1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs 4 * Copyright (C) 2013, Intel Corporation 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/bitops.h> 9 #include <linux/clk.h> 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/err.h> 13 #include <linux/errno.h> 14 #include <linux/gpio/consumer.h> 15 #include <linux/gpio.h> 16 #include <linux/init.h> 17 #include <linux/interrupt.h> 18 #include <linux/ioport.h> 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/mod_devicetable.h> 22 #include <linux/of.h> 23 #include <linux/pci.h> 24 #include <linux/platform_device.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/property.h> 27 #include <linux/slab.h> 28 #include <linux/spi/pxa2xx_spi.h> 29 #include <linux/spi/spi.h> 30 31 #include "spi-pxa2xx.h" 32 33 MODULE_AUTHOR("Stephen Street"); 34 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller"); 35 MODULE_LICENSE("GPL"); 36 MODULE_ALIAS("platform:pxa2xx-spi"); 37 38 #define TIMOUT_DFLT 1000 39 40 /* 41 * for testing SSCR1 changes that require SSP restart, basically 42 * everything except the service and interrupt enables, the pxa270 developer 43 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this 44 * list, but the PXA255 dev man says all bits without really meaning the 45 * service and interrupt enables 46 */ 47 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \ 48 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \ 49 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \ 50 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \ 51 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \ 52 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) 53 54 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \ 55 | QUARK_X1000_SSCR1_EFWR \ 56 | QUARK_X1000_SSCR1_RFT \ 57 | QUARK_X1000_SSCR1_TFT \ 58 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) 59 60 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \ 61 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \ 62 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \ 63 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \ 64 | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \ 65 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) 66 67 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24) 68 #define LPSS_CS_CONTROL_SW_MODE BIT(0) 69 #define LPSS_CS_CONTROL_CS_HIGH BIT(1) 70 #define LPSS_CAPS_CS_EN_SHIFT 9 71 #define LPSS_CAPS_CS_EN_MASK (0xf << LPSS_CAPS_CS_EN_SHIFT) 72 73 #define LPSS_PRIV_CLOCK_GATE 0x38 74 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3 75 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3 76 77 struct lpss_config { 78 /* LPSS offset from drv_data->ioaddr */ 79 unsigned offset; 80 /* Register offsets from drv_data->lpss_base or -1 */ 81 int reg_general; 82 int reg_ssp; 83 int reg_cs_ctrl; 84 int reg_capabilities; 85 /* FIFO thresholds */ 86 u32 rx_threshold; 87 u32 tx_threshold_lo; 88 u32 tx_threshold_hi; 89 /* Chip select control */ 90 unsigned cs_sel_shift; 91 unsigned cs_sel_mask; 92 unsigned cs_num; 93 /* Quirks */ 94 unsigned cs_clk_stays_gated : 1; 95 }; 96 97 /* Keep these sorted with enum pxa_ssp_type */ 98 static const struct lpss_config lpss_platforms[] = { 99 { /* LPSS_LPT_SSP */ 100 .offset = 0x800, 101 .reg_general = 0x08, 102 .reg_ssp = 0x0c, 103 .reg_cs_ctrl = 0x18, 104 .reg_capabilities = -1, 105 .rx_threshold = 64, 106 .tx_threshold_lo = 160, 107 .tx_threshold_hi = 224, 108 }, 109 { /* LPSS_BYT_SSP */ 110 .offset = 0x400, 111 .reg_general = 0x08, 112 .reg_ssp = 0x0c, 113 .reg_cs_ctrl = 0x18, 114 .reg_capabilities = -1, 115 .rx_threshold = 64, 116 .tx_threshold_lo = 160, 117 .tx_threshold_hi = 224, 118 }, 119 { /* LPSS_BSW_SSP */ 120 .offset = 0x400, 121 .reg_general = 0x08, 122 .reg_ssp = 0x0c, 123 .reg_cs_ctrl = 0x18, 124 .reg_capabilities = -1, 125 .rx_threshold = 64, 126 .tx_threshold_lo = 160, 127 .tx_threshold_hi = 224, 128 .cs_sel_shift = 2, 129 .cs_sel_mask = 1 << 2, 130 .cs_num = 2, 131 }, 132 { /* LPSS_SPT_SSP */ 133 .offset = 0x200, 134 .reg_general = -1, 135 .reg_ssp = 0x20, 136 .reg_cs_ctrl = 0x24, 137 .reg_capabilities = -1, 138 .rx_threshold = 1, 139 .tx_threshold_lo = 32, 140 .tx_threshold_hi = 56, 141 }, 142 { /* LPSS_BXT_SSP */ 143 .offset = 0x200, 144 .reg_general = -1, 145 .reg_ssp = 0x20, 146 .reg_cs_ctrl = 0x24, 147 .reg_capabilities = 0xfc, 148 .rx_threshold = 1, 149 .tx_threshold_lo = 16, 150 .tx_threshold_hi = 48, 151 .cs_sel_shift = 8, 152 .cs_sel_mask = 3 << 8, 153 .cs_clk_stays_gated = true, 154 }, 155 { /* LPSS_CNL_SSP */ 156 .offset = 0x200, 157 .reg_general = -1, 158 .reg_ssp = 0x20, 159 .reg_cs_ctrl = 0x24, 160 .reg_capabilities = 0xfc, 161 .rx_threshold = 1, 162 .tx_threshold_lo = 32, 163 .tx_threshold_hi = 56, 164 .cs_sel_shift = 8, 165 .cs_sel_mask = 3 << 8, 166 .cs_clk_stays_gated = true, 167 }, 168 }; 169 170 static inline const struct lpss_config 171 *lpss_get_config(const struct driver_data *drv_data) 172 { 173 return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP]; 174 } 175 176 static bool is_lpss_ssp(const struct driver_data *drv_data) 177 { 178 switch (drv_data->ssp_type) { 179 case LPSS_LPT_SSP: 180 case LPSS_BYT_SSP: 181 case LPSS_BSW_SSP: 182 case LPSS_SPT_SSP: 183 case LPSS_BXT_SSP: 184 case LPSS_CNL_SSP: 185 return true; 186 default: 187 return false; 188 } 189 } 190 191 static bool is_quark_x1000_ssp(const struct driver_data *drv_data) 192 { 193 return drv_data->ssp_type == QUARK_X1000_SSP; 194 } 195 196 static bool is_mmp2_ssp(const struct driver_data *drv_data) 197 { 198 return drv_data->ssp_type == MMP2_SSP; 199 } 200 201 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data) 202 { 203 switch (drv_data->ssp_type) { 204 case QUARK_X1000_SSP: 205 return QUARK_X1000_SSCR1_CHANGE_MASK; 206 case CE4100_SSP: 207 return CE4100_SSCR1_CHANGE_MASK; 208 default: 209 return SSCR1_CHANGE_MASK; 210 } 211 } 212 213 static u32 214 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data) 215 { 216 switch (drv_data->ssp_type) { 217 case QUARK_X1000_SSP: 218 return RX_THRESH_QUARK_X1000_DFLT; 219 case CE4100_SSP: 220 return RX_THRESH_CE4100_DFLT; 221 default: 222 return RX_THRESH_DFLT; 223 } 224 } 225 226 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data) 227 { 228 u32 mask; 229 230 switch (drv_data->ssp_type) { 231 case QUARK_X1000_SSP: 232 mask = QUARK_X1000_SSSR_TFL_MASK; 233 break; 234 case CE4100_SSP: 235 mask = CE4100_SSSR_TFL_MASK; 236 break; 237 default: 238 mask = SSSR_TFL_MASK; 239 break; 240 } 241 242 return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask; 243 } 244 245 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data, 246 u32 *sccr1_reg) 247 { 248 u32 mask; 249 250 switch (drv_data->ssp_type) { 251 case QUARK_X1000_SSP: 252 mask = QUARK_X1000_SSCR1_RFT; 253 break; 254 case CE4100_SSP: 255 mask = CE4100_SSCR1_RFT; 256 break; 257 default: 258 mask = SSCR1_RFT; 259 break; 260 } 261 *sccr1_reg &= ~mask; 262 } 263 264 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data, 265 u32 *sccr1_reg, u32 threshold) 266 { 267 switch (drv_data->ssp_type) { 268 case QUARK_X1000_SSP: 269 *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold); 270 break; 271 case CE4100_SSP: 272 *sccr1_reg |= CE4100_SSCR1_RxTresh(threshold); 273 break; 274 default: 275 *sccr1_reg |= SSCR1_RxTresh(threshold); 276 break; 277 } 278 } 279 280 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data, 281 u32 clk_div, u8 bits) 282 { 283 switch (drv_data->ssp_type) { 284 case QUARK_X1000_SSP: 285 return clk_div 286 | QUARK_X1000_SSCR0_Motorola 287 | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits) 288 | SSCR0_SSE; 289 default: 290 return clk_div 291 | SSCR0_Motorola 292 | SSCR0_DataSize(bits > 16 ? bits - 16 : bits) 293 | SSCR0_SSE 294 | (bits > 16 ? SSCR0_EDSS : 0); 295 } 296 } 297 298 /* 299 * Read and write LPSS SSP private registers. Caller must first check that 300 * is_lpss_ssp() returns true before these can be called. 301 */ 302 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset) 303 { 304 WARN_ON(!drv_data->lpss_base); 305 return readl(drv_data->lpss_base + offset); 306 } 307 308 static void __lpss_ssp_write_priv(struct driver_data *drv_data, 309 unsigned offset, u32 value) 310 { 311 WARN_ON(!drv_data->lpss_base); 312 writel(value, drv_data->lpss_base + offset); 313 } 314 315 /* 316 * lpss_ssp_setup - perform LPSS SSP specific setup 317 * @drv_data: pointer to the driver private data 318 * 319 * Perform LPSS SSP specific setup. This function must be called first if 320 * one is going to use LPSS SSP private registers. 321 */ 322 static void lpss_ssp_setup(struct driver_data *drv_data) 323 { 324 const struct lpss_config *config; 325 u32 value; 326 327 config = lpss_get_config(drv_data); 328 drv_data->lpss_base = drv_data->ioaddr + config->offset; 329 330 /* Enable software chip select control */ 331 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); 332 value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH); 333 value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH; 334 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value); 335 336 /* Enable multiblock DMA transfers */ 337 if (drv_data->controller_info->enable_dma) { 338 __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1); 339 340 if (config->reg_general >= 0) { 341 value = __lpss_ssp_read_priv(drv_data, 342 config->reg_general); 343 value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE; 344 __lpss_ssp_write_priv(drv_data, 345 config->reg_general, value); 346 } 347 } 348 } 349 350 static void lpss_ssp_select_cs(struct spi_device *spi, 351 const struct lpss_config *config) 352 { 353 struct driver_data *drv_data = 354 spi_controller_get_devdata(spi->controller); 355 u32 value, cs; 356 357 if (!config->cs_sel_mask) 358 return; 359 360 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); 361 362 cs = spi->chip_select; 363 cs <<= config->cs_sel_shift; 364 if (cs != (value & config->cs_sel_mask)) { 365 /* 366 * When switching another chip select output active the 367 * output must be selected first and wait 2 ssp_clk cycles 368 * before changing state to active. Otherwise a short 369 * glitch will occur on the previous chip select since 370 * output select is latched but state control is not. 371 */ 372 value &= ~config->cs_sel_mask; 373 value |= cs; 374 __lpss_ssp_write_priv(drv_data, 375 config->reg_cs_ctrl, value); 376 ndelay(1000000000 / 377 (drv_data->controller->max_speed_hz / 2)); 378 } 379 } 380 381 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable) 382 { 383 struct driver_data *drv_data = 384 spi_controller_get_devdata(spi->controller); 385 const struct lpss_config *config; 386 u32 value; 387 388 config = lpss_get_config(drv_data); 389 390 if (enable) 391 lpss_ssp_select_cs(spi, config); 392 393 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); 394 if (enable) 395 value &= ~LPSS_CS_CONTROL_CS_HIGH; 396 else 397 value |= LPSS_CS_CONTROL_CS_HIGH; 398 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value); 399 if (config->cs_clk_stays_gated) { 400 u32 clkgate; 401 402 /* 403 * Changing CS alone when dynamic clock gating is on won't 404 * actually flip CS at that time. This ruins SPI transfers 405 * that specify delays, or have no data. Toggle the clock mode 406 * to force on briefly to poke the CS pin to move. 407 */ 408 clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE); 409 value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) | 410 LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON; 411 412 __lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value); 413 __lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate); 414 } 415 } 416 417 static void cs_assert(struct spi_device *spi) 418 { 419 struct chip_data *chip = spi_get_ctldata(spi); 420 struct driver_data *drv_data = 421 spi_controller_get_devdata(spi->controller); 422 423 if (drv_data->ssp_type == CE4100_SSP) { 424 pxa2xx_spi_write(drv_data, SSSR, chip->frm); 425 return; 426 } 427 428 if (chip->cs_control) { 429 chip->cs_control(PXA2XX_CS_ASSERT); 430 return; 431 } 432 433 if (chip->gpiod_cs) { 434 gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted); 435 return; 436 } 437 438 if (is_lpss_ssp(drv_data)) 439 lpss_ssp_cs_control(spi, true); 440 } 441 442 static void cs_deassert(struct spi_device *spi) 443 { 444 struct chip_data *chip = spi_get_ctldata(spi); 445 struct driver_data *drv_data = 446 spi_controller_get_devdata(spi->controller); 447 unsigned long timeout; 448 449 if (drv_data->ssp_type == CE4100_SSP) 450 return; 451 452 /* Wait until SSP becomes idle before deasserting the CS */ 453 timeout = jiffies + msecs_to_jiffies(10); 454 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY && 455 !time_after(jiffies, timeout)) 456 cpu_relax(); 457 458 if (chip->cs_control) { 459 chip->cs_control(PXA2XX_CS_DEASSERT); 460 return; 461 } 462 463 if (chip->gpiod_cs) { 464 gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted); 465 return; 466 } 467 468 if (is_lpss_ssp(drv_data)) 469 lpss_ssp_cs_control(spi, false); 470 } 471 472 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level) 473 { 474 if (level) 475 cs_deassert(spi); 476 else 477 cs_assert(spi); 478 } 479 480 int pxa2xx_spi_flush(struct driver_data *drv_data) 481 { 482 unsigned long limit = loops_per_jiffy << 1; 483 484 do { 485 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 486 pxa2xx_spi_read(drv_data, SSDR); 487 } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit); 488 write_SSSR_CS(drv_data, SSSR_ROR); 489 490 return limit; 491 } 492 493 static void pxa2xx_spi_off(struct driver_data *drv_data) 494 { 495 /* On MMP, disabling SSE seems to corrupt the Rx FIFO */ 496 if (is_mmp2_ssp(drv_data)) 497 return; 498 499 pxa2xx_spi_write(drv_data, SSCR0, 500 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE); 501 } 502 503 static int null_writer(struct driver_data *drv_data) 504 { 505 u8 n_bytes = drv_data->n_bytes; 506 507 if (pxa2xx_spi_txfifo_full(drv_data) 508 || (drv_data->tx == drv_data->tx_end)) 509 return 0; 510 511 pxa2xx_spi_write(drv_data, SSDR, 0); 512 drv_data->tx += n_bytes; 513 514 return 1; 515 } 516 517 static int null_reader(struct driver_data *drv_data) 518 { 519 u8 n_bytes = drv_data->n_bytes; 520 521 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 522 && (drv_data->rx < drv_data->rx_end)) { 523 pxa2xx_spi_read(drv_data, SSDR); 524 drv_data->rx += n_bytes; 525 } 526 527 return drv_data->rx == drv_data->rx_end; 528 } 529 530 static int u8_writer(struct driver_data *drv_data) 531 { 532 if (pxa2xx_spi_txfifo_full(drv_data) 533 || (drv_data->tx == drv_data->tx_end)) 534 return 0; 535 536 pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx)); 537 ++drv_data->tx; 538 539 return 1; 540 } 541 542 static int u8_reader(struct driver_data *drv_data) 543 { 544 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 545 && (drv_data->rx < drv_data->rx_end)) { 546 *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); 547 ++drv_data->rx; 548 } 549 550 return drv_data->rx == drv_data->rx_end; 551 } 552 553 static int u16_writer(struct driver_data *drv_data) 554 { 555 if (pxa2xx_spi_txfifo_full(drv_data) 556 || (drv_data->tx == drv_data->tx_end)) 557 return 0; 558 559 pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx)); 560 drv_data->tx += 2; 561 562 return 1; 563 } 564 565 static int u16_reader(struct driver_data *drv_data) 566 { 567 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 568 && (drv_data->rx < drv_data->rx_end)) { 569 *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); 570 drv_data->rx += 2; 571 } 572 573 return drv_data->rx == drv_data->rx_end; 574 } 575 576 static int u32_writer(struct driver_data *drv_data) 577 { 578 if (pxa2xx_spi_txfifo_full(drv_data) 579 || (drv_data->tx == drv_data->tx_end)) 580 return 0; 581 582 pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx)); 583 drv_data->tx += 4; 584 585 return 1; 586 } 587 588 static int u32_reader(struct driver_data *drv_data) 589 { 590 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 591 && (drv_data->rx < drv_data->rx_end)) { 592 *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); 593 drv_data->rx += 4; 594 } 595 596 return drv_data->rx == drv_data->rx_end; 597 } 598 599 static void reset_sccr1(struct driver_data *drv_data) 600 { 601 struct chip_data *chip = 602 spi_get_ctldata(drv_data->controller->cur_msg->spi); 603 u32 sccr1_reg; 604 605 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1; 606 switch (drv_data->ssp_type) { 607 case QUARK_X1000_SSP: 608 sccr1_reg &= ~QUARK_X1000_SSCR1_RFT; 609 break; 610 case CE4100_SSP: 611 sccr1_reg &= ~CE4100_SSCR1_RFT; 612 break; 613 default: 614 sccr1_reg &= ~SSCR1_RFT; 615 break; 616 } 617 sccr1_reg |= chip->threshold; 618 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); 619 } 620 621 static void int_error_stop(struct driver_data *drv_data, const char* msg) 622 { 623 /* Stop and reset SSP */ 624 write_SSSR_CS(drv_data, drv_data->clear_sr); 625 reset_sccr1(drv_data); 626 if (!pxa25x_ssp_comp(drv_data)) 627 pxa2xx_spi_write(drv_data, SSTO, 0); 628 pxa2xx_spi_flush(drv_data); 629 pxa2xx_spi_off(drv_data); 630 631 dev_err(&drv_data->pdev->dev, "%s\n", msg); 632 633 drv_data->controller->cur_msg->status = -EIO; 634 spi_finalize_current_transfer(drv_data->controller); 635 } 636 637 static void int_transfer_complete(struct driver_data *drv_data) 638 { 639 /* Clear and disable interrupts */ 640 write_SSSR_CS(drv_data, drv_data->clear_sr); 641 reset_sccr1(drv_data); 642 if (!pxa25x_ssp_comp(drv_data)) 643 pxa2xx_spi_write(drv_data, SSTO, 0); 644 645 spi_finalize_current_transfer(drv_data->controller); 646 } 647 648 static irqreturn_t interrupt_transfer(struct driver_data *drv_data) 649 { 650 u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ? 651 drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS; 652 653 u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask; 654 655 if (irq_status & SSSR_ROR) { 656 int_error_stop(drv_data, "interrupt_transfer: fifo overrun"); 657 return IRQ_HANDLED; 658 } 659 660 if (irq_status & SSSR_TUR) { 661 int_error_stop(drv_data, "interrupt_transfer: fifo underrun"); 662 return IRQ_HANDLED; 663 } 664 665 if (irq_status & SSSR_TINT) { 666 pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT); 667 if (drv_data->read(drv_data)) { 668 int_transfer_complete(drv_data); 669 return IRQ_HANDLED; 670 } 671 } 672 673 /* Drain rx fifo, Fill tx fifo and prevent overruns */ 674 do { 675 if (drv_data->read(drv_data)) { 676 int_transfer_complete(drv_data); 677 return IRQ_HANDLED; 678 } 679 } while (drv_data->write(drv_data)); 680 681 if (drv_data->read(drv_data)) { 682 int_transfer_complete(drv_data); 683 return IRQ_HANDLED; 684 } 685 686 if (drv_data->tx == drv_data->tx_end) { 687 u32 bytes_left; 688 u32 sccr1_reg; 689 690 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1); 691 sccr1_reg &= ~SSCR1_TIE; 692 693 /* 694 * PXA25x_SSP has no timeout, set up rx threshould for the 695 * remaining RX bytes. 696 */ 697 if (pxa25x_ssp_comp(drv_data)) { 698 u32 rx_thre; 699 700 pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg); 701 702 bytes_left = drv_data->rx_end - drv_data->rx; 703 switch (drv_data->n_bytes) { 704 case 4: 705 bytes_left >>= 2; 706 break; 707 case 2: 708 bytes_left >>= 1; 709 break; 710 } 711 712 rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data); 713 if (rx_thre > bytes_left) 714 rx_thre = bytes_left; 715 716 pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre); 717 } 718 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); 719 } 720 721 /* We did something */ 722 return IRQ_HANDLED; 723 } 724 725 static void handle_bad_msg(struct driver_data *drv_data) 726 { 727 pxa2xx_spi_off(drv_data); 728 pxa2xx_spi_write(drv_data, SSCR1, 729 pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1); 730 if (!pxa25x_ssp_comp(drv_data)) 731 pxa2xx_spi_write(drv_data, SSTO, 0); 732 write_SSSR_CS(drv_data, drv_data->clear_sr); 733 734 dev_err(&drv_data->pdev->dev, 735 "bad message state in interrupt handler\n"); 736 } 737 738 static irqreturn_t ssp_int(int irq, void *dev_id) 739 { 740 struct driver_data *drv_data = dev_id; 741 u32 sccr1_reg; 742 u32 mask = drv_data->mask_sr; 743 u32 status; 744 745 /* 746 * The IRQ might be shared with other peripherals so we must first 747 * check that are we RPM suspended or not. If we are we assume that 748 * the IRQ was not for us (we shouldn't be RPM suspended when the 749 * interrupt is enabled). 750 */ 751 if (pm_runtime_suspended(&drv_data->pdev->dev)) 752 return IRQ_NONE; 753 754 /* 755 * If the device is not yet in RPM suspended state and we get an 756 * interrupt that is meant for another device, check if status bits 757 * are all set to one. That means that the device is already 758 * powered off. 759 */ 760 status = pxa2xx_spi_read(drv_data, SSSR); 761 if (status == ~0) 762 return IRQ_NONE; 763 764 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1); 765 766 /* Ignore possible writes if we don't need to write */ 767 if (!(sccr1_reg & SSCR1_TIE)) 768 mask &= ~SSSR_TFS; 769 770 /* Ignore RX timeout interrupt if it is disabled */ 771 if (!(sccr1_reg & SSCR1_TINTE)) 772 mask &= ~SSSR_TINT; 773 774 if (!(status & mask)) 775 return IRQ_NONE; 776 777 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1); 778 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); 779 780 if (!drv_data->controller->cur_msg) { 781 handle_bad_msg(drv_data); 782 /* Never fail */ 783 return IRQ_HANDLED; 784 } 785 786 return drv_data->transfer_handler(drv_data); 787 } 788 789 /* 790 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply 791 * input frequency by fractions of 2^24. It also has a divider by 5. 792 * 793 * There are formulas to get baud rate value for given input frequency and 794 * divider parameters, such as DDS_CLK_RATE and SCR: 795 * 796 * Fsys = 200MHz 797 * 798 * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1) 799 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2) 800 * 801 * DDS_CLK_RATE either 2^n or 2^n / 5. 802 * SCR is in range 0 .. 255 803 * 804 * Divisor = 5^i * 2^j * 2 * k 805 * i = [0, 1] i = 1 iff j = 0 or j > 3 806 * j = [0, 23] j = 0 iff i = 1 807 * k = [1, 256] 808 * Special case: j = 0, i = 1: Divisor = 2 / 5 809 * 810 * Accordingly to the specification the recommended values for DDS_CLK_RATE 811 * are: 812 * Case 1: 2^n, n = [0, 23] 813 * Case 2: 2^24 * 2 / 5 (0x666666) 814 * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333) 815 * 816 * In all cases the lowest possible value is better. 817 * 818 * The function calculates parameters for all cases and chooses the one closest 819 * to the asked baud rate. 820 */ 821 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds) 822 { 823 unsigned long xtal = 200000000; 824 unsigned long fref = xtal / 2; /* mandatory division by 2, 825 see (2) */ 826 /* case 3 */ 827 unsigned long fref1 = fref / 2; /* case 1 */ 828 unsigned long fref2 = fref * 2 / 5; /* case 2 */ 829 unsigned long scale; 830 unsigned long q, q1, q2; 831 long r, r1, r2; 832 u32 mul; 833 834 /* Case 1 */ 835 836 /* Set initial value for DDS_CLK_RATE */ 837 mul = (1 << 24) >> 1; 838 839 /* Calculate initial quot */ 840 q1 = DIV_ROUND_UP(fref1, rate); 841 842 /* Scale q1 if it's too big */ 843 if (q1 > 256) { 844 /* Scale q1 to range [1, 512] */ 845 scale = fls_long(q1 - 1); 846 if (scale > 9) { 847 q1 >>= scale - 9; 848 mul >>= scale - 9; 849 } 850 851 /* Round the result if we have a remainder */ 852 q1 += q1 & 1; 853 } 854 855 /* Decrease DDS_CLK_RATE as much as we can without loss in precision */ 856 scale = __ffs(q1); 857 q1 >>= scale; 858 mul >>= scale; 859 860 /* Get the remainder */ 861 r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate); 862 863 /* Case 2 */ 864 865 q2 = DIV_ROUND_UP(fref2, rate); 866 r2 = abs(fref2 / q2 - rate); 867 868 /* 869 * Choose the best between two: less remainder we have the better. We 870 * can't go case 2 if q2 is greater than 256 since SCR register can 871 * hold only values 0 .. 255. 872 */ 873 if (r2 >= r1 || q2 > 256) { 874 /* case 1 is better */ 875 r = r1; 876 q = q1; 877 } else { 878 /* case 2 is better */ 879 r = r2; 880 q = q2; 881 mul = (1 << 24) * 2 / 5; 882 } 883 884 /* Check case 3 only if the divisor is big enough */ 885 if (fref / rate >= 80) { 886 u64 fssp; 887 u32 m; 888 889 /* Calculate initial quot */ 890 q1 = DIV_ROUND_UP(fref, rate); 891 m = (1 << 24) / q1; 892 893 /* Get the remainder */ 894 fssp = (u64)fref * m; 895 do_div(fssp, 1 << 24); 896 r1 = abs(fssp - rate); 897 898 /* Choose this one if it suits better */ 899 if (r1 < r) { 900 /* case 3 is better */ 901 q = 1; 902 mul = m; 903 } 904 } 905 906 *dds = mul; 907 return q - 1; 908 } 909 910 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate) 911 { 912 unsigned long ssp_clk = drv_data->controller->max_speed_hz; 913 const struct ssp_device *ssp = drv_data->ssp; 914 915 rate = min_t(int, ssp_clk, rate); 916 917 /* 918 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding 919 * that the SSP transmission rate can be greater than the device rate 920 */ 921 if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP) 922 return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff; 923 else 924 return (DIV_ROUND_UP(ssp_clk, rate) - 1) & 0xfff; 925 } 926 927 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data, 928 int rate) 929 { 930 struct chip_data *chip = 931 spi_get_ctldata(drv_data->controller->cur_msg->spi); 932 unsigned int clk_div; 933 934 switch (drv_data->ssp_type) { 935 case QUARK_X1000_SSP: 936 clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate); 937 break; 938 default: 939 clk_div = ssp_get_clk_div(drv_data, rate); 940 break; 941 } 942 return clk_div << 8; 943 } 944 945 static bool pxa2xx_spi_can_dma(struct spi_controller *controller, 946 struct spi_device *spi, 947 struct spi_transfer *xfer) 948 { 949 struct chip_data *chip = spi_get_ctldata(spi); 950 951 return chip->enable_dma && 952 xfer->len <= MAX_DMA_LEN && 953 xfer->len >= chip->dma_burst_size; 954 } 955 956 static int pxa2xx_spi_transfer_one(struct spi_controller *controller, 957 struct spi_device *spi, 958 struct spi_transfer *transfer) 959 { 960 struct driver_data *drv_data = spi_controller_get_devdata(controller); 961 struct spi_message *message = controller->cur_msg; 962 struct chip_data *chip = spi_get_ctldata(spi); 963 u32 dma_thresh = chip->dma_threshold; 964 u32 dma_burst = chip->dma_burst_size; 965 u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data); 966 u32 clk_div; 967 u8 bits; 968 u32 speed; 969 u32 cr0; 970 u32 cr1; 971 int err; 972 int dma_mapped; 973 974 /* Check if we can DMA this transfer */ 975 if (transfer->len > MAX_DMA_LEN && chip->enable_dma) { 976 977 /* reject already-mapped transfers; PIO won't always work */ 978 if (message->is_dma_mapped 979 || transfer->rx_dma || transfer->tx_dma) { 980 dev_err(&spi->dev, 981 "Mapped transfer length of %u is greater than %d\n", 982 transfer->len, MAX_DMA_LEN); 983 return -EINVAL; 984 } 985 986 /* warn ... we force this to PIO mode */ 987 dev_warn_ratelimited(&spi->dev, 988 "DMA disabled for transfer length %ld greater than %d\n", 989 (long)transfer->len, MAX_DMA_LEN); 990 } 991 992 /* Setup the transfer state based on the type of transfer */ 993 if (pxa2xx_spi_flush(drv_data) == 0) { 994 dev_err(&spi->dev, "Flush failed\n"); 995 return -EIO; 996 } 997 drv_data->n_bytes = chip->n_bytes; 998 drv_data->tx = (void *)transfer->tx_buf; 999 drv_data->tx_end = drv_data->tx + transfer->len; 1000 drv_data->rx = transfer->rx_buf; 1001 drv_data->rx_end = drv_data->rx + transfer->len; 1002 drv_data->write = drv_data->tx ? chip->write : null_writer; 1003 drv_data->read = drv_data->rx ? chip->read : null_reader; 1004 1005 /* Change speed and bit per word on a per transfer */ 1006 bits = transfer->bits_per_word; 1007 speed = transfer->speed_hz; 1008 1009 clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed); 1010 1011 if (bits <= 8) { 1012 drv_data->n_bytes = 1; 1013 drv_data->read = drv_data->read != null_reader ? 1014 u8_reader : null_reader; 1015 drv_data->write = drv_data->write != null_writer ? 1016 u8_writer : null_writer; 1017 } else if (bits <= 16) { 1018 drv_data->n_bytes = 2; 1019 drv_data->read = drv_data->read != null_reader ? 1020 u16_reader : null_reader; 1021 drv_data->write = drv_data->write != null_writer ? 1022 u16_writer : null_writer; 1023 } else if (bits <= 32) { 1024 drv_data->n_bytes = 4; 1025 drv_data->read = drv_data->read != null_reader ? 1026 u32_reader : null_reader; 1027 drv_data->write = drv_data->write != null_writer ? 1028 u32_writer : null_writer; 1029 } 1030 /* 1031 * if bits/word is changed in dma mode, then must check the 1032 * thresholds and burst also 1033 */ 1034 if (chip->enable_dma) { 1035 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, 1036 spi, 1037 bits, &dma_burst, 1038 &dma_thresh)) 1039 dev_warn_ratelimited(&spi->dev, 1040 "DMA burst size reduced to match bits_per_word\n"); 1041 } 1042 1043 dma_mapped = controller->can_dma && 1044 controller->can_dma(controller, spi, transfer) && 1045 controller->cur_msg_mapped; 1046 if (dma_mapped) { 1047 1048 /* Ensure we have the correct interrupt handler */ 1049 drv_data->transfer_handler = pxa2xx_spi_dma_transfer; 1050 1051 err = pxa2xx_spi_dma_prepare(drv_data, transfer); 1052 if (err) 1053 return err; 1054 1055 /* Clear status and start DMA engine */ 1056 cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1; 1057 pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr); 1058 1059 pxa2xx_spi_dma_start(drv_data); 1060 } else { 1061 /* Ensure we have the correct interrupt handler */ 1062 drv_data->transfer_handler = interrupt_transfer; 1063 1064 /* Clear status */ 1065 cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1; 1066 write_SSSR_CS(drv_data, drv_data->clear_sr); 1067 } 1068 1069 /* NOTE: PXA25x_SSP _could_ use external clocking ... */ 1070 cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits); 1071 if (!pxa25x_ssp_comp(drv_data)) 1072 dev_dbg(&spi->dev, "%u Hz actual, %s\n", 1073 controller->max_speed_hz 1074 / (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)), 1075 dma_mapped ? "DMA" : "PIO"); 1076 else 1077 dev_dbg(&spi->dev, "%u Hz actual, %s\n", 1078 controller->max_speed_hz / 2 1079 / (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)), 1080 dma_mapped ? "DMA" : "PIO"); 1081 1082 if (is_lpss_ssp(drv_data)) { 1083 if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff) 1084 != chip->lpss_rx_threshold) 1085 pxa2xx_spi_write(drv_data, SSIRF, 1086 chip->lpss_rx_threshold); 1087 if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff) 1088 != chip->lpss_tx_threshold) 1089 pxa2xx_spi_write(drv_data, SSITF, 1090 chip->lpss_tx_threshold); 1091 } 1092 1093 if (is_quark_x1000_ssp(drv_data) && 1094 (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate)) 1095 pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate); 1096 1097 /* see if we need to reload the config registers */ 1098 if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0) 1099 || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask) 1100 != (cr1 & change_mask)) { 1101 /* stop the SSP, and update the other bits */ 1102 if (!is_mmp2_ssp(drv_data)) 1103 pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE); 1104 if (!pxa25x_ssp_comp(drv_data)) 1105 pxa2xx_spi_write(drv_data, SSTO, chip->timeout); 1106 /* first set CR1 without interrupt and service enables */ 1107 pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask); 1108 /* restart the SSP */ 1109 pxa2xx_spi_write(drv_data, SSCR0, cr0); 1110 1111 } else { 1112 if (!pxa25x_ssp_comp(drv_data)) 1113 pxa2xx_spi_write(drv_data, SSTO, chip->timeout); 1114 } 1115 1116 if (is_mmp2_ssp(drv_data)) { 1117 u8 tx_level = (pxa2xx_spi_read(drv_data, SSSR) 1118 & SSSR_TFL_MASK) >> 8; 1119 1120 if (tx_level) { 1121 /* On MMP2, flipping SSE doesn't to empty TXFIFO. */ 1122 dev_warn(&spi->dev, "%d bytes of garbage in TXFIFO!\n", 1123 tx_level); 1124 if (tx_level > transfer->len) 1125 tx_level = transfer->len; 1126 drv_data->tx += tx_level; 1127 } 1128 } 1129 1130 if (spi_controller_is_slave(controller)) { 1131 while (drv_data->write(drv_data)) 1132 ; 1133 if (drv_data->gpiod_ready) { 1134 gpiod_set_value(drv_data->gpiod_ready, 1); 1135 udelay(1); 1136 gpiod_set_value(drv_data->gpiod_ready, 0); 1137 } 1138 } 1139 1140 /* 1141 * Release the data by enabling service requests and interrupts, 1142 * without changing any mode bits 1143 */ 1144 pxa2xx_spi_write(drv_data, SSCR1, cr1); 1145 1146 return 1; 1147 } 1148 1149 static int pxa2xx_spi_slave_abort(struct spi_controller *controller) 1150 { 1151 struct driver_data *drv_data = spi_controller_get_devdata(controller); 1152 1153 /* Stop and reset SSP */ 1154 write_SSSR_CS(drv_data, drv_data->clear_sr); 1155 reset_sccr1(drv_data); 1156 if (!pxa25x_ssp_comp(drv_data)) 1157 pxa2xx_spi_write(drv_data, SSTO, 0); 1158 pxa2xx_spi_flush(drv_data); 1159 pxa2xx_spi_off(drv_data); 1160 1161 dev_dbg(&drv_data->pdev->dev, "transfer aborted\n"); 1162 1163 drv_data->controller->cur_msg->status = -EINTR; 1164 spi_finalize_current_transfer(drv_data->controller); 1165 1166 return 0; 1167 } 1168 1169 static void pxa2xx_spi_handle_err(struct spi_controller *controller, 1170 struct spi_message *msg) 1171 { 1172 struct driver_data *drv_data = spi_controller_get_devdata(controller); 1173 1174 /* Disable the SSP */ 1175 pxa2xx_spi_off(drv_data); 1176 /* Clear and disable interrupts and service requests */ 1177 write_SSSR_CS(drv_data, drv_data->clear_sr); 1178 pxa2xx_spi_write(drv_data, SSCR1, 1179 pxa2xx_spi_read(drv_data, SSCR1) 1180 & ~(drv_data->int_cr1 | drv_data->dma_cr1)); 1181 if (!pxa25x_ssp_comp(drv_data)) 1182 pxa2xx_spi_write(drv_data, SSTO, 0); 1183 1184 /* 1185 * Stop the DMA if running. Note DMA callback handler may have unset 1186 * the dma_running already, which is fine as stopping is not needed 1187 * then but we shouldn't rely this flag for anything else than 1188 * stopping. For instance to differentiate between PIO and DMA 1189 * transfers. 1190 */ 1191 if (atomic_read(&drv_data->dma_running)) 1192 pxa2xx_spi_dma_stop(drv_data); 1193 } 1194 1195 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller) 1196 { 1197 struct driver_data *drv_data = spi_controller_get_devdata(controller); 1198 1199 /* Disable the SSP now */ 1200 pxa2xx_spi_off(drv_data); 1201 1202 return 0; 1203 } 1204 1205 static int setup_cs(struct spi_device *spi, struct chip_data *chip, 1206 struct pxa2xx_spi_chip *chip_info) 1207 { 1208 struct driver_data *drv_data = 1209 spi_controller_get_devdata(spi->controller); 1210 struct gpio_desc *gpiod; 1211 int err = 0; 1212 1213 if (chip == NULL) 1214 return 0; 1215 1216 if (drv_data->cs_gpiods) { 1217 gpiod = drv_data->cs_gpiods[spi->chip_select]; 1218 if (gpiod) { 1219 chip->gpiod_cs = gpiod; 1220 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH; 1221 gpiod_set_value(gpiod, chip->gpio_cs_inverted); 1222 } 1223 1224 return 0; 1225 } 1226 1227 if (chip_info == NULL) 1228 return 0; 1229 1230 /* NOTE: setup() can be called multiple times, possibly with 1231 * different chip_info, release previously requested GPIO 1232 */ 1233 if (chip->gpiod_cs) { 1234 gpiod_put(chip->gpiod_cs); 1235 chip->gpiod_cs = NULL; 1236 } 1237 1238 /* If (*cs_control) is provided, ignore GPIO chip select */ 1239 if (chip_info->cs_control) { 1240 chip->cs_control = chip_info->cs_control; 1241 return 0; 1242 } 1243 1244 if (gpio_is_valid(chip_info->gpio_cs)) { 1245 err = gpio_request(chip_info->gpio_cs, "SPI_CS"); 1246 if (err) { 1247 dev_err(&spi->dev, "failed to request chip select GPIO%d\n", 1248 chip_info->gpio_cs); 1249 return err; 1250 } 1251 1252 gpiod = gpio_to_desc(chip_info->gpio_cs); 1253 chip->gpiod_cs = gpiod; 1254 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH; 1255 1256 err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted); 1257 } 1258 1259 return err; 1260 } 1261 1262 static int setup(struct spi_device *spi) 1263 { 1264 struct pxa2xx_spi_chip *chip_info; 1265 struct chip_data *chip; 1266 const struct lpss_config *config; 1267 struct driver_data *drv_data = 1268 spi_controller_get_devdata(spi->controller); 1269 uint tx_thres, tx_hi_thres, rx_thres; 1270 1271 switch (drv_data->ssp_type) { 1272 case QUARK_X1000_SSP: 1273 tx_thres = TX_THRESH_QUARK_X1000_DFLT; 1274 tx_hi_thres = 0; 1275 rx_thres = RX_THRESH_QUARK_X1000_DFLT; 1276 break; 1277 case CE4100_SSP: 1278 tx_thres = TX_THRESH_CE4100_DFLT; 1279 tx_hi_thres = 0; 1280 rx_thres = RX_THRESH_CE4100_DFLT; 1281 break; 1282 case LPSS_LPT_SSP: 1283 case LPSS_BYT_SSP: 1284 case LPSS_BSW_SSP: 1285 case LPSS_SPT_SSP: 1286 case LPSS_BXT_SSP: 1287 case LPSS_CNL_SSP: 1288 config = lpss_get_config(drv_data); 1289 tx_thres = config->tx_threshold_lo; 1290 tx_hi_thres = config->tx_threshold_hi; 1291 rx_thres = config->rx_threshold; 1292 break; 1293 default: 1294 tx_hi_thres = 0; 1295 if (spi_controller_is_slave(drv_data->controller)) { 1296 tx_thres = 1; 1297 rx_thres = 2; 1298 } else { 1299 tx_thres = TX_THRESH_DFLT; 1300 rx_thres = RX_THRESH_DFLT; 1301 } 1302 break; 1303 } 1304 1305 /* Only alloc on first setup */ 1306 chip = spi_get_ctldata(spi); 1307 if (!chip) { 1308 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); 1309 if (!chip) 1310 return -ENOMEM; 1311 1312 if (drv_data->ssp_type == CE4100_SSP) { 1313 if (spi->chip_select > 4) { 1314 dev_err(&spi->dev, 1315 "failed setup: cs number must not be > 4.\n"); 1316 kfree(chip); 1317 return -EINVAL; 1318 } 1319 1320 chip->frm = spi->chip_select; 1321 } 1322 chip->enable_dma = drv_data->controller_info->enable_dma; 1323 chip->timeout = TIMOUT_DFLT; 1324 } 1325 1326 /* protocol drivers may change the chip settings, so... 1327 * if chip_info exists, use it */ 1328 chip_info = spi->controller_data; 1329 1330 /* chip_info isn't always needed */ 1331 chip->cr1 = 0; 1332 if (chip_info) { 1333 if (chip_info->timeout) 1334 chip->timeout = chip_info->timeout; 1335 if (chip_info->tx_threshold) 1336 tx_thres = chip_info->tx_threshold; 1337 if (chip_info->tx_hi_threshold) 1338 tx_hi_thres = chip_info->tx_hi_threshold; 1339 if (chip_info->rx_threshold) 1340 rx_thres = chip_info->rx_threshold; 1341 chip->dma_threshold = 0; 1342 if (chip_info->enable_loopback) 1343 chip->cr1 = SSCR1_LBM; 1344 } 1345 if (spi_controller_is_slave(drv_data->controller)) { 1346 chip->cr1 |= SSCR1_SCFR; 1347 chip->cr1 |= SSCR1_SCLKDIR; 1348 chip->cr1 |= SSCR1_SFRMDIR; 1349 chip->cr1 |= SSCR1_SPH; 1350 } 1351 1352 chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres); 1353 chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) 1354 | SSITF_TxHiThresh(tx_hi_thres); 1355 1356 /* set dma burst and threshold outside of chip_info path so that if 1357 * chip_info goes away after setting chip->enable_dma, the 1358 * burst and threshold can still respond to changes in bits_per_word */ 1359 if (chip->enable_dma) { 1360 /* set up legal burst and threshold for dma */ 1361 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi, 1362 spi->bits_per_word, 1363 &chip->dma_burst_size, 1364 &chip->dma_threshold)) { 1365 dev_warn(&spi->dev, 1366 "in setup: DMA burst size reduced to match bits_per_word\n"); 1367 } 1368 dev_dbg(&spi->dev, 1369 "in setup: DMA burst size set to %u\n", 1370 chip->dma_burst_size); 1371 } 1372 1373 switch (drv_data->ssp_type) { 1374 case QUARK_X1000_SSP: 1375 chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres) 1376 & QUARK_X1000_SSCR1_RFT) 1377 | (QUARK_X1000_SSCR1_TxTresh(tx_thres) 1378 & QUARK_X1000_SSCR1_TFT); 1379 break; 1380 case CE4100_SSP: 1381 chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) | 1382 (CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT); 1383 break; 1384 default: 1385 chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) | 1386 (SSCR1_TxTresh(tx_thres) & SSCR1_TFT); 1387 break; 1388 } 1389 1390 chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH); 1391 chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0) 1392 | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0); 1393 1394 if (spi->mode & SPI_LOOP) 1395 chip->cr1 |= SSCR1_LBM; 1396 1397 if (spi->bits_per_word <= 8) { 1398 chip->n_bytes = 1; 1399 chip->read = u8_reader; 1400 chip->write = u8_writer; 1401 } else if (spi->bits_per_word <= 16) { 1402 chip->n_bytes = 2; 1403 chip->read = u16_reader; 1404 chip->write = u16_writer; 1405 } else if (spi->bits_per_word <= 32) { 1406 chip->n_bytes = 4; 1407 chip->read = u32_reader; 1408 chip->write = u32_writer; 1409 } 1410 1411 spi_set_ctldata(spi, chip); 1412 1413 if (drv_data->ssp_type == CE4100_SSP) 1414 return 0; 1415 1416 return setup_cs(spi, chip, chip_info); 1417 } 1418 1419 static void cleanup(struct spi_device *spi) 1420 { 1421 struct chip_data *chip = spi_get_ctldata(spi); 1422 struct driver_data *drv_data = 1423 spi_controller_get_devdata(spi->controller); 1424 1425 if (!chip) 1426 return; 1427 1428 if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods && 1429 chip->gpiod_cs) 1430 gpiod_put(chip->gpiod_cs); 1431 1432 kfree(chip); 1433 } 1434 1435 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = { 1436 { "INT33C0", LPSS_LPT_SSP }, 1437 { "INT33C1", LPSS_LPT_SSP }, 1438 { "INT3430", LPSS_LPT_SSP }, 1439 { "INT3431", LPSS_LPT_SSP }, 1440 { "80860F0E", LPSS_BYT_SSP }, 1441 { "8086228E", LPSS_BSW_SSP }, 1442 { }, 1443 }; 1444 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match); 1445 1446 /* 1447 * PCI IDs of compound devices that integrate both host controller and private 1448 * integrated DMA engine. Please note these are not used in module 1449 * autoloading and probing in this module but matching the LPSS SSP type. 1450 */ 1451 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = { 1452 /* SPT-LP */ 1453 { PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP }, 1454 { PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP }, 1455 /* SPT-H */ 1456 { PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP }, 1457 { PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP }, 1458 /* KBL-H */ 1459 { PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP }, 1460 { PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP }, 1461 /* CML-V */ 1462 { PCI_VDEVICE(INTEL, 0xa3a9), LPSS_SPT_SSP }, 1463 { PCI_VDEVICE(INTEL, 0xa3aa), LPSS_SPT_SSP }, 1464 /* BXT A-Step */ 1465 { PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP }, 1466 { PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP }, 1467 { PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP }, 1468 /* BXT B-Step */ 1469 { PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP }, 1470 { PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP }, 1471 { PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP }, 1472 /* GLK */ 1473 { PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP }, 1474 { PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP }, 1475 { PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP }, 1476 /* ICL-LP */ 1477 { PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP }, 1478 { PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP }, 1479 { PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP }, 1480 /* EHL */ 1481 { PCI_VDEVICE(INTEL, 0x4b2a), LPSS_BXT_SSP }, 1482 { PCI_VDEVICE(INTEL, 0x4b2b), LPSS_BXT_SSP }, 1483 { PCI_VDEVICE(INTEL, 0x4b37), LPSS_BXT_SSP }, 1484 /* JSL */ 1485 { PCI_VDEVICE(INTEL, 0x4daa), LPSS_CNL_SSP }, 1486 { PCI_VDEVICE(INTEL, 0x4dab), LPSS_CNL_SSP }, 1487 { PCI_VDEVICE(INTEL, 0x4dfb), LPSS_CNL_SSP }, 1488 /* APL */ 1489 { PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP }, 1490 { PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP }, 1491 { PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP }, 1492 /* CNL-LP */ 1493 { PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP }, 1494 { PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP }, 1495 { PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP }, 1496 /* CNL-H */ 1497 { PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP }, 1498 { PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP }, 1499 { PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP }, 1500 /* CML-LP */ 1501 { PCI_VDEVICE(INTEL, 0x02aa), LPSS_CNL_SSP }, 1502 { PCI_VDEVICE(INTEL, 0x02ab), LPSS_CNL_SSP }, 1503 { PCI_VDEVICE(INTEL, 0x02fb), LPSS_CNL_SSP }, 1504 /* CML-H */ 1505 { PCI_VDEVICE(INTEL, 0x06aa), LPSS_CNL_SSP }, 1506 { PCI_VDEVICE(INTEL, 0x06ab), LPSS_CNL_SSP }, 1507 { PCI_VDEVICE(INTEL, 0x06fb), LPSS_CNL_SSP }, 1508 /* TGL-LP */ 1509 { PCI_VDEVICE(INTEL, 0xa0aa), LPSS_CNL_SSP }, 1510 { PCI_VDEVICE(INTEL, 0xa0ab), LPSS_CNL_SSP }, 1511 { PCI_VDEVICE(INTEL, 0xa0de), LPSS_CNL_SSP }, 1512 { PCI_VDEVICE(INTEL, 0xa0df), LPSS_CNL_SSP }, 1513 { PCI_VDEVICE(INTEL, 0xa0fb), LPSS_CNL_SSP }, 1514 { PCI_VDEVICE(INTEL, 0xa0fd), LPSS_CNL_SSP }, 1515 { PCI_VDEVICE(INTEL, 0xa0fe), LPSS_CNL_SSP }, 1516 { }, 1517 }; 1518 1519 static const struct of_device_id pxa2xx_spi_of_match[] = { 1520 { .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP }, 1521 {}, 1522 }; 1523 MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match); 1524 1525 #ifdef CONFIG_ACPI 1526 1527 static int pxa2xx_spi_get_port_id(struct device *dev) 1528 { 1529 struct acpi_device *adev; 1530 unsigned int devid; 1531 int port_id = -1; 1532 1533 adev = ACPI_COMPANION(dev); 1534 if (adev && adev->pnp.unique_id && 1535 !kstrtouint(adev->pnp.unique_id, 0, &devid)) 1536 port_id = devid; 1537 return port_id; 1538 } 1539 1540 #else /* !CONFIG_ACPI */ 1541 1542 static int pxa2xx_spi_get_port_id(struct device *dev) 1543 { 1544 return -1; 1545 } 1546 1547 #endif /* CONFIG_ACPI */ 1548 1549 1550 #ifdef CONFIG_PCI 1551 1552 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param) 1553 { 1554 return param == chan->device->dev; 1555 } 1556 1557 #endif /* CONFIG_PCI */ 1558 1559 static struct pxa2xx_spi_controller * 1560 pxa2xx_spi_init_pdata(struct platform_device *pdev) 1561 { 1562 struct pxa2xx_spi_controller *pdata; 1563 struct ssp_device *ssp; 1564 struct resource *res; 1565 struct device *parent = pdev->dev.parent; 1566 struct pci_dev *pcidev = dev_is_pci(parent) ? to_pci_dev(parent) : NULL; 1567 const struct pci_device_id *pcidev_id = NULL; 1568 enum pxa_ssp_type type; 1569 const void *match; 1570 1571 if (pcidev) 1572 pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match, pcidev); 1573 1574 match = device_get_match_data(&pdev->dev); 1575 if (match) 1576 type = (enum pxa_ssp_type)match; 1577 else if (pcidev_id) 1578 type = (enum pxa_ssp_type)pcidev_id->driver_data; 1579 else 1580 return ERR_PTR(-EINVAL); 1581 1582 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); 1583 if (!pdata) 1584 return ERR_PTR(-ENOMEM); 1585 1586 ssp = &pdata->ssp; 1587 1588 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1589 ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res); 1590 if (IS_ERR(ssp->mmio_base)) 1591 return ERR_CAST(ssp->mmio_base); 1592 1593 ssp->phys_base = res->start; 1594 1595 #ifdef CONFIG_PCI 1596 if (pcidev_id) { 1597 pdata->tx_param = parent; 1598 pdata->rx_param = parent; 1599 pdata->dma_filter = pxa2xx_spi_idma_filter; 1600 } 1601 #endif 1602 1603 ssp->clk = devm_clk_get(&pdev->dev, NULL); 1604 if (IS_ERR(ssp->clk)) 1605 return ERR_CAST(ssp->clk); 1606 1607 ssp->irq = platform_get_irq(pdev, 0); 1608 if (ssp->irq < 0) 1609 return ERR_PTR(ssp->irq); 1610 1611 ssp->type = type; 1612 ssp->dev = &pdev->dev; 1613 ssp->port_id = pxa2xx_spi_get_port_id(&pdev->dev); 1614 1615 pdata->is_slave = device_property_read_bool(&pdev->dev, "spi-slave"); 1616 pdata->num_chipselect = 1; 1617 pdata->enable_dma = true; 1618 pdata->dma_burst_size = 1; 1619 1620 return pdata; 1621 } 1622 1623 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller, 1624 unsigned int cs) 1625 { 1626 struct driver_data *drv_data = spi_controller_get_devdata(controller); 1627 1628 if (has_acpi_companion(&drv_data->pdev->dev)) { 1629 switch (drv_data->ssp_type) { 1630 /* 1631 * For Atoms the ACPI DeviceSelection used by the Windows 1632 * driver starts from 1 instead of 0 so translate it here 1633 * to match what Linux expects. 1634 */ 1635 case LPSS_BYT_SSP: 1636 case LPSS_BSW_SSP: 1637 return cs - 1; 1638 1639 default: 1640 break; 1641 } 1642 } 1643 1644 return cs; 1645 } 1646 1647 static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi) 1648 { 1649 return MAX_DMA_LEN; 1650 } 1651 1652 static int pxa2xx_spi_probe(struct platform_device *pdev) 1653 { 1654 struct device *dev = &pdev->dev; 1655 struct pxa2xx_spi_controller *platform_info; 1656 struct spi_controller *controller; 1657 struct driver_data *drv_data; 1658 struct ssp_device *ssp; 1659 const struct lpss_config *config; 1660 int status, count; 1661 u32 tmp; 1662 1663 platform_info = dev_get_platdata(dev); 1664 if (!platform_info) { 1665 platform_info = pxa2xx_spi_init_pdata(pdev); 1666 if (IS_ERR(platform_info)) { 1667 dev_err(&pdev->dev, "missing platform data\n"); 1668 return PTR_ERR(platform_info); 1669 } 1670 } 1671 1672 ssp = pxa_ssp_request(pdev->id, pdev->name); 1673 if (!ssp) 1674 ssp = &platform_info->ssp; 1675 1676 if (!ssp->mmio_base) { 1677 dev_err(&pdev->dev, "failed to get ssp\n"); 1678 return -ENODEV; 1679 } 1680 1681 if (platform_info->is_slave) 1682 controller = spi_alloc_slave(dev, sizeof(struct driver_data)); 1683 else 1684 controller = spi_alloc_master(dev, sizeof(struct driver_data)); 1685 1686 if (!controller) { 1687 dev_err(&pdev->dev, "cannot alloc spi_controller\n"); 1688 pxa_ssp_free(ssp); 1689 return -ENOMEM; 1690 } 1691 drv_data = spi_controller_get_devdata(controller); 1692 drv_data->controller = controller; 1693 drv_data->controller_info = platform_info; 1694 drv_data->pdev = pdev; 1695 drv_data->ssp = ssp; 1696 1697 controller->dev.of_node = pdev->dev.of_node; 1698 /* the spi->mode bits understood by this driver: */ 1699 controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP; 1700 1701 controller->bus_num = ssp->port_id; 1702 controller->dma_alignment = DMA_ALIGNMENT; 1703 controller->cleanup = cleanup; 1704 controller->setup = setup; 1705 controller->set_cs = pxa2xx_spi_set_cs; 1706 controller->transfer_one = pxa2xx_spi_transfer_one; 1707 controller->slave_abort = pxa2xx_spi_slave_abort; 1708 controller->handle_err = pxa2xx_spi_handle_err; 1709 controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer; 1710 controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs; 1711 controller->auto_runtime_pm = true; 1712 controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX; 1713 1714 drv_data->ssp_type = ssp->type; 1715 1716 drv_data->ioaddr = ssp->mmio_base; 1717 drv_data->ssdr_physical = ssp->phys_base + SSDR; 1718 if (pxa25x_ssp_comp(drv_data)) { 1719 switch (drv_data->ssp_type) { 1720 case QUARK_X1000_SSP: 1721 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 1722 break; 1723 default: 1724 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); 1725 break; 1726 } 1727 1728 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE; 1729 drv_data->dma_cr1 = 0; 1730 drv_data->clear_sr = SSSR_ROR; 1731 drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR; 1732 } else { 1733 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 1734 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE; 1735 drv_data->dma_cr1 = DEFAULT_DMA_CR1; 1736 drv_data->clear_sr = SSSR_ROR | SSSR_TINT; 1737 drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS 1738 | SSSR_ROR | SSSR_TUR; 1739 } 1740 1741 status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev), 1742 drv_data); 1743 if (status < 0) { 1744 dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq); 1745 goto out_error_controller_alloc; 1746 } 1747 1748 /* Setup DMA if requested */ 1749 if (platform_info->enable_dma) { 1750 status = pxa2xx_spi_dma_setup(drv_data); 1751 if (status) { 1752 dev_warn(dev, "no DMA channels available, using PIO\n"); 1753 platform_info->enable_dma = false; 1754 } else { 1755 controller->can_dma = pxa2xx_spi_can_dma; 1756 controller->max_dma_len = MAX_DMA_LEN; 1757 controller->max_transfer_size = 1758 pxa2xx_spi_max_dma_transfer_size; 1759 } 1760 } 1761 1762 /* Enable SOC clock */ 1763 status = clk_prepare_enable(ssp->clk); 1764 if (status) 1765 goto out_error_dma_irq_alloc; 1766 1767 controller->max_speed_hz = clk_get_rate(ssp->clk); 1768 /* 1769 * Set minimum speed for all other platforms than Intel Quark which is 1770 * able do under 1 Hz transfers. 1771 */ 1772 if (!pxa25x_ssp_comp(drv_data)) 1773 controller->min_speed_hz = 1774 DIV_ROUND_UP(controller->max_speed_hz, 4096); 1775 else if (!is_quark_x1000_ssp(drv_data)) 1776 controller->min_speed_hz = 1777 DIV_ROUND_UP(controller->max_speed_hz, 512); 1778 1779 /* Load default SSP configuration */ 1780 pxa2xx_spi_write(drv_data, SSCR0, 0); 1781 switch (drv_data->ssp_type) { 1782 case QUARK_X1000_SSP: 1783 tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) | 1784 QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT); 1785 pxa2xx_spi_write(drv_data, SSCR1, tmp); 1786 1787 /* using the Motorola SPI protocol and use 8 bit frame */ 1788 tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8); 1789 pxa2xx_spi_write(drv_data, SSCR0, tmp); 1790 break; 1791 case CE4100_SSP: 1792 tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) | 1793 CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT); 1794 pxa2xx_spi_write(drv_data, SSCR1, tmp); 1795 tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8); 1796 pxa2xx_spi_write(drv_data, SSCR0, tmp); 1797 break; 1798 default: 1799 1800 if (spi_controller_is_slave(controller)) { 1801 tmp = SSCR1_SCFR | 1802 SSCR1_SCLKDIR | 1803 SSCR1_SFRMDIR | 1804 SSCR1_RxTresh(2) | 1805 SSCR1_TxTresh(1) | 1806 SSCR1_SPH; 1807 } else { 1808 tmp = SSCR1_RxTresh(RX_THRESH_DFLT) | 1809 SSCR1_TxTresh(TX_THRESH_DFLT); 1810 } 1811 pxa2xx_spi_write(drv_data, SSCR1, tmp); 1812 tmp = SSCR0_Motorola | SSCR0_DataSize(8); 1813 if (!spi_controller_is_slave(controller)) 1814 tmp |= SSCR0_SCR(2); 1815 pxa2xx_spi_write(drv_data, SSCR0, tmp); 1816 break; 1817 } 1818 1819 if (!pxa25x_ssp_comp(drv_data)) 1820 pxa2xx_spi_write(drv_data, SSTO, 0); 1821 1822 if (!is_quark_x1000_ssp(drv_data)) 1823 pxa2xx_spi_write(drv_data, SSPSP, 0); 1824 1825 if (is_lpss_ssp(drv_data)) { 1826 lpss_ssp_setup(drv_data); 1827 config = lpss_get_config(drv_data); 1828 if (config->reg_capabilities >= 0) { 1829 tmp = __lpss_ssp_read_priv(drv_data, 1830 config->reg_capabilities); 1831 tmp &= LPSS_CAPS_CS_EN_MASK; 1832 tmp >>= LPSS_CAPS_CS_EN_SHIFT; 1833 platform_info->num_chipselect = ffz(tmp); 1834 } else if (config->cs_num) { 1835 platform_info->num_chipselect = config->cs_num; 1836 } 1837 } 1838 controller->num_chipselect = platform_info->num_chipselect; 1839 1840 count = gpiod_count(&pdev->dev, "cs"); 1841 if (count > 0) { 1842 int i; 1843 1844 controller->num_chipselect = max_t(int, count, 1845 controller->num_chipselect); 1846 1847 drv_data->cs_gpiods = devm_kcalloc(&pdev->dev, 1848 controller->num_chipselect, sizeof(struct gpio_desc *), 1849 GFP_KERNEL); 1850 if (!drv_data->cs_gpiods) { 1851 status = -ENOMEM; 1852 goto out_error_clock_enabled; 1853 } 1854 1855 for (i = 0; i < controller->num_chipselect; i++) { 1856 struct gpio_desc *gpiod; 1857 1858 gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS); 1859 if (IS_ERR(gpiod)) { 1860 /* Means use native chip select */ 1861 if (PTR_ERR(gpiod) == -ENOENT) 1862 continue; 1863 1864 status = PTR_ERR(gpiod); 1865 goto out_error_clock_enabled; 1866 } else { 1867 drv_data->cs_gpiods[i] = gpiod; 1868 } 1869 } 1870 } 1871 1872 if (platform_info->is_slave) { 1873 drv_data->gpiod_ready = devm_gpiod_get_optional(dev, 1874 "ready", GPIOD_OUT_LOW); 1875 if (IS_ERR(drv_data->gpiod_ready)) { 1876 status = PTR_ERR(drv_data->gpiod_ready); 1877 goto out_error_clock_enabled; 1878 } 1879 } 1880 1881 pm_runtime_set_autosuspend_delay(&pdev->dev, 50); 1882 pm_runtime_use_autosuspend(&pdev->dev); 1883 pm_runtime_set_active(&pdev->dev); 1884 pm_runtime_enable(&pdev->dev); 1885 1886 /* Register with the SPI framework */ 1887 platform_set_drvdata(pdev, drv_data); 1888 status = spi_register_controller(controller); 1889 if (status != 0) { 1890 dev_err(&pdev->dev, "problem registering spi controller\n"); 1891 goto out_error_pm_runtime_enabled; 1892 } 1893 1894 return status; 1895 1896 out_error_pm_runtime_enabled: 1897 pm_runtime_disable(&pdev->dev); 1898 1899 out_error_clock_enabled: 1900 clk_disable_unprepare(ssp->clk); 1901 1902 out_error_dma_irq_alloc: 1903 pxa2xx_spi_dma_release(drv_data); 1904 free_irq(ssp->irq, drv_data); 1905 1906 out_error_controller_alloc: 1907 spi_controller_put(controller); 1908 pxa_ssp_free(ssp); 1909 return status; 1910 } 1911 1912 static int pxa2xx_spi_remove(struct platform_device *pdev) 1913 { 1914 struct driver_data *drv_data = platform_get_drvdata(pdev); 1915 struct ssp_device *ssp = drv_data->ssp; 1916 1917 pm_runtime_get_sync(&pdev->dev); 1918 1919 spi_unregister_controller(drv_data->controller); 1920 1921 /* Disable the SSP at the peripheral and SOC level */ 1922 pxa2xx_spi_write(drv_data, SSCR0, 0); 1923 clk_disable_unprepare(ssp->clk); 1924 1925 /* Release DMA */ 1926 if (drv_data->controller_info->enable_dma) 1927 pxa2xx_spi_dma_release(drv_data); 1928 1929 pm_runtime_put_noidle(&pdev->dev); 1930 pm_runtime_disable(&pdev->dev); 1931 1932 /* Release IRQ */ 1933 free_irq(ssp->irq, drv_data); 1934 1935 /* Release SSP */ 1936 pxa_ssp_free(ssp); 1937 1938 return 0; 1939 } 1940 1941 #ifdef CONFIG_PM_SLEEP 1942 static int pxa2xx_spi_suspend(struct device *dev) 1943 { 1944 struct driver_data *drv_data = dev_get_drvdata(dev); 1945 struct ssp_device *ssp = drv_data->ssp; 1946 int status; 1947 1948 status = spi_controller_suspend(drv_data->controller); 1949 if (status != 0) 1950 return status; 1951 pxa2xx_spi_write(drv_data, SSCR0, 0); 1952 1953 if (!pm_runtime_suspended(dev)) 1954 clk_disable_unprepare(ssp->clk); 1955 1956 return 0; 1957 } 1958 1959 static int pxa2xx_spi_resume(struct device *dev) 1960 { 1961 struct driver_data *drv_data = dev_get_drvdata(dev); 1962 struct ssp_device *ssp = drv_data->ssp; 1963 int status; 1964 1965 /* Enable the SSP clock */ 1966 if (!pm_runtime_suspended(dev)) { 1967 status = clk_prepare_enable(ssp->clk); 1968 if (status) 1969 return status; 1970 } 1971 1972 /* Start the queue running */ 1973 return spi_controller_resume(drv_data->controller); 1974 } 1975 #endif 1976 1977 #ifdef CONFIG_PM 1978 static int pxa2xx_spi_runtime_suspend(struct device *dev) 1979 { 1980 struct driver_data *drv_data = dev_get_drvdata(dev); 1981 1982 clk_disable_unprepare(drv_data->ssp->clk); 1983 return 0; 1984 } 1985 1986 static int pxa2xx_spi_runtime_resume(struct device *dev) 1987 { 1988 struct driver_data *drv_data = dev_get_drvdata(dev); 1989 int status; 1990 1991 status = clk_prepare_enable(drv_data->ssp->clk); 1992 return status; 1993 } 1994 #endif 1995 1996 static const struct dev_pm_ops pxa2xx_spi_pm_ops = { 1997 SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume) 1998 SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend, 1999 pxa2xx_spi_runtime_resume, NULL) 2000 }; 2001 2002 static struct platform_driver driver = { 2003 .driver = { 2004 .name = "pxa2xx-spi", 2005 .pm = &pxa2xx_spi_pm_ops, 2006 .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match), 2007 .of_match_table = of_match_ptr(pxa2xx_spi_of_match), 2008 }, 2009 .probe = pxa2xx_spi_probe, 2010 .remove = pxa2xx_spi_remove, 2011 }; 2012 2013 static int __init pxa2xx_spi_init(void) 2014 { 2015 return platform_driver_register(&driver); 2016 } 2017 subsys_initcall(pxa2xx_spi_init); 2018 2019 static void __exit pxa2xx_spi_exit(void) 2020 { 2021 platform_driver_unregister(&driver); 2022 } 2023 module_exit(pxa2xx_spi_exit); 2024 2025 MODULE_SOFTDEP("pre: dw_dmac"); 2026