xref: /openbmc/linux/drivers/spi/spi-pxa2xx-dma.c (revision f677b30b487ca3763c3de3f1b4d8c976c2961cd1)
1 /*
2  * PXA2xx SPI DMA engine support.
3  *
4  * Copyright (C) 2013, Intel Corporation
5  * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/init.h>
13 #include <linux/device.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/dmaengine.h>
16 #include <linux/pxa2xx_ssp.h>
17 #include <linux/scatterlist.h>
18 #include <linux/sizes.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/pxa2xx_spi.h>
21 
22 #include "spi-pxa2xx.h"
23 
24 static int pxa2xx_spi_map_dma_buffer(struct driver_data *drv_data,
25 				     enum dma_data_direction dir)
26 {
27 	int i, nents, len = drv_data->len;
28 	struct scatterlist *sg;
29 	struct device *dmadev;
30 	struct sg_table *sgt;
31 	void *buf, *pbuf;
32 
33 	/*
34 	 * Some DMA controllers have problems transferring buffers that are
35 	 * not multiple of 4 bytes. So we truncate the transfer so that it
36 	 * is suitable for such controllers, and handle the trailing bytes
37 	 * manually after the DMA completes.
38 	 *
39 	 * REVISIT: It would be better if this information could be
40 	 * retrieved directly from the DMA device in a similar way than
41 	 * ->copy_align etc. is done.
42 	 */
43 	len = ALIGN(drv_data->len, 4);
44 
45 	if (dir == DMA_TO_DEVICE) {
46 		dmadev = drv_data->tx_chan->device->dev;
47 		sgt = &drv_data->tx_sgt;
48 		buf = drv_data->tx;
49 		drv_data->tx_map_len = len;
50 	} else {
51 		dmadev = drv_data->rx_chan->device->dev;
52 		sgt = &drv_data->rx_sgt;
53 		buf = drv_data->rx;
54 		drv_data->rx_map_len = len;
55 	}
56 
57 	nents = DIV_ROUND_UP(len, SZ_2K);
58 	if (nents != sgt->nents) {
59 		int ret;
60 
61 		sg_free_table(sgt);
62 		ret = sg_alloc_table(sgt, nents, GFP_ATOMIC);
63 		if (ret)
64 			return ret;
65 	}
66 
67 	pbuf = buf;
68 	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
69 		size_t bytes = min_t(size_t, len, SZ_2K);
70 
71 		if (buf)
72 			sg_set_buf(sg, pbuf, bytes);
73 		else
74 			sg_set_buf(sg, drv_data->dummy, bytes);
75 
76 		pbuf += bytes;
77 		len -= bytes;
78 	}
79 
80 	nents = dma_map_sg(dmadev, sgt->sgl, sgt->nents, dir);
81 	if (!nents)
82 		return -ENOMEM;
83 
84 	return nents;
85 }
86 
87 static void pxa2xx_spi_unmap_dma_buffer(struct driver_data *drv_data,
88 					enum dma_data_direction dir)
89 {
90 	struct device *dmadev;
91 	struct sg_table *sgt;
92 
93 	if (dir == DMA_TO_DEVICE) {
94 		dmadev = drv_data->tx_chan->device->dev;
95 		sgt = &drv_data->tx_sgt;
96 	} else {
97 		dmadev = drv_data->rx_chan->device->dev;
98 		sgt = &drv_data->rx_sgt;
99 	}
100 
101 	dma_unmap_sg(dmadev, sgt->sgl, sgt->nents, dir);
102 }
103 
104 static void pxa2xx_spi_unmap_dma_buffers(struct driver_data *drv_data)
105 {
106 	if (!drv_data->dma_mapped)
107 		return;
108 
109 	pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_FROM_DEVICE);
110 	pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE);
111 
112 	drv_data->dma_mapped = 0;
113 }
114 
115 static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data,
116 					     bool error)
117 {
118 	struct spi_message *msg = drv_data->cur_msg;
119 
120 	/*
121 	 * It is possible that one CPU is handling ROR interrupt and other
122 	 * just gets DMA completion. Calling pump_transfers() twice for the
123 	 * same transfer leads to problems thus we prevent concurrent calls
124 	 * by using ->dma_running.
125 	 */
126 	if (atomic_dec_and_test(&drv_data->dma_running)) {
127 		void __iomem *reg = drv_data->ioaddr;
128 
129 		/*
130 		 * If the other CPU is still handling the ROR interrupt we
131 		 * might not know about the error yet. So we re-check the
132 		 * ROR bit here before we clear the status register.
133 		 */
134 		if (!error) {
135 			u32 status = read_SSSR(reg) & drv_data->mask_sr;
136 			error = status & SSSR_ROR;
137 		}
138 
139 		/* Clear status & disable interrupts */
140 		write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
141 		write_SSSR_CS(drv_data, drv_data->clear_sr);
142 		if (!pxa25x_ssp_comp(drv_data))
143 			write_SSTO(0, reg);
144 
145 		if (!error) {
146 			pxa2xx_spi_unmap_dma_buffers(drv_data);
147 
148 			/* Handle the last bytes of unaligned transfer */
149 			drv_data->tx += drv_data->tx_map_len;
150 			drv_data->write(drv_data);
151 
152 			drv_data->rx += drv_data->rx_map_len;
153 			drv_data->read(drv_data);
154 
155 			msg->actual_length += drv_data->len;
156 			msg->state = pxa2xx_spi_next_transfer(drv_data);
157 		} else {
158 			/* In case we got an error we disable the SSP now */
159 			write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
160 
161 			msg->state = ERROR_STATE;
162 		}
163 
164 		tasklet_schedule(&drv_data->pump_transfers);
165 	}
166 }
167 
168 static void pxa2xx_spi_dma_callback(void *data)
169 {
170 	pxa2xx_spi_dma_transfer_complete(data, false);
171 }
172 
173 static struct dma_async_tx_descriptor *
174 pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data,
175 			   enum dma_transfer_direction dir)
176 {
177 	struct pxa2xx_spi_master *pdata = drv_data->master_info;
178 	struct chip_data *chip = drv_data->cur_chip;
179 	enum dma_slave_buswidth width;
180 	struct dma_slave_config cfg;
181 	struct dma_chan *chan;
182 	struct sg_table *sgt;
183 	int nents, ret;
184 
185 	switch (drv_data->n_bytes) {
186 	case 1:
187 		width = DMA_SLAVE_BUSWIDTH_1_BYTE;
188 		break;
189 	case 2:
190 		width = DMA_SLAVE_BUSWIDTH_2_BYTES;
191 		break;
192 	default:
193 		width = DMA_SLAVE_BUSWIDTH_4_BYTES;
194 		break;
195 	}
196 
197 	memset(&cfg, 0, sizeof(cfg));
198 	cfg.direction = dir;
199 
200 	if (dir == DMA_MEM_TO_DEV) {
201 		cfg.dst_addr = drv_data->ssdr_physical;
202 		cfg.dst_addr_width = width;
203 		cfg.dst_maxburst = chip->dma_burst_size;
204 		cfg.slave_id = pdata->tx_slave_id;
205 
206 		sgt = &drv_data->tx_sgt;
207 		nents = drv_data->tx_nents;
208 		chan = drv_data->tx_chan;
209 	} else {
210 		cfg.src_addr = drv_data->ssdr_physical;
211 		cfg.src_addr_width = width;
212 		cfg.src_maxburst = chip->dma_burst_size;
213 		cfg.slave_id = pdata->rx_slave_id;
214 
215 		sgt = &drv_data->rx_sgt;
216 		nents = drv_data->rx_nents;
217 		chan = drv_data->rx_chan;
218 	}
219 
220 	ret = dmaengine_slave_config(chan, &cfg);
221 	if (ret) {
222 		dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n");
223 		return NULL;
224 	}
225 
226 	return dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir,
227 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
228 }
229 
230 static bool pxa2xx_spi_dma_filter(struct dma_chan *chan, void *param)
231 {
232 	const struct pxa2xx_spi_master *pdata = param;
233 
234 	return chan->chan_id == pdata->tx_chan_id ||
235 	       chan->chan_id == pdata->rx_chan_id;
236 }
237 
238 bool pxa2xx_spi_dma_is_possible(size_t len)
239 {
240 	return len <= MAX_DMA_LEN;
241 }
242 
243 int pxa2xx_spi_map_dma_buffers(struct driver_data *drv_data)
244 {
245 	const struct chip_data *chip = drv_data->cur_chip;
246 	int ret;
247 
248 	if (!chip->enable_dma)
249 		return 0;
250 
251 	/* Don't bother with DMA if we can't do even a single burst */
252 	if (drv_data->len < chip->dma_burst_size)
253 		return 0;
254 
255 	ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_TO_DEVICE);
256 	if (ret <= 0) {
257 		dev_warn(&drv_data->pdev->dev, "failed to DMA map TX\n");
258 		return 0;
259 	}
260 
261 	drv_data->tx_nents = ret;
262 
263 	ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_FROM_DEVICE);
264 	if (ret <= 0) {
265 		pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE);
266 		dev_warn(&drv_data->pdev->dev, "failed to DMA map RX\n");
267 		return 0;
268 	}
269 
270 	drv_data->rx_nents = ret;
271 	return 1;
272 }
273 
274 irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
275 {
276 	u32 status;
277 
278 	status = read_SSSR(drv_data->ioaddr) & drv_data->mask_sr;
279 	if (status & SSSR_ROR) {
280 		dev_err(&drv_data->pdev->dev, "FIFO overrun\n");
281 
282 		dmaengine_terminate_all(drv_data->rx_chan);
283 		dmaengine_terminate_all(drv_data->tx_chan);
284 
285 		pxa2xx_spi_dma_transfer_complete(drv_data, true);
286 		return IRQ_HANDLED;
287 	}
288 
289 	return IRQ_NONE;
290 }
291 
292 int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst)
293 {
294 	struct dma_async_tx_descriptor *tx_desc, *rx_desc;
295 
296 	tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV);
297 	if (!tx_desc) {
298 		dev_err(&drv_data->pdev->dev,
299 			"failed to get DMA TX descriptor\n");
300 		return -EBUSY;
301 	}
302 
303 	rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM);
304 	if (!rx_desc) {
305 		dev_err(&drv_data->pdev->dev,
306 			"failed to get DMA RX descriptor\n");
307 		return -EBUSY;
308 	}
309 
310 	/* We are ready when RX completes */
311 	rx_desc->callback = pxa2xx_spi_dma_callback;
312 	rx_desc->callback_param = drv_data;
313 
314 	dmaengine_submit(rx_desc);
315 	dmaengine_submit(tx_desc);
316 	return 0;
317 }
318 
319 void pxa2xx_spi_dma_start(struct driver_data *drv_data)
320 {
321 	dma_async_issue_pending(drv_data->rx_chan);
322 	dma_async_issue_pending(drv_data->tx_chan);
323 
324 	atomic_set(&drv_data->dma_running, 1);
325 }
326 
327 int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
328 {
329 	struct pxa2xx_spi_master *pdata = drv_data->master_info;
330 	struct device *dev = &drv_data->pdev->dev;
331 	dma_cap_mask_t mask;
332 
333 	dma_cap_zero(mask);
334 	dma_cap_set(DMA_SLAVE, mask);
335 
336 	drv_data->dummy = devm_kzalloc(dev, SZ_2K, GFP_KERNEL);
337 	if (!drv_data->dummy)
338 		return -ENOMEM;
339 
340 	drv_data->tx_chan = dma_request_slave_channel_compat(mask,
341 				pxa2xx_spi_dma_filter, pdata, dev, "tx");
342 	if (!drv_data->tx_chan)
343 		return -ENODEV;
344 
345 	drv_data->rx_chan = dma_request_slave_channel_compat(mask,
346 				pxa2xx_spi_dma_filter, pdata, dev, "rx");
347 	if (!drv_data->rx_chan) {
348 		dma_release_channel(drv_data->tx_chan);
349 		drv_data->tx_chan = NULL;
350 		return -ENODEV;
351 	}
352 
353 	return 0;
354 }
355 
356 void pxa2xx_spi_dma_release(struct driver_data *drv_data)
357 {
358 	if (drv_data->rx_chan) {
359 		dmaengine_terminate_all(drv_data->rx_chan);
360 		dma_release_channel(drv_data->rx_chan);
361 		sg_free_table(&drv_data->rx_sgt);
362 		drv_data->rx_chan = NULL;
363 	}
364 	if (drv_data->tx_chan) {
365 		dmaengine_terminate_all(drv_data->tx_chan);
366 		dma_release_channel(drv_data->tx_chan);
367 		sg_free_table(&drv_data->tx_sgt);
368 		drv_data->tx_chan = NULL;
369 	}
370 }
371 
372 void pxa2xx_spi_dma_resume(struct driver_data *drv_data)
373 {
374 }
375 
376 int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
377 					   struct spi_device *spi,
378 					   u8 bits_per_word, u32 *burst_code,
379 					   u32 *threshold)
380 {
381 	struct pxa2xx_spi_chip *chip_info = spi->controller_data;
382 
383 	/*
384 	 * If the DMA burst size is given in chip_info we use that,
385 	 * otherwise we use the default. Also we use the default FIFO
386 	 * thresholds for now.
387 	 */
388 	*burst_code = chip_info ? chip_info->dma_burst_size : 16;
389 	*threshold = SSCR1_RxTresh(RX_THRESH_DFLT)
390 		   | SSCR1_TxTresh(TX_THRESH_DFLT);
391 
392 	return 0;
393 }
394