		gpio_free(chip->gpio_cs);
1229 
1230 	/* If (*cs_control) is provided, ignore GPIO chip select */
1231 	if (chip_info->cs_control) {
1232 		chip->cs_control = chip_info->cs_control;
1233 		return 0;
1234 	}
1235 
1236 	if (gpio_is_valid(chip_info->gpio_cs)) {
1237 		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1238 		if (err) {
1239 			dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1240 				chip_info->gpio_cs);
1241 			return err;
1242 		}
1243 
1244 		chip->gpio_cs = chip_info->gpio_cs;
1245 		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1246 
1247 		err = gpio_direction_output(chip->gpio_cs,
1248 					!chip->gpio_cs_inverted);
1249 	}
1250 
1251 	return err;
1252 }
1253 
1254 static int setup(struct spi_device *spi)
1255 {
1256 	struct pxa2xx_spi_chip *chip_info;
1257 	struct chip_data *chip;
1258 	const struct lpss_config *config;
1259 	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1260 	uint tx_thres, tx_hi_thres, rx_thres;
1261 
1262 	switch (drv_data->ssp_type) {
1263 	case QUARK_X1000_SSP:
1264 		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1265 		tx_hi_thres = 0;
1266 		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1267 		break;
1268 	case CE4100_SSP:
1269 		tx_thres = TX_THRESH_CE4100_DFLT;
1270 		tx_hi_thres = 0;
1271 		rx_thres = RX_THRESH_CE4100_DFLT;
1272 		break;
1273 	case LPSS_LPT_SSP:
1274 	case LPSS_BYT_SSP:
1275 	case LPSS_BSW_SSP:
1276 	case LPSS_SPT_SSP:
1277 	case LPSS_BXT_SSP:
1278 		config = lpss_get_config(drv_data);
1279 		tx_thres = config->tx_threshold_lo;
1280 		tx_hi_thres = config->tx_threshold_hi;
1281 		rx_thres = config->rx_threshold;
1282 		break;
1283 	default:
1284 		tx_thres = TX_THRESH_DFLT;
1285 		tx_hi_thres = 0;
1286 		rx_thres = RX_THRESH_DFLT;
1287 		break;
1288 	}
1289 
1290 	/* Only alloc on first setup */
1291 	chip = spi_get_ctldata(spi);
1292 	if (!chip) {
1293 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1294 		if (!chip)
1295 			return -ENOMEM;
1296 
1297 		if (drv_data->ssp_type == CE4100_SSP) {
1298 			if (spi->chip_select > 4) {
1299 				dev_err(&spi->dev,
1300 					"failed setup: cs number must not be > 4.\n");
1301 				kfree(chip);
1302 				return -EINVAL;
1303 			}
1304 
1305 			chip->frm = spi->chip_select;
1306 		} else
1307 			chip->gpio_cs = -1;
1308 		chip->enable_dma = drv_data->master_info->enable_dma;
1309 		chip->timeout = TIMOUT_DFLT;
1310 	}
1311 
1312 	/* protocol drivers may change the chip settings, so...
1313 	 * if chip_info exists, use it */
1314 	chip_info = spi->controller_data;
1315 
1316 	/* chip_info isn't always needed */
1317 	chip->cr1 = 0;
1318 	if (chip_info) {
1319 		if (chip_info->timeout)
1320 			chip->timeout = chip_info->timeout;
1321 		if (chip_info->tx_threshold)
1322 			tx_thres = chip_info->tx_threshold;
1323 		if (chip_info->tx_hi_threshold)
1324 			tx_hi_thres = chip_info->tx_hi_threshold;
1325 		if (chip_info->rx_threshold)
1326 			rx_thres = chip_info->rx_threshold;
1327 		chip->dma_threshold = 0;
1328 		if (chip_info->enable_loopback)
1329 			chip->cr1 = SSCR1_LBM;
1330 	}
1331 
1332 	chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1333 	chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1334 				| SSITF_TxHiThresh(tx_hi_thres);
1335 
1336 	/* set dma burst and threshold outside of chip_info path so that if
1337 	 * chip_info goes away after setting chip->enable_dma, the
1338 	 * burst and threshold can still respond to changes in bits_per_word */
1339 	if (chip->enable_dma) {
1340 		/* set up legal burst and threshold for dma */
1341 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1342 						spi->bits_per_word,
1343 						&chip->dma_burst_size,
1344 						&chip->dma_threshold)) {
1345 			dev_warn(&spi->dev,
1346 				 "in setup: DMA burst size reduced to match bits_per_word\n");
1347 		}
1348 	}
1349 
1350 	switch (drv_data->ssp_type) {
1351 	case QUARK_X1000_SSP:
1352 		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1353 				   & QUARK_X1000_SSCR1_RFT)
1354 				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1355 				   & QUARK_X1000_SSCR1_TFT);
1356 		break;
1357 	case CE4100_SSP:
1358 		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1359 			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1360 		break;
1361 	default:
1362 		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1363 			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1364 		break;
1365 	}
1366 
1367 	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1368 	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1369 			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1370 
1371 	if (spi->mode & SPI_LOOP)
1372 		chip->cr1 |= SSCR1_LBM;
1373 
1374 	if (spi->bits_per_word <= 8) {
1375 		chip->n_bytes = 1;
1376 		chip->read = u8_reader;
1377 		chip->write = u8_writer;
1378 	} else if (spi->bits_per_word <= 16) {
1379 		chip->n_bytes = 2;
1380 		chip->read = u16_reader;
1381 		chip->write = u16_writer;
1382 	} else if (spi->bits_per_word <= 32) {
1383 		chip->n_bytes = 4;
1384 		chip->read = u32_reader;
1385 		chip->write = u32_writer;
1386 	}
1387 
1388 	spi_set_ctldata(spi, chip);
1389 
1390 	if (drv_data->ssp_type == CE4100_SSP)
1391 		return 0;
1392 
1393 	return setup_cs(spi, chip, chip_info);
1394 }
1395 
1396 static void cleanup(struct spi_device *spi)
1397 {
1398 	struct chip_data *chip = spi_get_ctldata(spi);
1399 	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1400 
1401 	if (!chip)
1402 		return;
1403 
1404 	if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
1405 	    gpio_is_valid(chip->gpio_cs))
1406 		gpio_free(chip->gpio_cs);
1407 
1408 	kfree(chip);
1409 }
1410 
1411 #ifdef CONFIG_PCI
1412 #ifdef CONFIG_ACPI
1413 
1414 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1415 	{ "INT33C0", LPSS_LPT_SSP },
1416 	{ "INT33C1", LPSS_LPT_SSP },
1417 	{ "INT3430", LPSS_LPT_SSP },
1418 	{ "INT3431", LPSS_LPT_SSP },
1419 	{ "80860F0E", LPSS_BYT_SSP },
1420 	{ "8086228E", LPSS_BSW_SSP },
1421 	{ },
1422 };
1423 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1424 
1425 static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1426 {
1427 	unsigned int devid;
1428 	int port_id = -1;
1429 
1430 	if (adev && adev->pnp.unique_id &&
1431 	    !kstrtouint(adev->pnp.unique_id, 0, &devid))
1432 		port_id = devid;
1433 	return port_id;
1434 }
1435 #else /* !CONFIG_ACPI */
1436 static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1437 {
1438 	return -1;
1439 }
1440 #endif
1441 
1442 /*
1443  * PCI IDs of compound devices that integrate both host controller and private
1444  * integrated DMA engine. Please note these are not used in module
1445  * autoloading and probing in this module but matching the LPSS SSP type.
1446  */
1447 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1448 	/* SPT-LP */
1449 	{ PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1450 	{ PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1451 	/* SPT-H */
1452 	{ PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1453 	{ PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1454 	/* KBL-H */
1455 	{ PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1456 	{ PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1457 	/* BXT A-Step */
1458 	{ PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1459 	{ PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1460 	{ PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1461 	/* BXT B-Step */
1462 	{ PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1463 	{ PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1464 	{ PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1465 	/* GLK */
1466 	{ PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1467 	{ PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1468 	{ PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1469 	/* APL */
1470 	{ PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1471 	{ PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1472 	{ PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1473 	{ },
1474 };
1475 
1476 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1477 {
1478 	struct device *dev = param;
1479 
1480 	if (dev != chan->device->dev->parent)
1481 		return false;
1482 
1483 	return true;
1484 }
1485 
1486 static struct pxa2xx_spi_master *
1487 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1488 {
1489 	struct pxa2xx_spi_master *pdata;
1490 	struct acpi_device *adev;
1491 	struct ssp_device *ssp;
1492 	struct resource *res;
1493 	const struct acpi_device_id *adev_id = NULL;
1494 	const struct pci_device_id *pcidev_id = NULL;
1495 	int type;
1496 
1497 	adev = ACPI_COMPANION(&pdev->dev);
1498 
1499 	if (dev_is_pci(pdev->dev.parent))
1500 		pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match,
1501 					 to_pci_dev(pdev->dev.parent));
1502 	else if (adev)
1503 		adev_id = acpi_match_device(pdev->dev.driver->acpi_match_table,
1504 					    &pdev->dev);
1505 	else
1506 		return NULL;
1507 
1508 	if (adev_id)
1509 		type = (int)adev_id->driver_data;
1510 	else if (pcidev_id)
1511 		type = (int)pcidev_id->driver_data;
1512 	else
1513 		return NULL;
1514 
1515 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1516 	if (!pdata)
1517 		return NULL;
1518 
1519 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1520 	if (!res)
1521 		return NULL;
1522 
1523 	ssp = &pdata->ssp;
1524 
1525 	ssp->phys_base = res->start;
1526 	ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1527 	if (IS_ERR(ssp->mmio_base))
1528 		return NULL;
1529 
1530 	if (pcidev_id) {
1531 		pdata->tx_param = pdev->dev.parent;
1532 		pdata->rx_param = pdev->dev.parent;
1533 		pdata->dma_filter = pxa2xx_spi_idma_filter;
1534 	}
1535 
1536 	ssp->clk = devm_clk_get(&pdev->dev, NULL);
1537 	ssp->irq = platform_get_irq(pdev, 0);
1538 	ssp->type = type;
1539 	ssp->pdev = pdev;
1540 	ssp->port_id = pxa2xx_spi_get_port_id(adev);
1541 
1542 	pdata->num_chipselect = 1;
1543 	pdata->enable_dma = true;
1544 
1545 	return pdata;
1546 }
1547 
1548 #else /* !CONFIG_PCI */
1549 static inline struct pxa2xx_spi_master *
1550 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1551 {
1552 	return NULL;
1553 }
1554 #endif
1555 
1556 static int pxa2xx_spi_fw_translate_cs(struct spi_master *master, unsigned cs)
1557 {
1558 	struct driver_data *drv_data = spi_master_get_devdata(master);
1559 
1560 	if (has_acpi_companion(&drv_data->pdev->dev)) {
1561 		switch (drv_data->ssp_type) {
1562 		/*
1563 		 * For Atoms the ACPI DeviceSelection used by the Windows
1564 		 * driver starts from 1 instead of 0 so translate it here
1565 		 * to match what Linux expects.
1566 		 */
1567 		case LPSS_BYT_SSP:
1568 		case LPSS_BSW_SSP:
1569 			return cs - 1;
1570 
1571 		default:
1572 			break;
1573 		}
1574 	}
1575 
1576 	return cs;
1577 }
1578 
1579 static int pxa2xx_spi_probe(struct platform_device *pdev)
1580 {
1581 	struct device *dev = &pdev->dev;
1582 	struct pxa2xx_spi_master *platform_info;
1583 	struct spi_master *master;
1584 	struct driver_data *drv_data;
1585 	struct ssp_device *ssp;
1586 	const struct lpss_config *config;
1587 	int status, count;
1588 	u32 tmp;
1589 
1590 	platform_info = dev_get_platdata(dev);
1591 	if (!platform_info) {
1592 		platform_info = pxa2xx_spi_init_pdata(pdev);
1593 		if (!platform_info) {
1594 			dev_err(&pdev->dev, "missing platform data\n");
1595 			return -ENODEV;
1596 		}
1597 	}
1598 
1599 	ssp = pxa_ssp_request(pdev->id, pdev->name);
1600 	if (!ssp)
1601 		ssp = &platform_info->ssp;
1602 
1603 	if (!ssp->mmio_base) {
1604 		dev_err(&pdev->dev, "failed to get ssp\n");
1605 		return -ENODEV;
1606 	}
1607 
1608 	master = spi_alloc_master(dev, sizeof(struct driver_data));
1609 	if (!master) {
1610 		dev_err(&pdev->dev, "cannot alloc spi_master\n");
1611 		pxa_ssp_free(ssp);
1612 		return -ENOMEM;
1613 	}
1614 	drv_data = spi_master_get_devdata(master);
1615 	drv_data->master = master;
1616 	drv_data->master_info = platform_info;
1617 	drv_data->pdev = pdev;
1618 	drv_data->ssp = ssp;
1619 
1620 	master->dev.of_node = pdev->dev.of_node;
1621 	/* the spi->mode bits understood by this driver: */
1622 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1623 
1624 	master->bus_num = ssp->port_id;
1625 	master->dma_alignment = DMA_ALIGNMENT;
1626 	master->cleanup = cleanup;
1627 	master->setup = setup;
1628 	master->transfer_one_message = pxa2xx_spi_transfer_one_message;
1629 	master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1630 	master->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1631 	master->auto_runtime_pm = true;
1632 	master->flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX;
1633 
1634 	drv_data->ssp_type = ssp->type;
1635 
1636 	drv_data->ioaddr = ssp->mmio_base;
1637 	drv_data->ssdr_physical = ssp->phys_base + SSDR;
1638 	if (pxa25x_ssp_comp(drv_data)) {
1639 		switch (drv_data->ssp_type) {
1640 		case QUARK_X1000_SSP:
1641 			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1642 			break;
1643 		default:
1644 			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1645 			break;
1646 		}
1647 
1648 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1649 		drv_data->dma_cr1 = 0;
1650 		drv_data->clear_sr = SSSR_ROR;
1651 		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1652 	} else {
1653 		master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1654 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1655 		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1656 		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1657 		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1658 	}
1659 
1660 	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1661 			drv_data);
1662 	if (status < 0) {
1663 		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1664 		goto out_error_master_alloc;
1665 	}
1666 
1667 	/* Setup DMA if requested */
1668 	if (platform_info->enable_dma) {
1669 		status = pxa2xx_spi_dma_setup(drv_data);
1670 		if (status) {
1671 			dev_dbg(dev, "no DMA channels available, using PIO\n");
1672 			platform_info->enable_dma = false;
1673 		} else {
1674 			master->can_dma = pxa2xx_spi_can_dma;
1675 		}
1676 	}
1677 
1678 	/* Enable SOC clock */
1679 	clk_prepare_enable(ssp->clk);
1680 
1681 	master->max_speed_hz = clk_get_rate(ssp->clk);
1682 
1683 	/* Load default SSP configuration */
1684 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1685 	switch (drv_data->ssp_type) {
1686 	case QUARK_X1000_SSP:
1687 		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1688 		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1689 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1690 
1691 		/* using the Motorola SPI protocol and use 8 bit frame */
1692 		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1693 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1694 		break;
1695 	case CE4100_SSP:
1696 		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1697 		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1698 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1699 		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1700 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1701 		break;
1702 	default:
1703 		tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1704 		      SSCR1_TxTresh(TX_THRESH_DFLT);
1705 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1706 		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1707 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1708 		break;
1709 	}
1710 
1711 	if (!pxa25x_ssp_comp(drv_data))
1712 		pxa2xx_spi_write(drv_data, SSTO, 0);
1713 
1714 	if (!is_quark_x1000_ssp(drv_data))
1715 		pxa2xx_spi_write(drv_data, SSPSP, 0);
1716 
1717 	if (is_lpss_ssp(drv_data)) {
1718 		lpss_ssp_setup(drv_data);
1719 		config = lpss_get_config(drv_data);
1720 		if (config->reg_capabilities >= 0) {
1721 			tmp = __lpss_ssp_read_priv(drv_data,
1722 						   config->reg_capabilities);
1723 			tmp &= LPSS_CAPS_CS_EN_MASK;
1724 			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1725 			platform_info->num_chipselect = ffz(tmp);
1726 		} else if (config->cs_num) {
1727 			platform_info->num_chipselect = config->cs_num;
1728 		}
1729 	}
1730 	master->num_chipselect = platform_info->num_chipselect;
1731 
1732 	count = gpiod_count(&pdev->dev, "cs");
1733 	if (count > 0) {
1734 		int i;
1735 
1736 		master->num_chipselect = max_t(int, count,
1737 			master->num_chipselect);
1738 
1739 		drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
1740 			master->num_chipselect, sizeof(struct gpio_desc *),
1741 			GFP_KERNEL);
1742 		if (!drv_data->cs_gpiods) {
1743 			status = -ENOMEM;
1744 			goto out_error_clock_enabled;
1745 		}
1746 
1747 		for (i = 0; i < master->num_chipselect; i++) {
1748 			struct gpio_desc *gpiod;
1749 
1750 			gpiod = devm_gpiod_get_index(dev, "cs", i,
1751 						     GPIOD_OUT_HIGH);
1752 			if (IS_ERR(gpiod)) {
1753 				/* Means use native chip select */
1754 				if (PTR_ERR(gpiod) == -ENOENT)
1755 					continue;
1756 
1757 				status = (int)PTR_ERR(gpiod);
1758 				goto out_error_clock_enabled;
1759 			} else {
1760 				drv_data->cs_gpiods[i] = gpiod;
1761 			}
1762 		}
1763 	}
1764 
1765 	tasklet_init(&drv_data->pump_transfers, pump_transfers,
1766 		     (unsigned long)drv_data);
1767 
1768 	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1769 	pm_runtime_use_autosuspend(&pdev->dev);
1770 	pm_runtime_set_active(&pdev->dev);
1771 	pm_runtime_enable(&pdev->dev);
1772 
1773 	/* Register with the SPI framework */
1774 	platform_set_drvdata(pdev, drv_data);
1775 	status = devm_spi_register_master(&pdev->dev, master);
1776 	if (status != 0) {
1777 		dev_err(&pdev->dev, "problem registering spi master\n");
1778 		goto out_error_clock_enabled;
1779 	}
1780 
1781 	return status;
1782 
1783 out_error_clock_enabled:
1784 	clk_disable_unprepare(ssp->clk);
1785 	pxa2xx_spi_dma_release(drv_data);
1786 	free_irq(ssp->irq, drv_data);
1787 
1788 out_error_master_alloc:
1789 	spi_master_put(master);
1790 	pxa_ssp_free(ssp);
1791 	return status;
1792 }
1793 
1794 static int pxa2xx_spi_remove(struct platform_device *pdev)
1795 {
1796 	struct driver_data *drv_data = platform_get_drvdata(pdev);
1797 	struct ssp_device *ssp;
1798 
1799 	if (!drv_data)
1800 		return 0;
1801 	ssp = drv_data->ssp;
1802 
1803 	pm_runtime_get_sync(&pdev->dev);
1804 
1805 	/* Disable the SSP at the peripheral and SOC level */
1806 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1807 	clk_disable_unprepare(ssp->clk);
1808 
1809 	/* Release DMA */
1810 	if (drv_data->master_info->enable_dma)
1811 		pxa2xx_spi_dma_release(drv_data);
1812 
1813 	pm_runtime_put_noidle(&pdev->dev);
1814 	pm_runtime_disable(&pdev->dev);
1815 
1816 	/* Release IRQ */
1817 	free_irq(ssp->irq, drv_data);
1818 
1819 	/* Release SSP */
1820 	pxa_ssp_free(ssp);
1821 
1822 	return 0;
1823 }
1824 
1825 static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1826 {
1827 	int status = 0;
1828 
1829 	if ((status = pxa2xx_spi_remove(pdev)) != 0)
1830 		dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1831 }
1832 
1833 #ifdef CONFIG_PM_SLEEP
1834 static int pxa2xx_spi_suspend(struct device *dev)
1835 {
1836 	struct driver_data *drv_data = dev_get_drvdata(dev);
1837 	struct ssp_device *ssp = drv_data->ssp;
1838 	int status;
1839 
1840 	status = spi_master_suspend(drv_data->master);
1841 	if (status != 0)
1842 		return status;
1843 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1844 
1845 	if (!pm_runtime_suspended(dev))
1846 		clk_disable_unprepare(ssp->clk);
1847 
1848 	return 0;
1849 }
1850 
1851 static int pxa2xx_spi_resume(struct device *dev)
1852 {
1853 	struct driver_data *drv_data = dev_get_drvdata(dev);
1854 	struct ssp_device *ssp = drv_data->ssp;
1855 	int status;
1856 
1857 	/* Enable the SSP clock */
1858 	if (!pm_runtime_suspended(dev))
1859 		clk_prepare_enable(ssp->clk);
1860 
1861 	/* Restore LPSS private register bits */
1862 	if (is_lpss_ssp(drv_data))
1863 		lpss_ssp_setup(drv_data);
1864 
1865 	/* Start the queue running */
1866 	status = spi_master_resume(drv_data->master);
1867 	if (status != 0) {
1868 		dev_err(dev, "problem starting queue (%d)\n", status);
1869 		return status;
1870 	}
1871 
1872 	return 0;
1873 }
1874 #endif
1875 
1876 #ifdef CONFIG_PM
1877 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1878 {
1879 	struct driver_data *drv_data = dev_get_drvdata(dev);
1880 
1881 	clk_disable_unprepare(drv_data->ssp->clk);
1882 	return 0;
1883 }
1884 
1885 static int pxa2xx_spi_runtime_resume(struct device *dev)
1886 {
1887 	struct driver_data *drv_data = dev_get_drvdata(dev);
1888 
1889 	clk_prepare_enable(drv_data->ssp->clk);
1890 	return 0;
1891 }
1892 #endif
1893 
1894 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1895 	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1896 	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1897 			   pxa2xx_spi_runtime_resume, NULL)
1898 };
1899 
1900 static struct platform_driver driver = {
1901 	.driver = {
1902 		.name	= "pxa2xx-spi",
1903 		.pm	= &pxa2xx_spi_pm_ops,
1904 		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1905 	},
1906 	.probe = pxa2xx_spi_probe,
1907 	.remove = pxa2xx_spi_remove,
1908 	.shutdown = pxa2xx_spi_shutdown,
1909 };
1910 
1911 static int __init pxa2xx_spi_init(void)
1912 {
1913 	return platform_driver_register(&driver);
1914 }
1915 subsys_initcall(pxa2xx_spi_init);
1916 
1917 static void __exit pxa2xx_spi_exit(void)
1918 {
1919 	platform_driver_unregister(&driver);
1920 }
1921 module_exit(pxa2xx_spi_exit);
1922