xref: /openbmc/linux/drivers/spi/spi-pxa2xx.c (revision 1504b6f9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4  * Copyright (C) 2013, 2021 Intel Corporation
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/bitops.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/err.h>
14 #include <linux/errno.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/ioport.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/mod_devicetable.h>
22 #include <linux/of.h>
23 #include <linux/pci.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/property.h>
27 #include <linux/slab.h>
28 
29 #include <linux/spi/pxa2xx_spi.h>
30 #include <linux/spi/spi.h>
31 
32 #include "spi-pxa2xx.h"
33 
34 MODULE_AUTHOR("Stephen Street");
35 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
36 MODULE_LICENSE("GPL");
37 MODULE_ALIAS("platform:pxa2xx-spi");
38 
39 #define TIMOUT_DFLT		1000
40 
41 /*
42  * For testing SSCR1 changes that require SSP restart, basically
43  * everything except the service and interrupt enables, the PXA270 developer
44  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
45  * list, but the PXA255 developer manual says all bits without really meaning
46  * the service and interrupt enables.
47  */
48 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
49 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
50 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
51 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
52 				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
53 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
54 
55 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
56 				| QUARK_X1000_SSCR1_EFWR	\
57 				| QUARK_X1000_SSCR1_RFT		\
58 				| QUARK_X1000_SSCR1_TFT		\
59 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
60 
61 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
62 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
63 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
64 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
65 				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
66 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
67 
68 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
69 #define LPSS_CS_CONTROL_SW_MODE			BIT(0)
70 #define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
71 #define LPSS_CAPS_CS_EN_SHIFT			9
72 #define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
73 
74 #define LPSS_PRIV_CLOCK_GATE 0x38
75 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3
76 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3
77 
78 struct lpss_config {
79 	/* LPSS offset from drv_data->ioaddr */
80 	unsigned offset;
81 	/* Register offsets from drv_data->lpss_base or -1 */
82 	int reg_general;
83 	int reg_ssp;
84 	int reg_cs_ctrl;
85 	int reg_capabilities;
86 	/* FIFO thresholds */
87 	u32 rx_threshold;
88 	u32 tx_threshold_lo;
89 	u32 tx_threshold_hi;
90 	/* Chip select control */
91 	unsigned cs_sel_shift;
92 	unsigned cs_sel_mask;
93 	unsigned cs_num;
94 	/* Quirks */
95 	unsigned cs_clk_stays_gated : 1;
96 };
97 
98 /* Keep these sorted with enum pxa_ssp_type */
99 static const struct lpss_config lpss_platforms[] = {
100 	{	/* LPSS_LPT_SSP */
101 		.offset = 0x800,
102 		.reg_general = 0x08,
103 		.reg_ssp = 0x0c,
104 		.reg_cs_ctrl = 0x18,
105 		.reg_capabilities = -1,
106 		.rx_threshold = 64,
107 		.tx_threshold_lo = 160,
108 		.tx_threshold_hi = 224,
109 	},
110 	{	/* LPSS_BYT_SSP */
111 		.offset = 0x400,
112 		.reg_general = 0x08,
113 		.reg_ssp = 0x0c,
114 		.reg_cs_ctrl = 0x18,
115 		.reg_capabilities = -1,
116 		.rx_threshold = 64,
117 		.tx_threshold_lo = 160,
118 		.tx_threshold_hi = 224,
119 	},
120 	{	/* LPSS_BSW_SSP */
121 		.offset = 0x400,
122 		.reg_general = 0x08,
123 		.reg_ssp = 0x0c,
124 		.reg_cs_ctrl = 0x18,
125 		.reg_capabilities = -1,
126 		.rx_threshold = 64,
127 		.tx_threshold_lo = 160,
128 		.tx_threshold_hi = 224,
129 		.cs_sel_shift = 2,
130 		.cs_sel_mask = 1 << 2,
131 		.cs_num = 2,
132 	},
133 	{	/* LPSS_SPT_SSP */
134 		.offset = 0x200,
135 		.reg_general = -1,
136 		.reg_ssp = 0x20,
137 		.reg_cs_ctrl = 0x24,
138 		.reg_capabilities = -1,
139 		.rx_threshold = 1,
140 		.tx_threshold_lo = 32,
141 		.tx_threshold_hi = 56,
142 	},
143 	{	/* LPSS_BXT_SSP */
144 		.offset = 0x200,
145 		.reg_general = -1,
146 		.reg_ssp = 0x20,
147 		.reg_cs_ctrl = 0x24,
148 		.reg_capabilities = 0xfc,
149 		.rx_threshold = 1,
150 		.tx_threshold_lo = 16,
151 		.tx_threshold_hi = 48,
152 		.cs_sel_shift = 8,
153 		.cs_sel_mask = 3 << 8,
154 		.cs_clk_stays_gated = true,
155 	},
156 	{	/* LPSS_CNL_SSP */
157 		.offset = 0x200,
158 		.reg_general = -1,
159 		.reg_ssp = 0x20,
160 		.reg_cs_ctrl = 0x24,
161 		.reg_capabilities = 0xfc,
162 		.rx_threshold = 1,
163 		.tx_threshold_lo = 32,
164 		.tx_threshold_hi = 56,
165 		.cs_sel_shift = 8,
166 		.cs_sel_mask = 3 << 8,
167 		.cs_clk_stays_gated = true,
168 	},
169 };
170 
171 static inline const struct lpss_config
172 *lpss_get_config(const struct driver_data *drv_data)
173 {
174 	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
175 }
176 
177 static bool is_lpss_ssp(const struct driver_data *drv_data)
178 {
179 	switch (drv_data->ssp_type) {
180 	case LPSS_LPT_SSP:
181 	case LPSS_BYT_SSP:
182 	case LPSS_BSW_SSP:
183 	case LPSS_SPT_SSP:
184 	case LPSS_BXT_SSP:
185 	case LPSS_CNL_SSP:
186 		return true;
187 	default:
188 		return false;
189 	}
190 }
191 
192 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
193 {
194 	return drv_data->ssp_type == QUARK_X1000_SSP;
195 }
196 
197 static bool is_mmp2_ssp(const struct driver_data *drv_data)
198 {
199 	return drv_data->ssp_type == MMP2_SSP;
200 }
201 
202 static bool is_mrfld_ssp(const struct driver_data *drv_data)
203 {
204 	return drv_data->ssp_type == MRFLD_SSP;
205 }
206 
207 static void pxa2xx_spi_update(const struct driver_data *drv_data, u32 reg, u32 mask, u32 value)
208 {
209 	if ((pxa2xx_spi_read(drv_data, reg) & mask) != value)
210 		pxa2xx_spi_write(drv_data, reg, value & mask);
211 }
212 
213 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
214 {
215 	switch (drv_data->ssp_type) {
216 	case QUARK_X1000_SSP:
217 		return QUARK_X1000_SSCR1_CHANGE_MASK;
218 	case CE4100_SSP:
219 		return CE4100_SSCR1_CHANGE_MASK;
220 	default:
221 		return SSCR1_CHANGE_MASK;
222 	}
223 }
224 
225 static u32
226 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
227 {
228 	switch (drv_data->ssp_type) {
229 	case QUARK_X1000_SSP:
230 		return RX_THRESH_QUARK_X1000_DFLT;
231 	case CE4100_SSP:
232 		return RX_THRESH_CE4100_DFLT;
233 	default:
234 		return RX_THRESH_DFLT;
235 	}
236 }
237 
238 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
239 {
240 	u32 mask;
241 
242 	switch (drv_data->ssp_type) {
243 	case QUARK_X1000_SSP:
244 		mask = QUARK_X1000_SSSR_TFL_MASK;
245 		break;
246 	case CE4100_SSP:
247 		mask = CE4100_SSSR_TFL_MASK;
248 		break;
249 	default:
250 		mask = SSSR_TFL_MASK;
251 		break;
252 	}
253 
254 	return read_SSSR_bits(drv_data, mask) == mask;
255 }
256 
257 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
258 				     u32 *sccr1_reg)
259 {
260 	u32 mask;
261 
262 	switch (drv_data->ssp_type) {
263 	case QUARK_X1000_SSP:
264 		mask = QUARK_X1000_SSCR1_RFT;
265 		break;
266 	case CE4100_SSP:
267 		mask = CE4100_SSCR1_RFT;
268 		break;
269 	default:
270 		mask = SSCR1_RFT;
271 		break;
272 	}
273 	*sccr1_reg &= ~mask;
274 }
275 
276 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
277 				   u32 *sccr1_reg, u32 threshold)
278 {
279 	switch (drv_data->ssp_type) {
280 	case QUARK_X1000_SSP:
281 		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
282 		break;
283 	case CE4100_SSP:
284 		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
285 		break;
286 	default:
287 		*sccr1_reg |= SSCR1_RxTresh(threshold);
288 		break;
289 	}
290 }
291 
292 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
293 				  u32 clk_div, u8 bits)
294 {
295 	switch (drv_data->ssp_type) {
296 	case QUARK_X1000_SSP:
297 		return clk_div
298 			| QUARK_X1000_SSCR0_Motorola
299 			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits);
300 	default:
301 		return clk_div
302 			| SSCR0_Motorola
303 			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
304 			| (bits > 16 ? SSCR0_EDSS : 0);
305 	}
306 }
307 
308 /*
309  * Read and write LPSS SSP private registers. Caller must first check that
310  * is_lpss_ssp() returns true before these can be called.
311  */
312 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
313 {
314 	WARN_ON(!drv_data->lpss_base);
315 	return readl(drv_data->lpss_base + offset);
316 }
317 
318 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
319 				  unsigned offset, u32 value)
320 {
321 	WARN_ON(!drv_data->lpss_base);
322 	writel(value, drv_data->lpss_base + offset);
323 }
324 
325 /*
326  * lpss_ssp_setup - perform LPSS SSP specific setup
327  * @drv_data: pointer to the driver private data
328  *
329  * Perform LPSS SSP specific setup. This function must be called first if
330  * one is going to use LPSS SSP private registers.
331  */
332 static void lpss_ssp_setup(struct driver_data *drv_data)
333 {
334 	const struct lpss_config *config;
335 	u32 value;
336 
337 	config = lpss_get_config(drv_data);
338 	drv_data->lpss_base = drv_data->ssp->mmio_base + config->offset;
339 
340 	/* Enable software chip select control */
341 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
342 	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
343 	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
344 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
345 
346 	/* Enable multiblock DMA transfers */
347 	if (drv_data->controller_info->enable_dma) {
348 		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
349 
350 		if (config->reg_general >= 0) {
351 			value = __lpss_ssp_read_priv(drv_data,
352 						     config->reg_general);
353 			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
354 			__lpss_ssp_write_priv(drv_data,
355 					      config->reg_general, value);
356 		}
357 	}
358 }
359 
360 static void lpss_ssp_select_cs(struct spi_device *spi,
361 			       const struct lpss_config *config)
362 {
363 	struct driver_data *drv_data =
364 		spi_controller_get_devdata(spi->controller);
365 	u32 value, cs;
366 
367 	if (!config->cs_sel_mask)
368 		return;
369 
370 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
371 
372 	cs = spi->chip_select;
373 	cs <<= config->cs_sel_shift;
374 	if (cs != (value & config->cs_sel_mask)) {
375 		/*
376 		 * When switching another chip select output active the
377 		 * output must be selected first and wait 2 ssp_clk cycles
378 		 * before changing state to active. Otherwise a short
379 		 * glitch will occur on the previous chip select since
380 		 * output select is latched but state control is not.
381 		 */
382 		value &= ~config->cs_sel_mask;
383 		value |= cs;
384 		__lpss_ssp_write_priv(drv_data,
385 				      config->reg_cs_ctrl, value);
386 		ndelay(1000000000 /
387 		       (drv_data->controller->max_speed_hz / 2));
388 	}
389 }
390 
391 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
392 {
393 	struct driver_data *drv_data =
394 		spi_controller_get_devdata(spi->controller);
395 	const struct lpss_config *config;
396 	u32 value;
397 
398 	config = lpss_get_config(drv_data);
399 
400 	if (enable)
401 		lpss_ssp_select_cs(spi, config);
402 
403 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
404 	if (enable)
405 		value &= ~LPSS_CS_CONTROL_CS_HIGH;
406 	else
407 		value |= LPSS_CS_CONTROL_CS_HIGH;
408 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
409 	if (config->cs_clk_stays_gated) {
410 		u32 clkgate;
411 
412 		/*
413 		 * Changing CS alone when dynamic clock gating is on won't
414 		 * actually flip CS at that time. This ruins SPI transfers
415 		 * that specify delays, or have no data. Toggle the clock mode
416 		 * to force on briefly to poke the CS pin to move.
417 		 */
418 		clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE);
419 		value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) |
420 			LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON;
421 
422 		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value);
423 		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate);
424 	}
425 }
426 
427 static void cs_assert(struct spi_device *spi)
428 {
429 	struct driver_data *drv_data =
430 		spi_controller_get_devdata(spi->controller);
431 
432 	if (drv_data->ssp_type == CE4100_SSP) {
433 		pxa2xx_spi_write(drv_data, SSSR, spi->chip_select);
434 		return;
435 	}
436 
437 	if (is_lpss_ssp(drv_data))
438 		lpss_ssp_cs_control(spi, true);
439 }
440 
441 static void cs_deassert(struct spi_device *spi)
442 {
443 	struct driver_data *drv_data =
444 		spi_controller_get_devdata(spi->controller);
445 	unsigned long timeout;
446 
447 	if (drv_data->ssp_type == CE4100_SSP)
448 		return;
449 
450 	/* Wait until SSP becomes idle before deasserting the CS */
451 	timeout = jiffies + msecs_to_jiffies(10);
452 	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
453 	       !time_after(jiffies, timeout))
454 		cpu_relax();
455 
456 	if (is_lpss_ssp(drv_data))
457 		lpss_ssp_cs_control(spi, false);
458 }
459 
460 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
461 {
462 	if (level)
463 		cs_deassert(spi);
464 	else
465 		cs_assert(spi);
466 }
467 
468 int pxa2xx_spi_flush(struct driver_data *drv_data)
469 {
470 	unsigned long limit = loops_per_jiffy << 1;
471 
472 	do {
473 		while (read_SSSR_bits(drv_data, SSSR_RNE))
474 			pxa2xx_spi_read(drv_data, SSDR);
475 	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
476 	write_SSSR_CS(drv_data, SSSR_ROR);
477 
478 	return limit;
479 }
480 
481 static void pxa2xx_spi_off(struct driver_data *drv_data)
482 {
483 	/* On MMP, disabling SSE seems to corrupt the Rx FIFO */
484 	if (is_mmp2_ssp(drv_data))
485 		return;
486 
487 	pxa_ssp_disable(drv_data->ssp);
488 }
489 
490 static int null_writer(struct driver_data *drv_data)
491 {
492 	u8 n_bytes = drv_data->n_bytes;
493 
494 	if (pxa2xx_spi_txfifo_full(drv_data)
495 		|| (drv_data->tx == drv_data->tx_end))
496 		return 0;
497 
498 	pxa2xx_spi_write(drv_data, SSDR, 0);
499 	drv_data->tx += n_bytes;
500 
501 	return 1;
502 }
503 
504 static int null_reader(struct driver_data *drv_data)
505 {
506 	u8 n_bytes = drv_data->n_bytes;
507 
508 	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
509 		pxa2xx_spi_read(drv_data, SSDR);
510 		drv_data->rx += n_bytes;
511 	}
512 
513 	return drv_data->rx == drv_data->rx_end;
514 }
515 
516 static int u8_writer(struct driver_data *drv_data)
517 {
518 	if (pxa2xx_spi_txfifo_full(drv_data)
519 		|| (drv_data->tx == drv_data->tx_end))
520 		return 0;
521 
522 	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
523 	++drv_data->tx;
524 
525 	return 1;
526 }
527 
528 static int u8_reader(struct driver_data *drv_data)
529 {
530 	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
531 		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
532 		++drv_data->rx;
533 	}
534 
535 	return drv_data->rx == drv_data->rx_end;
536 }
537 
538 static int u16_writer(struct driver_data *drv_data)
539 {
540 	if (pxa2xx_spi_txfifo_full(drv_data)
541 		|| (drv_data->tx == drv_data->tx_end))
542 		return 0;
543 
544 	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
545 	drv_data->tx += 2;
546 
547 	return 1;
548 }
549 
550 static int u16_reader(struct driver_data *drv_data)
551 {
552 	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
553 		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
554 		drv_data->rx += 2;
555 	}
556 
557 	return drv_data->rx == drv_data->rx_end;
558 }
559 
560 static int u32_writer(struct driver_data *drv_data)
561 {
562 	if (pxa2xx_spi_txfifo_full(drv_data)
563 		|| (drv_data->tx == drv_data->tx_end))
564 		return 0;
565 
566 	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
567 	drv_data->tx += 4;
568 
569 	return 1;
570 }
571 
572 static int u32_reader(struct driver_data *drv_data)
573 {
574 	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
575 		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
576 		drv_data->rx += 4;
577 	}
578 
579 	return drv_data->rx == drv_data->rx_end;
580 }
581 
582 static void reset_sccr1(struct driver_data *drv_data)
583 {
584 	u32 mask = drv_data->int_cr1 | drv_data->dma_cr1, threshold;
585 	struct chip_data *chip;
586 
587 	if (drv_data->controller->cur_msg) {
588 		chip = spi_get_ctldata(drv_data->controller->cur_msg->spi);
589 		threshold = chip->threshold;
590 	} else {
591 		threshold = 0;
592 	}
593 
594 	switch (drv_data->ssp_type) {
595 	case QUARK_X1000_SSP:
596 		mask |= QUARK_X1000_SSCR1_RFT;
597 		break;
598 	case CE4100_SSP:
599 		mask |= CE4100_SSCR1_RFT;
600 		break;
601 	default:
602 		mask |= SSCR1_RFT;
603 		break;
604 	}
605 
606 	pxa2xx_spi_update(drv_data, SSCR1, mask, threshold);
607 }
608 
609 static void int_stop_and_reset(struct driver_data *drv_data)
610 {
611 	/* Clear and disable interrupts */
612 	write_SSSR_CS(drv_data, drv_data->clear_sr);
613 	reset_sccr1(drv_data);
614 	if (pxa25x_ssp_comp(drv_data))
615 		return;
616 
617 	pxa2xx_spi_write(drv_data, SSTO, 0);
618 }
619 
620 static void int_error_stop(struct driver_data *drv_data, const char *msg, int err)
621 {
622 	int_stop_and_reset(drv_data);
623 	pxa2xx_spi_flush(drv_data);
624 	pxa2xx_spi_off(drv_data);
625 
626 	dev_err(drv_data->ssp->dev, "%s\n", msg);
627 
628 	drv_data->controller->cur_msg->status = err;
629 	spi_finalize_current_transfer(drv_data->controller);
630 }
631 
632 static void int_transfer_complete(struct driver_data *drv_data)
633 {
634 	int_stop_and_reset(drv_data);
635 
636 	spi_finalize_current_transfer(drv_data->controller);
637 }
638 
639 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
640 {
641 	u32 irq_status;
642 
643 	irq_status = read_SSSR_bits(drv_data, drv_data->mask_sr);
644 	if (!(pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE))
645 		irq_status &= ~SSSR_TFS;
646 
647 	if (irq_status & SSSR_ROR) {
648 		int_error_stop(drv_data, "interrupt_transfer: FIFO overrun", -EIO);
649 		return IRQ_HANDLED;
650 	}
651 
652 	if (irq_status & SSSR_TUR) {
653 		int_error_stop(drv_data, "interrupt_transfer: FIFO underrun", -EIO);
654 		return IRQ_HANDLED;
655 	}
656 
657 	if (irq_status & SSSR_TINT) {
658 		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
659 		if (drv_data->read(drv_data)) {
660 			int_transfer_complete(drv_data);
661 			return IRQ_HANDLED;
662 		}
663 	}
664 
665 	/* Drain Rx FIFO, Fill Tx FIFO and prevent overruns */
666 	do {
667 		if (drv_data->read(drv_data)) {
668 			int_transfer_complete(drv_data);
669 			return IRQ_HANDLED;
670 		}
671 	} while (drv_data->write(drv_data));
672 
673 	if (drv_data->read(drv_data)) {
674 		int_transfer_complete(drv_data);
675 		return IRQ_HANDLED;
676 	}
677 
678 	if (drv_data->tx == drv_data->tx_end) {
679 		u32 bytes_left;
680 		u32 sccr1_reg;
681 
682 		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
683 		sccr1_reg &= ~SSCR1_TIE;
684 
685 		/*
686 		 * PXA25x_SSP has no timeout, set up Rx threshold for
687 		 * the remaining Rx bytes.
688 		 */
689 		if (pxa25x_ssp_comp(drv_data)) {
690 			u32 rx_thre;
691 
692 			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
693 
694 			bytes_left = drv_data->rx_end - drv_data->rx;
695 			switch (drv_data->n_bytes) {
696 			case 4:
697 				bytes_left >>= 2;
698 				break;
699 			case 2:
700 				bytes_left >>= 1;
701 				break;
702 			}
703 
704 			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
705 			if (rx_thre > bytes_left)
706 				rx_thre = bytes_left;
707 
708 			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
709 		}
710 		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
711 	}
712 
713 	/* We did something */
714 	return IRQ_HANDLED;
715 }
716 
717 static void handle_bad_msg(struct driver_data *drv_data)
718 {
719 	int_stop_and_reset(drv_data);
720 	pxa2xx_spi_off(drv_data);
721 
722 	dev_err(drv_data->ssp->dev, "bad message state in interrupt handler\n");
723 }
724 
725 static irqreturn_t ssp_int(int irq, void *dev_id)
726 {
727 	struct driver_data *drv_data = dev_id;
728 	u32 sccr1_reg;
729 	u32 mask = drv_data->mask_sr;
730 	u32 status;
731 
732 	/*
733 	 * The IRQ might be shared with other peripherals so we must first
734 	 * check that are we RPM suspended or not. If we are we assume that
735 	 * the IRQ was not for us (we shouldn't be RPM suspended when the
736 	 * interrupt is enabled).
737 	 */
738 	if (pm_runtime_suspended(drv_data->ssp->dev))
739 		return IRQ_NONE;
740 
741 	/*
742 	 * If the device is not yet in RPM suspended state and we get an
743 	 * interrupt that is meant for another device, check if status bits
744 	 * are all set to one. That means that the device is already
745 	 * powered off.
746 	 */
747 	status = pxa2xx_spi_read(drv_data, SSSR);
748 	if (status == ~0)
749 		return IRQ_NONE;
750 
751 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
752 
753 	/* Ignore possible writes if we don't need to write */
754 	if (!(sccr1_reg & SSCR1_TIE))
755 		mask &= ~SSSR_TFS;
756 
757 	/* Ignore RX timeout interrupt if it is disabled */
758 	if (!(sccr1_reg & SSCR1_TINTE))
759 		mask &= ~SSSR_TINT;
760 
761 	if (!(status & mask))
762 		return IRQ_NONE;
763 
764 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
765 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
766 
767 	if (!drv_data->controller->cur_msg) {
768 		handle_bad_msg(drv_data);
769 		/* Never fail */
770 		return IRQ_HANDLED;
771 	}
772 
773 	return drv_data->transfer_handler(drv_data);
774 }
775 
776 /*
777  * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
778  * input frequency by fractions of 2^24. It also has a divider by 5.
779  *
780  * There are formulas to get baud rate value for given input frequency and
781  * divider parameters, such as DDS_CLK_RATE and SCR:
782  *
783  * Fsys = 200MHz
784  *
785  * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
786  * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
787  *
788  * DDS_CLK_RATE either 2^n or 2^n / 5.
789  * SCR is in range 0 .. 255
790  *
791  * Divisor = 5^i * 2^j * 2 * k
792  *       i = [0, 1]      i = 1 iff j = 0 or j > 3
793  *       j = [0, 23]     j = 0 iff i = 1
794  *       k = [1, 256]
795  * Special case: j = 0, i = 1: Divisor = 2 / 5
796  *
797  * Accordingly to the specification the recommended values for DDS_CLK_RATE
798  * are:
799  *	Case 1:		2^n, n = [0, 23]
800  *	Case 2:		2^24 * 2 / 5 (0x666666)
801  *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
802  *
803  * In all cases the lowest possible value is better.
804  *
805  * The function calculates parameters for all cases and chooses the one closest
806  * to the asked baud rate.
807  */
808 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
809 {
810 	unsigned long xtal = 200000000;
811 	unsigned long fref = xtal / 2;		/* mandatory division by 2,
812 						   see (2) */
813 						/* case 3 */
814 	unsigned long fref1 = fref / 2;		/* case 1 */
815 	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
816 	unsigned long scale;
817 	unsigned long q, q1, q2;
818 	long r, r1, r2;
819 	u32 mul;
820 
821 	/* Case 1 */
822 
823 	/* Set initial value for DDS_CLK_RATE */
824 	mul = (1 << 24) >> 1;
825 
826 	/* Calculate initial quot */
827 	q1 = DIV_ROUND_UP(fref1, rate);
828 
829 	/* Scale q1 if it's too big */
830 	if (q1 > 256) {
831 		/* Scale q1 to range [1, 512] */
832 		scale = fls_long(q1 - 1);
833 		if (scale > 9) {
834 			q1 >>= scale - 9;
835 			mul >>= scale - 9;
836 		}
837 
838 		/* Round the result if we have a remainder */
839 		q1 += q1 & 1;
840 	}
841 
842 	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
843 	scale = __ffs(q1);
844 	q1 >>= scale;
845 	mul >>= scale;
846 
847 	/* Get the remainder */
848 	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
849 
850 	/* Case 2 */
851 
852 	q2 = DIV_ROUND_UP(fref2, rate);
853 	r2 = abs(fref2 / q2 - rate);
854 
855 	/*
856 	 * Choose the best between two: less remainder we have the better. We
857 	 * can't go case 2 if q2 is greater than 256 since SCR register can
858 	 * hold only values 0 .. 255.
859 	 */
860 	if (r2 >= r1 || q2 > 256) {
861 		/* case 1 is better */
862 		r = r1;
863 		q = q1;
864 	} else {
865 		/* case 2 is better */
866 		r = r2;
867 		q = q2;
868 		mul = (1 << 24) * 2 / 5;
869 	}
870 
871 	/* Check case 3 only if the divisor is big enough */
872 	if (fref / rate >= 80) {
873 		u64 fssp;
874 		u32 m;
875 
876 		/* Calculate initial quot */
877 		q1 = DIV_ROUND_UP(fref, rate);
878 		m = (1 << 24) / q1;
879 
880 		/* Get the remainder */
881 		fssp = (u64)fref * m;
882 		do_div(fssp, 1 << 24);
883 		r1 = abs(fssp - rate);
884 
885 		/* Choose this one if it suits better */
886 		if (r1 < r) {
887 			/* case 3 is better */
888 			q = 1;
889 			mul = m;
890 		}
891 	}
892 
893 	*dds = mul;
894 	return q - 1;
895 }
896 
897 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
898 {
899 	unsigned long ssp_clk = drv_data->controller->max_speed_hz;
900 	const struct ssp_device *ssp = drv_data->ssp;
901 
902 	rate = min_t(int, ssp_clk, rate);
903 
904 	/*
905 	 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
906 	 * that the SSP transmission rate can be greater than the device rate.
907 	 */
908 	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
909 		return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
910 	else
911 		return (DIV_ROUND_UP(ssp_clk, rate) - 1)  & 0xfff;
912 }
913 
914 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
915 					   int rate)
916 {
917 	struct chip_data *chip =
918 		spi_get_ctldata(drv_data->controller->cur_msg->spi);
919 	unsigned int clk_div;
920 
921 	switch (drv_data->ssp_type) {
922 	case QUARK_X1000_SSP:
923 		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
924 		break;
925 	default:
926 		clk_div = ssp_get_clk_div(drv_data, rate);
927 		break;
928 	}
929 	return clk_div << 8;
930 }
931 
932 static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
933 			       struct spi_device *spi,
934 			       struct spi_transfer *xfer)
935 {
936 	struct chip_data *chip = spi_get_ctldata(spi);
937 
938 	return chip->enable_dma &&
939 	       xfer->len <= MAX_DMA_LEN &&
940 	       xfer->len >= chip->dma_burst_size;
941 }
942 
943 static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
944 				   struct spi_device *spi,
945 				   struct spi_transfer *transfer)
946 {
947 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
948 	struct spi_message *message = controller->cur_msg;
949 	struct chip_data *chip = spi_get_ctldata(spi);
950 	u32 dma_thresh = chip->dma_threshold;
951 	u32 dma_burst = chip->dma_burst_size;
952 	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
953 	u32 clk_div;
954 	u8 bits;
955 	u32 speed;
956 	u32 cr0;
957 	u32 cr1;
958 	int err;
959 	int dma_mapped;
960 
961 	/* Check if we can DMA this transfer */
962 	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
963 
964 		/* Reject already-mapped transfers; PIO won't always work */
965 		if (message->is_dma_mapped
966 				|| transfer->rx_dma || transfer->tx_dma) {
967 			dev_err(&spi->dev,
968 				"Mapped transfer length of %u is greater than %d\n",
969 				transfer->len, MAX_DMA_LEN);
970 			return -EINVAL;
971 		}
972 
973 		/* Warn ... we force this to PIO mode */
974 		dev_warn_ratelimited(&spi->dev,
975 				     "DMA disabled for transfer length %u greater than %d\n",
976 				     transfer->len, MAX_DMA_LEN);
977 	}
978 
979 	/* Setup the transfer state based on the type of transfer */
980 	if (pxa2xx_spi_flush(drv_data) == 0) {
981 		dev_err(&spi->dev, "Flush failed\n");
982 		return -EIO;
983 	}
984 	drv_data->tx = (void *)transfer->tx_buf;
985 	drv_data->tx_end = drv_data->tx + transfer->len;
986 	drv_data->rx = transfer->rx_buf;
987 	drv_data->rx_end = drv_data->rx + transfer->len;
988 
989 	/* Change speed and bit per word on a per transfer */
990 	bits = transfer->bits_per_word;
991 	speed = transfer->speed_hz;
992 
993 	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
994 
995 	if (bits <= 8) {
996 		drv_data->n_bytes = 1;
997 		drv_data->read = drv_data->rx ? u8_reader : null_reader;
998 		drv_data->write = drv_data->tx ? u8_writer : null_writer;
999 	} else if (bits <= 16) {
1000 		drv_data->n_bytes = 2;
1001 		drv_data->read = drv_data->rx ? u16_reader : null_reader;
1002 		drv_data->write = drv_data->tx ? u16_writer : null_writer;
1003 	} else if (bits <= 32) {
1004 		drv_data->n_bytes = 4;
1005 		drv_data->read = drv_data->rx ? u32_reader : null_reader;
1006 		drv_data->write = drv_data->tx ? u32_writer : null_writer;
1007 	}
1008 	/*
1009 	 * If bits per word is changed in DMA mode, then must check
1010 	 * the thresholds and burst also.
1011 	 */
1012 	if (chip->enable_dma) {
1013 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1014 						spi,
1015 						bits, &dma_burst,
1016 						&dma_thresh))
1017 			dev_warn_ratelimited(&spi->dev,
1018 					     "DMA burst size reduced to match bits_per_word\n");
1019 	}
1020 
1021 	dma_mapped = controller->can_dma &&
1022 		     controller->can_dma(controller, spi, transfer) &&
1023 		     controller->cur_msg_mapped;
1024 	if (dma_mapped) {
1025 
1026 		/* Ensure we have the correct interrupt handler */
1027 		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1028 
1029 		err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1030 		if (err)
1031 			return err;
1032 
1033 		/* Clear status and start DMA engine */
1034 		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1035 		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1036 
1037 		pxa2xx_spi_dma_start(drv_data);
1038 	} else {
1039 		/* Ensure we have the correct interrupt handler	*/
1040 		drv_data->transfer_handler = interrupt_transfer;
1041 
1042 		/* Clear status  */
1043 		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1044 		write_SSSR_CS(drv_data, drv_data->clear_sr);
1045 	}
1046 
1047 	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1048 	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1049 	if (!pxa25x_ssp_comp(drv_data))
1050 		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1051 			controller->max_speed_hz
1052 				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1053 			dma_mapped ? "DMA" : "PIO");
1054 	else
1055 		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1056 			controller->max_speed_hz / 2
1057 				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1058 			dma_mapped ? "DMA" : "PIO");
1059 
1060 	if (is_lpss_ssp(drv_data)) {
1061 		pxa2xx_spi_update(drv_data, SSIRF, GENMASK(7, 0), chip->lpss_rx_threshold);
1062 		pxa2xx_spi_update(drv_data, SSITF, GENMASK(15, 0), chip->lpss_tx_threshold);
1063 	}
1064 
1065 	if (is_mrfld_ssp(drv_data)) {
1066 		u32 mask = SFIFOTT_RFT | SFIFOTT_TFT;
1067 		u32 thresh = 0;
1068 
1069 		thresh |= SFIFOTT_RxThresh(chip->lpss_rx_threshold);
1070 		thresh |= SFIFOTT_TxThresh(chip->lpss_tx_threshold);
1071 
1072 		pxa2xx_spi_update(drv_data, SFIFOTT, mask, thresh);
1073 	}
1074 
1075 	if (is_quark_x1000_ssp(drv_data))
1076 		pxa2xx_spi_update(drv_data, DDS_RATE, GENMASK(23, 0), chip->dds_rate);
1077 
1078 	/* Stop the SSP */
1079 	if (!is_mmp2_ssp(drv_data))
1080 		pxa_ssp_disable(drv_data->ssp);
1081 
1082 	if (!pxa25x_ssp_comp(drv_data))
1083 		pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1084 
1085 	/* First set CR1 without interrupt and service enables */
1086 	pxa2xx_spi_update(drv_data, SSCR1, change_mask, cr1);
1087 
1088 	/* See if we need to reload the configuration registers */
1089 	pxa2xx_spi_update(drv_data, SSCR0, GENMASK(31, 0), cr0);
1090 
1091 	/* Restart the SSP */
1092 	pxa_ssp_enable(drv_data->ssp);
1093 
1094 	if (is_mmp2_ssp(drv_data)) {
1095 		u8 tx_level = read_SSSR_bits(drv_data, SSSR_TFL_MASK) >> 8;
1096 
1097 		if (tx_level) {
1098 			/* On MMP2, flipping SSE doesn't to empty Tx FIFO. */
1099 			dev_warn(&spi->dev, "%u bytes of garbage in Tx FIFO!\n", tx_level);
1100 			if (tx_level > transfer->len)
1101 				tx_level = transfer->len;
1102 			drv_data->tx += tx_level;
1103 		}
1104 	}
1105 
1106 	if (spi_controller_is_slave(controller)) {
1107 		while (drv_data->write(drv_data))
1108 			;
1109 		if (drv_data->gpiod_ready) {
1110 			gpiod_set_value(drv_data->gpiod_ready, 1);
1111 			udelay(1);
1112 			gpiod_set_value(drv_data->gpiod_ready, 0);
1113 		}
1114 	}
1115 
1116 	/*
1117 	 * Release the data by enabling service requests and interrupts,
1118 	 * without changing any mode bits.
1119 	 */
1120 	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1121 
1122 	return 1;
1123 }
1124 
1125 static int pxa2xx_spi_slave_abort(struct spi_controller *controller)
1126 {
1127 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1128 
1129 	int_error_stop(drv_data, "transfer aborted", -EINTR);
1130 
1131 	return 0;
1132 }
1133 
1134 static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1135 				 struct spi_message *msg)
1136 {
1137 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1138 
1139 	int_stop_and_reset(drv_data);
1140 
1141 	/* Disable the SSP */
1142 	pxa2xx_spi_off(drv_data);
1143 
1144 	/*
1145 	 * Stop the DMA if running. Note DMA callback handler may have unset
1146 	 * the dma_running already, which is fine as stopping is not needed
1147 	 * then but we shouldn't rely this flag for anything else than
1148 	 * stopping. For instance to differentiate between PIO and DMA
1149 	 * transfers.
1150 	 */
1151 	if (atomic_read(&drv_data->dma_running))
1152 		pxa2xx_spi_dma_stop(drv_data);
1153 }
1154 
1155 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1156 {
1157 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1158 
1159 	/* Disable the SSP now */
1160 	pxa2xx_spi_off(drv_data);
1161 
1162 	return 0;
1163 }
1164 
1165 static int setup(struct spi_device *spi)
1166 {
1167 	struct pxa2xx_spi_chip *chip_info;
1168 	struct chip_data *chip;
1169 	const struct lpss_config *config;
1170 	struct driver_data *drv_data =
1171 		spi_controller_get_devdata(spi->controller);
1172 	uint tx_thres, tx_hi_thres, rx_thres;
1173 
1174 	switch (drv_data->ssp_type) {
1175 	case QUARK_X1000_SSP:
1176 		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1177 		tx_hi_thres = 0;
1178 		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1179 		break;
1180 	case MRFLD_SSP:
1181 		tx_thres = TX_THRESH_MRFLD_DFLT;
1182 		tx_hi_thres = 0;
1183 		rx_thres = RX_THRESH_MRFLD_DFLT;
1184 		break;
1185 	case CE4100_SSP:
1186 		tx_thres = TX_THRESH_CE4100_DFLT;
1187 		tx_hi_thres = 0;
1188 		rx_thres = RX_THRESH_CE4100_DFLT;
1189 		break;
1190 	case LPSS_LPT_SSP:
1191 	case LPSS_BYT_SSP:
1192 	case LPSS_BSW_SSP:
1193 	case LPSS_SPT_SSP:
1194 	case LPSS_BXT_SSP:
1195 	case LPSS_CNL_SSP:
1196 		config = lpss_get_config(drv_data);
1197 		tx_thres = config->tx_threshold_lo;
1198 		tx_hi_thres = config->tx_threshold_hi;
1199 		rx_thres = config->rx_threshold;
1200 		break;
1201 	default:
1202 		tx_hi_thres = 0;
1203 		if (spi_controller_is_slave(drv_data->controller)) {
1204 			tx_thres = 1;
1205 			rx_thres = 2;
1206 		} else {
1207 			tx_thres = TX_THRESH_DFLT;
1208 			rx_thres = RX_THRESH_DFLT;
1209 		}
1210 		break;
1211 	}
1212 
1213 	/* Only allocate on the first setup */
1214 	chip = spi_get_ctldata(spi);
1215 	if (!chip) {
1216 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1217 		if (!chip)
1218 			return -ENOMEM;
1219 
1220 		if (drv_data->ssp_type == CE4100_SSP) {
1221 			if (spi->chip_select > 4) {
1222 				dev_err(&spi->dev,
1223 					"failed setup: cs number must not be > 4.\n");
1224 				kfree(chip);
1225 				return -EINVAL;
1226 			}
1227 		}
1228 		chip->enable_dma = drv_data->controller_info->enable_dma;
1229 		chip->timeout = TIMOUT_DFLT;
1230 	}
1231 
1232 	/*
1233 	 * Protocol drivers may change the chip settings, so...
1234 	 * if chip_info exists, use it.
1235 	 */
1236 	chip_info = spi->controller_data;
1237 
1238 	/* chip_info isn't always needed */
1239 	if (chip_info) {
1240 		if (chip_info->timeout)
1241 			chip->timeout = chip_info->timeout;
1242 		if (chip_info->tx_threshold)
1243 			tx_thres = chip_info->tx_threshold;
1244 		if (chip_info->tx_hi_threshold)
1245 			tx_hi_thres = chip_info->tx_hi_threshold;
1246 		if (chip_info->rx_threshold)
1247 			rx_thres = chip_info->rx_threshold;
1248 		chip->dma_threshold = 0;
1249 	}
1250 
1251 	chip->cr1 = 0;
1252 	if (spi_controller_is_slave(drv_data->controller)) {
1253 		chip->cr1 |= SSCR1_SCFR;
1254 		chip->cr1 |= SSCR1_SCLKDIR;
1255 		chip->cr1 |= SSCR1_SFRMDIR;
1256 		chip->cr1 |= SSCR1_SPH;
1257 	}
1258 
1259 	if (is_lpss_ssp(drv_data)) {
1260 		chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1261 		chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) |
1262 					  SSITF_TxHiThresh(tx_hi_thres);
1263 	}
1264 
1265 	if (is_mrfld_ssp(drv_data)) {
1266 		chip->lpss_rx_threshold = rx_thres;
1267 		chip->lpss_tx_threshold = tx_thres;
1268 	}
1269 
1270 	/*
1271 	 * Set DMA burst and threshold outside of chip_info path so that if
1272 	 * chip_info goes away after setting chip->enable_dma, the burst and
1273 	 * threshold can still respond to changes in bits_per_word.
1274 	 */
1275 	if (chip->enable_dma) {
1276 		/* Set up legal burst and threshold for DMA */
1277 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1278 						spi->bits_per_word,
1279 						&chip->dma_burst_size,
1280 						&chip->dma_threshold)) {
1281 			dev_warn(&spi->dev,
1282 				 "in setup: DMA burst size reduced to match bits_per_word\n");
1283 		}
1284 		dev_dbg(&spi->dev,
1285 			"in setup: DMA burst size set to %u\n",
1286 			chip->dma_burst_size);
1287 	}
1288 
1289 	switch (drv_data->ssp_type) {
1290 	case QUARK_X1000_SSP:
1291 		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1292 				   & QUARK_X1000_SSCR1_RFT)
1293 				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1294 				   & QUARK_X1000_SSCR1_TFT);
1295 		break;
1296 	case CE4100_SSP:
1297 		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1298 			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1299 		break;
1300 	default:
1301 		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1302 			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1303 		break;
1304 	}
1305 
1306 	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1307 	chip->cr1 |= ((spi->mode & SPI_CPHA) ? SSCR1_SPH : 0) |
1308 		     ((spi->mode & SPI_CPOL) ? SSCR1_SPO : 0);
1309 
1310 	if (spi->mode & SPI_LOOP)
1311 		chip->cr1 |= SSCR1_LBM;
1312 
1313 	spi_set_ctldata(spi, chip);
1314 
1315 	return 0;
1316 }
1317 
1318 static void cleanup(struct spi_device *spi)
1319 {
1320 	struct chip_data *chip = spi_get_ctldata(spi);
1321 
1322 	kfree(chip);
1323 }
1324 
1325 #ifdef CONFIG_ACPI
1326 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1327 	{ "INT33C0", LPSS_LPT_SSP },
1328 	{ "INT33C1", LPSS_LPT_SSP },
1329 	{ "INT3430", LPSS_LPT_SSP },
1330 	{ "INT3431", LPSS_LPT_SSP },
1331 	{ "80860F0E", LPSS_BYT_SSP },
1332 	{ "8086228E", LPSS_BSW_SSP },
1333 	{ },
1334 };
1335 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1336 #endif
1337 
1338 /*
1339  * PCI IDs of compound devices that integrate both host controller and private
1340  * integrated DMA engine. Please note these are not used in module
1341  * autoloading and probing in this module but matching the LPSS SSP type.
1342  */
1343 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1344 	/* SPT-LP */
1345 	{ PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1346 	{ PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1347 	/* SPT-H */
1348 	{ PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1349 	{ PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1350 	/* KBL-H */
1351 	{ PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1352 	{ PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1353 	/* CML-V */
1354 	{ PCI_VDEVICE(INTEL, 0xa3a9), LPSS_SPT_SSP },
1355 	{ PCI_VDEVICE(INTEL, 0xa3aa), LPSS_SPT_SSP },
1356 	/* BXT A-Step */
1357 	{ PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1358 	{ PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1359 	{ PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1360 	/* BXT B-Step */
1361 	{ PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1362 	{ PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1363 	{ PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1364 	/* GLK */
1365 	{ PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1366 	{ PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1367 	{ PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1368 	/* ICL-LP */
1369 	{ PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP },
1370 	{ PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP },
1371 	{ PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP },
1372 	/* EHL */
1373 	{ PCI_VDEVICE(INTEL, 0x4b2a), LPSS_BXT_SSP },
1374 	{ PCI_VDEVICE(INTEL, 0x4b2b), LPSS_BXT_SSP },
1375 	{ PCI_VDEVICE(INTEL, 0x4b37), LPSS_BXT_SSP },
1376 	/* JSL */
1377 	{ PCI_VDEVICE(INTEL, 0x4daa), LPSS_CNL_SSP },
1378 	{ PCI_VDEVICE(INTEL, 0x4dab), LPSS_CNL_SSP },
1379 	{ PCI_VDEVICE(INTEL, 0x4dfb), LPSS_CNL_SSP },
1380 	/* TGL-H */
1381 	{ PCI_VDEVICE(INTEL, 0x43aa), LPSS_CNL_SSP },
1382 	{ PCI_VDEVICE(INTEL, 0x43ab), LPSS_CNL_SSP },
1383 	{ PCI_VDEVICE(INTEL, 0x43fb), LPSS_CNL_SSP },
1384 	{ PCI_VDEVICE(INTEL, 0x43fd), LPSS_CNL_SSP },
1385 	/* ADL-P */
1386 	{ PCI_VDEVICE(INTEL, 0x51aa), LPSS_CNL_SSP },
1387 	{ PCI_VDEVICE(INTEL, 0x51ab), LPSS_CNL_SSP },
1388 	{ PCI_VDEVICE(INTEL, 0x51fb), LPSS_CNL_SSP },
1389 	/* ADL-M */
1390 	{ PCI_VDEVICE(INTEL, 0x54aa), LPSS_CNL_SSP },
1391 	{ PCI_VDEVICE(INTEL, 0x54ab), LPSS_CNL_SSP },
1392 	{ PCI_VDEVICE(INTEL, 0x54fb), LPSS_CNL_SSP },
1393 	/* APL */
1394 	{ PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1395 	{ PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1396 	{ PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1397 	/* RPL-S */
1398 	{ PCI_VDEVICE(INTEL, 0x7a2a), LPSS_CNL_SSP },
1399 	{ PCI_VDEVICE(INTEL, 0x7a2b), LPSS_CNL_SSP },
1400 	{ PCI_VDEVICE(INTEL, 0x7a79), LPSS_CNL_SSP },
1401 	{ PCI_VDEVICE(INTEL, 0x7a7b), LPSS_CNL_SSP },
1402 	/* ADL-S */
1403 	{ PCI_VDEVICE(INTEL, 0x7aaa), LPSS_CNL_SSP },
1404 	{ PCI_VDEVICE(INTEL, 0x7aab), LPSS_CNL_SSP },
1405 	{ PCI_VDEVICE(INTEL, 0x7af9), LPSS_CNL_SSP },
1406 	{ PCI_VDEVICE(INTEL, 0x7afb), LPSS_CNL_SSP },
1407 	/* MTL-P */
1408 	{ PCI_VDEVICE(INTEL, 0x7e27), LPSS_CNL_SSP },
1409 	{ PCI_VDEVICE(INTEL, 0x7e30), LPSS_CNL_SSP },
1410 	{ PCI_VDEVICE(INTEL, 0x7e46), LPSS_CNL_SSP },
1411 	/* CNL-LP */
1412 	{ PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1413 	{ PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1414 	{ PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1415 	/* CNL-H */
1416 	{ PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1417 	{ PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1418 	{ PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1419 	/* CML-LP */
1420 	{ PCI_VDEVICE(INTEL, 0x02aa), LPSS_CNL_SSP },
1421 	{ PCI_VDEVICE(INTEL, 0x02ab), LPSS_CNL_SSP },
1422 	{ PCI_VDEVICE(INTEL, 0x02fb), LPSS_CNL_SSP },
1423 	/* CML-H */
1424 	{ PCI_VDEVICE(INTEL, 0x06aa), LPSS_CNL_SSP },
1425 	{ PCI_VDEVICE(INTEL, 0x06ab), LPSS_CNL_SSP },
1426 	{ PCI_VDEVICE(INTEL, 0x06fb), LPSS_CNL_SSP },
1427 	/* TGL-LP */
1428 	{ PCI_VDEVICE(INTEL, 0xa0aa), LPSS_CNL_SSP },
1429 	{ PCI_VDEVICE(INTEL, 0xa0ab), LPSS_CNL_SSP },
1430 	{ PCI_VDEVICE(INTEL, 0xa0de), LPSS_CNL_SSP },
1431 	{ PCI_VDEVICE(INTEL, 0xa0df), LPSS_CNL_SSP },
1432 	{ PCI_VDEVICE(INTEL, 0xa0fb), LPSS_CNL_SSP },
1433 	{ PCI_VDEVICE(INTEL, 0xa0fd), LPSS_CNL_SSP },
1434 	{ PCI_VDEVICE(INTEL, 0xa0fe), LPSS_CNL_SSP },
1435 	{ },
1436 };
1437 
1438 static const struct of_device_id pxa2xx_spi_of_match[] = {
1439 	{ .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1440 	{},
1441 };
1442 MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1443 
1444 #ifdef CONFIG_PCI
1445 
1446 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1447 {
1448 	return param == chan->device->dev;
1449 }
1450 
1451 #endif /* CONFIG_PCI */
1452 
1453 static struct pxa2xx_spi_controller *
1454 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1455 {
1456 	struct pxa2xx_spi_controller *pdata;
1457 	struct device *dev = &pdev->dev;
1458 	struct device *parent = dev->parent;
1459 	struct ssp_device *ssp;
1460 	struct resource *res;
1461 	struct pci_dev *pcidev = dev_is_pci(parent) ? to_pci_dev(parent) : NULL;
1462 	const struct pci_device_id *pcidev_id = NULL;
1463 	enum pxa_ssp_type type;
1464 	const void *match;
1465 	int status;
1466 	u64 uid;
1467 
1468 	if (pcidev)
1469 		pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match, pcidev);
1470 
1471 	match = device_get_match_data(&pdev->dev);
1472 	if (match)
1473 		type = (enum pxa_ssp_type)match;
1474 	else if (pcidev_id)
1475 		type = (enum pxa_ssp_type)pcidev_id->driver_data;
1476 	else
1477 		return ERR_PTR(-EINVAL);
1478 
1479 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1480 	if (!pdata)
1481 		return ERR_PTR(-ENOMEM);
1482 
1483 	ssp = &pdata->ssp;
1484 
1485 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1486 	ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1487 	if (IS_ERR(ssp->mmio_base))
1488 		return ERR_CAST(ssp->mmio_base);
1489 
1490 	ssp->phys_base = res->start;
1491 
1492 #ifdef CONFIG_PCI
1493 	if (pcidev_id) {
1494 		pdata->tx_param = parent;
1495 		pdata->rx_param = parent;
1496 		pdata->dma_filter = pxa2xx_spi_idma_filter;
1497 	}
1498 #endif
1499 
1500 	ssp->clk = devm_clk_get(&pdev->dev, NULL);
1501 	if (IS_ERR(ssp->clk))
1502 		return ERR_CAST(ssp->clk);
1503 
1504 	ssp->irq = platform_get_irq(pdev, 0);
1505 	if (ssp->irq < 0)
1506 		return ERR_PTR(ssp->irq);
1507 
1508 	ssp->type = type;
1509 	ssp->dev = &pdev->dev;
1510 
1511 	status = acpi_dev_uid_to_integer(ACPI_COMPANION(dev), &uid);
1512 	if (status)
1513 		ssp->port_id = -1;
1514 	else
1515 		ssp->port_id = uid;
1516 
1517 	pdata->is_slave = device_property_read_bool(&pdev->dev, "spi-slave");
1518 	pdata->num_chipselect = 1;
1519 	pdata->enable_dma = true;
1520 	pdata->dma_burst_size = 1;
1521 
1522 	return pdata;
1523 }
1524 
1525 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1526 				      unsigned int cs)
1527 {
1528 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1529 
1530 	if (has_acpi_companion(drv_data->ssp->dev)) {
1531 		switch (drv_data->ssp_type) {
1532 		/*
1533 		 * For Atoms the ACPI DeviceSelection used by the Windows
1534 		 * driver starts from 1 instead of 0 so translate it here
1535 		 * to match what Linux expects.
1536 		 */
1537 		case LPSS_BYT_SSP:
1538 		case LPSS_BSW_SSP:
1539 			return cs - 1;
1540 
1541 		default:
1542 			break;
1543 		}
1544 	}
1545 
1546 	return cs;
1547 }
1548 
1549 static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi)
1550 {
1551 	return MAX_DMA_LEN;
1552 }
1553 
1554 static int pxa2xx_spi_probe(struct platform_device *pdev)
1555 {
1556 	struct device *dev = &pdev->dev;
1557 	struct pxa2xx_spi_controller *platform_info;
1558 	struct spi_controller *controller;
1559 	struct driver_data *drv_data;
1560 	struct ssp_device *ssp;
1561 	const struct lpss_config *config;
1562 	int status;
1563 	u32 tmp;
1564 
1565 	platform_info = dev_get_platdata(dev);
1566 	if (!platform_info) {
1567 		platform_info = pxa2xx_spi_init_pdata(pdev);
1568 		if (IS_ERR(platform_info)) {
1569 			dev_err(&pdev->dev, "missing platform data\n");
1570 			return PTR_ERR(platform_info);
1571 		}
1572 	}
1573 
1574 	ssp = pxa_ssp_request(pdev->id, pdev->name);
1575 	if (!ssp)
1576 		ssp = &platform_info->ssp;
1577 
1578 	if (!ssp->mmio_base) {
1579 		dev_err(&pdev->dev, "failed to get SSP\n");
1580 		return -ENODEV;
1581 	}
1582 
1583 	if (platform_info->is_slave)
1584 		controller = devm_spi_alloc_slave(dev, sizeof(*drv_data));
1585 	else
1586 		controller = devm_spi_alloc_master(dev, sizeof(*drv_data));
1587 
1588 	if (!controller) {
1589 		dev_err(&pdev->dev, "cannot alloc spi_controller\n");
1590 		status = -ENOMEM;
1591 		goto out_error_controller_alloc;
1592 	}
1593 	drv_data = spi_controller_get_devdata(controller);
1594 	drv_data->controller = controller;
1595 	drv_data->controller_info = platform_info;
1596 	drv_data->ssp = ssp;
1597 
1598 	device_set_node(&controller->dev, dev_fwnode(dev));
1599 
1600 	/* The spi->mode bits understood by this driver: */
1601 	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1602 
1603 	controller->bus_num = ssp->port_id;
1604 	controller->dma_alignment = DMA_ALIGNMENT;
1605 	controller->cleanup = cleanup;
1606 	controller->setup = setup;
1607 	controller->set_cs = pxa2xx_spi_set_cs;
1608 	controller->transfer_one = pxa2xx_spi_transfer_one;
1609 	controller->slave_abort = pxa2xx_spi_slave_abort;
1610 	controller->handle_err = pxa2xx_spi_handle_err;
1611 	controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1612 	controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1613 	controller->auto_runtime_pm = true;
1614 	controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1615 
1616 	drv_data->ssp_type = ssp->type;
1617 
1618 	if (pxa25x_ssp_comp(drv_data)) {
1619 		switch (drv_data->ssp_type) {
1620 		case QUARK_X1000_SSP:
1621 			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1622 			break;
1623 		default:
1624 			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1625 			break;
1626 		}
1627 
1628 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1629 		drv_data->dma_cr1 = 0;
1630 		drv_data->clear_sr = SSSR_ROR;
1631 		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1632 	} else {
1633 		controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1634 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1635 		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1636 		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1637 		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1638 						| SSSR_ROR | SSSR_TUR;
1639 	}
1640 
1641 	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1642 			drv_data);
1643 	if (status < 0) {
1644 		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1645 		goto out_error_controller_alloc;
1646 	}
1647 
1648 	/* Setup DMA if requested */
1649 	if (platform_info->enable_dma) {
1650 		status = pxa2xx_spi_dma_setup(drv_data);
1651 		if (status) {
1652 			dev_warn(dev, "no DMA channels available, using PIO\n");
1653 			platform_info->enable_dma = false;
1654 		} else {
1655 			controller->can_dma = pxa2xx_spi_can_dma;
1656 			controller->max_dma_len = MAX_DMA_LEN;
1657 			controller->max_transfer_size =
1658 				pxa2xx_spi_max_dma_transfer_size;
1659 		}
1660 	}
1661 
1662 	/* Enable SOC clock */
1663 	status = clk_prepare_enable(ssp->clk);
1664 	if (status)
1665 		goto out_error_dma_irq_alloc;
1666 
1667 	controller->max_speed_hz = clk_get_rate(ssp->clk);
1668 	/*
1669 	 * Set minimum speed for all other platforms than Intel Quark which is
1670 	 * able do under 1 Hz transfers.
1671 	 */
1672 	if (!pxa25x_ssp_comp(drv_data))
1673 		controller->min_speed_hz =
1674 			DIV_ROUND_UP(controller->max_speed_hz, 4096);
1675 	else if (!is_quark_x1000_ssp(drv_data))
1676 		controller->min_speed_hz =
1677 			DIV_ROUND_UP(controller->max_speed_hz, 512);
1678 
1679 	pxa_ssp_disable(ssp);
1680 
1681 	/* Load default SSP configuration */
1682 	switch (drv_data->ssp_type) {
1683 	case QUARK_X1000_SSP:
1684 		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1685 		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1686 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1687 
1688 		/* Using the Motorola SPI protocol and use 8 bit frame */
1689 		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1690 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1691 		break;
1692 	case CE4100_SSP:
1693 		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1694 		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1695 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1696 		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1697 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1698 		break;
1699 	default:
1700 
1701 		if (spi_controller_is_slave(controller)) {
1702 			tmp = SSCR1_SCFR |
1703 			      SSCR1_SCLKDIR |
1704 			      SSCR1_SFRMDIR |
1705 			      SSCR1_RxTresh(2) |
1706 			      SSCR1_TxTresh(1) |
1707 			      SSCR1_SPH;
1708 		} else {
1709 			tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1710 			      SSCR1_TxTresh(TX_THRESH_DFLT);
1711 		}
1712 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1713 		tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1714 		if (!spi_controller_is_slave(controller))
1715 			tmp |= SSCR0_SCR(2);
1716 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1717 		break;
1718 	}
1719 
1720 	if (!pxa25x_ssp_comp(drv_data))
1721 		pxa2xx_spi_write(drv_data, SSTO, 0);
1722 
1723 	if (!is_quark_x1000_ssp(drv_data))
1724 		pxa2xx_spi_write(drv_data, SSPSP, 0);
1725 
1726 	if (is_lpss_ssp(drv_data)) {
1727 		lpss_ssp_setup(drv_data);
1728 		config = lpss_get_config(drv_data);
1729 		if (config->reg_capabilities >= 0) {
1730 			tmp = __lpss_ssp_read_priv(drv_data,
1731 						   config->reg_capabilities);
1732 			tmp &= LPSS_CAPS_CS_EN_MASK;
1733 			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1734 			platform_info->num_chipselect = ffz(tmp);
1735 		} else if (config->cs_num) {
1736 			platform_info->num_chipselect = config->cs_num;
1737 		}
1738 	}
1739 	controller->num_chipselect = platform_info->num_chipselect;
1740 	controller->use_gpio_descriptors = true;
1741 
1742 	if (platform_info->is_slave) {
1743 		drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1744 						"ready", GPIOD_OUT_LOW);
1745 		if (IS_ERR(drv_data->gpiod_ready)) {
1746 			status = PTR_ERR(drv_data->gpiod_ready);
1747 			goto out_error_clock_enabled;
1748 		}
1749 	}
1750 
1751 	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1752 	pm_runtime_use_autosuspend(&pdev->dev);
1753 	pm_runtime_set_active(&pdev->dev);
1754 	pm_runtime_enable(&pdev->dev);
1755 
1756 	/* Register with the SPI framework */
1757 	platform_set_drvdata(pdev, drv_data);
1758 	status = spi_register_controller(controller);
1759 	if (status) {
1760 		dev_err(&pdev->dev, "problem registering SPI controller\n");
1761 		goto out_error_pm_runtime_enabled;
1762 	}
1763 
1764 	return status;
1765 
1766 out_error_pm_runtime_enabled:
1767 	pm_runtime_disable(&pdev->dev);
1768 
1769 out_error_clock_enabled:
1770 	clk_disable_unprepare(ssp->clk);
1771 
1772 out_error_dma_irq_alloc:
1773 	pxa2xx_spi_dma_release(drv_data);
1774 	free_irq(ssp->irq, drv_data);
1775 
1776 out_error_controller_alloc:
1777 	pxa_ssp_free(ssp);
1778 	return status;
1779 }
1780 
1781 static int pxa2xx_spi_remove(struct platform_device *pdev)
1782 {
1783 	struct driver_data *drv_data = platform_get_drvdata(pdev);
1784 	struct ssp_device *ssp = drv_data->ssp;
1785 
1786 	pm_runtime_get_sync(&pdev->dev);
1787 
1788 	spi_unregister_controller(drv_data->controller);
1789 
1790 	/* Disable the SSP at the peripheral and SOC level */
1791 	pxa_ssp_disable(ssp);
1792 	clk_disable_unprepare(ssp->clk);
1793 
1794 	/* Release DMA */
1795 	if (drv_data->controller_info->enable_dma)
1796 		pxa2xx_spi_dma_release(drv_data);
1797 
1798 	pm_runtime_put_noidle(&pdev->dev);
1799 	pm_runtime_disable(&pdev->dev);
1800 
1801 	/* Release IRQ */
1802 	free_irq(ssp->irq, drv_data);
1803 
1804 	/* Release SSP */
1805 	pxa_ssp_free(ssp);
1806 
1807 	return 0;
1808 }
1809 
1810 #ifdef CONFIG_PM_SLEEP
1811 static int pxa2xx_spi_suspend(struct device *dev)
1812 {
1813 	struct driver_data *drv_data = dev_get_drvdata(dev);
1814 	struct ssp_device *ssp = drv_data->ssp;
1815 	int status;
1816 
1817 	status = spi_controller_suspend(drv_data->controller);
1818 	if (status)
1819 		return status;
1820 
1821 	pxa_ssp_disable(ssp);
1822 
1823 	if (!pm_runtime_suspended(dev))
1824 		clk_disable_unprepare(ssp->clk);
1825 
1826 	return 0;
1827 }
1828 
1829 static int pxa2xx_spi_resume(struct device *dev)
1830 {
1831 	struct driver_data *drv_data = dev_get_drvdata(dev);
1832 	struct ssp_device *ssp = drv_data->ssp;
1833 	int status;
1834 
1835 	/* Enable the SSP clock */
1836 	if (!pm_runtime_suspended(dev)) {
1837 		status = clk_prepare_enable(ssp->clk);
1838 		if (status)
1839 			return status;
1840 	}
1841 
1842 	/* Start the queue running */
1843 	return spi_controller_resume(drv_data->controller);
1844 }
1845 #endif
1846 
1847 #ifdef CONFIG_PM
1848 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1849 {
1850 	struct driver_data *drv_data = dev_get_drvdata(dev);
1851 
1852 	clk_disable_unprepare(drv_data->ssp->clk);
1853 	return 0;
1854 }
1855 
1856 static int pxa2xx_spi_runtime_resume(struct device *dev)
1857 {
1858 	struct driver_data *drv_data = dev_get_drvdata(dev);
1859 
1860 	return clk_prepare_enable(drv_data->ssp->clk);
1861 }
1862 #endif
1863 
1864 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1865 	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1866 	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1867 			   pxa2xx_spi_runtime_resume, NULL)
1868 };
1869 
1870 static struct platform_driver driver = {
1871 	.driver = {
1872 		.name	= "pxa2xx-spi",
1873 		.pm	= &pxa2xx_spi_pm_ops,
1874 		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1875 		.of_match_table = of_match_ptr(pxa2xx_spi_of_match),
1876 	},
1877 	.probe = pxa2xx_spi_probe,
1878 	.remove = pxa2xx_spi_remove,
1879 };
1880 
1881 static int __init pxa2xx_spi_init(void)
1882 {
1883 	return platform_driver_register(&driver);
1884 }
1885 subsys_initcall(pxa2xx_spi_init);
1886 
1887 static void __exit pxa2xx_spi_exit(void)
1888 {
1889 	platform_driver_unregister(&driver);
1890 }
1891 module_exit(pxa2xx_spi_exit);
1892 
1893 MODULE_SOFTDEP("pre: dw_dmac");
1894