1 /* 2 * PXA2xx SPI DMA engine support. 3 * 4 * Copyright (C) 2013, Intel Corporation 5 * Author: Mika Westerberg <mika.westerberg@linux.intel.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #include <linux/device.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/dmaengine.h> 15 #include <linux/pxa2xx_ssp.h> 16 #include <linux/scatterlist.h> 17 #include <linux/sizes.h> 18 #include <linux/spi/spi.h> 19 #include <linux/spi/pxa2xx_spi.h> 20 21 #include "spi-pxa2xx.h" 22 23 static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data, 24 bool error) 25 { 26 struct spi_message *msg = drv_data->cur_msg; 27 28 /* 29 * It is possible that one CPU is handling ROR interrupt and other 30 * just gets DMA completion. Calling pump_transfers() twice for the 31 * same transfer leads to problems thus we prevent concurrent calls 32 * by using ->dma_running. 33 */ 34 if (atomic_dec_and_test(&drv_data->dma_running)) { 35 /* 36 * If the other CPU is still handling the ROR interrupt we 37 * might not know about the error yet. So we re-check the 38 * ROR bit here before we clear the status register. 39 */ 40 if (!error) { 41 u32 status = pxa2xx_spi_read(drv_data, SSSR) 42 & drv_data->mask_sr; 43 error = status & SSSR_ROR; 44 } 45 46 /* Clear status & disable interrupts */ 47 pxa2xx_spi_write(drv_data, SSCR1, 48 pxa2xx_spi_read(drv_data, SSCR1) 49 & ~drv_data->dma_cr1); 50 write_SSSR_CS(drv_data, drv_data->clear_sr); 51 if (!pxa25x_ssp_comp(drv_data)) 52 pxa2xx_spi_write(drv_data, SSTO, 0); 53 54 if (!error) { 55 msg->actual_length += drv_data->len; 56 msg->state = pxa2xx_spi_next_transfer(drv_data); 57 } else { 58 /* In case we got an error we disable the SSP now */ 59 pxa2xx_spi_write(drv_data, SSCR0, 60 pxa2xx_spi_read(drv_data, SSCR0) 61 & ~SSCR0_SSE); 62 63 msg->state = ERROR_STATE; 64 } 65 66 tasklet_schedule(&drv_data->pump_transfers); 67 } 68 } 69 70 static void pxa2xx_spi_dma_callback(void *data) 71 { 72 pxa2xx_spi_dma_transfer_complete(data, false); 73 } 74 75 static struct dma_async_tx_descriptor * 76 pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data, 77 enum dma_transfer_direction dir) 78 { 79 struct chip_data *chip = drv_data->cur_chip; 80 struct spi_transfer *xfer = drv_data->cur_transfer; 81 enum dma_slave_buswidth width; 82 struct dma_slave_config cfg; 83 struct dma_chan *chan; 84 struct sg_table *sgt; 85 int ret; 86 87 switch (drv_data->n_bytes) { 88 case 1: 89 width = DMA_SLAVE_BUSWIDTH_1_BYTE; 90 break; 91 case 2: 92 width = DMA_SLAVE_BUSWIDTH_2_BYTES; 93 break; 94 default: 95 width = DMA_SLAVE_BUSWIDTH_4_BYTES; 96 break; 97 } 98 99 memset(&cfg, 0, sizeof(cfg)); 100 cfg.direction = dir; 101 102 if (dir == DMA_MEM_TO_DEV) { 103 cfg.dst_addr = drv_data->ssdr_physical; 104 cfg.dst_addr_width = width; 105 cfg.dst_maxburst = chip->dma_burst_size; 106 107 sgt = &xfer->tx_sg; 108 chan = drv_data->master->dma_tx; 109 } else { 110 cfg.src_addr = drv_data->ssdr_physical; 111 cfg.src_addr_width = width; 112 cfg.src_maxburst = chip->dma_burst_size; 113 114 sgt = &xfer->rx_sg; 115 chan = drv_data->master->dma_rx; 116 } 117 118 ret = dmaengine_slave_config(chan, &cfg); 119 if (ret) { 120 dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n"); 121 return NULL; 122 } 123 124 return dmaengine_prep_slave_sg(chan, sgt->sgl, sgt->nents, dir, 125 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 126 } 127 128 irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data) 129 { 130 u32 status; 131 132 status = pxa2xx_spi_read(drv_data, SSSR) & drv_data->mask_sr; 133 if (status & SSSR_ROR) { 134 dev_err(&drv_data->pdev->dev, "FIFO overrun\n"); 135 136 dmaengine_terminate_async(drv_data->master->dma_rx); 137 dmaengine_terminate_async(drv_data->master->dma_tx); 138 139 pxa2xx_spi_dma_transfer_complete(drv_data, true); 140 return IRQ_HANDLED; 141 } 142 143 return IRQ_NONE; 144 } 145 146 int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst) 147 { 148 struct dma_async_tx_descriptor *tx_desc, *rx_desc; 149 int err = 0; 150 151 tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV); 152 if (!tx_desc) { 153 dev_err(&drv_data->pdev->dev, 154 "failed to get DMA TX descriptor\n"); 155 err = -EBUSY; 156 goto err_tx; 157 } 158 159 rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM); 160 if (!rx_desc) { 161 dev_err(&drv_data->pdev->dev, 162 "failed to get DMA RX descriptor\n"); 163 err = -EBUSY; 164 goto err_rx; 165 } 166 167 /* We are ready when RX completes */ 168 rx_desc->callback = pxa2xx_spi_dma_callback; 169 rx_desc->callback_param = drv_data; 170 171 dmaengine_submit(rx_desc); 172 dmaengine_submit(tx_desc); 173 return 0; 174 175 err_rx: 176 dmaengine_terminate_async(drv_data->master->dma_tx); 177 err_tx: 178 return err; 179 } 180 181 void pxa2xx_spi_dma_start(struct driver_data *drv_data) 182 { 183 dma_async_issue_pending(drv_data->master->dma_rx); 184 dma_async_issue_pending(drv_data->master->dma_tx); 185 186 atomic_set(&drv_data->dma_running, 1); 187 } 188 189 int pxa2xx_spi_dma_setup(struct driver_data *drv_data) 190 { 191 struct pxa2xx_spi_master *pdata = drv_data->master_info; 192 struct device *dev = &drv_data->pdev->dev; 193 struct spi_master *master = drv_data->master; 194 dma_cap_mask_t mask; 195 196 dma_cap_zero(mask); 197 dma_cap_set(DMA_SLAVE, mask); 198 199 master->dma_tx = dma_request_slave_channel_compat(mask, 200 pdata->dma_filter, pdata->tx_param, dev, "tx"); 201 if (!master->dma_tx) 202 return -ENODEV; 203 204 master->dma_rx = dma_request_slave_channel_compat(mask, 205 pdata->dma_filter, pdata->rx_param, dev, "rx"); 206 if (!master->dma_rx) { 207 dma_release_channel(master->dma_tx); 208 master->dma_tx = NULL; 209 return -ENODEV; 210 } 211 212 return 0; 213 } 214 215 void pxa2xx_spi_dma_release(struct driver_data *drv_data) 216 { 217 struct spi_master *master = drv_data->master; 218 219 if (master->dma_rx) { 220 dmaengine_terminate_sync(master->dma_rx); 221 dma_release_channel(master->dma_rx); 222 master->dma_rx = NULL; 223 } 224 if (master->dma_tx) { 225 dmaengine_terminate_sync(master->dma_tx); 226 dma_release_channel(master->dma_tx); 227 master->dma_tx = NULL; 228 } 229 } 230 231 int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip, 232 struct spi_device *spi, 233 u8 bits_per_word, u32 *burst_code, 234 u32 *threshold) 235 { 236 struct pxa2xx_spi_chip *chip_info = spi->controller_data; 237 238 /* 239 * If the DMA burst size is given in chip_info we use that, 240 * otherwise we use the default. Also we use the default FIFO 241 * thresholds for now. 242 */ 243 *burst_code = chip_info ? chip_info->dma_burst_size : 1; 244 *threshold = SSCR1_RxTresh(RX_THRESH_DFLT) 245 | SSCR1_TxTresh(TX_THRESH_DFLT); 246 247 return 0; 248 } 249