xref: /openbmc/linux/drivers/spi/spi-pxa2xx-dma.c (revision b34e08d5)
1 /*
2  * PXA2xx SPI DMA engine support.
3  *
4  * Copyright (C) 2013, Intel Corporation
5  * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/pxa2xx_ssp.h>
16 #include <linux/scatterlist.h>
17 #include <linux/sizes.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/pxa2xx_spi.h>
20 
21 #include "spi-pxa2xx.h"
22 
23 static int pxa2xx_spi_map_dma_buffer(struct driver_data *drv_data,
24 				     enum dma_data_direction dir)
25 {
26 	int i, nents, len = drv_data->len;
27 	struct scatterlist *sg;
28 	struct device *dmadev;
29 	struct sg_table *sgt;
30 	void *buf, *pbuf;
31 
32 	/*
33 	 * Some DMA controllers have problems transferring buffers that are
34 	 * not multiple of 4 bytes. So we truncate the transfer so that it
35 	 * is suitable for such controllers, and handle the trailing bytes
36 	 * manually after the DMA completes.
37 	 *
38 	 * REVISIT: It would be better if this information could be
39 	 * retrieved directly from the DMA device in a similar way than
40 	 * ->copy_align etc. is done.
41 	 */
42 	len = ALIGN(drv_data->len, 4);
43 
44 	if (dir == DMA_TO_DEVICE) {
45 		dmadev = drv_data->tx_chan->device->dev;
46 		sgt = &drv_data->tx_sgt;
47 		buf = drv_data->tx;
48 		drv_data->tx_map_len = len;
49 	} else {
50 		dmadev = drv_data->rx_chan->device->dev;
51 		sgt = &drv_data->rx_sgt;
52 		buf = drv_data->rx;
53 		drv_data->rx_map_len = len;
54 	}
55 
56 	nents = DIV_ROUND_UP(len, SZ_2K);
57 	if (nents != sgt->nents) {
58 		int ret;
59 
60 		sg_free_table(sgt);
61 		ret = sg_alloc_table(sgt, nents, GFP_ATOMIC);
62 		if (ret)
63 			return ret;
64 	}
65 
66 	pbuf = buf;
67 	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
68 		size_t bytes = min_t(size_t, len, SZ_2K);
69 
70 		if (buf)
71 			sg_set_buf(sg, pbuf, bytes);
72 		else
73 			sg_set_buf(sg, drv_data->dummy, bytes);
74 
75 		pbuf += bytes;
76 		len -= bytes;
77 	}
78 
79 	nents = dma_map_sg(dmadev, sgt->sgl, sgt->nents, dir);
80 	if (!nents)
81 		return -ENOMEM;
82 
83 	return nents;
84 }
85 
86 static void pxa2xx_spi_unmap_dma_buffer(struct driver_data *drv_data,
87 					enum dma_data_direction dir)
88 {
89 	struct device *dmadev;
90 	struct sg_table *sgt;
91 
92 	if (dir == DMA_TO_DEVICE) {
93 		dmadev = drv_data->tx_chan->device->dev;
94 		sgt = &drv_data->tx_sgt;
95 	} else {
96 		dmadev = drv_data->rx_chan->device->dev;
97 		sgt = &drv_data->rx_sgt;
98 	}
99 
100 	dma_unmap_sg(dmadev, sgt->sgl, sgt->nents, dir);
101 }
102 
103 static void pxa2xx_spi_unmap_dma_buffers(struct driver_data *drv_data)
104 {
105 	if (!drv_data->dma_mapped)
106 		return;
107 
108 	pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_FROM_DEVICE);
109 	pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE);
110 
111 	drv_data->dma_mapped = 0;
112 }
113 
114 static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data,
115 					     bool error)
116 {
117 	struct spi_message *msg = drv_data->cur_msg;
118 
119 	/*
120 	 * It is possible that one CPU is handling ROR interrupt and other
121 	 * just gets DMA completion. Calling pump_transfers() twice for the
122 	 * same transfer leads to problems thus we prevent concurrent calls
123 	 * by using ->dma_running.
124 	 */
125 	if (atomic_dec_and_test(&drv_data->dma_running)) {
126 		void __iomem *reg = drv_data->ioaddr;
127 
128 		/*
129 		 * If the other CPU is still handling the ROR interrupt we
130 		 * might not know about the error yet. So we re-check the
131 		 * ROR bit here before we clear the status register.
132 		 */
133 		if (!error) {
134 			u32 status = read_SSSR(reg) & drv_data->mask_sr;
135 			error = status & SSSR_ROR;
136 		}
137 
138 		/* Clear status & disable interrupts */
139 		write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
140 		write_SSSR_CS(drv_data, drv_data->clear_sr);
141 		if (!pxa25x_ssp_comp(drv_data))
142 			write_SSTO(0, reg);
143 
144 		if (!error) {
145 			pxa2xx_spi_unmap_dma_buffers(drv_data);
146 
147 			/* Handle the last bytes of unaligned transfer */
148 			drv_data->tx += drv_data->tx_map_len;
149 			drv_data->write(drv_data);
150 
151 			drv_data->rx += drv_data->rx_map_len;
152 			drv_data->read(drv_data);
153 
154 			msg->actual_length += drv_data->len;
155 			msg->state = pxa2xx_spi_next_transfer(drv_data);
156 		} else {
157 			/* In case we got an error we disable the SSP now */
158 			write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
159 
160 			msg->state = ERROR_STATE;
161 		}
162 
163 		tasklet_schedule(&drv_data->pump_transfers);
164 	}
165 }
166 
167 static void pxa2xx_spi_dma_callback(void *data)
168 {
169 	pxa2xx_spi_dma_transfer_complete(data, false);
170 }
171 
172 static struct dma_async_tx_descriptor *
173 pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data,
174 			   enum dma_transfer_direction dir)
175 {
176 	struct pxa2xx_spi_master *pdata = drv_data->master_info;
177 	struct chip_data *chip = drv_data->cur_chip;
178 	enum dma_slave_buswidth width;
179 	struct dma_slave_config cfg;
180 	struct dma_chan *chan;
181 	struct sg_table *sgt;
182 	int nents, ret;
183 
184 	switch (drv_data->n_bytes) {
185 	case 1:
186 		width = DMA_SLAVE_BUSWIDTH_1_BYTE;
187 		break;
188 	case 2:
189 		width = DMA_SLAVE_BUSWIDTH_2_BYTES;
190 		break;
191 	default:
192 		width = DMA_SLAVE_BUSWIDTH_4_BYTES;
193 		break;
194 	}
195 
196 	memset(&cfg, 0, sizeof(cfg));
197 	cfg.direction = dir;
198 
199 	if (dir == DMA_MEM_TO_DEV) {
200 		cfg.dst_addr = drv_data->ssdr_physical;
201 		cfg.dst_addr_width = width;
202 		cfg.dst_maxburst = chip->dma_burst_size;
203 		cfg.slave_id = pdata->tx_slave_id;
204 
205 		sgt = &drv_data->tx_sgt;
206 		nents = drv_data->tx_nents;
207 		chan = drv_data->tx_chan;
208 	} else {
209 		cfg.src_addr = drv_data->ssdr_physical;
210 		cfg.src_addr_width = width;
211 		cfg.src_maxburst = chip->dma_burst_size;
212 		cfg.slave_id = pdata->rx_slave_id;
213 
214 		sgt = &drv_data->rx_sgt;
215 		nents = drv_data->rx_nents;
216 		chan = drv_data->rx_chan;
217 	}
218 
219 	ret = dmaengine_slave_config(chan, &cfg);
220 	if (ret) {
221 		dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n");
222 		return NULL;
223 	}
224 
225 	return dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir,
226 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
227 }
228 
229 static bool pxa2xx_spi_dma_filter(struct dma_chan *chan, void *param)
230 {
231 	const struct pxa2xx_spi_master *pdata = param;
232 
233 	return chan->chan_id == pdata->tx_chan_id ||
234 	       chan->chan_id == pdata->rx_chan_id;
235 }
236 
237 bool pxa2xx_spi_dma_is_possible(size_t len)
238 {
239 	return len <= MAX_DMA_LEN;
240 }
241 
242 int pxa2xx_spi_map_dma_buffers(struct driver_data *drv_data)
243 {
244 	const struct chip_data *chip = drv_data->cur_chip;
245 	int ret;
246 
247 	if (!chip->enable_dma)
248 		return 0;
249 
250 	/* Don't bother with DMA if we can't do even a single burst */
251 	if (drv_data->len < chip->dma_burst_size)
252 		return 0;
253 
254 	ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_TO_DEVICE);
255 	if (ret <= 0) {
256 		dev_warn(&drv_data->pdev->dev, "failed to DMA map TX\n");
257 		return 0;
258 	}
259 
260 	drv_data->tx_nents = ret;
261 
262 	ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_FROM_DEVICE);
263 	if (ret <= 0) {
264 		pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE);
265 		dev_warn(&drv_data->pdev->dev, "failed to DMA map RX\n");
266 		return 0;
267 	}
268 
269 	drv_data->rx_nents = ret;
270 	return 1;
271 }
272 
273 irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
274 {
275 	u32 status;
276 
277 	status = read_SSSR(drv_data->ioaddr) & drv_data->mask_sr;
278 	if (status & SSSR_ROR) {
279 		dev_err(&drv_data->pdev->dev, "FIFO overrun\n");
280 
281 		dmaengine_terminate_all(drv_data->rx_chan);
282 		dmaengine_terminate_all(drv_data->tx_chan);
283 
284 		pxa2xx_spi_dma_transfer_complete(drv_data, true);
285 		return IRQ_HANDLED;
286 	}
287 
288 	return IRQ_NONE;
289 }
290 
291 int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst)
292 {
293 	struct dma_async_tx_descriptor *tx_desc, *rx_desc;
294 
295 	tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV);
296 	if (!tx_desc) {
297 		dev_err(&drv_data->pdev->dev,
298 			"failed to get DMA TX descriptor\n");
299 		return -EBUSY;
300 	}
301 
302 	rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM);
303 	if (!rx_desc) {
304 		dev_err(&drv_data->pdev->dev,
305 			"failed to get DMA RX descriptor\n");
306 		return -EBUSY;
307 	}
308 
309 	/* We are ready when RX completes */
310 	rx_desc->callback = pxa2xx_spi_dma_callback;
311 	rx_desc->callback_param = drv_data;
312 
313 	dmaengine_submit(rx_desc);
314 	dmaengine_submit(tx_desc);
315 	return 0;
316 }
317 
318 void pxa2xx_spi_dma_start(struct driver_data *drv_data)
319 {
320 	dma_async_issue_pending(drv_data->rx_chan);
321 	dma_async_issue_pending(drv_data->tx_chan);
322 
323 	atomic_set(&drv_data->dma_running, 1);
324 }
325 
326 int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
327 {
328 	struct pxa2xx_spi_master *pdata = drv_data->master_info;
329 	struct device *dev = &drv_data->pdev->dev;
330 	dma_cap_mask_t mask;
331 
332 	dma_cap_zero(mask);
333 	dma_cap_set(DMA_SLAVE, mask);
334 
335 	drv_data->dummy = devm_kzalloc(dev, SZ_2K, GFP_KERNEL);
336 	if (!drv_data->dummy)
337 		return -ENOMEM;
338 
339 	drv_data->tx_chan = dma_request_slave_channel_compat(mask,
340 				pxa2xx_spi_dma_filter, pdata, dev, "tx");
341 	if (!drv_data->tx_chan)
342 		return -ENODEV;
343 
344 	drv_data->rx_chan = dma_request_slave_channel_compat(mask,
345 				pxa2xx_spi_dma_filter, pdata, dev, "rx");
346 	if (!drv_data->rx_chan) {
347 		dma_release_channel(drv_data->tx_chan);
348 		drv_data->tx_chan = NULL;
349 		return -ENODEV;
350 	}
351 
352 	return 0;
353 }
354 
355 void pxa2xx_spi_dma_release(struct driver_data *drv_data)
356 {
357 	if (drv_data->rx_chan) {
358 		dmaengine_terminate_all(drv_data->rx_chan);
359 		dma_release_channel(drv_data->rx_chan);
360 		sg_free_table(&drv_data->rx_sgt);
361 		drv_data->rx_chan = NULL;
362 	}
363 	if (drv_data->tx_chan) {
364 		dmaengine_terminate_all(drv_data->tx_chan);
365 		dma_release_channel(drv_data->tx_chan);
366 		sg_free_table(&drv_data->tx_sgt);
367 		drv_data->tx_chan = NULL;
368 	}
369 }
370 
371 void pxa2xx_spi_dma_resume(struct driver_data *drv_data)
372 {
373 }
374 
375 int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
376 					   struct spi_device *spi,
377 					   u8 bits_per_word, u32 *burst_code,
378 					   u32 *threshold)
379 {
380 	struct pxa2xx_spi_chip *chip_info = spi->controller_data;
381 
382 	/*
383 	 * If the DMA burst size is given in chip_info we use that,
384 	 * otherwise we use the default. Also we use the default FIFO
385 	 * thresholds for now.
386 	 */
387 	*burst_code = chip_info ? chip_info->dma_burst_size : 16;
388 	*threshold = SSCR1_RxTresh(RX_THRESH_DFLT)
389 		   | SSCR1_TxTresh(TX_THRESH_DFLT);
390 
391 	return 0;
392 }
393