xref: /openbmc/linux/drivers/spi/spi-pxa2xx.c (revision 0c874100)
1 /*
2  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
3  * Copyright (C) 2013, Intel Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/bitops.h>
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/device.h>
20 #include <linux/ioport.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/interrupt.h>
24 #include <linux/kernel.h>
25 #include <linux/pci.h>
26 #include <linux/platform_device.h>
27 #include <linux/spi/pxa2xx_spi.h>
28 #include <linux/spi/spi.h>
29 #include <linux/delay.h>
30 #include <linux/gpio.h>
31 #include <linux/gpio/consumer.h>
32 #include <linux/slab.h>
33 #include <linux/clk.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/acpi.h>
36 #include <linux/of_device.h>
37 
38 #include "spi-pxa2xx.h"
39 
40 MODULE_AUTHOR("Stephen Street");
41 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
42 MODULE_LICENSE("GPL");
43 MODULE_ALIAS("platform:pxa2xx-spi");
44 
45 #define TIMOUT_DFLT		1000
46 
47 /*
48  * for testing SSCR1 changes that require SSP restart, basically
49  * everything except the service and interrupt enables, the pxa270 developer
50  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
51  * list, but the PXA255 dev man says all bits without really meaning the
52  * service and interrupt enables
53  */
54 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
55 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
56 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
57 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
58 				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
59 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
60 
61 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
62 				| QUARK_X1000_SSCR1_EFWR	\
63 				| QUARK_X1000_SSCR1_RFT		\
64 				| QUARK_X1000_SSCR1_TFT		\
65 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
66 
67 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
68 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
69 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
70 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
71 				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
72 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
73 
74 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
75 #define LPSS_CS_CONTROL_SW_MODE			BIT(0)
76 #define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
77 #define LPSS_CAPS_CS_EN_SHIFT			9
78 #define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
79 
80 struct lpss_config {
81 	/* LPSS offset from drv_data->ioaddr */
82 	unsigned offset;
83 	/* Register offsets from drv_data->lpss_base or -1 */
84 	int reg_general;
85 	int reg_ssp;
86 	int reg_cs_ctrl;
87 	int reg_capabilities;
88 	/* FIFO thresholds */
89 	u32 rx_threshold;
90 	u32 tx_threshold_lo;
91 	u32 tx_threshold_hi;
92 	/* Chip select control */
93 	unsigned cs_sel_shift;
94 	unsigned cs_sel_mask;
95 	unsigned cs_num;
96 };
97 
98 /* Keep these sorted with enum pxa_ssp_type */
99 static const struct lpss_config lpss_platforms[] = {
100 	{	/* LPSS_LPT_SSP */
101 		.offset = 0x800,
102 		.reg_general = 0x08,
103 		.reg_ssp = 0x0c,
104 		.reg_cs_ctrl = 0x18,
105 		.reg_capabilities = -1,
106 		.rx_threshold = 64,
107 		.tx_threshold_lo = 160,
108 		.tx_threshold_hi = 224,
109 	},
110 	{	/* LPSS_BYT_SSP */
111 		.offset = 0x400,
112 		.reg_general = 0x08,
113 		.reg_ssp = 0x0c,
114 		.reg_cs_ctrl = 0x18,
115 		.reg_capabilities = -1,
116 		.rx_threshold = 64,
117 		.tx_threshold_lo = 160,
118 		.tx_threshold_hi = 224,
119 	},
120 	{	/* LPSS_BSW_SSP */
121 		.offset = 0x400,
122 		.reg_general = 0x08,
123 		.reg_ssp = 0x0c,
124 		.reg_cs_ctrl = 0x18,
125 		.reg_capabilities = -1,
126 		.rx_threshold = 64,
127 		.tx_threshold_lo = 160,
128 		.tx_threshold_hi = 224,
129 		.cs_sel_shift = 2,
130 		.cs_sel_mask = 1 << 2,
131 		.cs_num = 2,
132 	},
133 	{	/* LPSS_SPT_SSP */
134 		.offset = 0x200,
135 		.reg_general = -1,
136 		.reg_ssp = 0x20,
137 		.reg_cs_ctrl = 0x24,
138 		.reg_capabilities = -1,
139 		.rx_threshold = 1,
140 		.tx_threshold_lo = 32,
141 		.tx_threshold_hi = 56,
142 	},
143 	{	/* LPSS_BXT_SSP */
144 		.offset = 0x200,
145 		.reg_general = -1,
146 		.reg_ssp = 0x20,
147 		.reg_cs_ctrl = 0x24,
148 		.reg_capabilities = 0xfc,
149 		.rx_threshold = 1,
150 		.tx_threshold_lo = 16,
151 		.tx_threshold_hi = 48,
152 		.cs_sel_shift = 8,
153 		.cs_sel_mask = 3 << 8,
154 	},
155 	{	/* LPSS_CNL_SSP */
156 		.offset = 0x200,
157 		.reg_general = -1,
158 		.reg_ssp = 0x20,
159 		.reg_cs_ctrl = 0x24,
160 		.reg_capabilities = 0xfc,
161 		.rx_threshold = 1,
162 		.tx_threshold_lo = 32,
163 		.tx_threshold_hi = 56,
164 		.cs_sel_shift = 8,
165 		.cs_sel_mask = 3 << 8,
166 	},
167 };
168 
169 static inline const struct lpss_config
170 *lpss_get_config(const struct driver_data *drv_data)
171 {
172 	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
173 }
174 
175 static bool is_lpss_ssp(const struct driver_data *drv_data)
176 {
177 	switch (drv_data->ssp_type) {
178 	case LPSS_LPT_SSP:
179 	case LPSS_BYT_SSP:
180 	case LPSS_BSW_SSP:
181 	case LPSS_SPT_SSP:
182 	case LPSS_BXT_SSP:
183 	case LPSS_CNL_SSP:
184 		return true;
185 	default:
186 		return false;
187 	}
188 }
189 
190 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
191 {
192 	return drv_data->ssp_type == QUARK_X1000_SSP;
193 }
194 
195 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
196 {
197 	switch (drv_data->ssp_type) {
198 	case QUARK_X1000_SSP:
199 		return QUARK_X1000_SSCR1_CHANGE_MASK;
200 	case CE4100_SSP:
201 		return CE4100_SSCR1_CHANGE_MASK;
202 	default:
203 		return SSCR1_CHANGE_MASK;
204 	}
205 }
206 
207 static u32
208 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
209 {
210 	switch (drv_data->ssp_type) {
211 	case QUARK_X1000_SSP:
212 		return RX_THRESH_QUARK_X1000_DFLT;
213 	case CE4100_SSP:
214 		return RX_THRESH_CE4100_DFLT;
215 	default:
216 		return RX_THRESH_DFLT;
217 	}
218 }
219 
220 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
221 {
222 	u32 mask;
223 
224 	switch (drv_data->ssp_type) {
225 	case QUARK_X1000_SSP:
226 		mask = QUARK_X1000_SSSR_TFL_MASK;
227 		break;
228 	case CE4100_SSP:
229 		mask = CE4100_SSSR_TFL_MASK;
230 		break;
231 	default:
232 		mask = SSSR_TFL_MASK;
233 		break;
234 	}
235 
236 	return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
237 }
238 
239 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
240 				     u32 *sccr1_reg)
241 {
242 	u32 mask;
243 
244 	switch (drv_data->ssp_type) {
245 	case QUARK_X1000_SSP:
246 		mask = QUARK_X1000_SSCR1_RFT;
247 		break;
248 	case CE4100_SSP:
249 		mask = CE4100_SSCR1_RFT;
250 		break;
251 	default:
252 		mask = SSCR1_RFT;
253 		break;
254 	}
255 	*sccr1_reg &= ~mask;
256 }
257 
258 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
259 				   u32 *sccr1_reg, u32 threshold)
260 {
261 	switch (drv_data->ssp_type) {
262 	case QUARK_X1000_SSP:
263 		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
264 		break;
265 	case CE4100_SSP:
266 		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
267 		break;
268 	default:
269 		*sccr1_reg |= SSCR1_RxTresh(threshold);
270 		break;
271 	}
272 }
273 
274 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
275 				  u32 clk_div, u8 bits)
276 {
277 	switch (drv_data->ssp_type) {
278 	case QUARK_X1000_SSP:
279 		return clk_div
280 			| QUARK_X1000_SSCR0_Motorola
281 			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
282 			| SSCR0_SSE;
283 	default:
284 		return clk_div
285 			| SSCR0_Motorola
286 			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
287 			| SSCR0_SSE
288 			| (bits > 16 ? SSCR0_EDSS : 0);
289 	}
290 }
291 
292 /*
293  * Read and write LPSS SSP private registers. Caller must first check that
294  * is_lpss_ssp() returns true before these can be called.
295  */
296 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
297 {
298 	WARN_ON(!drv_data->lpss_base);
299 	return readl(drv_data->lpss_base + offset);
300 }
301 
302 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
303 				  unsigned offset, u32 value)
304 {
305 	WARN_ON(!drv_data->lpss_base);
306 	writel(value, drv_data->lpss_base + offset);
307 }
308 
309 /*
310  * lpss_ssp_setup - perform LPSS SSP specific setup
311  * @drv_data: pointer to the driver private data
312  *
313  * Perform LPSS SSP specific setup. This function must be called first if
314  * one is going to use LPSS SSP private registers.
315  */
316 static void lpss_ssp_setup(struct driver_data *drv_data)
317 {
318 	const struct lpss_config *config;
319 	u32 value;
320 
321 	config = lpss_get_config(drv_data);
322 	drv_data->lpss_base = drv_data->ioaddr + config->offset;
323 
324 	/* Enable software chip select control */
325 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
326 	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
327 	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
328 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
329 
330 	/* Enable multiblock DMA transfers */
331 	if (drv_data->master_info->enable_dma) {
332 		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
333 
334 		if (config->reg_general >= 0) {
335 			value = __lpss_ssp_read_priv(drv_data,
336 						     config->reg_general);
337 			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
338 			__lpss_ssp_write_priv(drv_data,
339 					      config->reg_general, value);
340 		}
341 	}
342 }
343 
344 static void lpss_ssp_select_cs(struct spi_device *spi,
345 			       const struct lpss_config *config)
346 {
347 	struct driver_data *drv_data =
348 		spi_controller_get_devdata(spi->controller);
349 	u32 value, cs;
350 
351 	if (!config->cs_sel_mask)
352 		return;
353 
354 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
355 
356 	cs = spi->chip_select;
357 	cs <<= config->cs_sel_shift;
358 	if (cs != (value & config->cs_sel_mask)) {
359 		/*
360 		 * When switching another chip select output active the
361 		 * output must be selected first and wait 2 ssp_clk cycles
362 		 * before changing state to active. Otherwise a short
363 		 * glitch will occur on the previous chip select since
364 		 * output select is latched but state control is not.
365 		 */
366 		value &= ~config->cs_sel_mask;
367 		value |= cs;
368 		__lpss_ssp_write_priv(drv_data,
369 				      config->reg_cs_ctrl, value);
370 		ndelay(1000000000 /
371 		       (drv_data->master->max_speed_hz / 2));
372 	}
373 }
374 
375 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
376 {
377 	struct driver_data *drv_data =
378 		spi_controller_get_devdata(spi->controller);
379 	const struct lpss_config *config;
380 	u32 value;
381 
382 	config = lpss_get_config(drv_data);
383 
384 	if (enable)
385 		lpss_ssp_select_cs(spi, config);
386 
387 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
388 	if (enable)
389 		value &= ~LPSS_CS_CONTROL_CS_HIGH;
390 	else
391 		value |= LPSS_CS_CONTROL_CS_HIGH;
392 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
393 }
394 
395 static void cs_assert(struct spi_device *spi)
396 {
397 	struct chip_data *chip = spi_get_ctldata(spi);
398 	struct driver_data *drv_data =
399 		spi_controller_get_devdata(spi->controller);
400 
401 	if (drv_data->ssp_type == CE4100_SSP) {
402 		pxa2xx_spi_write(drv_data, SSSR, chip->frm);
403 		return;
404 	}
405 
406 	if (chip->cs_control) {
407 		chip->cs_control(PXA2XX_CS_ASSERT);
408 		return;
409 	}
410 
411 	if (chip->gpiod_cs) {
412 		gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted);
413 		return;
414 	}
415 
416 	if (is_lpss_ssp(drv_data))
417 		lpss_ssp_cs_control(spi, true);
418 }
419 
420 static void cs_deassert(struct spi_device *spi)
421 {
422 	struct chip_data *chip = spi_get_ctldata(spi);
423 	struct driver_data *drv_data =
424 		spi_controller_get_devdata(spi->controller);
425 	unsigned long timeout;
426 
427 	if (drv_data->ssp_type == CE4100_SSP)
428 		return;
429 
430 	/* Wait until SSP becomes idle before deasserting the CS */
431 	timeout = jiffies + msecs_to_jiffies(10);
432 	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
433 	       !time_after(jiffies, timeout))
434 		cpu_relax();
435 
436 	if (chip->cs_control) {
437 		chip->cs_control(PXA2XX_CS_DEASSERT);
438 		return;
439 	}
440 
441 	if (chip->gpiod_cs) {
442 		gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted);
443 		return;
444 	}
445 
446 	if (is_lpss_ssp(drv_data))
447 		lpss_ssp_cs_control(spi, false);
448 }
449 
450 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
451 {
452 	if (level)
453 		cs_deassert(spi);
454 	else
455 		cs_assert(spi);
456 }
457 
458 int pxa2xx_spi_flush(struct driver_data *drv_data)
459 {
460 	unsigned long limit = loops_per_jiffy << 1;
461 
462 	do {
463 		while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
464 			pxa2xx_spi_read(drv_data, SSDR);
465 	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
466 	write_SSSR_CS(drv_data, SSSR_ROR);
467 
468 	return limit;
469 }
470 
471 static int null_writer(struct driver_data *drv_data)
472 {
473 	u8 n_bytes = drv_data->n_bytes;
474 
475 	if (pxa2xx_spi_txfifo_full(drv_data)
476 		|| (drv_data->tx == drv_data->tx_end))
477 		return 0;
478 
479 	pxa2xx_spi_write(drv_data, SSDR, 0);
480 	drv_data->tx += n_bytes;
481 
482 	return 1;
483 }
484 
485 static int null_reader(struct driver_data *drv_data)
486 {
487 	u8 n_bytes = drv_data->n_bytes;
488 
489 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
490 	       && (drv_data->rx < drv_data->rx_end)) {
491 		pxa2xx_spi_read(drv_data, SSDR);
492 		drv_data->rx += n_bytes;
493 	}
494 
495 	return drv_data->rx == drv_data->rx_end;
496 }
497 
498 static int u8_writer(struct driver_data *drv_data)
499 {
500 	if (pxa2xx_spi_txfifo_full(drv_data)
501 		|| (drv_data->tx == drv_data->tx_end))
502 		return 0;
503 
504 	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
505 	++drv_data->tx;
506 
507 	return 1;
508 }
509 
510 static int u8_reader(struct driver_data *drv_data)
511 {
512 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
513 	       && (drv_data->rx < drv_data->rx_end)) {
514 		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
515 		++drv_data->rx;
516 	}
517 
518 	return drv_data->rx == drv_data->rx_end;
519 }
520 
521 static int u16_writer(struct driver_data *drv_data)
522 {
523 	if (pxa2xx_spi_txfifo_full(drv_data)
524 		|| (drv_data->tx == drv_data->tx_end))
525 		return 0;
526 
527 	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
528 	drv_data->tx += 2;
529 
530 	return 1;
531 }
532 
533 static int u16_reader(struct driver_data *drv_data)
534 {
535 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
536 	       && (drv_data->rx < drv_data->rx_end)) {
537 		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
538 		drv_data->rx += 2;
539 	}
540 
541 	return drv_data->rx == drv_data->rx_end;
542 }
543 
544 static int u32_writer(struct driver_data *drv_data)
545 {
546 	if (pxa2xx_spi_txfifo_full(drv_data)
547 		|| (drv_data->tx == drv_data->tx_end))
548 		return 0;
549 
550 	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
551 	drv_data->tx += 4;
552 
553 	return 1;
554 }
555 
556 static int u32_reader(struct driver_data *drv_data)
557 {
558 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
559 	       && (drv_data->rx < drv_data->rx_end)) {
560 		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
561 		drv_data->rx += 4;
562 	}
563 
564 	return drv_data->rx == drv_data->rx_end;
565 }
566 
567 static void reset_sccr1(struct driver_data *drv_data)
568 {
569 	struct chip_data *chip =
570 		spi_get_ctldata(drv_data->master->cur_msg->spi);
571 	u32 sccr1_reg;
572 
573 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
574 	switch (drv_data->ssp_type) {
575 	case QUARK_X1000_SSP:
576 		sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
577 		break;
578 	case CE4100_SSP:
579 		sccr1_reg &= ~CE4100_SSCR1_RFT;
580 		break;
581 	default:
582 		sccr1_reg &= ~SSCR1_RFT;
583 		break;
584 	}
585 	sccr1_reg |= chip->threshold;
586 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
587 }
588 
589 static void int_error_stop(struct driver_data *drv_data, const char* msg)
590 {
591 	/* Stop and reset SSP */
592 	write_SSSR_CS(drv_data, drv_data->clear_sr);
593 	reset_sccr1(drv_data);
594 	if (!pxa25x_ssp_comp(drv_data))
595 		pxa2xx_spi_write(drv_data, SSTO, 0);
596 	pxa2xx_spi_flush(drv_data);
597 	pxa2xx_spi_write(drv_data, SSCR0,
598 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
599 
600 	dev_err(&drv_data->pdev->dev, "%s\n", msg);
601 
602 	drv_data->master->cur_msg->status = -EIO;
603 	spi_finalize_current_transfer(drv_data->master);
604 }
605 
606 static void int_transfer_complete(struct driver_data *drv_data)
607 {
608 	/* Clear and disable interrupts */
609 	write_SSSR_CS(drv_data, drv_data->clear_sr);
610 	reset_sccr1(drv_data);
611 	if (!pxa25x_ssp_comp(drv_data))
612 		pxa2xx_spi_write(drv_data, SSTO, 0);
613 
614 	spi_finalize_current_transfer(drv_data->master);
615 }
616 
617 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
618 {
619 	u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
620 		       drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
621 
622 	u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
623 
624 	if (irq_status & SSSR_ROR) {
625 		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
626 		return IRQ_HANDLED;
627 	}
628 
629 	if (irq_status & SSSR_TINT) {
630 		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
631 		if (drv_data->read(drv_data)) {
632 			int_transfer_complete(drv_data);
633 			return IRQ_HANDLED;
634 		}
635 	}
636 
637 	/* Drain rx fifo, Fill tx fifo and prevent overruns */
638 	do {
639 		if (drv_data->read(drv_data)) {
640 			int_transfer_complete(drv_data);
641 			return IRQ_HANDLED;
642 		}
643 	} while (drv_data->write(drv_data));
644 
645 	if (drv_data->read(drv_data)) {
646 		int_transfer_complete(drv_data);
647 		return IRQ_HANDLED;
648 	}
649 
650 	if (drv_data->tx == drv_data->tx_end) {
651 		u32 bytes_left;
652 		u32 sccr1_reg;
653 
654 		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
655 		sccr1_reg &= ~SSCR1_TIE;
656 
657 		/*
658 		 * PXA25x_SSP has no timeout, set up rx threshould for the
659 		 * remaining RX bytes.
660 		 */
661 		if (pxa25x_ssp_comp(drv_data)) {
662 			u32 rx_thre;
663 
664 			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
665 
666 			bytes_left = drv_data->rx_end - drv_data->rx;
667 			switch (drv_data->n_bytes) {
668 			case 4:
669 				bytes_left >>= 2;
670 				break;
671 			case 2:
672 				bytes_left >>= 1;
673 				break;
674 			}
675 
676 			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
677 			if (rx_thre > bytes_left)
678 				rx_thre = bytes_left;
679 
680 			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
681 		}
682 		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
683 	}
684 
685 	/* We did something */
686 	return IRQ_HANDLED;
687 }
688 
689 static void handle_bad_msg(struct driver_data *drv_data)
690 {
691 	pxa2xx_spi_write(drv_data, SSCR0,
692 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
693 	pxa2xx_spi_write(drv_data, SSCR1,
694 			 pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1);
695 	if (!pxa25x_ssp_comp(drv_data))
696 		pxa2xx_spi_write(drv_data, SSTO, 0);
697 	write_SSSR_CS(drv_data, drv_data->clear_sr);
698 
699 	dev_err(&drv_data->pdev->dev,
700 		"bad message state in interrupt handler\n");
701 }
702 
703 static irqreturn_t ssp_int(int irq, void *dev_id)
704 {
705 	struct driver_data *drv_data = dev_id;
706 	u32 sccr1_reg;
707 	u32 mask = drv_data->mask_sr;
708 	u32 status;
709 
710 	/*
711 	 * The IRQ might be shared with other peripherals so we must first
712 	 * check that are we RPM suspended or not. If we are we assume that
713 	 * the IRQ was not for us (we shouldn't be RPM suspended when the
714 	 * interrupt is enabled).
715 	 */
716 	if (pm_runtime_suspended(&drv_data->pdev->dev))
717 		return IRQ_NONE;
718 
719 	/*
720 	 * If the device is not yet in RPM suspended state and we get an
721 	 * interrupt that is meant for another device, check if status bits
722 	 * are all set to one. That means that the device is already
723 	 * powered off.
724 	 */
725 	status = pxa2xx_spi_read(drv_data, SSSR);
726 	if (status == ~0)
727 		return IRQ_NONE;
728 
729 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
730 
731 	/* Ignore possible writes if we don't need to write */
732 	if (!(sccr1_reg & SSCR1_TIE))
733 		mask &= ~SSSR_TFS;
734 
735 	/* Ignore RX timeout interrupt if it is disabled */
736 	if (!(sccr1_reg & SSCR1_TINTE))
737 		mask &= ~SSSR_TINT;
738 
739 	if (!(status & mask))
740 		return IRQ_NONE;
741 
742 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
743 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
744 
745 	if (!drv_data->master->cur_msg) {
746 		handle_bad_msg(drv_data);
747 		/* Never fail */
748 		return IRQ_HANDLED;
749 	}
750 
751 	return drv_data->transfer_handler(drv_data);
752 }
753 
754 /*
755  * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
756  * input frequency by fractions of 2^24. It also has a divider by 5.
757  *
758  * There are formulas to get baud rate value for given input frequency and
759  * divider parameters, such as DDS_CLK_RATE and SCR:
760  *
761  * Fsys = 200MHz
762  *
763  * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
764  * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
765  *
766  * DDS_CLK_RATE either 2^n or 2^n / 5.
767  * SCR is in range 0 .. 255
768  *
769  * Divisor = 5^i * 2^j * 2 * k
770  *       i = [0, 1]      i = 1 iff j = 0 or j > 3
771  *       j = [0, 23]     j = 0 iff i = 1
772  *       k = [1, 256]
773  * Special case: j = 0, i = 1: Divisor = 2 / 5
774  *
775  * Accordingly to the specification the recommended values for DDS_CLK_RATE
776  * are:
777  *	Case 1:		2^n, n = [0, 23]
778  *	Case 2:		2^24 * 2 / 5 (0x666666)
779  *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
780  *
781  * In all cases the lowest possible value is better.
782  *
783  * The function calculates parameters for all cases and chooses the one closest
784  * to the asked baud rate.
785  */
786 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
787 {
788 	unsigned long xtal = 200000000;
789 	unsigned long fref = xtal / 2;		/* mandatory division by 2,
790 						   see (2) */
791 						/* case 3 */
792 	unsigned long fref1 = fref / 2;		/* case 1 */
793 	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
794 	unsigned long scale;
795 	unsigned long q, q1, q2;
796 	long r, r1, r2;
797 	u32 mul;
798 
799 	/* Case 1 */
800 
801 	/* Set initial value for DDS_CLK_RATE */
802 	mul = (1 << 24) >> 1;
803 
804 	/* Calculate initial quot */
805 	q1 = DIV_ROUND_UP(fref1, rate);
806 
807 	/* Scale q1 if it's too big */
808 	if (q1 > 256) {
809 		/* Scale q1 to range [1, 512] */
810 		scale = fls_long(q1 - 1);
811 		if (scale > 9) {
812 			q1 >>= scale - 9;
813 			mul >>= scale - 9;
814 		}
815 
816 		/* Round the result if we have a remainder */
817 		q1 += q1 & 1;
818 	}
819 
820 	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
821 	scale = __ffs(q1);
822 	q1 >>= scale;
823 	mul >>= scale;
824 
825 	/* Get the remainder */
826 	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
827 
828 	/* Case 2 */
829 
830 	q2 = DIV_ROUND_UP(fref2, rate);
831 	r2 = abs(fref2 / q2 - rate);
832 
833 	/*
834 	 * Choose the best between two: less remainder we have the better. We
835 	 * can't go case 2 if q2 is greater than 256 since SCR register can
836 	 * hold only values 0 .. 255.
837 	 */
838 	if (r2 >= r1 || q2 > 256) {
839 		/* case 1 is better */
840 		r = r1;
841 		q = q1;
842 	} else {
843 		/* case 2 is better */
844 		r = r2;
845 		q = q2;
846 		mul = (1 << 24) * 2 / 5;
847 	}
848 
849 	/* Check case 3 only if the divisor is big enough */
850 	if (fref / rate >= 80) {
851 		u64 fssp;
852 		u32 m;
853 
854 		/* Calculate initial quot */
855 		q1 = DIV_ROUND_UP(fref, rate);
856 		m = (1 << 24) / q1;
857 
858 		/* Get the remainder */
859 		fssp = (u64)fref * m;
860 		do_div(fssp, 1 << 24);
861 		r1 = abs(fssp - rate);
862 
863 		/* Choose this one if it suits better */
864 		if (r1 < r) {
865 			/* case 3 is better */
866 			q = 1;
867 			mul = m;
868 		}
869 	}
870 
871 	*dds = mul;
872 	return q - 1;
873 }
874 
875 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
876 {
877 	unsigned long ssp_clk = drv_data->master->max_speed_hz;
878 	const struct ssp_device *ssp = drv_data->ssp;
879 
880 	rate = min_t(int, ssp_clk, rate);
881 
882 	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
883 		return (ssp_clk / (2 * rate) - 1) & 0xff;
884 	else
885 		return (ssp_clk / rate - 1) & 0xfff;
886 }
887 
888 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
889 					   int rate)
890 {
891 	struct chip_data *chip =
892 		spi_get_ctldata(drv_data->master->cur_msg->spi);
893 	unsigned int clk_div;
894 
895 	switch (drv_data->ssp_type) {
896 	case QUARK_X1000_SSP:
897 		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
898 		break;
899 	default:
900 		clk_div = ssp_get_clk_div(drv_data, rate);
901 		break;
902 	}
903 	return clk_div << 8;
904 }
905 
906 static bool pxa2xx_spi_can_dma(struct spi_controller *master,
907 			       struct spi_device *spi,
908 			       struct spi_transfer *xfer)
909 {
910 	struct chip_data *chip = spi_get_ctldata(spi);
911 
912 	return chip->enable_dma &&
913 	       xfer->len <= MAX_DMA_LEN &&
914 	       xfer->len >= chip->dma_burst_size;
915 }
916 
917 static int pxa2xx_spi_transfer_one(struct spi_controller *master,
918 				   struct spi_device *spi,
919 				   struct spi_transfer *transfer)
920 {
921 	struct driver_data *drv_data = spi_controller_get_devdata(master);
922 	struct spi_message *message = master->cur_msg;
923 	struct chip_data *chip = spi_get_ctldata(message->spi);
924 	u32 dma_thresh = chip->dma_threshold;
925 	u32 dma_burst = chip->dma_burst_size;
926 	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
927 	u32 clk_div;
928 	u8 bits;
929 	u32 speed;
930 	u32 cr0;
931 	u32 cr1;
932 	int err;
933 	int dma_mapped;
934 
935 	/* Check if we can DMA this transfer */
936 	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
937 
938 		/* reject already-mapped transfers; PIO won't always work */
939 		if (message->is_dma_mapped
940 				|| transfer->rx_dma || transfer->tx_dma) {
941 			dev_err(&drv_data->pdev->dev,
942 				"Mapped transfer length of %u is greater than %d\n",
943 				transfer->len, MAX_DMA_LEN);
944 			return -EINVAL;
945 		}
946 
947 		/* warn ... we force this to PIO mode */
948 		dev_warn_ratelimited(&message->spi->dev,
949 				     "DMA disabled for transfer length %ld greater than %d\n",
950 				     (long)transfer->len, MAX_DMA_LEN);
951 	}
952 
953 	/* Setup the transfer state based on the type of transfer */
954 	if (pxa2xx_spi_flush(drv_data) == 0) {
955 		dev_err(&drv_data->pdev->dev, "Flush failed\n");
956 		return -EIO;
957 	}
958 	drv_data->n_bytes = chip->n_bytes;
959 	drv_data->tx = (void *)transfer->tx_buf;
960 	drv_data->tx_end = drv_data->tx + transfer->len;
961 	drv_data->rx = transfer->rx_buf;
962 	drv_data->rx_end = drv_data->rx + transfer->len;
963 	drv_data->write = drv_data->tx ? chip->write : null_writer;
964 	drv_data->read = drv_data->rx ? chip->read : null_reader;
965 
966 	/* Change speed and bit per word on a per transfer */
967 	bits = transfer->bits_per_word;
968 	speed = transfer->speed_hz;
969 
970 	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
971 
972 	if (bits <= 8) {
973 		drv_data->n_bytes = 1;
974 		drv_data->read = drv_data->read != null_reader ?
975 					u8_reader : null_reader;
976 		drv_data->write = drv_data->write != null_writer ?
977 					u8_writer : null_writer;
978 	} else if (bits <= 16) {
979 		drv_data->n_bytes = 2;
980 		drv_data->read = drv_data->read != null_reader ?
981 					u16_reader : null_reader;
982 		drv_data->write = drv_data->write != null_writer ?
983 					u16_writer : null_writer;
984 	} else if (bits <= 32) {
985 		drv_data->n_bytes = 4;
986 		drv_data->read = drv_data->read != null_reader ?
987 					u32_reader : null_reader;
988 		drv_data->write = drv_data->write != null_writer ?
989 					u32_writer : null_writer;
990 	}
991 	/*
992 	 * if bits/word is changed in dma mode, then must check the
993 	 * thresholds and burst also
994 	 */
995 	if (chip->enable_dma) {
996 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
997 						message->spi,
998 						bits, &dma_burst,
999 						&dma_thresh))
1000 			dev_warn_ratelimited(&message->spi->dev,
1001 					     "DMA burst size reduced to match bits_per_word\n");
1002 	}
1003 
1004 	dma_mapped = master->can_dma &&
1005 		     master->can_dma(master, message->spi, transfer) &&
1006 		     master->cur_msg_mapped;
1007 	if (dma_mapped) {
1008 
1009 		/* Ensure we have the correct interrupt handler */
1010 		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1011 
1012 		err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1013 		if (err)
1014 			return err;
1015 
1016 		/* Clear status and start DMA engine */
1017 		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1018 		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1019 
1020 		pxa2xx_spi_dma_start(drv_data);
1021 	} else {
1022 		/* Ensure we have the correct interrupt handler	*/
1023 		drv_data->transfer_handler = interrupt_transfer;
1024 
1025 		/* Clear status  */
1026 		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1027 		write_SSSR_CS(drv_data, drv_data->clear_sr);
1028 	}
1029 
1030 	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1031 	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1032 	if (!pxa25x_ssp_comp(drv_data))
1033 		dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1034 			master->max_speed_hz
1035 				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1036 			dma_mapped ? "DMA" : "PIO");
1037 	else
1038 		dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1039 			master->max_speed_hz / 2
1040 				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1041 			dma_mapped ? "DMA" : "PIO");
1042 
1043 	if (is_lpss_ssp(drv_data)) {
1044 		if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1045 		    != chip->lpss_rx_threshold)
1046 			pxa2xx_spi_write(drv_data, SSIRF,
1047 					 chip->lpss_rx_threshold);
1048 		if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1049 		    != chip->lpss_tx_threshold)
1050 			pxa2xx_spi_write(drv_data, SSITF,
1051 					 chip->lpss_tx_threshold);
1052 	}
1053 
1054 	if (is_quark_x1000_ssp(drv_data) &&
1055 	    (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1056 		pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1057 
1058 	/* see if we need to reload the config registers */
1059 	if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1060 	    || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1061 	    != (cr1 & change_mask)) {
1062 		/* stop the SSP, and update the other bits */
1063 		pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1064 		if (!pxa25x_ssp_comp(drv_data))
1065 			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1066 		/* first set CR1 without interrupt and service enables */
1067 		pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1068 		/* restart the SSP */
1069 		pxa2xx_spi_write(drv_data, SSCR0, cr0);
1070 
1071 	} else {
1072 		if (!pxa25x_ssp_comp(drv_data))
1073 			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1074 	}
1075 
1076 	/*
1077 	 * Release the data by enabling service requests and interrupts,
1078 	 * without changing any mode bits
1079 	 */
1080 	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1081 
1082 	return 1;
1083 }
1084 
1085 static void pxa2xx_spi_handle_err(struct spi_controller *master,
1086 				 struct spi_message *msg)
1087 {
1088 	struct driver_data *drv_data = spi_controller_get_devdata(master);
1089 
1090 	/* Disable the SSP */
1091 	pxa2xx_spi_write(drv_data, SSCR0,
1092 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1093 	/* Clear and disable interrupts and service requests */
1094 	write_SSSR_CS(drv_data, drv_data->clear_sr);
1095 	pxa2xx_spi_write(drv_data, SSCR1,
1096 			 pxa2xx_spi_read(drv_data, SSCR1)
1097 			 & ~(drv_data->int_cr1 | drv_data->dma_cr1));
1098 	if (!pxa25x_ssp_comp(drv_data))
1099 		pxa2xx_spi_write(drv_data, SSTO, 0);
1100 
1101 	/*
1102 	 * Stop the DMA if running. Note DMA callback handler may have unset
1103 	 * the dma_running already, which is fine as stopping is not needed
1104 	 * then but we shouldn't rely this flag for anything else than
1105 	 * stopping. For instance to differentiate between PIO and DMA
1106 	 * transfers.
1107 	 */
1108 	if (atomic_read(&drv_data->dma_running))
1109 		pxa2xx_spi_dma_stop(drv_data);
1110 }
1111 
1112 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *master)
1113 {
1114 	struct driver_data *drv_data = spi_controller_get_devdata(master);
1115 
1116 	/* Disable the SSP now */
1117 	pxa2xx_spi_write(drv_data, SSCR0,
1118 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1119 
1120 	return 0;
1121 }
1122 
1123 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1124 		    struct pxa2xx_spi_chip *chip_info)
1125 {
1126 	struct driver_data *drv_data =
1127 		spi_controller_get_devdata(spi->controller);
1128 	struct gpio_desc *gpiod;
1129 	int err = 0;
1130 
1131 	if (chip == NULL)
1132 		return 0;
1133 
1134 	if (drv_data->cs_gpiods) {
1135 		gpiod = drv_data->cs_gpiods[spi->chip_select];
1136 		if (gpiod) {
1137 			chip->gpiod_cs = gpiod;
1138 			chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1139 			gpiod_set_value(gpiod, chip->gpio_cs_inverted);
1140 		}
1141 
1142 		return 0;
1143 	}
1144 
1145 	if (chip_info == NULL)
1146 		return 0;
1147 
1148 	/* NOTE: setup() can be called multiple times, possibly with
1149 	 * different chip_info, release previously requested GPIO
1150 	 */
1151 	if (chip->gpiod_cs) {
1152 		gpiod_put(chip->gpiod_cs);
1153 		chip->gpiod_cs = NULL;
1154 	}
1155 
1156 	/* If (*cs_control) is provided, ignore GPIO chip select */
1157 	if (chip_info->cs_control) {
1158 		chip->cs_control = chip_info->cs_control;
1159 		return 0;
1160 	}
1161 
1162 	if (gpio_is_valid(chip_info->gpio_cs)) {
1163 		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1164 		if (err) {
1165 			dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1166 				chip_info->gpio_cs);
1167 			return err;
1168 		}
1169 
1170 		gpiod = gpio_to_desc(chip_info->gpio_cs);
1171 		chip->gpiod_cs = gpiod;
1172 		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1173 
1174 		err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted);
1175 	}
1176 
1177 	return err;
1178 }
1179 
1180 static int setup(struct spi_device *spi)
1181 {
1182 	struct pxa2xx_spi_chip *chip_info;
1183 	struct chip_data *chip;
1184 	const struct lpss_config *config;
1185 	struct driver_data *drv_data =
1186 		spi_controller_get_devdata(spi->controller);
1187 	uint tx_thres, tx_hi_thres, rx_thres;
1188 
1189 	switch (drv_data->ssp_type) {
1190 	case QUARK_X1000_SSP:
1191 		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1192 		tx_hi_thres = 0;
1193 		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1194 		break;
1195 	case CE4100_SSP:
1196 		tx_thres = TX_THRESH_CE4100_DFLT;
1197 		tx_hi_thres = 0;
1198 		rx_thres = RX_THRESH_CE4100_DFLT;
1199 		break;
1200 	case LPSS_LPT_SSP:
1201 	case LPSS_BYT_SSP:
1202 	case LPSS_BSW_SSP:
1203 	case LPSS_SPT_SSP:
1204 	case LPSS_BXT_SSP:
1205 	case LPSS_CNL_SSP:
1206 		config = lpss_get_config(drv_data);
1207 		tx_thres = config->tx_threshold_lo;
1208 		tx_hi_thres = config->tx_threshold_hi;
1209 		rx_thres = config->rx_threshold;
1210 		break;
1211 	default:
1212 		tx_thres = TX_THRESH_DFLT;
1213 		tx_hi_thres = 0;
1214 		rx_thres = RX_THRESH_DFLT;
1215 		break;
1216 	}
1217 
1218 	/* Only alloc on first setup */
1219 	chip = spi_get_ctldata(spi);
1220 	if (!chip) {
1221 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1222 		if (!chip)
1223 			return -ENOMEM;
1224 
1225 		if (drv_data->ssp_type == CE4100_SSP) {
1226 			if (spi->chip_select > 4) {
1227 				dev_err(&spi->dev,
1228 					"failed setup: cs number must not be > 4.\n");
1229 				kfree(chip);
1230 				return -EINVAL;
1231 			}
1232 
1233 			chip->frm = spi->chip_select;
1234 		}
1235 		chip->enable_dma = drv_data->master_info->enable_dma;
1236 		chip->timeout = TIMOUT_DFLT;
1237 	}
1238 
1239 	/* protocol drivers may change the chip settings, so...
1240 	 * if chip_info exists, use it */
1241 	chip_info = spi->controller_data;
1242 
1243 	/* chip_info isn't always needed */
1244 	chip->cr1 = 0;
1245 	if (chip_info) {
1246 		if (chip_info->timeout)
1247 			chip->timeout = chip_info->timeout;
1248 		if (chip_info->tx_threshold)
1249 			tx_thres = chip_info->tx_threshold;
1250 		if (chip_info->tx_hi_threshold)
1251 			tx_hi_thres = chip_info->tx_hi_threshold;
1252 		if (chip_info->rx_threshold)
1253 			rx_thres = chip_info->rx_threshold;
1254 		chip->dma_threshold = 0;
1255 		if (chip_info->enable_loopback)
1256 			chip->cr1 = SSCR1_LBM;
1257 	}
1258 
1259 	chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1260 	chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1261 				| SSITF_TxHiThresh(tx_hi_thres);
1262 
1263 	/* set dma burst and threshold outside of chip_info path so that if
1264 	 * chip_info goes away after setting chip->enable_dma, the
1265 	 * burst and threshold can still respond to changes in bits_per_word */
1266 	if (chip->enable_dma) {
1267 		/* set up legal burst and threshold for dma */
1268 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1269 						spi->bits_per_word,
1270 						&chip->dma_burst_size,
1271 						&chip->dma_threshold)) {
1272 			dev_warn(&spi->dev,
1273 				 "in setup: DMA burst size reduced to match bits_per_word\n");
1274 		}
1275 	}
1276 
1277 	switch (drv_data->ssp_type) {
1278 	case QUARK_X1000_SSP:
1279 		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1280 				   & QUARK_X1000_SSCR1_RFT)
1281 				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1282 				   & QUARK_X1000_SSCR1_TFT);
1283 		break;
1284 	case CE4100_SSP:
1285 		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1286 			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1287 		break;
1288 	default:
1289 		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1290 			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1291 		break;
1292 	}
1293 
1294 	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1295 	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1296 			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1297 
1298 	if (spi->mode & SPI_LOOP)
1299 		chip->cr1 |= SSCR1_LBM;
1300 
1301 	if (spi->bits_per_word <= 8) {
1302 		chip->n_bytes = 1;
1303 		chip->read = u8_reader;
1304 		chip->write = u8_writer;
1305 	} else if (spi->bits_per_word <= 16) {
1306 		chip->n_bytes = 2;
1307 		chip->read = u16_reader;
1308 		chip->write = u16_writer;
1309 	} else if (spi->bits_per_word <= 32) {
1310 		chip->n_bytes = 4;
1311 		chip->read = u32_reader;
1312 		chip->write = u32_writer;
1313 	}
1314 
1315 	spi_set_ctldata(spi, chip);
1316 
1317 	if (drv_data->ssp_type == CE4100_SSP)
1318 		return 0;
1319 
1320 	return setup_cs(spi, chip, chip_info);
1321 }
1322 
1323 static void cleanup(struct spi_device *spi)
1324 {
1325 	struct chip_data *chip = spi_get_ctldata(spi);
1326 	struct driver_data *drv_data =
1327 		spi_controller_get_devdata(spi->controller);
1328 
1329 	if (!chip)
1330 		return;
1331 
1332 	if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
1333 	    chip->gpiod_cs)
1334 		gpiod_put(chip->gpiod_cs);
1335 
1336 	kfree(chip);
1337 }
1338 
1339 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1340 	{ "INT33C0", LPSS_LPT_SSP },
1341 	{ "INT33C1", LPSS_LPT_SSP },
1342 	{ "INT3430", LPSS_LPT_SSP },
1343 	{ "INT3431", LPSS_LPT_SSP },
1344 	{ "80860F0E", LPSS_BYT_SSP },
1345 	{ "8086228E", LPSS_BSW_SSP },
1346 	{ },
1347 };
1348 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1349 
1350 /*
1351  * PCI IDs of compound devices that integrate both host controller and private
1352  * integrated DMA engine. Please note these are not used in module
1353  * autoloading and probing in this module but matching the LPSS SSP type.
1354  */
1355 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1356 	/* SPT-LP */
1357 	{ PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1358 	{ PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1359 	/* SPT-H */
1360 	{ PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1361 	{ PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1362 	/* KBL-H */
1363 	{ PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1364 	{ PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1365 	/* BXT A-Step */
1366 	{ PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1367 	{ PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1368 	{ PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1369 	/* BXT B-Step */
1370 	{ PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1371 	{ PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1372 	{ PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1373 	/* GLK */
1374 	{ PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1375 	{ PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1376 	{ PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1377 	/* ICL-LP */
1378 	{ PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP },
1379 	{ PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP },
1380 	{ PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP },
1381 	/* APL */
1382 	{ PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1383 	{ PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1384 	{ PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1385 	/* CNL-LP */
1386 	{ PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1387 	{ PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1388 	{ PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1389 	/* CNL-H */
1390 	{ PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1391 	{ PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1392 	{ PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1393 	{ },
1394 };
1395 
1396 static const struct of_device_id pxa2xx_spi_of_match[] = {
1397 	{ .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1398 	{},
1399 };
1400 MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1401 
1402 #ifdef CONFIG_ACPI
1403 
1404 static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1405 {
1406 	unsigned int devid;
1407 	int port_id = -1;
1408 
1409 	if (adev && adev->pnp.unique_id &&
1410 	    !kstrtouint(adev->pnp.unique_id, 0, &devid))
1411 		port_id = devid;
1412 	return port_id;
1413 }
1414 
1415 #else /* !CONFIG_ACPI */
1416 
1417 static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1418 {
1419 	return -1;
1420 }
1421 
1422 #endif /* CONFIG_ACPI */
1423 
1424 
1425 #ifdef CONFIG_PCI
1426 
1427 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1428 {
1429 	struct device *dev = param;
1430 
1431 	if (dev != chan->device->dev->parent)
1432 		return false;
1433 
1434 	return true;
1435 }
1436 
1437 #endif /* CONFIG_PCI */
1438 
1439 static struct pxa2xx_spi_master *
1440 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1441 {
1442 	struct pxa2xx_spi_master *pdata;
1443 	struct acpi_device *adev;
1444 	struct ssp_device *ssp;
1445 	struct resource *res;
1446 	const struct acpi_device_id *adev_id = NULL;
1447 	const struct pci_device_id *pcidev_id = NULL;
1448 	const struct of_device_id *of_id = NULL;
1449 	enum pxa_ssp_type type;
1450 
1451 	adev = ACPI_COMPANION(&pdev->dev);
1452 
1453 	if (pdev->dev.of_node)
1454 		of_id = of_match_device(pdev->dev.driver->of_match_table,
1455 					&pdev->dev);
1456 	else if (dev_is_pci(pdev->dev.parent))
1457 		pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match,
1458 					 to_pci_dev(pdev->dev.parent));
1459 	else if (adev)
1460 		adev_id = acpi_match_device(pdev->dev.driver->acpi_match_table,
1461 					    &pdev->dev);
1462 	else
1463 		return NULL;
1464 
1465 	if (adev_id)
1466 		type = (enum pxa_ssp_type)adev_id->driver_data;
1467 	else if (pcidev_id)
1468 		type = (enum pxa_ssp_type)pcidev_id->driver_data;
1469 	else if (of_id)
1470 		type = (enum pxa_ssp_type)of_id->data;
1471 	else
1472 		return NULL;
1473 
1474 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1475 	if (!pdata)
1476 		return NULL;
1477 
1478 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1479 	if (!res)
1480 		return NULL;
1481 
1482 	ssp = &pdata->ssp;
1483 
1484 	ssp->phys_base = res->start;
1485 	ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1486 	if (IS_ERR(ssp->mmio_base))
1487 		return NULL;
1488 
1489 #ifdef CONFIG_PCI
1490 	if (pcidev_id) {
1491 		pdata->tx_param = pdev->dev.parent;
1492 		pdata->rx_param = pdev->dev.parent;
1493 		pdata->dma_filter = pxa2xx_spi_idma_filter;
1494 	}
1495 #endif
1496 
1497 	ssp->clk = devm_clk_get(&pdev->dev, NULL);
1498 	ssp->irq = platform_get_irq(pdev, 0);
1499 	ssp->type = type;
1500 	ssp->pdev = pdev;
1501 	ssp->port_id = pxa2xx_spi_get_port_id(adev);
1502 
1503 	pdata->num_chipselect = 1;
1504 	pdata->enable_dma = true;
1505 
1506 	return pdata;
1507 }
1508 
1509 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *master,
1510 				      unsigned int cs)
1511 {
1512 	struct driver_data *drv_data = spi_controller_get_devdata(master);
1513 
1514 	if (has_acpi_companion(&drv_data->pdev->dev)) {
1515 		switch (drv_data->ssp_type) {
1516 		/*
1517 		 * For Atoms the ACPI DeviceSelection used by the Windows
1518 		 * driver starts from 1 instead of 0 so translate it here
1519 		 * to match what Linux expects.
1520 		 */
1521 		case LPSS_BYT_SSP:
1522 		case LPSS_BSW_SSP:
1523 			return cs - 1;
1524 
1525 		default:
1526 			break;
1527 		}
1528 	}
1529 
1530 	return cs;
1531 }
1532 
1533 static int pxa2xx_spi_probe(struct platform_device *pdev)
1534 {
1535 	struct device *dev = &pdev->dev;
1536 	struct pxa2xx_spi_master *platform_info;
1537 	struct spi_controller *master;
1538 	struct driver_data *drv_data;
1539 	struct ssp_device *ssp;
1540 	const struct lpss_config *config;
1541 	int status, count;
1542 	u32 tmp;
1543 
1544 	platform_info = dev_get_platdata(dev);
1545 	if (!platform_info) {
1546 		platform_info = pxa2xx_spi_init_pdata(pdev);
1547 		if (!platform_info) {
1548 			dev_err(&pdev->dev, "missing platform data\n");
1549 			return -ENODEV;
1550 		}
1551 	}
1552 
1553 	ssp = pxa_ssp_request(pdev->id, pdev->name);
1554 	if (!ssp)
1555 		ssp = &platform_info->ssp;
1556 
1557 	if (!ssp->mmio_base) {
1558 		dev_err(&pdev->dev, "failed to get ssp\n");
1559 		return -ENODEV;
1560 	}
1561 
1562 	master = spi_alloc_master(dev, sizeof(struct driver_data));
1563 	if (!master) {
1564 		dev_err(&pdev->dev, "cannot alloc spi_master\n");
1565 		pxa_ssp_free(ssp);
1566 		return -ENOMEM;
1567 	}
1568 	drv_data = spi_controller_get_devdata(master);
1569 	drv_data->master = master;
1570 	drv_data->master_info = platform_info;
1571 	drv_data->pdev = pdev;
1572 	drv_data->ssp = ssp;
1573 
1574 	master->dev.of_node = pdev->dev.of_node;
1575 	/* the spi->mode bits understood by this driver: */
1576 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1577 
1578 	master->bus_num = ssp->port_id;
1579 	master->dma_alignment = DMA_ALIGNMENT;
1580 	master->cleanup = cleanup;
1581 	master->setup = setup;
1582 	master->set_cs = pxa2xx_spi_set_cs;
1583 	master->transfer_one = pxa2xx_spi_transfer_one;
1584 	master->handle_err = pxa2xx_spi_handle_err;
1585 	master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1586 	master->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1587 	master->auto_runtime_pm = true;
1588 	master->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1589 
1590 	drv_data->ssp_type = ssp->type;
1591 
1592 	drv_data->ioaddr = ssp->mmio_base;
1593 	drv_data->ssdr_physical = ssp->phys_base + SSDR;
1594 	if (pxa25x_ssp_comp(drv_data)) {
1595 		switch (drv_data->ssp_type) {
1596 		case QUARK_X1000_SSP:
1597 			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1598 			break;
1599 		default:
1600 			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1601 			break;
1602 		}
1603 
1604 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1605 		drv_data->dma_cr1 = 0;
1606 		drv_data->clear_sr = SSSR_ROR;
1607 		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1608 	} else {
1609 		master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1610 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1611 		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1612 		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1613 		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1614 	}
1615 
1616 	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1617 			drv_data);
1618 	if (status < 0) {
1619 		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1620 		goto out_error_master_alloc;
1621 	}
1622 
1623 	/* Setup DMA if requested */
1624 	if (platform_info->enable_dma) {
1625 		status = pxa2xx_spi_dma_setup(drv_data);
1626 		if (status) {
1627 			dev_dbg(dev, "no DMA channels available, using PIO\n");
1628 			platform_info->enable_dma = false;
1629 		} else {
1630 			master->can_dma = pxa2xx_spi_can_dma;
1631 		}
1632 	}
1633 
1634 	/* Enable SOC clock */
1635 	status = clk_prepare_enable(ssp->clk);
1636 	if (status)
1637 		goto out_error_dma_irq_alloc;
1638 
1639 	master->max_speed_hz = clk_get_rate(ssp->clk);
1640 
1641 	/* Load default SSP configuration */
1642 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1643 	switch (drv_data->ssp_type) {
1644 	case QUARK_X1000_SSP:
1645 		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1646 		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1647 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1648 
1649 		/* using the Motorola SPI protocol and use 8 bit frame */
1650 		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1651 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1652 		break;
1653 	case CE4100_SSP:
1654 		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1655 		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1656 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1657 		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1658 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1659 		break;
1660 	default:
1661 		tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1662 		      SSCR1_TxTresh(TX_THRESH_DFLT);
1663 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1664 		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1665 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1666 		break;
1667 	}
1668 
1669 	if (!pxa25x_ssp_comp(drv_data))
1670 		pxa2xx_spi_write(drv_data, SSTO, 0);
1671 
1672 	if (!is_quark_x1000_ssp(drv_data))
1673 		pxa2xx_spi_write(drv_data, SSPSP, 0);
1674 
1675 	if (is_lpss_ssp(drv_data)) {
1676 		lpss_ssp_setup(drv_data);
1677 		config = lpss_get_config(drv_data);
1678 		if (config->reg_capabilities >= 0) {
1679 			tmp = __lpss_ssp_read_priv(drv_data,
1680 						   config->reg_capabilities);
1681 			tmp &= LPSS_CAPS_CS_EN_MASK;
1682 			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1683 			platform_info->num_chipselect = ffz(tmp);
1684 		} else if (config->cs_num) {
1685 			platform_info->num_chipselect = config->cs_num;
1686 		}
1687 	}
1688 	master->num_chipselect = platform_info->num_chipselect;
1689 
1690 	count = gpiod_count(&pdev->dev, "cs");
1691 	if (count > 0) {
1692 		int i;
1693 
1694 		master->num_chipselect = max_t(int, count,
1695 			master->num_chipselect);
1696 
1697 		drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
1698 			master->num_chipselect, sizeof(struct gpio_desc *),
1699 			GFP_KERNEL);
1700 		if (!drv_data->cs_gpiods) {
1701 			status = -ENOMEM;
1702 			goto out_error_clock_enabled;
1703 		}
1704 
1705 		for (i = 0; i < master->num_chipselect; i++) {
1706 			struct gpio_desc *gpiod;
1707 
1708 			gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1709 			if (IS_ERR(gpiod)) {
1710 				/* Means use native chip select */
1711 				if (PTR_ERR(gpiod) == -ENOENT)
1712 					continue;
1713 
1714 				status = (int)PTR_ERR(gpiod);
1715 				goto out_error_clock_enabled;
1716 			} else {
1717 				drv_data->cs_gpiods[i] = gpiod;
1718 			}
1719 		}
1720 	}
1721 
1722 	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1723 	pm_runtime_use_autosuspend(&pdev->dev);
1724 	pm_runtime_set_active(&pdev->dev);
1725 	pm_runtime_enable(&pdev->dev);
1726 
1727 	/* Register with the SPI framework */
1728 	platform_set_drvdata(pdev, drv_data);
1729 	status = devm_spi_register_controller(&pdev->dev, master);
1730 	if (status != 0) {
1731 		dev_err(&pdev->dev, "problem registering spi master\n");
1732 		goto out_error_clock_enabled;
1733 	}
1734 
1735 	return status;
1736 
1737 out_error_clock_enabled:
1738 	pm_runtime_put_noidle(&pdev->dev);
1739 	pm_runtime_disable(&pdev->dev);
1740 	clk_disable_unprepare(ssp->clk);
1741 
1742 out_error_dma_irq_alloc:
1743 	pxa2xx_spi_dma_release(drv_data);
1744 	free_irq(ssp->irq, drv_data);
1745 
1746 out_error_master_alloc:
1747 	spi_controller_put(master);
1748 	pxa_ssp_free(ssp);
1749 	return status;
1750 }
1751 
1752 static int pxa2xx_spi_remove(struct platform_device *pdev)
1753 {
1754 	struct driver_data *drv_data = platform_get_drvdata(pdev);
1755 	struct ssp_device *ssp;
1756 
1757 	if (!drv_data)
1758 		return 0;
1759 	ssp = drv_data->ssp;
1760 
1761 	pm_runtime_get_sync(&pdev->dev);
1762 
1763 	/* Disable the SSP at the peripheral and SOC level */
1764 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1765 	clk_disable_unprepare(ssp->clk);
1766 
1767 	/* Release DMA */
1768 	if (drv_data->master_info->enable_dma)
1769 		pxa2xx_spi_dma_release(drv_data);
1770 
1771 	pm_runtime_put_noidle(&pdev->dev);
1772 	pm_runtime_disable(&pdev->dev);
1773 
1774 	/* Release IRQ */
1775 	free_irq(ssp->irq, drv_data);
1776 
1777 	/* Release SSP */
1778 	pxa_ssp_free(ssp);
1779 
1780 	return 0;
1781 }
1782 
1783 #ifdef CONFIG_PM_SLEEP
1784 static int pxa2xx_spi_suspend(struct device *dev)
1785 {
1786 	struct driver_data *drv_data = dev_get_drvdata(dev);
1787 	struct ssp_device *ssp = drv_data->ssp;
1788 	int status;
1789 
1790 	status = spi_controller_suspend(drv_data->master);
1791 	if (status != 0)
1792 		return status;
1793 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1794 
1795 	if (!pm_runtime_suspended(dev))
1796 		clk_disable_unprepare(ssp->clk);
1797 
1798 	return 0;
1799 }
1800 
1801 static int pxa2xx_spi_resume(struct device *dev)
1802 {
1803 	struct driver_data *drv_data = dev_get_drvdata(dev);
1804 	struct ssp_device *ssp = drv_data->ssp;
1805 	int status;
1806 
1807 	/* Enable the SSP clock */
1808 	if (!pm_runtime_suspended(dev)) {
1809 		status = clk_prepare_enable(ssp->clk);
1810 		if (status)
1811 			return status;
1812 	}
1813 
1814 	/* Restore LPSS private register bits */
1815 	if (is_lpss_ssp(drv_data))
1816 		lpss_ssp_setup(drv_data);
1817 
1818 	/* Start the queue running */
1819 	return spi_controller_resume(drv_data->master);
1820 }
1821 #endif
1822 
1823 #ifdef CONFIG_PM
1824 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1825 {
1826 	struct driver_data *drv_data = dev_get_drvdata(dev);
1827 
1828 	clk_disable_unprepare(drv_data->ssp->clk);
1829 	return 0;
1830 }
1831 
1832 static int pxa2xx_spi_runtime_resume(struct device *dev)
1833 {
1834 	struct driver_data *drv_data = dev_get_drvdata(dev);
1835 	int status;
1836 
1837 	status = clk_prepare_enable(drv_data->ssp->clk);
1838 	return status;
1839 }
1840 #endif
1841 
1842 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1843 	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1844 	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1845 			   pxa2xx_spi_runtime_resume, NULL)
1846 };
1847 
1848 static struct platform_driver driver = {
1849 	.driver = {
1850 		.name	= "pxa2xx-spi",
1851 		.pm	= &pxa2xx_spi_pm_ops,
1852 		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1853 		.of_match_table = of_match_ptr(pxa2xx_spi_of_match),
1854 	},
1855 	.probe = pxa2xx_spi_probe,
1856 	.remove = pxa2xx_spi_remove,
1857 };
1858 
1859 static int __init pxa2xx_spi_init(void)
1860 {
1861 	return platform_driver_register(&driver);
1862 }
1863 subsys_initcall(pxa2xx_spi_init);
1864 
1865 static void __exit pxa2xx_spi_exit(void)
1866 {
1867 	platform_driver_unregister(&driver);
1868 }
1869 module_exit(pxa2xx_spi_exit);
1870