1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs 4 * Copyright (C) 2013, 2021 Intel Corporation 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/bitops.h> 9 #include <linux/clk.h> 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/dmaengine.h> 13 #include <linux/err.h> 14 #include <linux/errno.h> 15 #include <linux/gpio/consumer.h> 16 #include <linux/gpio.h> 17 #include <linux/init.h> 18 #include <linux/interrupt.h> 19 #include <linux/ioport.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/of.h> 24 #include <linux/pci.h> 25 #include <linux/platform_device.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/property.h> 28 #include <linux/slab.h> 29 30 #include <linux/spi/pxa2xx_spi.h> 31 #include <linux/spi/spi.h> 32 33 #include "spi-pxa2xx.h" 34 35 MODULE_AUTHOR("Stephen Street"); 36 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller"); 37 MODULE_LICENSE("GPL"); 38 MODULE_ALIAS("platform:pxa2xx-spi"); 39 40 #define TIMOUT_DFLT 1000 41 42 /* 43 * For testing SSCR1 changes that require SSP restart, basically 44 * everything except the service and interrupt enables, the PXA270 developer 45 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this 46 * list, but the PXA255 developer manual says all bits without really meaning 47 * the service and interrupt enables. 48 */ 49 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \ 50 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \ 51 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \ 52 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \ 53 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \ 54 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) 55 56 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \ 57 | QUARK_X1000_SSCR1_EFWR \ 58 | QUARK_X1000_SSCR1_RFT \ 59 | QUARK_X1000_SSCR1_TFT \ 60 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) 61 62 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \ 63 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \ 64 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \ 65 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \ 66 | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \ 67 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) 68 69 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24) 70 #define LPSS_CS_CONTROL_SW_MODE BIT(0) 71 #define LPSS_CS_CONTROL_CS_HIGH BIT(1) 72 #define LPSS_CAPS_CS_EN_SHIFT 9 73 #define LPSS_CAPS_CS_EN_MASK (0xf << LPSS_CAPS_CS_EN_SHIFT) 74 75 #define LPSS_PRIV_CLOCK_GATE 0x38 76 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3 77 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3 78 79 struct lpss_config { 80 /* LPSS offset from drv_data->ioaddr */ 81 unsigned offset; 82 /* Register offsets from drv_data->lpss_base or -1 */ 83 int reg_general; 84 int reg_ssp; 85 int reg_cs_ctrl; 86 int reg_capabilities; 87 /* FIFO thresholds */ 88 u32 rx_threshold; 89 u32 tx_threshold_lo; 90 u32 tx_threshold_hi; 91 /* Chip select control */ 92 unsigned cs_sel_shift; 93 unsigned cs_sel_mask; 94 unsigned cs_num; 95 /* Quirks */ 96 unsigned cs_clk_stays_gated : 1; 97 }; 98 99 /* Keep these sorted with enum pxa_ssp_type */ 100 static const struct lpss_config lpss_platforms[] = { 101 { /* LPSS_LPT_SSP */ 102 .offset = 0x800, 103 .reg_general = 0x08, 104 .reg_ssp = 0x0c, 105 .reg_cs_ctrl = 0x18, 106 .reg_capabilities = -1, 107 .rx_threshold = 64, 108 .tx_threshold_lo = 160, 109 .tx_threshold_hi = 224, 110 }, 111 { /* LPSS_BYT_SSP */ 112 .offset = 0x400, 113 .reg_general = 0x08, 114 .reg_ssp = 0x0c, 115 .reg_cs_ctrl = 0x18, 116 .reg_capabilities = -1, 117 .rx_threshold = 64, 118 .tx_threshold_lo = 160, 119 .tx_threshold_hi = 224, 120 }, 121 { /* LPSS_BSW_SSP */ 122 .offset = 0x400, 123 .reg_general = 0x08, 124 .reg_ssp = 0x0c, 125 .reg_cs_ctrl = 0x18, 126 .reg_capabilities = -1, 127 .rx_threshold = 64, 128 .tx_threshold_lo = 160, 129 .tx_threshold_hi = 224, 130 .cs_sel_shift = 2, 131 .cs_sel_mask = 1 << 2, 132 .cs_num = 2, 133 }, 134 { /* LPSS_SPT_SSP */ 135 .offset = 0x200, 136 .reg_general = -1, 137 .reg_ssp = 0x20, 138 .reg_cs_ctrl = 0x24, 139 .reg_capabilities = -1, 140 .rx_threshold = 1, 141 .tx_threshold_lo = 32, 142 .tx_threshold_hi = 56, 143 }, 144 { /* LPSS_BXT_SSP */ 145 .offset = 0x200, 146 .reg_general = -1, 147 .reg_ssp = 0x20, 148 .reg_cs_ctrl = 0x24, 149 .reg_capabilities = 0xfc, 150 .rx_threshold = 1, 151 .tx_threshold_lo = 16, 152 .tx_threshold_hi = 48, 153 .cs_sel_shift = 8, 154 .cs_sel_mask = 3 << 8, 155 .cs_clk_stays_gated = true, 156 }, 157 { /* LPSS_CNL_SSP */ 158 .offset = 0x200, 159 .reg_general = -1, 160 .reg_ssp = 0x20, 161 .reg_cs_ctrl = 0x24, 162 .reg_capabilities = 0xfc, 163 .rx_threshold = 1, 164 .tx_threshold_lo = 32, 165 .tx_threshold_hi = 56, 166 .cs_sel_shift = 8, 167 .cs_sel_mask = 3 << 8, 168 .cs_clk_stays_gated = true, 169 }, 170 }; 171 172 static inline const struct lpss_config 173 *lpss_get_config(const struct driver_data *drv_data) 174 { 175 return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP]; 176 } 177 178 static bool is_lpss_ssp(const struct driver_data *drv_data) 179 { 180 switch (drv_data->ssp_type) { 181 case LPSS_LPT_SSP: 182 case LPSS_BYT_SSP: 183 case LPSS_BSW_SSP: 184 case LPSS_SPT_SSP: 185 case LPSS_BXT_SSP: 186 case LPSS_CNL_SSP: 187 return true; 188 default: 189 return false; 190 } 191 } 192 193 static bool is_quark_x1000_ssp(const struct driver_data *drv_data) 194 { 195 return drv_data->ssp_type == QUARK_X1000_SSP; 196 } 197 198 static bool is_mmp2_ssp(const struct driver_data *drv_data) 199 { 200 return drv_data->ssp_type == MMP2_SSP; 201 } 202 203 static bool is_mrfld_ssp(const struct driver_data *drv_data) 204 { 205 return drv_data->ssp_type == MRFLD_SSP; 206 } 207 208 static void pxa2xx_spi_update(const struct driver_data *drv_data, u32 reg, u32 mask, u32 value) 209 { 210 if ((pxa2xx_spi_read(drv_data, reg) & mask) != value) 211 pxa2xx_spi_write(drv_data, reg, value & mask); 212 } 213 214 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data) 215 { 216 switch (drv_data->ssp_type) { 217 case QUARK_X1000_SSP: 218 return QUARK_X1000_SSCR1_CHANGE_MASK; 219 case CE4100_SSP: 220 return CE4100_SSCR1_CHANGE_MASK; 221 default: 222 return SSCR1_CHANGE_MASK; 223 } 224 } 225 226 static u32 227 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data) 228 { 229 switch (drv_data->ssp_type) { 230 case QUARK_X1000_SSP: 231 return RX_THRESH_QUARK_X1000_DFLT; 232 case CE4100_SSP: 233 return RX_THRESH_CE4100_DFLT; 234 default: 235 return RX_THRESH_DFLT; 236 } 237 } 238 239 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data) 240 { 241 u32 mask; 242 243 switch (drv_data->ssp_type) { 244 case QUARK_X1000_SSP: 245 mask = QUARK_X1000_SSSR_TFL_MASK; 246 break; 247 case CE4100_SSP: 248 mask = CE4100_SSSR_TFL_MASK; 249 break; 250 default: 251 mask = SSSR_TFL_MASK; 252 break; 253 } 254 255 return read_SSSR_bits(drv_data, mask) == mask; 256 } 257 258 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data, 259 u32 *sccr1_reg) 260 { 261 u32 mask; 262 263 switch (drv_data->ssp_type) { 264 case QUARK_X1000_SSP: 265 mask = QUARK_X1000_SSCR1_RFT; 266 break; 267 case CE4100_SSP: 268 mask = CE4100_SSCR1_RFT; 269 break; 270 default: 271 mask = SSCR1_RFT; 272 break; 273 } 274 *sccr1_reg &= ~mask; 275 } 276 277 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data, 278 u32 *sccr1_reg, u32 threshold) 279 { 280 switch (drv_data->ssp_type) { 281 case QUARK_X1000_SSP: 282 *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold); 283 break; 284 case CE4100_SSP: 285 *sccr1_reg |= CE4100_SSCR1_RxTresh(threshold); 286 break; 287 default: 288 *sccr1_reg |= SSCR1_RxTresh(threshold); 289 break; 290 } 291 } 292 293 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data, 294 u32 clk_div, u8 bits) 295 { 296 switch (drv_data->ssp_type) { 297 case QUARK_X1000_SSP: 298 return clk_div 299 | QUARK_X1000_SSCR0_Motorola 300 | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits); 301 default: 302 return clk_div 303 | SSCR0_Motorola 304 | SSCR0_DataSize(bits > 16 ? bits - 16 : bits) 305 | (bits > 16 ? SSCR0_EDSS : 0); 306 } 307 } 308 309 /* 310 * Read and write LPSS SSP private registers. Caller must first check that 311 * is_lpss_ssp() returns true before these can be called. 312 */ 313 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset) 314 { 315 WARN_ON(!drv_data->lpss_base); 316 return readl(drv_data->lpss_base + offset); 317 } 318 319 static void __lpss_ssp_write_priv(struct driver_data *drv_data, 320 unsigned offset, u32 value) 321 { 322 WARN_ON(!drv_data->lpss_base); 323 writel(value, drv_data->lpss_base + offset); 324 } 325 326 /* 327 * lpss_ssp_setup - perform LPSS SSP specific setup 328 * @drv_data: pointer to the driver private data 329 * 330 * Perform LPSS SSP specific setup. This function must be called first if 331 * one is going to use LPSS SSP private registers. 332 */ 333 static void lpss_ssp_setup(struct driver_data *drv_data) 334 { 335 const struct lpss_config *config; 336 u32 value; 337 338 config = lpss_get_config(drv_data); 339 drv_data->lpss_base = drv_data->ssp->mmio_base + config->offset; 340 341 /* Enable software chip select control */ 342 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); 343 value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH); 344 value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH; 345 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value); 346 347 /* Enable multiblock DMA transfers */ 348 if (drv_data->controller_info->enable_dma) { 349 __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1); 350 351 if (config->reg_general >= 0) { 352 value = __lpss_ssp_read_priv(drv_data, 353 config->reg_general); 354 value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE; 355 __lpss_ssp_write_priv(drv_data, 356 config->reg_general, value); 357 } 358 } 359 } 360 361 static void lpss_ssp_select_cs(struct spi_device *spi, 362 const struct lpss_config *config) 363 { 364 struct driver_data *drv_data = 365 spi_controller_get_devdata(spi->controller); 366 u32 value, cs; 367 368 if (!config->cs_sel_mask) 369 return; 370 371 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); 372 373 cs = spi->chip_select; 374 cs <<= config->cs_sel_shift; 375 if (cs != (value & config->cs_sel_mask)) { 376 /* 377 * When switching another chip select output active the 378 * output must be selected first and wait 2 ssp_clk cycles 379 * before changing state to active. Otherwise a short 380 * glitch will occur on the previous chip select since 381 * output select is latched but state control is not. 382 */ 383 value &= ~config->cs_sel_mask; 384 value |= cs; 385 __lpss_ssp_write_priv(drv_data, 386 config->reg_cs_ctrl, value); 387 ndelay(1000000000 / 388 (drv_data->controller->max_speed_hz / 2)); 389 } 390 } 391 392 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable) 393 { 394 struct driver_data *drv_data = 395 spi_controller_get_devdata(spi->controller); 396 const struct lpss_config *config; 397 u32 value; 398 399 config = lpss_get_config(drv_data); 400 401 if (enable) 402 lpss_ssp_select_cs(spi, config); 403 404 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); 405 if (enable) 406 value &= ~LPSS_CS_CONTROL_CS_HIGH; 407 else 408 value |= LPSS_CS_CONTROL_CS_HIGH; 409 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value); 410 if (config->cs_clk_stays_gated) { 411 u32 clkgate; 412 413 /* 414 * Changing CS alone when dynamic clock gating is on won't 415 * actually flip CS at that time. This ruins SPI transfers 416 * that specify delays, or have no data. Toggle the clock mode 417 * to force on briefly to poke the CS pin to move. 418 */ 419 clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE); 420 value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) | 421 LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON; 422 423 __lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value); 424 __lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate); 425 } 426 } 427 428 static void cs_assert(struct spi_device *spi) 429 { 430 struct chip_data *chip = spi_get_ctldata(spi); 431 struct driver_data *drv_data = 432 spi_controller_get_devdata(spi->controller); 433 434 if (drv_data->ssp_type == CE4100_SSP) { 435 pxa2xx_spi_write(drv_data, SSSR, spi->chip_select); 436 return; 437 } 438 439 if (chip->cs_control) { 440 chip->cs_control(PXA2XX_CS_ASSERT); 441 return; 442 } 443 444 if (is_lpss_ssp(drv_data)) 445 lpss_ssp_cs_control(spi, true); 446 } 447 448 static void cs_deassert(struct spi_device *spi) 449 { 450 struct chip_data *chip = spi_get_ctldata(spi); 451 struct driver_data *drv_data = 452 spi_controller_get_devdata(spi->controller); 453 unsigned long timeout; 454 455 if (drv_data->ssp_type == CE4100_SSP) 456 return; 457 458 /* Wait until SSP becomes idle before deasserting the CS */ 459 timeout = jiffies + msecs_to_jiffies(10); 460 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY && 461 !time_after(jiffies, timeout)) 462 cpu_relax(); 463 464 if (chip->cs_control) { 465 chip->cs_control(PXA2XX_CS_DEASSERT); 466 return; 467 } 468 469 if (is_lpss_ssp(drv_data)) 470 lpss_ssp_cs_control(spi, false); 471 } 472 473 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level) 474 { 475 if (level) 476 cs_deassert(spi); 477 else 478 cs_assert(spi); 479 } 480 481 int pxa2xx_spi_flush(struct driver_data *drv_data) 482 { 483 unsigned long limit = loops_per_jiffy << 1; 484 485 do { 486 while (read_SSSR_bits(drv_data, SSSR_RNE)) 487 pxa2xx_spi_read(drv_data, SSDR); 488 } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit); 489 write_SSSR_CS(drv_data, SSSR_ROR); 490 491 return limit; 492 } 493 494 static void pxa2xx_spi_off(struct driver_data *drv_data) 495 { 496 /* On MMP, disabling SSE seems to corrupt the Rx FIFO */ 497 if (is_mmp2_ssp(drv_data)) 498 return; 499 500 pxa_ssp_disable(drv_data->ssp); 501 } 502 503 static int null_writer(struct driver_data *drv_data) 504 { 505 u8 n_bytes = drv_data->n_bytes; 506 507 if (pxa2xx_spi_txfifo_full(drv_data) 508 || (drv_data->tx == drv_data->tx_end)) 509 return 0; 510 511 pxa2xx_spi_write(drv_data, SSDR, 0); 512 drv_data->tx += n_bytes; 513 514 return 1; 515 } 516 517 static int null_reader(struct driver_data *drv_data) 518 { 519 u8 n_bytes = drv_data->n_bytes; 520 521 while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) { 522 pxa2xx_spi_read(drv_data, SSDR); 523 drv_data->rx += n_bytes; 524 } 525 526 return drv_data->rx == drv_data->rx_end; 527 } 528 529 static int u8_writer(struct driver_data *drv_data) 530 { 531 if (pxa2xx_spi_txfifo_full(drv_data) 532 || (drv_data->tx == drv_data->tx_end)) 533 return 0; 534 535 pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx)); 536 ++drv_data->tx; 537 538 return 1; 539 } 540 541 static int u8_reader(struct driver_data *drv_data) 542 { 543 while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) { 544 *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); 545 ++drv_data->rx; 546 } 547 548 return drv_data->rx == drv_data->rx_end; 549 } 550 551 static int u16_writer(struct driver_data *drv_data) 552 { 553 if (pxa2xx_spi_txfifo_full(drv_data) 554 || (drv_data->tx == drv_data->tx_end)) 555 return 0; 556 557 pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx)); 558 drv_data->tx += 2; 559 560 return 1; 561 } 562 563 static int u16_reader(struct driver_data *drv_data) 564 { 565 while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) { 566 *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); 567 drv_data->rx += 2; 568 } 569 570 return drv_data->rx == drv_data->rx_end; 571 } 572 573 static int u32_writer(struct driver_data *drv_data) 574 { 575 if (pxa2xx_spi_txfifo_full(drv_data) 576 || (drv_data->tx == drv_data->tx_end)) 577 return 0; 578 579 pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx)); 580 drv_data->tx += 4; 581 582 return 1; 583 } 584 585 static int u32_reader(struct driver_data *drv_data) 586 { 587 while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) { 588 *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); 589 drv_data->rx += 4; 590 } 591 592 return drv_data->rx == drv_data->rx_end; 593 } 594 595 static void reset_sccr1(struct driver_data *drv_data) 596 { 597 u32 mask = drv_data->int_cr1 | drv_data->dma_cr1, threshold; 598 struct chip_data *chip; 599 600 if (drv_data->controller->cur_msg) { 601 chip = spi_get_ctldata(drv_data->controller->cur_msg->spi); 602 threshold = chip->threshold; 603 } else { 604 threshold = 0; 605 } 606 607 switch (drv_data->ssp_type) { 608 case QUARK_X1000_SSP: 609 mask |= QUARK_X1000_SSCR1_RFT; 610 break; 611 case CE4100_SSP: 612 mask |= CE4100_SSCR1_RFT; 613 break; 614 default: 615 mask |= SSCR1_RFT; 616 break; 617 } 618 619 pxa2xx_spi_update(drv_data, SSCR1, mask, threshold); 620 } 621 622 static void int_stop_and_reset(struct driver_data *drv_data) 623 { 624 /* Clear and disable interrupts */ 625 write_SSSR_CS(drv_data, drv_data->clear_sr); 626 reset_sccr1(drv_data); 627 if (pxa25x_ssp_comp(drv_data)) 628 return; 629 630 pxa2xx_spi_write(drv_data, SSTO, 0); 631 } 632 633 static void int_error_stop(struct driver_data *drv_data, const char *msg, int err) 634 { 635 int_stop_and_reset(drv_data); 636 pxa2xx_spi_flush(drv_data); 637 pxa2xx_spi_off(drv_data); 638 639 dev_err(drv_data->ssp->dev, "%s\n", msg); 640 641 drv_data->controller->cur_msg->status = err; 642 spi_finalize_current_transfer(drv_data->controller); 643 } 644 645 static void int_transfer_complete(struct driver_data *drv_data) 646 { 647 int_stop_and_reset(drv_data); 648 649 spi_finalize_current_transfer(drv_data->controller); 650 } 651 652 static irqreturn_t interrupt_transfer(struct driver_data *drv_data) 653 { 654 u32 irq_status; 655 656 irq_status = read_SSSR_bits(drv_data, drv_data->mask_sr); 657 if (!(pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE)) 658 irq_status &= ~SSSR_TFS; 659 660 if (irq_status & SSSR_ROR) { 661 int_error_stop(drv_data, "interrupt_transfer: FIFO overrun", -EIO); 662 return IRQ_HANDLED; 663 } 664 665 if (irq_status & SSSR_TUR) { 666 int_error_stop(drv_data, "interrupt_transfer: FIFO underrun", -EIO); 667 return IRQ_HANDLED; 668 } 669 670 if (irq_status & SSSR_TINT) { 671 pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT); 672 if (drv_data->read(drv_data)) { 673 int_transfer_complete(drv_data); 674 return IRQ_HANDLED; 675 } 676 } 677 678 /* Drain Rx FIFO, Fill Tx FIFO and prevent overruns */ 679 do { 680 if (drv_data->read(drv_data)) { 681 int_transfer_complete(drv_data); 682 return IRQ_HANDLED; 683 } 684 } while (drv_data->write(drv_data)); 685 686 if (drv_data->read(drv_data)) { 687 int_transfer_complete(drv_data); 688 return IRQ_HANDLED; 689 } 690 691 if (drv_data->tx == drv_data->tx_end) { 692 u32 bytes_left; 693 u32 sccr1_reg; 694 695 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1); 696 sccr1_reg &= ~SSCR1_TIE; 697 698 /* 699 * PXA25x_SSP has no timeout, set up Rx threshold for 700 * the remaining Rx bytes. 701 */ 702 if (pxa25x_ssp_comp(drv_data)) { 703 u32 rx_thre; 704 705 pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg); 706 707 bytes_left = drv_data->rx_end - drv_data->rx; 708 switch (drv_data->n_bytes) { 709 case 4: 710 bytes_left >>= 2; 711 break; 712 case 2: 713 bytes_left >>= 1; 714 break; 715 } 716 717 rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data); 718 if (rx_thre > bytes_left) 719 rx_thre = bytes_left; 720 721 pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre); 722 } 723 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); 724 } 725 726 /* We did something */ 727 return IRQ_HANDLED; 728 } 729 730 static void handle_bad_msg(struct driver_data *drv_data) 731 { 732 int_stop_and_reset(drv_data); 733 pxa2xx_spi_off(drv_data); 734 735 dev_err(drv_data->ssp->dev, "bad message state in interrupt handler\n"); 736 } 737 738 static irqreturn_t ssp_int(int irq, void *dev_id) 739 { 740 struct driver_data *drv_data = dev_id; 741 u32 sccr1_reg; 742 u32 mask = drv_data->mask_sr; 743 u32 status; 744 745 /* 746 * The IRQ might be shared with other peripherals so we must first 747 * check that are we RPM suspended or not. If we are we assume that 748 * the IRQ was not for us (we shouldn't be RPM suspended when the 749 * interrupt is enabled). 750 */ 751 if (pm_runtime_suspended(drv_data->ssp->dev)) 752 return IRQ_NONE; 753 754 /* 755 * If the device is not yet in RPM suspended state and we get an 756 * interrupt that is meant for another device, check if status bits 757 * are all set to one. That means that the device is already 758 * powered off. 759 */ 760 status = pxa2xx_spi_read(drv_data, SSSR); 761 if (status == ~0) 762 return IRQ_NONE; 763 764 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1); 765 766 /* Ignore possible writes if we don't need to write */ 767 if (!(sccr1_reg & SSCR1_TIE)) 768 mask &= ~SSSR_TFS; 769 770 /* Ignore RX timeout interrupt if it is disabled */ 771 if (!(sccr1_reg & SSCR1_TINTE)) 772 mask &= ~SSSR_TINT; 773 774 if (!(status & mask)) 775 return IRQ_NONE; 776 777 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1); 778 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); 779 780 if (!drv_data->controller->cur_msg) { 781 handle_bad_msg(drv_data); 782 /* Never fail */ 783 return IRQ_HANDLED; 784 } 785 786 return drv_data->transfer_handler(drv_data); 787 } 788 789 /* 790 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply 791 * input frequency by fractions of 2^24. It also has a divider by 5. 792 * 793 * There are formulas to get baud rate value for given input frequency and 794 * divider parameters, such as DDS_CLK_RATE and SCR: 795 * 796 * Fsys = 200MHz 797 * 798 * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1) 799 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2) 800 * 801 * DDS_CLK_RATE either 2^n or 2^n / 5. 802 * SCR is in range 0 .. 255 803 * 804 * Divisor = 5^i * 2^j * 2 * k 805 * i = [0, 1] i = 1 iff j = 0 or j > 3 806 * j = [0, 23] j = 0 iff i = 1 807 * k = [1, 256] 808 * Special case: j = 0, i = 1: Divisor = 2 / 5 809 * 810 * Accordingly to the specification the recommended values for DDS_CLK_RATE 811 * are: 812 * Case 1: 2^n, n = [0, 23] 813 * Case 2: 2^24 * 2 / 5 (0x666666) 814 * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333) 815 * 816 * In all cases the lowest possible value is better. 817 * 818 * The function calculates parameters for all cases and chooses the one closest 819 * to the asked baud rate. 820 */ 821 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds) 822 { 823 unsigned long xtal = 200000000; 824 unsigned long fref = xtal / 2; /* mandatory division by 2, 825 see (2) */ 826 /* case 3 */ 827 unsigned long fref1 = fref / 2; /* case 1 */ 828 unsigned long fref2 = fref * 2 / 5; /* case 2 */ 829 unsigned long scale; 830 unsigned long q, q1, q2; 831 long r, r1, r2; 832 u32 mul; 833 834 /* Case 1 */ 835 836 /* Set initial value for DDS_CLK_RATE */ 837 mul = (1 << 24) >> 1; 838 839 /* Calculate initial quot */ 840 q1 = DIV_ROUND_UP(fref1, rate); 841 842 /* Scale q1 if it's too big */ 843 if (q1 > 256) { 844 /* Scale q1 to range [1, 512] */ 845 scale = fls_long(q1 - 1); 846 if (scale > 9) { 847 q1 >>= scale - 9; 848 mul >>= scale - 9; 849 } 850 851 /* Round the result if we have a remainder */ 852 q1 += q1 & 1; 853 } 854 855 /* Decrease DDS_CLK_RATE as much as we can without loss in precision */ 856 scale = __ffs(q1); 857 q1 >>= scale; 858 mul >>= scale; 859 860 /* Get the remainder */ 861 r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate); 862 863 /* Case 2 */ 864 865 q2 = DIV_ROUND_UP(fref2, rate); 866 r2 = abs(fref2 / q2 - rate); 867 868 /* 869 * Choose the best between two: less remainder we have the better. We 870 * can't go case 2 if q2 is greater than 256 since SCR register can 871 * hold only values 0 .. 255. 872 */ 873 if (r2 >= r1 || q2 > 256) { 874 /* case 1 is better */ 875 r = r1; 876 q = q1; 877 } else { 878 /* case 2 is better */ 879 r = r2; 880 q = q2; 881 mul = (1 << 24) * 2 / 5; 882 } 883 884 /* Check case 3 only if the divisor is big enough */ 885 if (fref / rate >= 80) { 886 u64 fssp; 887 u32 m; 888 889 /* Calculate initial quot */ 890 q1 = DIV_ROUND_UP(fref, rate); 891 m = (1 << 24) / q1; 892 893 /* Get the remainder */ 894 fssp = (u64)fref * m; 895 do_div(fssp, 1 << 24); 896 r1 = abs(fssp - rate); 897 898 /* Choose this one if it suits better */ 899 if (r1 < r) { 900 /* case 3 is better */ 901 q = 1; 902 mul = m; 903 } 904 } 905 906 *dds = mul; 907 return q - 1; 908 } 909 910 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate) 911 { 912 unsigned long ssp_clk = drv_data->controller->max_speed_hz; 913 const struct ssp_device *ssp = drv_data->ssp; 914 915 rate = min_t(int, ssp_clk, rate); 916 917 /* 918 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding 919 * that the SSP transmission rate can be greater than the device rate. 920 */ 921 if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP) 922 return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff; 923 else 924 return (DIV_ROUND_UP(ssp_clk, rate) - 1) & 0xfff; 925 } 926 927 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data, 928 int rate) 929 { 930 struct chip_data *chip = 931 spi_get_ctldata(drv_data->controller->cur_msg->spi); 932 unsigned int clk_div; 933 934 switch (drv_data->ssp_type) { 935 case QUARK_X1000_SSP: 936 clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate); 937 break; 938 default: 939 clk_div = ssp_get_clk_div(drv_data, rate); 940 break; 941 } 942 return clk_div << 8; 943 } 944 945 static bool pxa2xx_spi_can_dma(struct spi_controller *controller, 946 struct spi_device *spi, 947 struct spi_transfer *xfer) 948 { 949 struct chip_data *chip = spi_get_ctldata(spi); 950 951 return chip->enable_dma && 952 xfer->len <= MAX_DMA_LEN && 953 xfer->len >= chip->dma_burst_size; 954 } 955 956 static int pxa2xx_spi_transfer_one(struct spi_controller *controller, 957 struct spi_device *spi, 958 struct spi_transfer *transfer) 959 { 960 struct driver_data *drv_data = spi_controller_get_devdata(controller); 961 struct spi_message *message = controller->cur_msg; 962 struct chip_data *chip = spi_get_ctldata(spi); 963 u32 dma_thresh = chip->dma_threshold; 964 u32 dma_burst = chip->dma_burst_size; 965 u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data); 966 u32 clk_div; 967 u8 bits; 968 u32 speed; 969 u32 cr0; 970 u32 cr1; 971 int err; 972 int dma_mapped; 973 974 /* Check if we can DMA this transfer */ 975 if (transfer->len > MAX_DMA_LEN && chip->enable_dma) { 976 977 /* Reject already-mapped transfers; PIO won't always work */ 978 if (message->is_dma_mapped 979 || transfer->rx_dma || transfer->tx_dma) { 980 dev_err(&spi->dev, 981 "Mapped transfer length of %u is greater than %d\n", 982 transfer->len, MAX_DMA_LEN); 983 return -EINVAL; 984 } 985 986 /* Warn ... we force this to PIO mode */ 987 dev_warn_ratelimited(&spi->dev, 988 "DMA disabled for transfer length %u greater than %d\n", 989 transfer->len, MAX_DMA_LEN); 990 } 991 992 /* Setup the transfer state based on the type of transfer */ 993 if (pxa2xx_spi_flush(drv_data) == 0) { 994 dev_err(&spi->dev, "Flush failed\n"); 995 return -EIO; 996 } 997 drv_data->n_bytes = chip->n_bytes; 998 drv_data->tx = (void *)transfer->tx_buf; 999 drv_data->tx_end = drv_data->tx + transfer->len; 1000 drv_data->rx = transfer->rx_buf; 1001 drv_data->rx_end = drv_data->rx + transfer->len; 1002 drv_data->write = drv_data->tx ? chip->write : null_writer; 1003 drv_data->read = drv_data->rx ? chip->read : null_reader; 1004 1005 /* Change speed and bit per word on a per transfer */ 1006 bits = transfer->bits_per_word; 1007 speed = transfer->speed_hz; 1008 1009 clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed); 1010 1011 if (bits <= 8) { 1012 drv_data->n_bytes = 1; 1013 drv_data->read = drv_data->read != null_reader ? 1014 u8_reader : null_reader; 1015 drv_data->write = drv_data->write != null_writer ? 1016 u8_writer : null_writer; 1017 } else if (bits <= 16) { 1018 drv_data->n_bytes = 2; 1019 drv_data->read = drv_data->read != null_reader ? 1020 u16_reader : null_reader; 1021 drv_data->write = drv_data->write != null_writer ? 1022 u16_writer : null_writer; 1023 } else if (bits <= 32) { 1024 drv_data->n_bytes = 4; 1025 drv_data->read = drv_data->read != null_reader ? 1026 u32_reader : null_reader; 1027 drv_data->write = drv_data->write != null_writer ? 1028 u32_writer : null_writer; 1029 } 1030 /* 1031 * If bits per word is changed in DMA mode, then must check 1032 * the thresholds and burst also. 1033 */ 1034 if (chip->enable_dma) { 1035 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, 1036 spi, 1037 bits, &dma_burst, 1038 &dma_thresh)) 1039 dev_warn_ratelimited(&spi->dev, 1040 "DMA burst size reduced to match bits_per_word\n"); 1041 } 1042 1043 dma_mapped = controller->can_dma && 1044 controller->can_dma(controller, spi, transfer) && 1045 controller->cur_msg_mapped; 1046 if (dma_mapped) { 1047 1048 /* Ensure we have the correct interrupt handler */ 1049 drv_data->transfer_handler = pxa2xx_spi_dma_transfer; 1050 1051 err = pxa2xx_spi_dma_prepare(drv_data, transfer); 1052 if (err) 1053 return err; 1054 1055 /* Clear status and start DMA engine */ 1056 cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1; 1057 pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr); 1058 1059 pxa2xx_spi_dma_start(drv_data); 1060 } else { 1061 /* Ensure we have the correct interrupt handler */ 1062 drv_data->transfer_handler = interrupt_transfer; 1063 1064 /* Clear status */ 1065 cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1; 1066 write_SSSR_CS(drv_data, drv_data->clear_sr); 1067 } 1068 1069 /* NOTE: PXA25x_SSP _could_ use external clocking ... */ 1070 cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits); 1071 if (!pxa25x_ssp_comp(drv_data)) 1072 dev_dbg(&spi->dev, "%u Hz actual, %s\n", 1073 controller->max_speed_hz 1074 / (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)), 1075 dma_mapped ? "DMA" : "PIO"); 1076 else 1077 dev_dbg(&spi->dev, "%u Hz actual, %s\n", 1078 controller->max_speed_hz / 2 1079 / (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)), 1080 dma_mapped ? "DMA" : "PIO"); 1081 1082 if (is_lpss_ssp(drv_data)) { 1083 pxa2xx_spi_update(drv_data, SSIRF, GENMASK(7, 0), chip->lpss_rx_threshold); 1084 pxa2xx_spi_update(drv_data, SSITF, GENMASK(15, 0), chip->lpss_tx_threshold); 1085 } 1086 1087 if (is_mrfld_ssp(drv_data)) { 1088 u32 mask = SFIFOTT_RFT | SFIFOTT_TFT; 1089 u32 thresh = 0; 1090 1091 thresh |= SFIFOTT_RxThresh(chip->lpss_rx_threshold); 1092 thresh |= SFIFOTT_TxThresh(chip->lpss_tx_threshold); 1093 1094 pxa2xx_spi_update(drv_data, SFIFOTT, mask, thresh); 1095 } 1096 1097 if (is_quark_x1000_ssp(drv_data)) 1098 pxa2xx_spi_update(drv_data, DDS_RATE, GENMASK(23, 0), chip->dds_rate); 1099 1100 /* Stop the SSP */ 1101 if (!is_mmp2_ssp(drv_data)) 1102 pxa_ssp_disable(drv_data->ssp); 1103 1104 if (!pxa25x_ssp_comp(drv_data)) 1105 pxa2xx_spi_write(drv_data, SSTO, chip->timeout); 1106 1107 /* First set CR1 without interrupt and service enables */ 1108 pxa2xx_spi_update(drv_data, SSCR1, change_mask, cr1); 1109 1110 /* See if we need to reload the configuration registers */ 1111 pxa2xx_spi_update(drv_data, SSCR0, GENMASK(31, 0), cr0); 1112 1113 /* Restart the SSP */ 1114 pxa_ssp_enable(drv_data->ssp); 1115 1116 if (is_mmp2_ssp(drv_data)) { 1117 u8 tx_level = read_SSSR_bits(drv_data, SSSR_TFL_MASK) >> 8; 1118 1119 if (tx_level) { 1120 /* On MMP2, flipping SSE doesn't to empty Tx FIFO. */ 1121 dev_warn(&spi->dev, "%u bytes of garbage in Tx FIFO!\n", tx_level); 1122 if (tx_level > transfer->len) 1123 tx_level = transfer->len; 1124 drv_data->tx += tx_level; 1125 } 1126 } 1127 1128 if (spi_controller_is_slave(controller)) { 1129 while (drv_data->write(drv_data)) 1130 ; 1131 if (drv_data->gpiod_ready) { 1132 gpiod_set_value(drv_data->gpiod_ready, 1); 1133 udelay(1); 1134 gpiod_set_value(drv_data->gpiod_ready, 0); 1135 } 1136 } 1137 1138 /* 1139 * Release the data by enabling service requests and interrupts, 1140 * without changing any mode bits. 1141 */ 1142 pxa2xx_spi_write(drv_data, SSCR1, cr1); 1143 1144 return 1; 1145 } 1146 1147 static int pxa2xx_spi_slave_abort(struct spi_controller *controller) 1148 { 1149 struct driver_data *drv_data = spi_controller_get_devdata(controller); 1150 1151 int_error_stop(drv_data, "transfer aborted", -EINTR); 1152 1153 return 0; 1154 } 1155 1156 static void pxa2xx_spi_handle_err(struct spi_controller *controller, 1157 struct spi_message *msg) 1158 { 1159 struct driver_data *drv_data = spi_controller_get_devdata(controller); 1160 1161 int_stop_and_reset(drv_data); 1162 1163 /* Disable the SSP */ 1164 pxa2xx_spi_off(drv_data); 1165 1166 /* 1167 * Stop the DMA if running. Note DMA callback handler may have unset 1168 * the dma_running already, which is fine as stopping is not needed 1169 * then but we shouldn't rely this flag for anything else than 1170 * stopping. For instance to differentiate between PIO and DMA 1171 * transfers. 1172 */ 1173 if (atomic_read(&drv_data->dma_running)) 1174 pxa2xx_spi_dma_stop(drv_data); 1175 } 1176 1177 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller) 1178 { 1179 struct driver_data *drv_data = spi_controller_get_devdata(controller); 1180 1181 /* Disable the SSP now */ 1182 pxa2xx_spi_off(drv_data); 1183 1184 return 0; 1185 } 1186 1187 static void cleanup_cs(struct spi_device *spi) 1188 { 1189 if (!gpio_is_valid(spi->cs_gpio)) 1190 return; 1191 1192 gpio_free(spi->cs_gpio); 1193 spi->cs_gpio = -ENOENT; 1194 } 1195 1196 static int setup_cs(struct spi_device *spi, struct chip_data *chip, 1197 struct pxa2xx_spi_chip *chip_info) 1198 { 1199 struct driver_data *drv_data = spi_controller_get_devdata(spi->controller); 1200 1201 if (chip == NULL) 1202 return 0; 1203 1204 if (chip_info == NULL) 1205 return 0; 1206 1207 if (drv_data->ssp_type == CE4100_SSP) 1208 return 0; 1209 1210 /* 1211 * NOTE: setup() can be called multiple times, possibly with 1212 * different chip_info, release previously requested GPIO. 1213 */ 1214 cleanup_cs(spi); 1215 1216 /* If ->cs_control() is provided, ignore GPIO chip select */ 1217 if (chip_info->cs_control) { 1218 chip->cs_control = chip_info->cs_control; 1219 return 0; 1220 } 1221 1222 if (gpio_is_valid(chip_info->gpio_cs)) { 1223 int gpio = chip_info->gpio_cs; 1224 int err; 1225 1226 err = gpio_request(gpio, "SPI_CS"); 1227 if (err) { 1228 dev_err(&spi->dev, "failed to request chip select GPIO%d\n", gpio); 1229 return err; 1230 } 1231 1232 err = gpio_direction_output(gpio, !(spi->mode & SPI_CS_HIGH)); 1233 if (err) { 1234 gpio_free(gpio); 1235 return err; 1236 } 1237 1238 spi->cs_gpio = gpio; 1239 } 1240 1241 return 0; 1242 } 1243 1244 static int setup(struct spi_device *spi) 1245 { 1246 struct pxa2xx_spi_chip *chip_info; 1247 struct chip_data *chip; 1248 const struct lpss_config *config; 1249 struct driver_data *drv_data = 1250 spi_controller_get_devdata(spi->controller); 1251 uint tx_thres, tx_hi_thres, rx_thres; 1252 int err; 1253 1254 switch (drv_data->ssp_type) { 1255 case QUARK_X1000_SSP: 1256 tx_thres = TX_THRESH_QUARK_X1000_DFLT; 1257 tx_hi_thres = 0; 1258 rx_thres = RX_THRESH_QUARK_X1000_DFLT; 1259 break; 1260 case MRFLD_SSP: 1261 tx_thres = TX_THRESH_MRFLD_DFLT; 1262 tx_hi_thres = 0; 1263 rx_thres = RX_THRESH_MRFLD_DFLT; 1264 break; 1265 case CE4100_SSP: 1266 tx_thres = TX_THRESH_CE4100_DFLT; 1267 tx_hi_thres = 0; 1268 rx_thres = RX_THRESH_CE4100_DFLT; 1269 break; 1270 case LPSS_LPT_SSP: 1271 case LPSS_BYT_SSP: 1272 case LPSS_BSW_SSP: 1273 case LPSS_SPT_SSP: 1274 case LPSS_BXT_SSP: 1275 case LPSS_CNL_SSP: 1276 config = lpss_get_config(drv_data); 1277 tx_thres = config->tx_threshold_lo; 1278 tx_hi_thres = config->tx_threshold_hi; 1279 rx_thres = config->rx_threshold; 1280 break; 1281 default: 1282 tx_hi_thres = 0; 1283 if (spi_controller_is_slave(drv_data->controller)) { 1284 tx_thres = 1; 1285 rx_thres = 2; 1286 } else { 1287 tx_thres = TX_THRESH_DFLT; 1288 rx_thres = RX_THRESH_DFLT; 1289 } 1290 break; 1291 } 1292 1293 /* Only allocate on the first setup */ 1294 chip = spi_get_ctldata(spi); 1295 if (!chip) { 1296 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); 1297 if (!chip) 1298 return -ENOMEM; 1299 1300 if (drv_data->ssp_type == CE4100_SSP) { 1301 if (spi->chip_select > 4) { 1302 dev_err(&spi->dev, 1303 "failed setup: cs number must not be > 4.\n"); 1304 kfree(chip); 1305 return -EINVAL; 1306 } 1307 } 1308 chip->enable_dma = drv_data->controller_info->enable_dma; 1309 chip->timeout = TIMOUT_DFLT; 1310 } 1311 1312 /* 1313 * Protocol drivers may change the chip settings, so... 1314 * if chip_info exists, use it. 1315 */ 1316 chip_info = spi->controller_data; 1317 1318 /* chip_info isn't always needed */ 1319 chip->cr1 = 0; 1320 if (chip_info) { 1321 if (chip_info->timeout) 1322 chip->timeout = chip_info->timeout; 1323 if (chip_info->tx_threshold) 1324 tx_thres = chip_info->tx_threshold; 1325 if (chip_info->tx_hi_threshold) 1326 tx_hi_thres = chip_info->tx_hi_threshold; 1327 if (chip_info->rx_threshold) 1328 rx_thres = chip_info->rx_threshold; 1329 chip->dma_threshold = 0; 1330 if (chip_info->enable_loopback) 1331 chip->cr1 = SSCR1_LBM; 1332 } 1333 if (spi_controller_is_slave(drv_data->controller)) { 1334 chip->cr1 |= SSCR1_SCFR; 1335 chip->cr1 |= SSCR1_SCLKDIR; 1336 chip->cr1 |= SSCR1_SFRMDIR; 1337 chip->cr1 |= SSCR1_SPH; 1338 } 1339 1340 if (is_lpss_ssp(drv_data)) { 1341 chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres); 1342 chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) | 1343 SSITF_TxHiThresh(tx_hi_thres); 1344 } 1345 1346 if (is_mrfld_ssp(drv_data)) { 1347 chip->lpss_rx_threshold = rx_thres; 1348 chip->lpss_tx_threshold = tx_thres; 1349 } 1350 1351 /* 1352 * Set DMA burst and threshold outside of chip_info path so that if 1353 * chip_info goes away after setting chip->enable_dma, the burst and 1354 * threshold can still respond to changes in bits_per_word. 1355 */ 1356 if (chip->enable_dma) { 1357 /* Set up legal burst and threshold for DMA */ 1358 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi, 1359 spi->bits_per_word, 1360 &chip->dma_burst_size, 1361 &chip->dma_threshold)) { 1362 dev_warn(&spi->dev, 1363 "in setup: DMA burst size reduced to match bits_per_word\n"); 1364 } 1365 dev_dbg(&spi->dev, 1366 "in setup: DMA burst size set to %u\n", 1367 chip->dma_burst_size); 1368 } 1369 1370 switch (drv_data->ssp_type) { 1371 case QUARK_X1000_SSP: 1372 chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres) 1373 & QUARK_X1000_SSCR1_RFT) 1374 | (QUARK_X1000_SSCR1_TxTresh(tx_thres) 1375 & QUARK_X1000_SSCR1_TFT); 1376 break; 1377 case CE4100_SSP: 1378 chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) | 1379 (CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT); 1380 break; 1381 default: 1382 chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) | 1383 (SSCR1_TxTresh(tx_thres) & SSCR1_TFT); 1384 break; 1385 } 1386 1387 chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH); 1388 chip->cr1 |= ((spi->mode & SPI_CPHA) ? SSCR1_SPH : 0) | 1389 ((spi->mode & SPI_CPOL) ? SSCR1_SPO : 0); 1390 1391 if (spi->mode & SPI_LOOP) 1392 chip->cr1 |= SSCR1_LBM; 1393 1394 if (spi->bits_per_word <= 8) { 1395 chip->n_bytes = 1; 1396 chip->read = u8_reader; 1397 chip->write = u8_writer; 1398 } else if (spi->bits_per_word <= 16) { 1399 chip->n_bytes = 2; 1400 chip->read = u16_reader; 1401 chip->write = u16_writer; 1402 } else if (spi->bits_per_word <= 32) { 1403 chip->n_bytes = 4; 1404 chip->read = u32_reader; 1405 chip->write = u32_writer; 1406 } 1407 1408 spi_set_ctldata(spi, chip); 1409 1410 if (drv_data->ssp_type == CE4100_SSP) 1411 return 0; 1412 1413 err = setup_cs(spi, chip, chip_info); 1414 if (err) 1415 kfree(chip); 1416 1417 return err; 1418 } 1419 1420 static void cleanup(struct spi_device *spi) 1421 { 1422 struct chip_data *chip = spi_get_ctldata(spi); 1423 1424 cleanup_cs(spi); 1425 kfree(chip); 1426 } 1427 1428 #ifdef CONFIG_ACPI 1429 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = { 1430 { "INT33C0", LPSS_LPT_SSP }, 1431 { "INT33C1", LPSS_LPT_SSP }, 1432 { "INT3430", LPSS_LPT_SSP }, 1433 { "INT3431", LPSS_LPT_SSP }, 1434 { "80860F0E", LPSS_BYT_SSP }, 1435 { "8086228E", LPSS_BSW_SSP }, 1436 { }, 1437 }; 1438 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match); 1439 #endif 1440 1441 /* 1442 * PCI IDs of compound devices that integrate both host controller and private 1443 * integrated DMA engine. Please note these are not used in module 1444 * autoloading and probing in this module but matching the LPSS SSP type. 1445 */ 1446 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = { 1447 /* SPT-LP */ 1448 { PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP }, 1449 { PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP }, 1450 /* SPT-H */ 1451 { PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP }, 1452 { PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP }, 1453 /* KBL-H */ 1454 { PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP }, 1455 { PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP }, 1456 /* CML-V */ 1457 { PCI_VDEVICE(INTEL, 0xa3a9), LPSS_SPT_SSP }, 1458 { PCI_VDEVICE(INTEL, 0xa3aa), LPSS_SPT_SSP }, 1459 /* BXT A-Step */ 1460 { PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP }, 1461 { PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP }, 1462 { PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP }, 1463 /* BXT B-Step */ 1464 { PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP }, 1465 { PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP }, 1466 { PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP }, 1467 /* GLK */ 1468 { PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP }, 1469 { PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP }, 1470 { PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP }, 1471 /* ICL-LP */ 1472 { PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP }, 1473 { PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP }, 1474 { PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP }, 1475 /* EHL */ 1476 { PCI_VDEVICE(INTEL, 0x4b2a), LPSS_BXT_SSP }, 1477 { PCI_VDEVICE(INTEL, 0x4b2b), LPSS_BXT_SSP }, 1478 { PCI_VDEVICE(INTEL, 0x4b37), LPSS_BXT_SSP }, 1479 /* JSL */ 1480 { PCI_VDEVICE(INTEL, 0x4daa), LPSS_CNL_SSP }, 1481 { PCI_VDEVICE(INTEL, 0x4dab), LPSS_CNL_SSP }, 1482 { PCI_VDEVICE(INTEL, 0x4dfb), LPSS_CNL_SSP }, 1483 /* TGL-H */ 1484 { PCI_VDEVICE(INTEL, 0x43aa), LPSS_CNL_SSP }, 1485 { PCI_VDEVICE(INTEL, 0x43ab), LPSS_CNL_SSP }, 1486 { PCI_VDEVICE(INTEL, 0x43fb), LPSS_CNL_SSP }, 1487 { PCI_VDEVICE(INTEL, 0x43fd), LPSS_CNL_SSP }, 1488 /* ADL-P */ 1489 { PCI_VDEVICE(INTEL, 0x51aa), LPSS_CNL_SSP }, 1490 { PCI_VDEVICE(INTEL, 0x51ab), LPSS_CNL_SSP }, 1491 { PCI_VDEVICE(INTEL, 0x51fb), LPSS_CNL_SSP }, 1492 /* ADL-M */ 1493 { PCI_VDEVICE(INTEL, 0x54aa), LPSS_CNL_SSP }, 1494 { PCI_VDEVICE(INTEL, 0x54ab), LPSS_CNL_SSP }, 1495 { PCI_VDEVICE(INTEL, 0x54fb), LPSS_CNL_SSP }, 1496 /* APL */ 1497 { PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP }, 1498 { PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP }, 1499 { PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP }, 1500 /* ADL-S */ 1501 { PCI_VDEVICE(INTEL, 0x7aaa), LPSS_CNL_SSP }, 1502 { PCI_VDEVICE(INTEL, 0x7aab), LPSS_CNL_SSP }, 1503 { PCI_VDEVICE(INTEL, 0x7af9), LPSS_CNL_SSP }, 1504 { PCI_VDEVICE(INTEL, 0x7afb), LPSS_CNL_SSP }, 1505 /* CNL-LP */ 1506 { PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP }, 1507 { PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP }, 1508 { PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP }, 1509 /* CNL-H */ 1510 { PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP }, 1511 { PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP }, 1512 { PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP }, 1513 /* CML-LP */ 1514 { PCI_VDEVICE(INTEL, 0x02aa), LPSS_CNL_SSP }, 1515 { PCI_VDEVICE(INTEL, 0x02ab), LPSS_CNL_SSP }, 1516 { PCI_VDEVICE(INTEL, 0x02fb), LPSS_CNL_SSP }, 1517 /* CML-H */ 1518 { PCI_VDEVICE(INTEL, 0x06aa), LPSS_CNL_SSP }, 1519 { PCI_VDEVICE(INTEL, 0x06ab), LPSS_CNL_SSP }, 1520 { PCI_VDEVICE(INTEL, 0x06fb), LPSS_CNL_SSP }, 1521 /* TGL-LP */ 1522 { PCI_VDEVICE(INTEL, 0xa0aa), LPSS_CNL_SSP }, 1523 { PCI_VDEVICE(INTEL, 0xa0ab), LPSS_CNL_SSP }, 1524 { PCI_VDEVICE(INTEL, 0xa0de), LPSS_CNL_SSP }, 1525 { PCI_VDEVICE(INTEL, 0xa0df), LPSS_CNL_SSP }, 1526 { PCI_VDEVICE(INTEL, 0xa0fb), LPSS_CNL_SSP }, 1527 { PCI_VDEVICE(INTEL, 0xa0fd), LPSS_CNL_SSP }, 1528 { PCI_VDEVICE(INTEL, 0xa0fe), LPSS_CNL_SSP }, 1529 { }, 1530 }; 1531 1532 static const struct of_device_id pxa2xx_spi_of_match[] = { 1533 { .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP }, 1534 {}, 1535 }; 1536 MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match); 1537 1538 #ifdef CONFIG_ACPI 1539 1540 static int pxa2xx_spi_get_port_id(struct device *dev) 1541 { 1542 struct acpi_device *adev; 1543 unsigned int devid; 1544 int port_id = -1; 1545 1546 adev = ACPI_COMPANION(dev); 1547 if (adev && adev->pnp.unique_id && 1548 !kstrtouint(adev->pnp.unique_id, 0, &devid)) 1549 port_id = devid; 1550 return port_id; 1551 } 1552 1553 #else /* !CONFIG_ACPI */ 1554 1555 static int pxa2xx_spi_get_port_id(struct device *dev) 1556 { 1557 return -1; 1558 } 1559 1560 #endif /* CONFIG_ACPI */ 1561 1562 1563 #ifdef CONFIG_PCI 1564 1565 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param) 1566 { 1567 return param == chan->device->dev; 1568 } 1569 1570 #endif /* CONFIG_PCI */ 1571 1572 static struct pxa2xx_spi_controller * 1573 pxa2xx_spi_init_pdata(struct platform_device *pdev) 1574 { 1575 struct pxa2xx_spi_controller *pdata; 1576 struct ssp_device *ssp; 1577 struct resource *res; 1578 struct device *parent = pdev->dev.parent; 1579 struct pci_dev *pcidev = dev_is_pci(parent) ? to_pci_dev(parent) : NULL; 1580 const struct pci_device_id *pcidev_id = NULL; 1581 enum pxa_ssp_type type; 1582 const void *match; 1583 1584 if (pcidev) 1585 pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match, pcidev); 1586 1587 match = device_get_match_data(&pdev->dev); 1588 if (match) 1589 type = (enum pxa_ssp_type)match; 1590 else if (pcidev_id) 1591 type = (enum pxa_ssp_type)pcidev_id->driver_data; 1592 else 1593 return ERR_PTR(-EINVAL); 1594 1595 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); 1596 if (!pdata) 1597 return ERR_PTR(-ENOMEM); 1598 1599 ssp = &pdata->ssp; 1600 1601 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1602 ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res); 1603 if (IS_ERR(ssp->mmio_base)) 1604 return ERR_CAST(ssp->mmio_base); 1605 1606 ssp->phys_base = res->start; 1607 1608 #ifdef CONFIG_PCI 1609 if (pcidev_id) { 1610 pdata->tx_param = parent; 1611 pdata->rx_param = parent; 1612 pdata->dma_filter = pxa2xx_spi_idma_filter; 1613 } 1614 #endif 1615 1616 ssp->clk = devm_clk_get(&pdev->dev, NULL); 1617 if (IS_ERR(ssp->clk)) 1618 return ERR_CAST(ssp->clk); 1619 1620 ssp->irq = platform_get_irq(pdev, 0); 1621 if (ssp->irq < 0) 1622 return ERR_PTR(ssp->irq); 1623 1624 ssp->type = type; 1625 ssp->dev = &pdev->dev; 1626 ssp->port_id = pxa2xx_spi_get_port_id(&pdev->dev); 1627 1628 pdata->is_slave = device_property_read_bool(&pdev->dev, "spi-slave"); 1629 pdata->num_chipselect = 1; 1630 pdata->enable_dma = true; 1631 pdata->dma_burst_size = 1; 1632 1633 return pdata; 1634 } 1635 1636 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller, 1637 unsigned int cs) 1638 { 1639 struct driver_data *drv_data = spi_controller_get_devdata(controller); 1640 1641 if (has_acpi_companion(drv_data->ssp->dev)) { 1642 switch (drv_data->ssp_type) { 1643 /* 1644 * For Atoms the ACPI DeviceSelection used by the Windows 1645 * driver starts from 1 instead of 0 so translate it here 1646 * to match what Linux expects. 1647 */ 1648 case LPSS_BYT_SSP: 1649 case LPSS_BSW_SSP: 1650 return cs - 1; 1651 1652 default: 1653 break; 1654 } 1655 } 1656 1657 return cs; 1658 } 1659 1660 static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi) 1661 { 1662 return MAX_DMA_LEN; 1663 } 1664 1665 static int pxa2xx_spi_probe(struct platform_device *pdev) 1666 { 1667 struct device *dev = &pdev->dev; 1668 struct pxa2xx_spi_controller *platform_info; 1669 struct spi_controller *controller; 1670 struct driver_data *drv_data; 1671 struct ssp_device *ssp; 1672 const struct lpss_config *config; 1673 int status; 1674 u32 tmp; 1675 1676 platform_info = dev_get_platdata(dev); 1677 if (!platform_info) { 1678 platform_info = pxa2xx_spi_init_pdata(pdev); 1679 if (IS_ERR(platform_info)) { 1680 dev_err(&pdev->dev, "missing platform data\n"); 1681 return PTR_ERR(platform_info); 1682 } 1683 } 1684 1685 ssp = pxa_ssp_request(pdev->id, pdev->name); 1686 if (!ssp) 1687 ssp = &platform_info->ssp; 1688 1689 if (!ssp->mmio_base) { 1690 dev_err(&pdev->dev, "failed to get SSP\n"); 1691 return -ENODEV; 1692 } 1693 1694 if (platform_info->is_slave) 1695 controller = devm_spi_alloc_slave(dev, sizeof(*drv_data)); 1696 else 1697 controller = devm_spi_alloc_master(dev, sizeof(*drv_data)); 1698 1699 if (!controller) { 1700 dev_err(&pdev->dev, "cannot alloc spi_controller\n"); 1701 status = -ENOMEM; 1702 goto out_error_controller_alloc; 1703 } 1704 drv_data = spi_controller_get_devdata(controller); 1705 drv_data->controller = controller; 1706 drv_data->controller_info = platform_info; 1707 drv_data->ssp = ssp; 1708 1709 controller->dev.of_node = dev->of_node; 1710 controller->dev.fwnode = dev->fwnode; 1711 1712 /* The spi->mode bits understood by this driver: */ 1713 controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP; 1714 1715 controller->bus_num = ssp->port_id; 1716 controller->dma_alignment = DMA_ALIGNMENT; 1717 controller->cleanup = cleanup; 1718 controller->setup = setup; 1719 controller->set_cs = pxa2xx_spi_set_cs; 1720 controller->transfer_one = pxa2xx_spi_transfer_one; 1721 controller->slave_abort = pxa2xx_spi_slave_abort; 1722 controller->handle_err = pxa2xx_spi_handle_err; 1723 controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer; 1724 controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs; 1725 controller->auto_runtime_pm = true; 1726 controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX; 1727 1728 drv_data->ssp_type = ssp->type; 1729 1730 if (pxa25x_ssp_comp(drv_data)) { 1731 switch (drv_data->ssp_type) { 1732 case QUARK_X1000_SSP: 1733 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 1734 break; 1735 default: 1736 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); 1737 break; 1738 } 1739 1740 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE; 1741 drv_data->dma_cr1 = 0; 1742 drv_data->clear_sr = SSSR_ROR; 1743 drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR; 1744 } else { 1745 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 1746 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE; 1747 drv_data->dma_cr1 = DEFAULT_DMA_CR1; 1748 drv_data->clear_sr = SSSR_ROR | SSSR_TINT; 1749 drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS 1750 | SSSR_ROR | SSSR_TUR; 1751 } 1752 1753 status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev), 1754 drv_data); 1755 if (status < 0) { 1756 dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq); 1757 goto out_error_controller_alloc; 1758 } 1759 1760 /* Setup DMA if requested */ 1761 if (platform_info->enable_dma) { 1762 status = pxa2xx_spi_dma_setup(drv_data); 1763 if (status) { 1764 dev_warn(dev, "no DMA channels available, using PIO\n"); 1765 platform_info->enable_dma = false; 1766 } else { 1767 controller->can_dma = pxa2xx_spi_can_dma; 1768 controller->max_dma_len = MAX_DMA_LEN; 1769 controller->max_transfer_size = 1770 pxa2xx_spi_max_dma_transfer_size; 1771 } 1772 } 1773 1774 /* Enable SOC clock */ 1775 status = clk_prepare_enable(ssp->clk); 1776 if (status) 1777 goto out_error_dma_irq_alloc; 1778 1779 controller->max_speed_hz = clk_get_rate(ssp->clk); 1780 /* 1781 * Set minimum speed for all other platforms than Intel Quark which is 1782 * able do under 1 Hz transfers. 1783 */ 1784 if (!pxa25x_ssp_comp(drv_data)) 1785 controller->min_speed_hz = 1786 DIV_ROUND_UP(controller->max_speed_hz, 4096); 1787 else if (!is_quark_x1000_ssp(drv_data)) 1788 controller->min_speed_hz = 1789 DIV_ROUND_UP(controller->max_speed_hz, 512); 1790 1791 pxa_ssp_disable(ssp); 1792 1793 /* Load default SSP configuration */ 1794 switch (drv_data->ssp_type) { 1795 case QUARK_X1000_SSP: 1796 tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) | 1797 QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT); 1798 pxa2xx_spi_write(drv_data, SSCR1, tmp); 1799 1800 /* Using the Motorola SPI protocol and use 8 bit frame */ 1801 tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8); 1802 pxa2xx_spi_write(drv_data, SSCR0, tmp); 1803 break; 1804 case CE4100_SSP: 1805 tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) | 1806 CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT); 1807 pxa2xx_spi_write(drv_data, SSCR1, tmp); 1808 tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8); 1809 pxa2xx_spi_write(drv_data, SSCR0, tmp); 1810 break; 1811 default: 1812 1813 if (spi_controller_is_slave(controller)) { 1814 tmp = SSCR1_SCFR | 1815 SSCR1_SCLKDIR | 1816 SSCR1_SFRMDIR | 1817 SSCR1_RxTresh(2) | 1818 SSCR1_TxTresh(1) | 1819 SSCR1_SPH; 1820 } else { 1821 tmp = SSCR1_RxTresh(RX_THRESH_DFLT) | 1822 SSCR1_TxTresh(TX_THRESH_DFLT); 1823 } 1824 pxa2xx_spi_write(drv_data, SSCR1, tmp); 1825 tmp = SSCR0_Motorola | SSCR0_DataSize(8); 1826 if (!spi_controller_is_slave(controller)) 1827 tmp |= SSCR0_SCR(2); 1828 pxa2xx_spi_write(drv_data, SSCR0, tmp); 1829 break; 1830 } 1831 1832 if (!pxa25x_ssp_comp(drv_data)) 1833 pxa2xx_spi_write(drv_data, SSTO, 0); 1834 1835 if (!is_quark_x1000_ssp(drv_data)) 1836 pxa2xx_spi_write(drv_data, SSPSP, 0); 1837 1838 if (is_lpss_ssp(drv_data)) { 1839 lpss_ssp_setup(drv_data); 1840 config = lpss_get_config(drv_data); 1841 if (config->reg_capabilities >= 0) { 1842 tmp = __lpss_ssp_read_priv(drv_data, 1843 config->reg_capabilities); 1844 tmp &= LPSS_CAPS_CS_EN_MASK; 1845 tmp >>= LPSS_CAPS_CS_EN_SHIFT; 1846 platform_info->num_chipselect = ffz(tmp); 1847 } else if (config->cs_num) { 1848 platform_info->num_chipselect = config->cs_num; 1849 } 1850 } 1851 controller->num_chipselect = platform_info->num_chipselect; 1852 controller->use_gpio_descriptors = true; 1853 1854 if (platform_info->is_slave) { 1855 drv_data->gpiod_ready = devm_gpiod_get_optional(dev, 1856 "ready", GPIOD_OUT_LOW); 1857 if (IS_ERR(drv_data->gpiod_ready)) { 1858 status = PTR_ERR(drv_data->gpiod_ready); 1859 goto out_error_clock_enabled; 1860 } 1861 } 1862 1863 pm_runtime_set_autosuspend_delay(&pdev->dev, 50); 1864 pm_runtime_use_autosuspend(&pdev->dev); 1865 pm_runtime_set_active(&pdev->dev); 1866 pm_runtime_enable(&pdev->dev); 1867 1868 /* Register with the SPI framework */ 1869 platform_set_drvdata(pdev, drv_data); 1870 status = spi_register_controller(controller); 1871 if (status) { 1872 dev_err(&pdev->dev, "problem registering SPI controller\n"); 1873 goto out_error_pm_runtime_enabled; 1874 } 1875 1876 return status; 1877 1878 out_error_pm_runtime_enabled: 1879 pm_runtime_disable(&pdev->dev); 1880 1881 out_error_clock_enabled: 1882 clk_disable_unprepare(ssp->clk); 1883 1884 out_error_dma_irq_alloc: 1885 pxa2xx_spi_dma_release(drv_data); 1886 free_irq(ssp->irq, drv_data); 1887 1888 out_error_controller_alloc: 1889 pxa_ssp_free(ssp); 1890 return status; 1891 } 1892 1893 static int pxa2xx_spi_remove(struct platform_device *pdev) 1894 { 1895 struct driver_data *drv_data = platform_get_drvdata(pdev); 1896 struct ssp_device *ssp = drv_data->ssp; 1897 1898 pm_runtime_get_sync(&pdev->dev); 1899 1900 spi_unregister_controller(drv_data->controller); 1901 1902 /* Disable the SSP at the peripheral and SOC level */ 1903 pxa_ssp_disable(ssp); 1904 clk_disable_unprepare(ssp->clk); 1905 1906 /* Release DMA */ 1907 if (drv_data->controller_info->enable_dma) 1908 pxa2xx_spi_dma_release(drv_data); 1909 1910 pm_runtime_put_noidle(&pdev->dev); 1911 pm_runtime_disable(&pdev->dev); 1912 1913 /* Release IRQ */ 1914 free_irq(ssp->irq, drv_data); 1915 1916 /* Release SSP */ 1917 pxa_ssp_free(ssp); 1918 1919 return 0; 1920 } 1921 1922 #ifdef CONFIG_PM_SLEEP 1923 static int pxa2xx_spi_suspend(struct device *dev) 1924 { 1925 struct driver_data *drv_data = dev_get_drvdata(dev); 1926 struct ssp_device *ssp = drv_data->ssp; 1927 int status; 1928 1929 status = spi_controller_suspend(drv_data->controller); 1930 if (status) 1931 return status; 1932 1933 pxa_ssp_disable(ssp); 1934 1935 if (!pm_runtime_suspended(dev)) 1936 clk_disable_unprepare(ssp->clk); 1937 1938 return 0; 1939 } 1940 1941 static int pxa2xx_spi_resume(struct device *dev) 1942 { 1943 struct driver_data *drv_data = dev_get_drvdata(dev); 1944 struct ssp_device *ssp = drv_data->ssp; 1945 int status; 1946 1947 /* Enable the SSP clock */ 1948 if (!pm_runtime_suspended(dev)) { 1949 status = clk_prepare_enable(ssp->clk); 1950 if (status) 1951 return status; 1952 } 1953 1954 /* Start the queue running */ 1955 return spi_controller_resume(drv_data->controller); 1956 } 1957 #endif 1958 1959 #ifdef CONFIG_PM 1960 static int pxa2xx_spi_runtime_suspend(struct device *dev) 1961 { 1962 struct driver_data *drv_data = dev_get_drvdata(dev); 1963 1964 clk_disable_unprepare(drv_data->ssp->clk); 1965 return 0; 1966 } 1967 1968 static int pxa2xx_spi_runtime_resume(struct device *dev) 1969 { 1970 struct driver_data *drv_data = dev_get_drvdata(dev); 1971 int status; 1972 1973 status = clk_prepare_enable(drv_data->ssp->clk); 1974 return status; 1975 } 1976 #endif 1977 1978 static const struct dev_pm_ops pxa2xx_spi_pm_ops = { 1979 SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume) 1980 SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend, 1981 pxa2xx_spi_runtime_resume, NULL) 1982 }; 1983 1984 static struct platform_driver driver = { 1985 .driver = { 1986 .name = "pxa2xx-spi", 1987 .pm = &pxa2xx_spi_pm_ops, 1988 .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match), 1989 .of_match_table = of_match_ptr(pxa2xx_spi_of_match), 1990 }, 1991 .probe = pxa2xx_spi_probe, 1992 .remove = pxa2xx_spi_remove, 1993 }; 1994 1995 static int __init pxa2xx_spi_init(void) 1996 { 1997 return platform_driver_register(&driver); 1998 } 1999 subsys_initcall(pxa2xx_spi_init); 2000 2001 static void __exit pxa2xx_spi_exit(void) 2002 { 2003 platform_driver_unregister(&driver); 2004 } 2005 module_exit(pxa2xx_spi_exit); 2006 2007 MODULE_SOFTDEP("pre: dw_dmac"); 2008