xref: /openbmc/linux/drivers/spi/spi-pxa2xx-dma.c (revision 95b384f9)
1 /*
2  * PXA2xx SPI DMA engine support.
3  *
4  * Copyright (C) 2013, Intel Corporation
5  * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/pxa2xx_ssp.h>
16 #include <linux/scatterlist.h>
17 #include <linux/sizes.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/pxa2xx_spi.h>
20 
21 #include "spi-pxa2xx.h"
22 
23 static int pxa2xx_spi_map_dma_buffer(struct driver_data *drv_data,
24 				     enum dma_data_direction dir)
25 {
26 	int i, nents, len = drv_data->len;
27 	struct scatterlist *sg;
28 	struct device *dmadev;
29 	struct sg_table *sgt;
30 	void *buf, *pbuf;
31 
32 	if (dir == DMA_TO_DEVICE) {
33 		dmadev = drv_data->tx_chan->device->dev;
34 		sgt = &drv_data->tx_sgt;
35 		buf = drv_data->tx;
36 	} else {
37 		dmadev = drv_data->rx_chan->device->dev;
38 		sgt = &drv_data->rx_sgt;
39 		buf = drv_data->rx;
40 	}
41 
42 	nents = DIV_ROUND_UP(len, SZ_2K);
43 	if (nents != sgt->nents) {
44 		int ret;
45 
46 		sg_free_table(sgt);
47 		ret = sg_alloc_table(sgt, nents, GFP_ATOMIC);
48 		if (ret)
49 			return ret;
50 	}
51 
52 	pbuf = buf;
53 	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
54 		size_t bytes = min_t(size_t, len, SZ_2K);
55 
56 		sg_set_buf(sg, pbuf, bytes);
57 		pbuf += bytes;
58 		len -= bytes;
59 	}
60 
61 	nents = dma_map_sg(dmadev, sgt->sgl, sgt->nents, dir);
62 	if (!nents)
63 		return -ENOMEM;
64 
65 	return nents;
66 }
67 
68 static void pxa2xx_spi_unmap_dma_buffer(struct driver_data *drv_data,
69 					enum dma_data_direction dir)
70 {
71 	struct device *dmadev;
72 	struct sg_table *sgt;
73 
74 	if (dir == DMA_TO_DEVICE) {
75 		dmadev = drv_data->tx_chan->device->dev;
76 		sgt = &drv_data->tx_sgt;
77 	} else {
78 		dmadev = drv_data->rx_chan->device->dev;
79 		sgt = &drv_data->rx_sgt;
80 	}
81 
82 	dma_unmap_sg(dmadev, sgt->sgl, sgt->nents, dir);
83 }
84 
85 static void pxa2xx_spi_unmap_dma_buffers(struct driver_data *drv_data)
86 {
87 	if (!drv_data->dma_mapped)
88 		return;
89 
90 	pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_FROM_DEVICE);
91 	pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE);
92 
93 	drv_data->dma_mapped = 0;
94 }
95 
96 static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data,
97 					     bool error)
98 {
99 	struct spi_message *msg = drv_data->cur_msg;
100 
101 	/*
102 	 * It is possible that one CPU is handling ROR interrupt and other
103 	 * just gets DMA completion. Calling pump_transfers() twice for the
104 	 * same transfer leads to problems thus we prevent concurrent calls
105 	 * by using ->dma_running.
106 	 */
107 	if (atomic_dec_and_test(&drv_data->dma_running)) {
108 		/*
109 		 * If the other CPU is still handling the ROR interrupt we
110 		 * might not know about the error yet. So we re-check the
111 		 * ROR bit here before we clear the status register.
112 		 */
113 		if (!error) {
114 			u32 status = pxa2xx_spi_read(drv_data, SSSR)
115 				     & drv_data->mask_sr;
116 			error = status & SSSR_ROR;
117 		}
118 
119 		/* Clear status & disable interrupts */
120 		pxa2xx_spi_write(drv_data, SSCR1,
121 				 pxa2xx_spi_read(drv_data, SSCR1)
122 				 & ~drv_data->dma_cr1);
123 		write_SSSR_CS(drv_data, drv_data->clear_sr);
124 		if (!pxa25x_ssp_comp(drv_data))
125 			pxa2xx_spi_write(drv_data, SSTO, 0);
126 
127 		if (!error) {
128 			pxa2xx_spi_unmap_dma_buffers(drv_data);
129 
130 			msg->actual_length += drv_data->len;
131 			msg->state = pxa2xx_spi_next_transfer(drv_data);
132 		} else {
133 			/* In case we got an error we disable the SSP now */
134 			pxa2xx_spi_write(drv_data, SSCR0,
135 					 pxa2xx_spi_read(drv_data, SSCR0)
136 					 & ~SSCR0_SSE);
137 
138 			msg->state = ERROR_STATE;
139 		}
140 
141 		tasklet_schedule(&drv_data->pump_transfers);
142 	}
143 }
144 
145 static void pxa2xx_spi_dma_callback(void *data)
146 {
147 	pxa2xx_spi_dma_transfer_complete(data, false);
148 }
149 
150 static struct dma_async_tx_descriptor *
151 pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data,
152 			   enum dma_transfer_direction dir)
153 {
154 	struct chip_data *chip = drv_data->cur_chip;
155 	enum dma_slave_buswidth width;
156 	struct dma_slave_config cfg;
157 	struct dma_chan *chan;
158 	struct sg_table *sgt;
159 	int nents, ret;
160 
161 	switch (drv_data->n_bytes) {
162 	case 1:
163 		width = DMA_SLAVE_BUSWIDTH_1_BYTE;
164 		break;
165 	case 2:
166 		width = DMA_SLAVE_BUSWIDTH_2_BYTES;
167 		break;
168 	default:
169 		width = DMA_SLAVE_BUSWIDTH_4_BYTES;
170 		break;
171 	}
172 
173 	memset(&cfg, 0, sizeof(cfg));
174 	cfg.direction = dir;
175 
176 	if (dir == DMA_MEM_TO_DEV) {
177 		cfg.dst_addr = drv_data->ssdr_physical;
178 		cfg.dst_addr_width = width;
179 		cfg.dst_maxburst = chip->dma_burst_size;
180 
181 		sgt = &drv_data->tx_sgt;
182 		nents = drv_data->tx_nents;
183 		chan = drv_data->tx_chan;
184 	} else {
185 		cfg.src_addr = drv_data->ssdr_physical;
186 		cfg.src_addr_width = width;
187 		cfg.src_maxburst = chip->dma_burst_size;
188 
189 		sgt = &drv_data->rx_sgt;
190 		nents = drv_data->rx_nents;
191 		chan = drv_data->rx_chan;
192 	}
193 
194 	ret = dmaengine_slave_config(chan, &cfg);
195 	if (ret) {
196 		dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n");
197 		return NULL;
198 	}
199 
200 	return dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir,
201 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
202 }
203 
204 bool pxa2xx_spi_dma_is_possible(size_t len)
205 {
206 	return len <= MAX_DMA_LEN;
207 }
208 
209 int pxa2xx_spi_map_dma_buffers(struct driver_data *drv_data)
210 {
211 	const struct chip_data *chip = drv_data->cur_chip;
212 	int ret;
213 
214 	if (!chip->enable_dma)
215 		return 0;
216 
217 	/* Don't bother with DMA if we can't do even a single burst */
218 	if (drv_data->len < chip->dma_burst_size)
219 		return 0;
220 
221 	ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_TO_DEVICE);
222 	if (ret <= 0) {
223 		dev_warn(&drv_data->pdev->dev, "failed to DMA map TX\n");
224 		return 0;
225 	}
226 
227 	drv_data->tx_nents = ret;
228 
229 	ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_FROM_DEVICE);
230 	if (ret <= 0) {
231 		pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE);
232 		dev_warn(&drv_data->pdev->dev, "failed to DMA map RX\n");
233 		return 0;
234 	}
235 
236 	drv_data->rx_nents = ret;
237 	return 1;
238 }
239 
240 irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
241 {
242 	u32 status;
243 
244 	status = pxa2xx_spi_read(drv_data, SSSR) & drv_data->mask_sr;
245 	if (status & SSSR_ROR) {
246 		dev_err(&drv_data->pdev->dev, "FIFO overrun\n");
247 
248 		dmaengine_terminate_async(drv_data->rx_chan);
249 		dmaengine_terminate_async(drv_data->tx_chan);
250 
251 		pxa2xx_spi_dma_transfer_complete(drv_data, true);
252 		return IRQ_HANDLED;
253 	}
254 
255 	return IRQ_NONE;
256 }
257 
258 int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst)
259 {
260 	struct dma_async_tx_descriptor *tx_desc, *rx_desc;
261 	int err = 0;
262 
263 	tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV);
264 	if (!tx_desc) {
265 		dev_err(&drv_data->pdev->dev,
266 			"failed to get DMA TX descriptor\n");
267 		err = -EBUSY;
268 		goto err_tx;
269 	}
270 
271 	rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM);
272 	if (!rx_desc) {
273 		dev_err(&drv_data->pdev->dev,
274 			"failed to get DMA RX descriptor\n");
275 		err = -EBUSY;
276 		goto err_rx;
277 	}
278 
279 	/* We are ready when RX completes */
280 	rx_desc->callback = pxa2xx_spi_dma_callback;
281 	rx_desc->callback_param = drv_data;
282 
283 	dmaengine_submit(rx_desc);
284 	dmaengine_submit(tx_desc);
285 	return 0;
286 
287 err_rx:
288 	dmaengine_terminate_async(drv_data->tx_chan);
289 err_tx:
290 	pxa2xx_spi_unmap_dma_buffers(drv_data);
291 	return err;
292 }
293 
294 void pxa2xx_spi_dma_start(struct driver_data *drv_data)
295 {
296 	dma_async_issue_pending(drv_data->rx_chan);
297 	dma_async_issue_pending(drv_data->tx_chan);
298 
299 	atomic_set(&drv_data->dma_running, 1);
300 }
301 
302 int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
303 {
304 	struct pxa2xx_spi_master *pdata = drv_data->master_info;
305 	struct device *dev = &drv_data->pdev->dev;
306 	dma_cap_mask_t mask;
307 
308 	dma_cap_zero(mask);
309 	dma_cap_set(DMA_SLAVE, mask);
310 
311 	drv_data->tx_chan = dma_request_slave_channel_compat(mask,
312 				pdata->dma_filter, pdata->tx_param, dev, "tx");
313 	if (!drv_data->tx_chan)
314 		return -ENODEV;
315 
316 	drv_data->rx_chan = dma_request_slave_channel_compat(mask,
317 				pdata->dma_filter, pdata->rx_param, dev, "rx");
318 	if (!drv_data->rx_chan) {
319 		dma_release_channel(drv_data->tx_chan);
320 		drv_data->tx_chan = NULL;
321 		return -ENODEV;
322 	}
323 
324 	return 0;
325 }
326 
327 void pxa2xx_spi_dma_release(struct driver_data *drv_data)
328 {
329 	if (drv_data->rx_chan) {
330 		dmaengine_terminate_sync(drv_data->rx_chan);
331 		dma_release_channel(drv_data->rx_chan);
332 		sg_free_table(&drv_data->rx_sgt);
333 		drv_data->rx_chan = NULL;
334 	}
335 	if (drv_data->tx_chan) {
336 		dmaengine_terminate_sync(drv_data->tx_chan);
337 		dma_release_channel(drv_data->tx_chan);
338 		sg_free_table(&drv_data->tx_sgt);
339 		drv_data->tx_chan = NULL;
340 	}
341 }
342 
343 int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
344 					   struct spi_device *spi,
345 					   u8 bits_per_word, u32 *burst_code,
346 					   u32 *threshold)
347 {
348 	struct pxa2xx_spi_chip *chip_info = spi->controller_data;
349 
350 	/*
351 	 * If the DMA burst size is given in chip_info we use that,
352 	 * otherwise we use the default. Also we use the default FIFO
353 	 * thresholds for now.
354 	 */
355 	*burst_code = chip_info ? chip_info->dma_burst_size : 1;
356 	*threshold = SSCR1_RxTresh(RX_THRESH_DFLT)
357 		   | SSCR1_TxTresh(TX_THRESH_DFLT);
358 
359 	return 0;
360 }
361