xref: /openbmc/linux/drivers/spi/spi-pxa2xx.c (revision 60ba4431)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4  * Copyright (C) 2013, 2021 Intel Corporation
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/bitops.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/err.h>
14 #include <linux/errno.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/ioport.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/mod_devicetable.h>
22 #include <linux/of.h>
23 #include <linux/platform_device.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/property.h>
26 #include <linux/slab.h>
27 
28 #include <linux/spi/pxa2xx_spi.h>
29 #include <linux/spi/spi.h>
30 
31 #include "spi-pxa2xx.h"
32 
33 MODULE_AUTHOR("Stephen Street");
34 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
35 MODULE_LICENSE("GPL");
36 MODULE_ALIAS("platform:pxa2xx-spi");
37 
38 #define TIMOUT_DFLT		1000
39 
40 /*
41  * For testing SSCR1 changes that require SSP restart, basically
42  * everything except the service and interrupt enables, the PXA270 developer
43  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
44  * list, but the PXA255 developer manual says all bits without really meaning
45  * the service and interrupt enables.
46  */
47 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
48 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
49 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
50 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
51 				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
52 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
53 
54 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
55 				| QUARK_X1000_SSCR1_EFWR	\
56 				| QUARK_X1000_SSCR1_RFT		\
57 				| QUARK_X1000_SSCR1_TFT		\
58 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
59 
60 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
61 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
62 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
63 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
64 				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
65 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
66 
67 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
68 #define LPSS_CS_CONTROL_SW_MODE			BIT(0)
69 #define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
70 #define LPSS_CAPS_CS_EN_SHIFT			9
71 #define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
72 
73 #define LPSS_PRIV_CLOCK_GATE 0x38
74 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3
75 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3
76 
77 struct lpss_config {
78 	/* LPSS offset from drv_data->ioaddr */
79 	unsigned offset;
80 	/* Register offsets from drv_data->lpss_base or -1 */
81 	int reg_general;
82 	int reg_ssp;
83 	int reg_cs_ctrl;
84 	int reg_capabilities;
85 	/* FIFO thresholds */
86 	u32 rx_threshold;
87 	u32 tx_threshold_lo;
88 	u32 tx_threshold_hi;
89 	/* Chip select control */
90 	unsigned cs_sel_shift;
91 	unsigned cs_sel_mask;
92 	unsigned cs_num;
93 	/* Quirks */
94 	unsigned cs_clk_stays_gated : 1;
95 };
96 
97 /* Keep these sorted with enum pxa_ssp_type */
98 static const struct lpss_config lpss_platforms[] = {
99 	{	/* LPSS_LPT_SSP */
100 		.offset = 0x800,
101 		.reg_general = 0x08,
102 		.reg_ssp = 0x0c,
103 		.reg_cs_ctrl = 0x18,
104 		.reg_capabilities = -1,
105 		.rx_threshold = 64,
106 		.tx_threshold_lo = 160,
107 		.tx_threshold_hi = 224,
108 	},
109 	{	/* LPSS_BYT_SSP */
110 		.offset = 0x400,
111 		.reg_general = 0x08,
112 		.reg_ssp = 0x0c,
113 		.reg_cs_ctrl = 0x18,
114 		.reg_capabilities = -1,
115 		.rx_threshold = 64,
116 		.tx_threshold_lo = 160,
117 		.tx_threshold_hi = 224,
118 	},
119 	{	/* LPSS_BSW_SSP */
120 		.offset = 0x400,
121 		.reg_general = 0x08,
122 		.reg_ssp = 0x0c,
123 		.reg_cs_ctrl = 0x18,
124 		.reg_capabilities = -1,
125 		.rx_threshold = 64,
126 		.tx_threshold_lo = 160,
127 		.tx_threshold_hi = 224,
128 		.cs_sel_shift = 2,
129 		.cs_sel_mask = 1 << 2,
130 		.cs_num = 2,
131 	},
132 	{	/* LPSS_SPT_SSP */
133 		.offset = 0x200,
134 		.reg_general = -1,
135 		.reg_ssp = 0x20,
136 		.reg_cs_ctrl = 0x24,
137 		.reg_capabilities = -1,
138 		.rx_threshold = 1,
139 		.tx_threshold_lo = 32,
140 		.tx_threshold_hi = 56,
141 	},
142 	{	/* LPSS_BXT_SSP */
143 		.offset = 0x200,
144 		.reg_general = -1,
145 		.reg_ssp = 0x20,
146 		.reg_cs_ctrl = 0x24,
147 		.reg_capabilities = 0xfc,
148 		.rx_threshold = 1,
149 		.tx_threshold_lo = 16,
150 		.tx_threshold_hi = 48,
151 		.cs_sel_shift = 8,
152 		.cs_sel_mask = 3 << 8,
153 		.cs_clk_stays_gated = true,
154 	},
155 	{	/* LPSS_CNL_SSP */
156 		.offset = 0x200,
157 		.reg_general = -1,
158 		.reg_ssp = 0x20,
159 		.reg_cs_ctrl = 0x24,
160 		.reg_capabilities = 0xfc,
161 		.rx_threshold = 1,
162 		.tx_threshold_lo = 32,
163 		.tx_threshold_hi = 56,
164 		.cs_sel_shift = 8,
165 		.cs_sel_mask = 3 << 8,
166 		.cs_clk_stays_gated = true,
167 	},
168 };
169 
170 static inline const struct lpss_config
lpss_get_config(const struct driver_data * drv_data)171 *lpss_get_config(const struct driver_data *drv_data)
172 {
173 	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
174 }
175 
is_lpss_ssp(const struct driver_data * drv_data)176 static bool is_lpss_ssp(const struct driver_data *drv_data)
177 {
178 	switch (drv_data->ssp_type) {
179 	case LPSS_LPT_SSP:
180 	case LPSS_BYT_SSP:
181 	case LPSS_BSW_SSP:
182 	case LPSS_SPT_SSP:
183 	case LPSS_BXT_SSP:
184 	case LPSS_CNL_SSP:
185 		return true;
186 	default:
187 		return false;
188 	}
189 }
190 
is_quark_x1000_ssp(const struct driver_data * drv_data)191 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
192 {
193 	return drv_data->ssp_type == QUARK_X1000_SSP;
194 }
195 
is_mmp2_ssp(const struct driver_data * drv_data)196 static bool is_mmp2_ssp(const struct driver_data *drv_data)
197 {
198 	return drv_data->ssp_type == MMP2_SSP;
199 }
200 
is_mrfld_ssp(const struct driver_data * drv_data)201 static bool is_mrfld_ssp(const struct driver_data *drv_data)
202 {
203 	return drv_data->ssp_type == MRFLD_SSP;
204 }
205 
pxa2xx_spi_update(const struct driver_data * drv_data,u32 reg,u32 mask,u32 value)206 static void pxa2xx_spi_update(const struct driver_data *drv_data, u32 reg, u32 mask, u32 value)
207 {
208 	if ((pxa2xx_spi_read(drv_data, reg) & mask) != value)
209 		pxa2xx_spi_write(drv_data, reg, value & mask);
210 }
211 
pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data * drv_data)212 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
213 {
214 	switch (drv_data->ssp_type) {
215 	case QUARK_X1000_SSP:
216 		return QUARK_X1000_SSCR1_CHANGE_MASK;
217 	case CE4100_SSP:
218 		return CE4100_SSCR1_CHANGE_MASK;
219 	default:
220 		return SSCR1_CHANGE_MASK;
221 	}
222 }
223 
224 static u32
pxa2xx_spi_get_rx_default_thre(const struct driver_data * drv_data)225 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
226 {
227 	switch (drv_data->ssp_type) {
228 	case QUARK_X1000_SSP:
229 		return RX_THRESH_QUARK_X1000_DFLT;
230 	case CE4100_SSP:
231 		return RX_THRESH_CE4100_DFLT;
232 	default:
233 		return RX_THRESH_DFLT;
234 	}
235 }
236 
pxa2xx_spi_txfifo_full(const struct driver_data * drv_data)237 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
238 {
239 	u32 mask;
240 
241 	switch (drv_data->ssp_type) {
242 	case QUARK_X1000_SSP:
243 		mask = QUARK_X1000_SSSR_TFL_MASK;
244 		break;
245 	case CE4100_SSP:
246 		mask = CE4100_SSSR_TFL_MASK;
247 		break;
248 	default:
249 		mask = SSSR_TFL_MASK;
250 		break;
251 	}
252 
253 	return read_SSSR_bits(drv_data, mask) == mask;
254 }
255 
pxa2xx_spi_clear_rx_thre(const struct driver_data * drv_data,u32 * sccr1_reg)256 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
257 				     u32 *sccr1_reg)
258 {
259 	u32 mask;
260 
261 	switch (drv_data->ssp_type) {
262 	case QUARK_X1000_SSP:
263 		mask = QUARK_X1000_SSCR1_RFT;
264 		break;
265 	case CE4100_SSP:
266 		mask = CE4100_SSCR1_RFT;
267 		break;
268 	default:
269 		mask = SSCR1_RFT;
270 		break;
271 	}
272 	*sccr1_reg &= ~mask;
273 }
274 
pxa2xx_spi_set_rx_thre(const struct driver_data * drv_data,u32 * sccr1_reg,u32 threshold)275 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
276 				   u32 *sccr1_reg, u32 threshold)
277 {
278 	switch (drv_data->ssp_type) {
279 	case QUARK_X1000_SSP:
280 		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
281 		break;
282 	case CE4100_SSP:
283 		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
284 		break;
285 	default:
286 		*sccr1_reg |= SSCR1_RxTresh(threshold);
287 		break;
288 	}
289 }
290 
pxa2xx_configure_sscr0(const struct driver_data * drv_data,u32 clk_div,u8 bits)291 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
292 				  u32 clk_div, u8 bits)
293 {
294 	switch (drv_data->ssp_type) {
295 	case QUARK_X1000_SSP:
296 		return clk_div
297 			| QUARK_X1000_SSCR0_Motorola
298 			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits);
299 	default:
300 		return clk_div
301 			| SSCR0_Motorola
302 			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
303 			| (bits > 16 ? SSCR0_EDSS : 0);
304 	}
305 }
306 
307 /*
308  * Read and write LPSS SSP private registers. Caller must first check that
309  * is_lpss_ssp() returns true before these can be called.
310  */
__lpss_ssp_read_priv(struct driver_data * drv_data,unsigned offset)311 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
312 {
313 	WARN_ON(!drv_data->lpss_base);
314 	return readl(drv_data->lpss_base + offset);
315 }
316 
__lpss_ssp_write_priv(struct driver_data * drv_data,unsigned offset,u32 value)317 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
318 				  unsigned offset, u32 value)
319 {
320 	WARN_ON(!drv_data->lpss_base);
321 	writel(value, drv_data->lpss_base + offset);
322 }
323 
324 /*
325  * lpss_ssp_setup - perform LPSS SSP specific setup
326  * @drv_data: pointer to the driver private data
327  *
328  * Perform LPSS SSP specific setup. This function must be called first if
329  * one is going to use LPSS SSP private registers.
330  */
lpss_ssp_setup(struct driver_data * drv_data)331 static void lpss_ssp_setup(struct driver_data *drv_data)
332 {
333 	const struct lpss_config *config;
334 	u32 value;
335 
336 	config = lpss_get_config(drv_data);
337 	drv_data->lpss_base = drv_data->ssp->mmio_base + config->offset;
338 
339 	/* Enable software chip select control */
340 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
341 	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
342 	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
343 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
344 
345 	/* Enable multiblock DMA transfers */
346 	if (drv_data->controller_info->enable_dma) {
347 		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
348 
349 		if (config->reg_general >= 0) {
350 			value = __lpss_ssp_read_priv(drv_data,
351 						     config->reg_general);
352 			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
353 			__lpss_ssp_write_priv(drv_data,
354 					      config->reg_general, value);
355 		}
356 	}
357 }
358 
lpss_ssp_select_cs(struct spi_device * spi,const struct lpss_config * config)359 static void lpss_ssp_select_cs(struct spi_device *spi,
360 			       const struct lpss_config *config)
361 {
362 	struct driver_data *drv_data =
363 		spi_controller_get_devdata(spi->controller);
364 	u32 value, cs;
365 
366 	if (!config->cs_sel_mask)
367 		return;
368 
369 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
370 
371 	cs = spi_get_chipselect(spi, 0);
372 	cs <<= config->cs_sel_shift;
373 	if (cs != (value & config->cs_sel_mask)) {
374 		/*
375 		 * When switching another chip select output active the
376 		 * output must be selected first and wait 2 ssp_clk cycles
377 		 * before changing state to active. Otherwise a short
378 		 * glitch will occur on the previous chip select since
379 		 * output select is latched but state control is not.
380 		 */
381 		value &= ~config->cs_sel_mask;
382 		value |= cs;
383 		__lpss_ssp_write_priv(drv_data,
384 				      config->reg_cs_ctrl, value);
385 		ndelay(1000000000 /
386 		       (drv_data->controller->max_speed_hz / 2));
387 	}
388 }
389 
lpss_ssp_cs_control(struct spi_device * spi,bool enable)390 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
391 {
392 	struct driver_data *drv_data =
393 		spi_controller_get_devdata(spi->controller);
394 	const struct lpss_config *config;
395 	u32 value;
396 
397 	config = lpss_get_config(drv_data);
398 
399 	if (enable)
400 		lpss_ssp_select_cs(spi, config);
401 
402 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
403 	if (enable)
404 		value &= ~LPSS_CS_CONTROL_CS_HIGH;
405 	else
406 		value |= LPSS_CS_CONTROL_CS_HIGH;
407 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
408 	if (config->cs_clk_stays_gated) {
409 		u32 clkgate;
410 
411 		/*
412 		 * Changing CS alone when dynamic clock gating is on won't
413 		 * actually flip CS at that time. This ruins SPI transfers
414 		 * that specify delays, or have no data. Toggle the clock mode
415 		 * to force on briefly to poke the CS pin to move.
416 		 */
417 		clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE);
418 		value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) |
419 			LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON;
420 
421 		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value);
422 		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate);
423 	}
424 }
425 
cs_assert(struct spi_device * spi)426 static void cs_assert(struct spi_device *spi)
427 {
428 	struct driver_data *drv_data =
429 		spi_controller_get_devdata(spi->controller);
430 
431 	if (drv_data->ssp_type == CE4100_SSP) {
432 		pxa2xx_spi_write(drv_data, SSSR, spi_get_chipselect(spi, 0));
433 		return;
434 	}
435 
436 	if (is_lpss_ssp(drv_data))
437 		lpss_ssp_cs_control(spi, true);
438 }
439 
cs_deassert(struct spi_device * spi)440 static void cs_deassert(struct spi_device *spi)
441 {
442 	struct driver_data *drv_data =
443 		spi_controller_get_devdata(spi->controller);
444 	unsigned long timeout;
445 
446 	if (drv_data->ssp_type == CE4100_SSP)
447 		return;
448 
449 	/* Wait until SSP becomes idle before deasserting the CS */
450 	timeout = jiffies + msecs_to_jiffies(10);
451 	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
452 	       !time_after(jiffies, timeout))
453 		cpu_relax();
454 
455 	if (is_lpss_ssp(drv_data))
456 		lpss_ssp_cs_control(spi, false);
457 }
458 
pxa2xx_spi_set_cs(struct spi_device * spi,bool level)459 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
460 {
461 	if (level)
462 		cs_deassert(spi);
463 	else
464 		cs_assert(spi);
465 }
466 
pxa2xx_spi_flush(struct driver_data * drv_data)467 int pxa2xx_spi_flush(struct driver_data *drv_data)
468 {
469 	unsigned long limit = loops_per_jiffy << 1;
470 
471 	do {
472 		while (read_SSSR_bits(drv_data, SSSR_RNE))
473 			pxa2xx_spi_read(drv_data, SSDR);
474 	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
475 	write_SSSR_CS(drv_data, SSSR_ROR);
476 
477 	return limit;
478 }
479 
pxa2xx_spi_off(struct driver_data * drv_data)480 static void pxa2xx_spi_off(struct driver_data *drv_data)
481 {
482 	/* On MMP, disabling SSE seems to corrupt the Rx FIFO */
483 	if (is_mmp2_ssp(drv_data))
484 		return;
485 
486 	pxa_ssp_disable(drv_data->ssp);
487 }
488 
null_writer(struct driver_data * drv_data)489 static int null_writer(struct driver_data *drv_data)
490 {
491 	u8 n_bytes = drv_data->n_bytes;
492 
493 	if (pxa2xx_spi_txfifo_full(drv_data)
494 		|| (drv_data->tx == drv_data->tx_end))
495 		return 0;
496 
497 	pxa2xx_spi_write(drv_data, SSDR, 0);
498 	drv_data->tx += n_bytes;
499 
500 	return 1;
501 }
502 
null_reader(struct driver_data * drv_data)503 static int null_reader(struct driver_data *drv_data)
504 {
505 	u8 n_bytes = drv_data->n_bytes;
506 
507 	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
508 		pxa2xx_spi_read(drv_data, SSDR);
509 		drv_data->rx += n_bytes;
510 	}
511 
512 	return drv_data->rx == drv_data->rx_end;
513 }
514 
u8_writer(struct driver_data * drv_data)515 static int u8_writer(struct driver_data *drv_data)
516 {
517 	if (pxa2xx_spi_txfifo_full(drv_data)
518 		|| (drv_data->tx == drv_data->tx_end))
519 		return 0;
520 
521 	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
522 	++drv_data->tx;
523 
524 	return 1;
525 }
526 
u8_reader(struct driver_data * drv_data)527 static int u8_reader(struct driver_data *drv_data)
528 {
529 	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
530 		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
531 		++drv_data->rx;
532 	}
533 
534 	return drv_data->rx == drv_data->rx_end;
535 }
536 
u16_writer(struct driver_data * drv_data)537 static int u16_writer(struct driver_data *drv_data)
538 {
539 	if (pxa2xx_spi_txfifo_full(drv_data)
540 		|| (drv_data->tx == drv_data->tx_end))
541 		return 0;
542 
543 	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
544 	drv_data->tx += 2;
545 
546 	return 1;
547 }
548 
u16_reader(struct driver_data * drv_data)549 static int u16_reader(struct driver_data *drv_data)
550 {
551 	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
552 		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
553 		drv_data->rx += 2;
554 	}
555 
556 	return drv_data->rx == drv_data->rx_end;
557 }
558 
u32_writer(struct driver_data * drv_data)559 static int u32_writer(struct driver_data *drv_data)
560 {
561 	if (pxa2xx_spi_txfifo_full(drv_data)
562 		|| (drv_data->tx == drv_data->tx_end))
563 		return 0;
564 
565 	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
566 	drv_data->tx += 4;
567 
568 	return 1;
569 }
570 
u32_reader(struct driver_data * drv_data)571 static int u32_reader(struct driver_data *drv_data)
572 {
573 	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
574 		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
575 		drv_data->rx += 4;
576 	}
577 
578 	return drv_data->rx == drv_data->rx_end;
579 }
580 
reset_sccr1(struct driver_data * drv_data)581 static void reset_sccr1(struct driver_data *drv_data)
582 {
583 	u32 mask = drv_data->int_cr1 | drv_data->dma_cr1, threshold;
584 	struct chip_data *chip;
585 
586 	if (drv_data->controller->cur_msg) {
587 		chip = spi_get_ctldata(drv_data->controller->cur_msg->spi);
588 		threshold = chip->threshold;
589 	} else {
590 		threshold = 0;
591 	}
592 
593 	switch (drv_data->ssp_type) {
594 	case QUARK_X1000_SSP:
595 		mask |= QUARK_X1000_SSCR1_RFT;
596 		break;
597 	case CE4100_SSP:
598 		mask |= CE4100_SSCR1_RFT;
599 		break;
600 	default:
601 		mask |= SSCR1_RFT;
602 		break;
603 	}
604 
605 	pxa2xx_spi_update(drv_data, SSCR1, mask, threshold);
606 }
607 
int_stop_and_reset(struct driver_data * drv_data)608 static void int_stop_and_reset(struct driver_data *drv_data)
609 {
610 	/* Clear and disable interrupts */
611 	write_SSSR_CS(drv_data, drv_data->clear_sr);
612 	reset_sccr1(drv_data);
613 	if (pxa25x_ssp_comp(drv_data))
614 		return;
615 
616 	pxa2xx_spi_write(drv_data, SSTO, 0);
617 }
618 
int_error_stop(struct driver_data * drv_data,const char * msg,int err)619 static void int_error_stop(struct driver_data *drv_data, const char *msg, int err)
620 {
621 	int_stop_and_reset(drv_data);
622 	pxa2xx_spi_flush(drv_data);
623 	pxa2xx_spi_off(drv_data);
624 
625 	dev_err(drv_data->ssp->dev, "%s\n", msg);
626 
627 	drv_data->controller->cur_msg->status = err;
628 	spi_finalize_current_transfer(drv_data->controller);
629 }
630 
int_transfer_complete(struct driver_data * drv_data)631 static void int_transfer_complete(struct driver_data *drv_data)
632 {
633 	int_stop_and_reset(drv_data);
634 
635 	spi_finalize_current_transfer(drv_data->controller);
636 }
637 
interrupt_transfer(struct driver_data * drv_data)638 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
639 {
640 	u32 irq_status;
641 
642 	irq_status = read_SSSR_bits(drv_data, drv_data->mask_sr);
643 	if (!(pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE))
644 		irq_status &= ~SSSR_TFS;
645 
646 	if (irq_status & SSSR_ROR) {
647 		int_error_stop(drv_data, "interrupt_transfer: FIFO overrun", -EIO);
648 		return IRQ_HANDLED;
649 	}
650 
651 	if (irq_status & SSSR_TUR) {
652 		int_error_stop(drv_data, "interrupt_transfer: FIFO underrun", -EIO);
653 		return IRQ_HANDLED;
654 	}
655 
656 	if (irq_status & SSSR_TINT) {
657 		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
658 		if (drv_data->read(drv_data)) {
659 			int_transfer_complete(drv_data);
660 			return IRQ_HANDLED;
661 		}
662 	}
663 
664 	/* Drain Rx FIFO, Fill Tx FIFO and prevent overruns */
665 	do {
666 		if (drv_data->read(drv_data)) {
667 			int_transfer_complete(drv_data);
668 			return IRQ_HANDLED;
669 		}
670 	} while (drv_data->write(drv_data));
671 
672 	if (drv_data->read(drv_data)) {
673 		int_transfer_complete(drv_data);
674 		return IRQ_HANDLED;
675 	}
676 
677 	if (drv_data->tx == drv_data->tx_end) {
678 		u32 bytes_left;
679 		u32 sccr1_reg;
680 
681 		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
682 		sccr1_reg &= ~SSCR1_TIE;
683 
684 		/*
685 		 * PXA25x_SSP has no timeout, set up Rx threshold for
686 		 * the remaining Rx bytes.
687 		 */
688 		if (pxa25x_ssp_comp(drv_data)) {
689 			u32 rx_thre;
690 
691 			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
692 
693 			bytes_left = drv_data->rx_end - drv_data->rx;
694 			switch (drv_data->n_bytes) {
695 			case 4:
696 				bytes_left >>= 2;
697 				break;
698 			case 2:
699 				bytes_left >>= 1;
700 				break;
701 			}
702 
703 			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
704 			if (rx_thre > bytes_left)
705 				rx_thre = bytes_left;
706 
707 			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
708 		}
709 		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
710 	}
711 
712 	/* We did something */
713 	return IRQ_HANDLED;
714 }
715 
handle_bad_msg(struct driver_data * drv_data)716 static void handle_bad_msg(struct driver_data *drv_data)
717 {
718 	int_stop_and_reset(drv_data);
719 	pxa2xx_spi_off(drv_data);
720 
721 	dev_err(drv_data->ssp->dev, "bad message state in interrupt handler\n");
722 }
723 
ssp_int(int irq,void * dev_id)724 static irqreturn_t ssp_int(int irq, void *dev_id)
725 {
726 	struct driver_data *drv_data = dev_id;
727 	u32 sccr1_reg;
728 	u32 mask = drv_data->mask_sr;
729 	u32 status;
730 
731 	/*
732 	 * The IRQ might be shared with other peripherals so we must first
733 	 * check that are we RPM suspended or not. If we are we assume that
734 	 * the IRQ was not for us (we shouldn't be RPM suspended when the
735 	 * interrupt is enabled).
736 	 */
737 	if (pm_runtime_suspended(drv_data->ssp->dev))
738 		return IRQ_NONE;
739 
740 	/*
741 	 * If the device is not yet in RPM suspended state and we get an
742 	 * interrupt that is meant for another device, check if status bits
743 	 * are all set to one. That means that the device is already
744 	 * powered off.
745 	 */
746 	status = pxa2xx_spi_read(drv_data, SSSR);
747 	if (status == ~0)
748 		return IRQ_NONE;
749 
750 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
751 
752 	/* Ignore possible writes if we don't need to write */
753 	if (!(sccr1_reg & SSCR1_TIE))
754 		mask &= ~SSSR_TFS;
755 
756 	/* Ignore RX timeout interrupt if it is disabled */
757 	if (!(sccr1_reg & SSCR1_TINTE))
758 		mask &= ~SSSR_TINT;
759 
760 	if (!(status & mask))
761 		return IRQ_NONE;
762 
763 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
764 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
765 
766 	if (!drv_data->controller->cur_msg) {
767 		handle_bad_msg(drv_data);
768 		/* Never fail */
769 		return IRQ_HANDLED;
770 	}
771 
772 	return drv_data->transfer_handler(drv_data);
773 }
774 
775 /*
776  * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
777  * input frequency by fractions of 2^24. It also has a divider by 5.
778  *
779  * There are formulas to get baud rate value for given input frequency and
780  * divider parameters, such as DDS_CLK_RATE and SCR:
781  *
782  * Fsys = 200MHz
783  *
784  * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
785  * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
786  *
787  * DDS_CLK_RATE either 2^n or 2^n / 5.
788  * SCR is in range 0 .. 255
789  *
790  * Divisor = 5^i * 2^j * 2 * k
791  *       i = [0, 1]      i = 1 iff j = 0 or j > 3
792  *       j = [0, 23]     j = 0 iff i = 1
793  *       k = [1, 256]
794  * Special case: j = 0, i = 1: Divisor = 2 / 5
795  *
796  * Accordingly to the specification the recommended values for DDS_CLK_RATE
797  * are:
798  *	Case 1:		2^n, n = [0, 23]
799  *	Case 2:		2^24 * 2 / 5 (0x666666)
800  *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
801  *
802  * In all cases the lowest possible value is better.
803  *
804  * The function calculates parameters for all cases and chooses the one closest
805  * to the asked baud rate.
806  */
quark_x1000_get_clk_div(int rate,u32 * dds)807 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
808 {
809 	unsigned long xtal = 200000000;
810 	unsigned long fref = xtal / 2;		/* mandatory division by 2,
811 						   see (2) */
812 						/* case 3 */
813 	unsigned long fref1 = fref / 2;		/* case 1 */
814 	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
815 	unsigned long scale;
816 	unsigned long q, q1, q2;
817 	long r, r1, r2;
818 	u32 mul;
819 
820 	/* Case 1 */
821 
822 	/* Set initial value for DDS_CLK_RATE */
823 	mul = (1 << 24) >> 1;
824 
825 	/* Calculate initial quot */
826 	q1 = DIV_ROUND_UP(fref1, rate);
827 
828 	/* Scale q1 if it's too big */
829 	if (q1 > 256) {
830 		/* Scale q1 to range [1, 512] */
831 		scale = fls_long(q1 - 1);
832 		if (scale > 9) {
833 			q1 >>= scale - 9;
834 			mul >>= scale - 9;
835 		}
836 
837 		/* Round the result if we have a remainder */
838 		q1 += q1 & 1;
839 	}
840 
841 	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
842 	scale = __ffs(q1);
843 	q1 >>= scale;
844 	mul >>= scale;
845 
846 	/* Get the remainder */
847 	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
848 
849 	/* Case 2 */
850 
851 	q2 = DIV_ROUND_UP(fref2, rate);
852 	r2 = abs(fref2 / q2 - rate);
853 
854 	/*
855 	 * Choose the best between two: less remainder we have the better. We
856 	 * can't go case 2 if q2 is greater than 256 since SCR register can
857 	 * hold only values 0 .. 255.
858 	 */
859 	if (r2 >= r1 || q2 > 256) {
860 		/* case 1 is better */
861 		r = r1;
862 		q = q1;
863 	} else {
864 		/* case 2 is better */
865 		r = r2;
866 		q = q2;
867 		mul = (1 << 24) * 2 / 5;
868 	}
869 
870 	/* Check case 3 only if the divisor is big enough */
871 	if (fref / rate >= 80) {
872 		u64 fssp;
873 		u32 m;
874 
875 		/* Calculate initial quot */
876 		q1 = DIV_ROUND_UP(fref, rate);
877 		m = (1 << 24) / q1;
878 
879 		/* Get the remainder */
880 		fssp = (u64)fref * m;
881 		do_div(fssp, 1 << 24);
882 		r1 = abs(fssp - rate);
883 
884 		/* Choose this one if it suits better */
885 		if (r1 < r) {
886 			/* case 3 is better */
887 			q = 1;
888 			mul = m;
889 		}
890 	}
891 
892 	*dds = mul;
893 	return q - 1;
894 }
895 
ssp_get_clk_div(struct driver_data * drv_data,int rate)896 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
897 {
898 	unsigned long ssp_clk = drv_data->controller->max_speed_hz;
899 	const struct ssp_device *ssp = drv_data->ssp;
900 
901 	rate = min_t(int, ssp_clk, rate);
902 
903 	/*
904 	 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
905 	 * that the SSP transmission rate can be greater than the device rate.
906 	 */
907 	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
908 		return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
909 	else
910 		return (DIV_ROUND_UP(ssp_clk, rate) - 1)  & 0xfff;
911 }
912 
pxa2xx_ssp_get_clk_div(struct driver_data * drv_data,int rate)913 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
914 					   int rate)
915 {
916 	struct chip_data *chip =
917 		spi_get_ctldata(drv_data->controller->cur_msg->spi);
918 	unsigned int clk_div;
919 
920 	switch (drv_data->ssp_type) {
921 	case QUARK_X1000_SSP:
922 		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
923 		break;
924 	default:
925 		clk_div = ssp_get_clk_div(drv_data, rate);
926 		break;
927 	}
928 	return clk_div << 8;
929 }
930 
pxa2xx_spi_can_dma(struct spi_controller * controller,struct spi_device * spi,struct spi_transfer * xfer)931 static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
932 			       struct spi_device *spi,
933 			       struct spi_transfer *xfer)
934 {
935 	struct chip_data *chip = spi_get_ctldata(spi);
936 
937 	return chip->enable_dma &&
938 	       xfer->len <= MAX_DMA_LEN &&
939 	       xfer->len >= chip->dma_burst_size;
940 }
941 
pxa2xx_spi_transfer_one(struct spi_controller * controller,struct spi_device * spi,struct spi_transfer * transfer)942 static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
943 				   struct spi_device *spi,
944 				   struct spi_transfer *transfer)
945 {
946 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
947 	struct spi_message *message = controller->cur_msg;
948 	struct chip_data *chip = spi_get_ctldata(spi);
949 	u32 dma_thresh = chip->dma_threshold;
950 	u32 dma_burst = chip->dma_burst_size;
951 	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
952 	u32 clk_div;
953 	u8 bits;
954 	u32 speed;
955 	u32 cr0;
956 	u32 cr1;
957 	int err;
958 	int dma_mapped;
959 
960 	/* Check if we can DMA this transfer */
961 	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
962 
963 		/* Reject already-mapped transfers; PIO won't always work */
964 		if (message->is_dma_mapped
965 				|| transfer->rx_dma || transfer->tx_dma) {
966 			dev_err(&spi->dev,
967 				"Mapped transfer length of %u is greater than %d\n",
968 				transfer->len, MAX_DMA_LEN);
969 			return -EINVAL;
970 		}
971 
972 		/* Warn ... we force this to PIO mode */
973 		dev_warn_ratelimited(&spi->dev,
974 				     "DMA disabled for transfer length %u greater than %d\n",
975 				     transfer->len, MAX_DMA_LEN);
976 	}
977 
978 	/* Setup the transfer state based on the type of transfer */
979 	if (pxa2xx_spi_flush(drv_data) == 0) {
980 		dev_err(&spi->dev, "Flush failed\n");
981 		return -EIO;
982 	}
983 	drv_data->tx = (void *)transfer->tx_buf;
984 	drv_data->tx_end = drv_data->tx + transfer->len;
985 	drv_data->rx = transfer->rx_buf;
986 	drv_data->rx_end = drv_data->rx + transfer->len;
987 
988 	/* Change speed and bit per word on a per transfer */
989 	bits = transfer->bits_per_word;
990 	speed = transfer->speed_hz;
991 
992 	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
993 
994 	if (bits <= 8) {
995 		drv_data->n_bytes = 1;
996 		drv_data->read = drv_data->rx ? u8_reader : null_reader;
997 		drv_data->write = drv_data->tx ? u8_writer : null_writer;
998 	} else if (bits <= 16) {
999 		drv_data->n_bytes = 2;
1000 		drv_data->read = drv_data->rx ? u16_reader : null_reader;
1001 		drv_data->write = drv_data->tx ? u16_writer : null_writer;
1002 	} else if (bits <= 32) {
1003 		drv_data->n_bytes = 4;
1004 		drv_data->read = drv_data->rx ? u32_reader : null_reader;
1005 		drv_data->write = drv_data->tx ? u32_writer : null_writer;
1006 	}
1007 	/*
1008 	 * If bits per word is changed in DMA mode, then must check
1009 	 * the thresholds and burst also.
1010 	 */
1011 	if (chip->enable_dma) {
1012 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1013 						spi,
1014 						bits, &dma_burst,
1015 						&dma_thresh))
1016 			dev_warn_ratelimited(&spi->dev,
1017 					     "DMA burst size reduced to match bits_per_word\n");
1018 	}
1019 
1020 	dma_mapped = controller->can_dma &&
1021 		     controller->can_dma(controller, spi, transfer) &&
1022 		     controller->cur_msg_mapped;
1023 	if (dma_mapped) {
1024 
1025 		/* Ensure we have the correct interrupt handler */
1026 		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1027 
1028 		err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1029 		if (err)
1030 			return err;
1031 
1032 		/* Clear status and start DMA engine */
1033 		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1034 		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1035 
1036 		pxa2xx_spi_dma_start(drv_data);
1037 	} else {
1038 		/* Ensure we have the correct interrupt handler	*/
1039 		drv_data->transfer_handler = interrupt_transfer;
1040 
1041 		/* Clear status  */
1042 		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1043 		write_SSSR_CS(drv_data, drv_data->clear_sr);
1044 	}
1045 
1046 	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1047 	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1048 	if (!pxa25x_ssp_comp(drv_data))
1049 		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1050 			controller->max_speed_hz
1051 				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1052 			dma_mapped ? "DMA" : "PIO");
1053 	else
1054 		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1055 			controller->max_speed_hz / 2
1056 				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1057 			dma_mapped ? "DMA" : "PIO");
1058 
1059 	if (is_lpss_ssp(drv_data)) {
1060 		pxa2xx_spi_update(drv_data, SSIRF, GENMASK(7, 0), chip->lpss_rx_threshold);
1061 		pxa2xx_spi_update(drv_data, SSITF, GENMASK(15, 0), chip->lpss_tx_threshold);
1062 	}
1063 
1064 	if (is_mrfld_ssp(drv_data)) {
1065 		u32 mask = SFIFOTT_RFT | SFIFOTT_TFT;
1066 		u32 thresh = 0;
1067 
1068 		thresh |= SFIFOTT_RxThresh(chip->lpss_rx_threshold);
1069 		thresh |= SFIFOTT_TxThresh(chip->lpss_tx_threshold);
1070 
1071 		pxa2xx_spi_update(drv_data, SFIFOTT, mask, thresh);
1072 	}
1073 
1074 	if (is_quark_x1000_ssp(drv_data))
1075 		pxa2xx_spi_update(drv_data, DDS_RATE, GENMASK(23, 0), chip->dds_rate);
1076 
1077 	/* Stop the SSP */
1078 	if (!is_mmp2_ssp(drv_data))
1079 		pxa_ssp_disable(drv_data->ssp);
1080 
1081 	if (!pxa25x_ssp_comp(drv_data))
1082 		pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1083 
1084 	/* First set CR1 without interrupt and service enables */
1085 	pxa2xx_spi_update(drv_data, SSCR1, change_mask, cr1);
1086 
1087 	/* See if we need to reload the configuration registers */
1088 	pxa2xx_spi_update(drv_data, SSCR0, GENMASK(31, 0), cr0);
1089 
1090 	/* Restart the SSP */
1091 	pxa_ssp_enable(drv_data->ssp);
1092 
1093 	if (is_mmp2_ssp(drv_data)) {
1094 		u8 tx_level = read_SSSR_bits(drv_data, SSSR_TFL_MASK) >> 8;
1095 
1096 		if (tx_level) {
1097 			/* On MMP2, flipping SSE doesn't to empty Tx FIFO. */
1098 			dev_warn(&spi->dev, "%u bytes of garbage in Tx FIFO!\n", tx_level);
1099 			if (tx_level > transfer->len)
1100 				tx_level = transfer->len;
1101 			drv_data->tx += tx_level;
1102 		}
1103 	}
1104 
1105 	if (spi_controller_is_target(controller)) {
1106 		while (drv_data->write(drv_data))
1107 			;
1108 		if (drv_data->gpiod_ready) {
1109 			gpiod_set_value(drv_data->gpiod_ready, 1);
1110 			udelay(1);
1111 			gpiod_set_value(drv_data->gpiod_ready, 0);
1112 		}
1113 	}
1114 
1115 	/*
1116 	 * Release the data by enabling service requests and interrupts,
1117 	 * without changing any mode bits.
1118 	 */
1119 	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1120 
1121 	return 1;
1122 }
1123 
pxa2xx_spi_target_abort(struct spi_controller * controller)1124 static int pxa2xx_spi_target_abort(struct spi_controller *controller)
1125 {
1126 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1127 
1128 	int_error_stop(drv_data, "transfer aborted", -EINTR);
1129 
1130 	return 0;
1131 }
1132 
pxa2xx_spi_handle_err(struct spi_controller * controller,struct spi_message * msg)1133 static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1134 				 struct spi_message *msg)
1135 {
1136 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1137 
1138 	int_stop_and_reset(drv_data);
1139 
1140 	/* Disable the SSP */
1141 	pxa2xx_spi_off(drv_data);
1142 
1143 	/*
1144 	 * Stop the DMA if running. Note DMA callback handler may have unset
1145 	 * the dma_running already, which is fine as stopping is not needed
1146 	 * then but we shouldn't rely this flag for anything else than
1147 	 * stopping. For instance to differentiate between PIO and DMA
1148 	 * transfers.
1149 	 */
1150 	if (atomic_read(&drv_data->dma_running))
1151 		pxa2xx_spi_dma_stop(drv_data);
1152 }
1153 
pxa2xx_spi_unprepare_transfer(struct spi_controller * controller)1154 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1155 {
1156 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1157 
1158 	/* Disable the SSP now */
1159 	pxa2xx_spi_off(drv_data);
1160 
1161 	return 0;
1162 }
1163 
setup(struct spi_device * spi)1164 static int setup(struct spi_device *spi)
1165 {
1166 	struct pxa2xx_spi_chip *chip_info;
1167 	struct chip_data *chip;
1168 	const struct lpss_config *config;
1169 	struct driver_data *drv_data =
1170 		spi_controller_get_devdata(spi->controller);
1171 	uint tx_thres, tx_hi_thres, rx_thres;
1172 
1173 	switch (drv_data->ssp_type) {
1174 	case QUARK_X1000_SSP:
1175 		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1176 		tx_hi_thres = 0;
1177 		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1178 		break;
1179 	case MRFLD_SSP:
1180 		tx_thres = TX_THRESH_MRFLD_DFLT;
1181 		tx_hi_thres = 0;
1182 		rx_thres = RX_THRESH_MRFLD_DFLT;
1183 		break;
1184 	case CE4100_SSP:
1185 		tx_thres = TX_THRESH_CE4100_DFLT;
1186 		tx_hi_thres = 0;
1187 		rx_thres = RX_THRESH_CE4100_DFLT;
1188 		break;
1189 	case LPSS_LPT_SSP:
1190 	case LPSS_BYT_SSP:
1191 	case LPSS_BSW_SSP:
1192 	case LPSS_SPT_SSP:
1193 	case LPSS_BXT_SSP:
1194 	case LPSS_CNL_SSP:
1195 		config = lpss_get_config(drv_data);
1196 		tx_thres = config->tx_threshold_lo;
1197 		tx_hi_thres = config->tx_threshold_hi;
1198 		rx_thres = config->rx_threshold;
1199 		break;
1200 	default:
1201 		tx_hi_thres = 0;
1202 		if (spi_controller_is_target(drv_data->controller)) {
1203 			tx_thres = 1;
1204 			rx_thres = 2;
1205 		} else {
1206 			tx_thres = TX_THRESH_DFLT;
1207 			rx_thres = RX_THRESH_DFLT;
1208 		}
1209 		break;
1210 	}
1211 
1212 	/* Only allocate on the first setup */
1213 	chip = spi_get_ctldata(spi);
1214 	if (!chip) {
1215 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1216 		if (!chip)
1217 			return -ENOMEM;
1218 
1219 		if (drv_data->ssp_type == CE4100_SSP) {
1220 			if (spi_get_chipselect(spi, 0) > 4) {
1221 				dev_err(&spi->dev,
1222 					"failed setup: cs number must not be > 4.\n");
1223 				kfree(chip);
1224 				return -EINVAL;
1225 			}
1226 		}
1227 		chip->enable_dma = drv_data->controller_info->enable_dma;
1228 		chip->timeout = TIMOUT_DFLT;
1229 	}
1230 
1231 	/*
1232 	 * Protocol drivers may change the chip settings, so...
1233 	 * if chip_info exists, use it.
1234 	 */
1235 	chip_info = spi->controller_data;
1236 
1237 	/* chip_info isn't always needed */
1238 	if (chip_info) {
1239 		if (chip_info->timeout)
1240 			chip->timeout = chip_info->timeout;
1241 		if (chip_info->tx_threshold)
1242 			tx_thres = chip_info->tx_threshold;
1243 		if (chip_info->tx_hi_threshold)
1244 			tx_hi_thres = chip_info->tx_hi_threshold;
1245 		if (chip_info->rx_threshold)
1246 			rx_thres = chip_info->rx_threshold;
1247 		chip->dma_threshold = 0;
1248 	}
1249 
1250 	chip->cr1 = 0;
1251 	if (spi_controller_is_target(drv_data->controller)) {
1252 		chip->cr1 |= SSCR1_SCFR;
1253 		chip->cr1 |= SSCR1_SCLKDIR;
1254 		chip->cr1 |= SSCR1_SFRMDIR;
1255 		chip->cr1 |= SSCR1_SPH;
1256 	}
1257 
1258 	if (is_lpss_ssp(drv_data)) {
1259 		chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1260 		chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) |
1261 					  SSITF_TxHiThresh(tx_hi_thres);
1262 	}
1263 
1264 	if (is_mrfld_ssp(drv_data)) {
1265 		chip->lpss_rx_threshold = rx_thres;
1266 		chip->lpss_tx_threshold = tx_thres;
1267 	}
1268 
1269 	/*
1270 	 * Set DMA burst and threshold outside of chip_info path so that if
1271 	 * chip_info goes away after setting chip->enable_dma, the burst and
1272 	 * threshold can still respond to changes in bits_per_word.
1273 	 */
1274 	if (chip->enable_dma) {
1275 		/* Set up legal burst and threshold for DMA */
1276 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1277 						spi->bits_per_word,
1278 						&chip->dma_burst_size,
1279 						&chip->dma_threshold)) {
1280 			dev_warn(&spi->dev,
1281 				 "in setup: DMA burst size reduced to match bits_per_word\n");
1282 		}
1283 		dev_dbg(&spi->dev,
1284 			"in setup: DMA burst size set to %u\n",
1285 			chip->dma_burst_size);
1286 	}
1287 
1288 	switch (drv_data->ssp_type) {
1289 	case QUARK_X1000_SSP:
1290 		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1291 				   & QUARK_X1000_SSCR1_RFT)
1292 				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1293 				   & QUARK_X1000_SSCR1_TFT);
1294 		break;
1295 	case CE4100_SSP:
1296 		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1297 			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1298 		break;
1299 	default:
1300 		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1301 			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1302 		break;
1303 	}
1304 
1305 	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1306 	chip->cr1 |= ((spi->mode & SPI_CPHA) ? SSCR1_SPH : 0) |
1307 		     ((spi->mode & SPI_CPOL) ? SSCR1_SPO : 0);
1308 
1309 	if (spi->mode & SPI_LOOP)
1310 		chip->cr1 |= SSCR1_LBM;
1311 
1312 	spi_set_ctldata(spi, chip);
1313 
1314 	return 0;
1315 }
1316 
cleanup(struct spi_device * spi)1317 static void cleanup(struct spi_device *spi)
1318 {
1319 	struct chip_data *chip = spi_get_ctldata(spi);
1320 
1321 	kfree(chip);
1322 }
1323 
pxa2xx_spi_idma_filter(struct dma_chan * chan,void * param)1324 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1325 {
1326 	return param == chan->device->dev;
1327 }
1328 
1329 static struct pxa2xx_spi_controller *
pxa2xx_spi_init_pdata(struct platform_device * pdev)1330 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1331 {
1332 	struct pxa2xx_spi_controller *pdata;
1333 	struct device *dev = &pdev->dev;
1334 	struct device *parent = dev->parent;
1335 	struct ssp_device *ssp;
1336 	struct resource *res;
1337 	enum pxa_ssp_type type = SSP_UNDEFINED;
1338 	const void *match;
1339 	bool is_lpss_priv;
1340 	int status;
1341 	u64 uid;
1342 
1343 	is_lpss_priv = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lpss_priv");
1344 
1345 	match = device_get_match_data(dev);
1346 	if (match)
1347 		type = (uintptr_t)match;
1348 	else if (is_lpss_priv) {
1349 		u32 value;
1350 
1351 		status = device_property_read_u32(dev, "intel,spi-pxa2xx-type", &value);
1352 		if (status)
1353 			return ERR_PTR(status);
1354 
1355 		type = (enum pxa_ssp_type)value;
1356 	}
1357 
1358 	/* Validate the SSP type correctness */
1359 	if (!(type > SSP_UNDEFINED && type < SSP_MAX))
1360 		return ERR_PTR(-EINVAL);
1361 
1362 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1363 	if (!pdata)
1364 		return ERR_PTR(-ENOMEM);
1365 
1366 	ssp = &pdata->ssp;
1367 
1368 	ssp->mmio_base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1369 	if (IS_ERR(ssp->mmio_base))
1370 		return ERR_CAST(ssp->mmio_base);
1371 
1372 	ssp->phys_base = res->start;
1373 
1374 	/* Platforms with iDMA 64-bit */
1375 	if (is_lpss_priv) {
1376 		pdata->tx_param = parent;
1377 		pdata->rx_param = parent;
1378 		pdata->dma_filter = pxa2xx_spi_idma_filter;
1379 	}
1380 
1381 	ssp->clk = devm_clk_get(dev, NULL);
1382 	if (IS_ERR(ssp->clk))
1383 		return ERR_CAST(ssp->clk);
1384 
1385 	ssp->irq = platform_get_irq(pdev, 0);
1386 	if (ssp->irq < 0)
1387 		return ERR_PTR(ssp->irq);
1388 
1389 	ssp->type = type;
1390 	ssp->dev = dev;
1391 
1392 	status = acpi_dev_uid_to_integer(ACPI_COMPANION(dev), &uid);
1393 	if (status)
1394 		ssp->port_id = -1;
1395 	else
1396 		ssp->port_id = uid;
1397 
1398 	pdata->is_target = device_property_read_bool(dev, "spi-slave");
1399 	pdata->num_chipselect = 1;
1400 	pdata->enable_dma = true;
1401 	pdata->dma_burst_size = 1;
1402 
1403 	return pdata;
1404 }
1405 
pxa2xx_spi_fw_translate_cs(struct spi_controller * controller,unsigned int cs)1406 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1407 				      unsigned int cs)
1408 {
1409 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1410 
1411 	if (has_acpi_companion(drv_data->ssp->dev)) {
1412 		switch (drv_data->ssp_type) {
1413 		/*
1414 		 * For Atoms the ACPI DeviceSelection used by the Windows
1415 		 * driver starts from 1 instead of 0 so translate it here
1416 		 * to match what Linux expects.
1417 		 */
1418 		case LPSS_BYT_SSP:
1419 		case LPSS_BSW_SSP:
1420 			return cs - 1;
1421 
1422 		default:
1423 			break;
1424 		}
1425 	}
1426 
1427 	return cs;
1428 }
1429 
pxa2xx_spi_max_dma_transfer_size(struct spi_device * spi)1430 static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi)
1431 {
1432 	return MAX_DMA_LEN;
1433 }
1434 
pxa2xx_spi_probe(struct platform_device * pdev)1435 static int pxa2xx_spi_probe(struct platform_device *pdev)
1436 {
1437 	struct device *dev = &pdev->dev;
1438 	struct pxa2xx_spi_controller *platform_info;
1439 	struct spi_controller *controller;
1440 	struct driver_data *drv_data;
1441 	struct ssp_device *ssp;
1442 	const struct lpss_config *config;
1443 	int status;
1444 	u32 tmp;
1445 
1446 	platform_info = dev_get_platdata(dev);
1447 	if (!platform_info) {
1448 		platform_info = pxa2xx_spi_init_pdata(pdev);
1449 		if (IS_ERR(platform_info)) {
1450 			dev_err(&pdev->dev, "missing platform data\n");
1451 			return PTR_ERR(platform_info);
1452 		}
1453 	}
1454 
1455 	ssp = pxa_ssp_request(pdev->id, pdev->name);
1456 	if (!ssp)
1457 		ssp = &platform_info->ssp;
1458 
1459 	if (!ssp->mmio_base) {
1460 		dev_err(&pdev->dev, "failed to get SSP\n");
1461 		return -ENODEV;
1462 	}
1463 
1464 	if (platform_info->is_target)
1465 		controller = devm_spi_alloc_target(dev, sizeof(*drv_data));
1466 	else
1467 		controller = devm_spi_alloc_host(dev, sizeof(*drv_data));
1468 
1469 	if (!controller) {
1470 		dev_err(&pdev->dev, "cannot alloc spi_controller\n");
1471 		status = -ENOMEM;
1472 		goto out_error_controller_alloc;
1473 	}
1474 	drv_data = spi_controller_get_devdata(controller);
1475 	drv_data->controller = controller;
1476 	drv_data->controller_info = platform_info;
1477 	drv_data->ssp = ssp;
1478 
1479 	device_set_node(&controller->dev, dev_fwnode(dev));
1480 
1481 	/* The spi->mode bits understood by this driver: */
1482 	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1483 
1484 	controller->bus_num = ssp->port_id;
1485 	controller->dma_alignment = DMA_ALIGNMENT;
1486 	controller->cleanup = cleanup;
1487 	controller->setup = setup;
1488 	controller->set_cs = pxa2xx_spi_set_cs;
1489 	controller->transfer_one = pxa2xx_spi_transfer_one;
1490 	controller->target_abort = pxa2xx_spi_target_abort;
1491 	controller->handle_err = pxa2xx_spi_handle_err;
1492 	controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1493 	controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1494 	controller->auto_runtime_pm = true;
1495 	controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1496 
1497 	drv_data->ssp_type = ssp->type;
1498 
1499 	if (pxa25x_ssp_comp(drv_data)) {
1500 		switch (drv_data->ssp_type) {
1501 		case QUARK_X1000_SSP:
1502 			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1503 			break;
1504 		default:
1505 			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1506 			break;
1507 		}
1508 
1509 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1510 		drv_data->dma_cr1 = 0;
1511 		drv_data->clear_sr = SSSR_ROR;
1512 		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1513 	} else {
1514 		controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1515 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1516 		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1517 		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1518 		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1519 						| SSSR_ROR | SSSR_TUR;
1520 	}
1521 
1522 	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1523 			drv_data);
1524 	if (status < 0) {
1525 		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1526 		goto out_error_controller_alloc;
1527 	}
1528 
1529 	/* Setup DMA if requested */
1530 	if (platform_info->enable_dma) {
1531 		status = pxa2xx_spi_dma_setup(drv_data);
1532 		if (status) {
1533 			dev_warn(dev, "no DMA channels available, using PIO\n");
1534 			platform_info->enable_dma = false;
1535 		} else {
1536 			controller->can_dma = pxa2xx_spi_can_dma;
1537 			controller->max_dma_len = MAX_DMA_LEN;
1538 			controller->max_transfer_size =
1539 				pxa2xx_spi_max_dma_transfer_size;
1540 		}
1541 	}
1542 
1543 	/* Enable SOC clock */
1544 	status = clk_prepare_enable(ssp->clk);
1545 	if (status)
1546 		goto out_error_dma_irq_alloc;
1547 
1548 	controller->max_speed_hz = clk_get_rate(ssp->clk);
1549 	/*
1550 	 * Set minimum speed for all other platforms than Intel Quark which is
1551 	 * able do under 1 Hz transfers.
1552 	 */
1553 	if (!pxa25x_ssp_comp(drv_data))
1554 		controller->min_speed_hz =
1555 			DIV_ROUND_UP(controller->max_speed_hz, 4096);
1556 	else if (!is_quark_x1000_ssp(drv_data))
1557 		controller->min_speed_hz =
1558 			DIV_ROUND_UP(controller->max_speed_hz, 512);
1559 
1560 	pxa_ssp_disable(ssp);
1561 
1562 	/* Load default SSP configuration */
1563 	switch (drv_data->ssp_type) {
1564 	case QUARK_X1000_SSP:
1565 		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1566 		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1567 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1568 
1569 		/* Using the Motorola SPI protocol and use 8 bit frame */
1570 		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1571 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1572 		break;
1573 	case CE4100_SSP:
1574 		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1575 		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1576 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1577 		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1578 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1579 		break;
1580 	default:
1581 
1582 		if (spi_controller_is_target(controller)) {
1583 			tmp = SSCR1_SCFR |
1584 			      SSCR1_SCLKDIR |
1585 			      SSCR1_SFRMDIR |
1586 			      SSCR1_RxTresh(2) |
1587 			      SSCR1_TxTresh(1) |
1588 			      SSCR1_SPH;
1589 		} else {
1590 			tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1591 			      SSCR1_TxTresh(TX_THRESH_DFLT);
1592 		}
1593 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1594 		tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1595 		if (!spi_controller_is_target(controller))
1596 			tmp |= SSCR0_SCR(2);
1597 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1598 		break;
1599 	}
1600 
1601 	if (!pxa25x_ssp_comp(drv_data))
1602 		pxa2xx_spi_write(drv_data, SSTO, 0);
1603 
1604 	if (!is_quark_x1000_ssp(drv_data))
1605 		pxa2xx_spi_write(drv_data, SSPSP, 0);
1606 
1607 	if (is_lpss_ssp(drv_data)) {
1608 		lpss_ssp_setup(drv_data);
1609 		config = lpss_get_config(drv_data);
1610 		if (config->reg_capabilities >= 0) {
1611 			tmp = __lpss_ssp_read_priv(drv_data,
1612 						   config->reg_capabilities);
1613 			tmp &= LPSS_CAPS_CS_EN_MASK;
1614 			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1615 			platform_info->num_chipselect = ffz(tmp);
1616 		} else if (config->cs_num) {
1617 			platform_info->num_chipselect = config->cs_num;
1618 		}
1619 	}
1620 	controller->num_chipselect = platform_info->num_chipselect;
1621 	controller->use_gpio_descriptors = true;
1622 
1623 	if (platform_info->is_target) {
1624 		drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1625 						"ready", GPIOD_OUT_LOW);
1626 		if (IS_ERR(drv_data->gpiod_ready)) {
1627 			status = PTR_ERR(drv_data->gpiod_ready);
1628 			goto out_error_clock_enabled;
1629 		}
1630 	}
1631 
1632 	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1633 	pm_runtime_use_autosuspend(&pdev->dev);
1634 	pm_runtime_set_active(&pdev->dev);
1635 	pm_runtime_enable(&pdev->dev);
1636 
1637 	/* Register with the SPI framework */
1638 	platform_set_drvdata(pdev, drv_data);
1639 	status = spi_register_controller(controller);
1640 	if (status) {
1641 		dev_err(&pdev->dev, "problem registering SPI controller\n");
1642 		goto out_error_pm_runtime_enabled;
1643 	}
1644 
1645 	return status;
1646 
1647 out_error_pm_runtime_enabled:
1648 	pm_runtime_disable(&pdev->dev);
1649 
1650 out_error_clock_enabled:
1651 	clk_disable_unprepare(ssp->clk);
1652 
1653 out_error_dma_irq_alloc:
1654 	pxa2xx_spi_dma_release(drv_data);
1655 	free_irq(ssp->irq, drv_data);
1656 
1657 out_error_controller_alloc:
1658 	pxa_ssp_free(ssp);
1659 	return status;
1660 }
1661 
pxa2xx_spi_remove(struct platform_device * pdev)1662 static void pxa2xx_spi_remove(struct platform_device *pdev)
1663 {
1664 	struct driver_data *drv_data = platform_get_drvdata(pdev);
1665 	struct ssp_device *ssp = drv_data->ssp;
1666 
1667 	pm_runtime_get_sync(&pdev->dev);
1668 
1669 	spi_unregister_controller(drv_data->controller);
1670 
1671 	/* Disable the SSP at the peripheral and SOC level */
1672 	pxa_ssp_disable(ssp);
1673 	clk_disable_unprepare(ssp->clk);
1674 
1675 	/* Release DMA */
1676 	if (drv_data->controller_info->enable_dma)
1677 		pxa2xx_spi_dma_release(drv_data);
1678 
1679 	pm_runtime_put_noidle(&pdev->dev);
1680 	pm_runtime_disable(&pdev->dev);
1681 
1682 	/* Release IRQ */
1683 	free_irq(ssp->irq, drv_data);
1684 
1685 	/* Release SSP */
1686 	pxa_ssp_free(ssp);
1687 }
1688 
pxa2xx_spi_suspend(struct device * dev)1689 static int pxa2xx_spi_suspend(struct device *dev)
1690 {
1691 	struct driver_data *drv_data = dev_get_drvdata(dev);
1692 	struct ssp_device *ssp = drv_data->ssp;
1693 	int status;
1694 
1695 	status = spi_controller_suspend(drv_data->controller);
1696 	if (status)
1697 		return status;
1698 
1699 	pxa_ssp_disable(ssp);
1700 
1701 	if (!pm_runtime_suspended(dev))
1702 		clk_disable_unprepare(ssp->clk);
1703 
1704 	return 0;
1705 }
1706 
pxa2xx_spi_resume(struct device * dev)1707 static int pxa2xx_spi_resume(struct device *dev)
1708 {
1709 	struct driver_data *drv_data = dev_get_drvdata(dev);
1710 	struct ssp_device *ssp = drv_data->ssp;
1711 	int status;
1712 
1713 	/* Enable the SSP clock */
1714 	if (!pm_runtime_suspended(dev)) {
1715 		status = clk_prepare_enable(ssp->clk);
1716 		if (status)
1717 			return status;
1718 	}
1719 
1720 	/* Start the queue running */
1721 	return spi_controller_resume(drv_data->controller);
1722 }
1723 
pxa2xx_spi_runtime_suspend(struct device * dev)1724 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1725 {
1726 	struct driver_data *drv_data = dev_get_drvdata(dev);
1727 
1728 	clk_disable_unprepare(drv_data->ssp->clk);
1729 	return 0;
1730 }
1731 
pxa2xx_spi_runtime_resume(struct device * dev)1732 static int pxa2xx_spi_runtime_resume(struct device *dev)
1733 {
1734 	struct driver_data *drv_data = dev_get_drvdata(dev);
1735 
1736 	return clk_prepare_enable(drv_data->ssp->clk);
1737 }
1738 
1739 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1740 	SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1741 	RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend, pxa2xx_spi_runtime_resume, NULL)
1742 };
1743 
1744 #ifdef CONFIG_ACPI
1745 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1746 	{ "80860F0E", LPSS_BYT_SSP },
1747 	{ "8086228E", LPSS_BSW_SSP },
1748 	{ "INT33C0", LPSS_LPT_SSP },
1749 	{ "INT33C1", LPSS_LPT_SSP },
1750 	{ "INT3430", LPSS_LPT_SSP },
1751 	{ "INT3431", LPSS_LPT_SSP },
1752 	{}
1753 };
1754 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1755 #endif
1756 
1757 static const struct of_device_id pxa2xx_spi_of_match[] __maybe_unused = {
1758 	{ .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1759 	{}
1760 };
1761 MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1762 
1763 static struct platform_driver driver = {
1764 	.driver = {
1765 		.name	= "pxa2xx-spi",
1766 		.pm	= pm_ptr(&pxa2xx_spi_pm_ops),
1767 		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1768 		.of_match_table = of_match_ptr(pxa2xx_spi_of_match),
1769 	},
1770 	.probe = pxa2xx_spi_probe,
1771 	.remove_new = pxa2xx_spi_remove,
1772 };
1773 
pxa2xx_spi_init(void)1774 static int __init pxa2xx_spi_init(void)
1775 {
1776 	return platform_driver_register(&driver);
1777 }
1778 subsys_initcall(pxa2xx_spi_init);
1779 
pxa2xx_spi_exit(void)1780 static void __exit pxa2xx_spi_exit(void)
1781 {
1782 	platform_driver_unregister(&driver);
1783 }
1784 module_exit(pxa2xx_spi_exit);
1785 
1786 MODULE_SOFTDEP("pre: dw_dmac");
1787