xref: /openbmc/linux/drivers/spi/spi-pxa2xx-dma.c (revision 55fd7e02)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * PXA2xx SPI DMA engine support.
4  *
5  * Copyright (C) 2013, Intel Corporation
6  * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmaengine.h>
12 #include <linux/pxa2xx_ssp.h>
13 #include <linux/scatterlist.h>
14 #include <linux/sizes.h>
15 #include <linux/spi/spi.h>
16 #include <linux/spi/pxa2xx_spi.h>
17 
18 #include "spi-pxa2xx.h"
19 
20 static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data,
21 					     bool error)
22 {
23 	struct spi_message *msg = drv_data->controller->cur_msg;
24 
25 	/*
26 	 * It is possible that one CPU is handling ROR interrupt and other
27 	 * just gets DMA completion. Calling pump_transfers() twice for the
28 	 * same transfer leads to problems thus we prevent concurrent calls
29 	 * by using ->dma_running.
30 	 */
31 	if (atomic_dec_and_test(&drv_data->dma_running)) {
32 		/*
33 		 * If the other CPU is still handling the ROR interrupt we
34 		 * might not know about the error yet. So we re-check the
35 		 * ROR bit here before we clear the status register.
36 		 */
37 		if (!error) {
38 			u32 status = pxa2xx_spi_read(drv_data, SSSR)
39 				     & drv_data->mask_sr;
40 			error = status & SSSR_ROR;
41 		}
42 
43 		/* Clear status & disable interrupts */
44 		pxa2xx_spi_write(drv_data, SSCR1,
45 				 pxa2xx_spi_read(drv_data, SSCR1)
46 				 & ~drv_data->dma_cr1);
47 		write_SSSR_CS(drv_data, drv_data->clear_sr);
48 		if (!pxa25x_ssp_comp(drv_data))
49 			pxa2xx_spi_write(drv_data, SSTO, 0);
50 
51 		if (error) {
52 			/* In case we got an error we disable the SSP now */
53 			pxa2xx_spi_write(drv_data, SSCR0,
54 					 pxa2xx_spi_read(drv_data, SSCR0)
55 					 & ~SSCR0_SSE);
56 			msg->status = -EIO;
57 		}
58 
59 		spi_finalize_current_transfer(drv_data->controller);
60 	}
61 }
62 
63 static void pxa2xx_spi_dma_callback(void *data)
64 {
65 	pxa2xx_spi_dma_transfer_complete(data, false);
66 }
67 
68 static struct dma_async_tx_descriptor *
69 pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data,
70 			   enum dma_transfer_direction dir,
71 			   struct spi_transfer *xfer)
72 {
73 	struct chip_data *chip =
74 		spi_get_ctldata(drv_data->controller->cur_msg->spi);
75 	enum dma_slave_buswidth width;
76 	struct dma_slave_config cfg;
77 	struct dma_chan *chan;
78 	struct sg_table *sgt;
79 	int ret;
80 
81 	switch (drv_data->n_bytes) {
82 	case 1:
83 		width = DMA_SLAVE_BUSWIDTH_1_BYTE;
84 		break;
85 	case 2:
86 		width = DMA_SLAVE_BUSWIDTH_2_BYTES;
87 		break;
88 	default:
89 		width = DMA_SLAVE_BUSWIDTH_4_BYTES;
90 		break;
91 	}
92 
93 	memset(&cfg, 0, sizeof(cfg));
94 	cfg.direction = dir;
95 
96 	if (dir == DMA_MEM_TO_DEV) {
97 		cfg.dst_addr = drv_data->ssdr_physical;
98 		cfg.dst_addr_width = width;
99 		cfg.dst_maxburst = chip->dma_burst_size;
100 
101 		sgt = &xfer->tx_sg;
102 		chan = drv_data->controller->dma_tx;
103 	} else {
104 		cfg.src_addr = drv_data->ssdr_physical;
105 		cfg.src_addr_width = width;
106 		cfg.src_maxburst = chip->dma_burst_size;
107 
108 		sgt = &xfer->rx_sg;
109 		chan = drv_data->controller->dma_rx;
110 	}
111 
112 	ret = dmaengine_slave_config(chan, &cfg);
113 	if (ret) {
114 		dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n");
115 		return NULL;
116 	}
117 
118 	return dmaengine_prep_slave_sg(chan, sgt->sgl, sgt->nents, dir,
119 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
120 }
121 
122 irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
123 {
124 	u32 status;
125 
126 	status = pxa2xx_spi_read(drv_data, SSSR) & drv_data->mask_sr;
127 	if (status & SSSR_ROR) {
128 		dev_err(&drv_data->pdev->dev, "FIFO overrun\n");
129 
130 		dmaengine_terminate_async(drv_data->controller->dma_rx);
131 		dmaengine_terminate_async(drv_data->controller->dma_tx);
132 
133 		pxa2xx_spi_dma_transfer_complete(drv_data, true);
134 		return IRQ_HANDLED;
135 	}
136 
137 	return IRQ_NONE;
138 }
139 
140 int pxa2xx_spi_dma_prepare(struct driver_data *drv_data,
141 			   struct spi_transfer *xfer)
142 {
143 	struct dma_async_tx_descriptor *tx_desc, *rx_desc;
144 	int err;
145 
146 	tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV, xfer);
147 	if (!tx_desc) {
148 		dev_err(&drv_data->pdev->dev,
149 			"failed to get DMA TX descriptor\n");
150 		err = -EBUSY;
151 		goto err_tx;
152 	}
153 
154 	rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM, xfer);
155 	if (!rx_desc) {
156 		dev_err(&drv_data->pdev->dev,
157 			"failed to get DMA RX descriptor\n");
158 		err = -EBUSY;
159 		goto err_rx;
160 	}
161 
162 	/* We are ready when RX completes */
163 	rx_desc->callback = pxa2xx_spi_dma_callback;
164 	rx_desc->callback_param = drv_data;
165 
166 	dmaengine_submit(rx_desc);
167 	dmaengine_submit(tx_desc);
168 	return 0;
169 
170 err_rx:
171 	dmaengine_terminate_async(drv_data->controller->dma_tx);
172 err_tx:
173 	return err;
174 }
175 
176 void pxa2xx_spi_dma_start(struct driver_data *drv_data)
177 {
178 	dma_async_issue_pending(drv_data->controller->dma_rx);
179 	dma_async_issue_pending(drv_data->controller->dma_tx);
180 
181 	atomic_set(&drv_data->dma_running, 1);
182 }
183 
184 void pxa2xx_spi_dma_stop(struct driver_data *drv_data)
185 {
186 	atomic_set(&drv_data->dma_running, 0);
187 	dmaengine_terminate_sync(drv_data->controller->dma_rx);
188 	dmaengine_terminate_sync(drv_data->controller->dma_tx);
189 }
190 
191 int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
192 {
193 	struct pxa2xx_spi_controller *pdata = drv_data->controller_info;
194 	struct device *dev = &drv_data->pdev->dev;
195 	struct spi_controller *controller = drv_data->controller;
196 	dma_cap_mask_t mask;
197 
198 	dma_cap_zero(mask);
199 	dma_cap_set(DMA_SLAVE, mask);
200 
201 	controller->dma_tx = dma_request_slave_channel_compat(mask,
202 				pdata->dma_filter, pdata->tx_param, dev, "tx");
203 	if (!controller->dma_tx)
204 		return -ENODEV;
205 
206 	controller->dma_rx = dma_request_slave_channel_compat(mask,
207 				pdata->dma_filter, pdata->rx_param, dev, "rx");
208 	if (!controller->dma_rx) {
209 		dma_release_channel(controller->dma_tx);
210 		controller->dma_tx = NULL;
211 		return -ENODEV;
212 	}
213 
214 	return 0;
215 }
216 
217 void pxa2xx_spi_dma_release(struct driver_data *drv_data)
218 {
219 	struct spi_controller *controller = drv_data->controller;
220 
221 	if (controller->dma_rx) {
222 		dmaengine_terminate_sync(controller->dma_rx);
223 		dma_release_channel(controller->dma_rx);
224 		controller->dma_rx = NULL;
225 	}
226 	if (controller->dma_tx) {
227 		dmaengine_terminate_sync(controller->dma_tx);
228 		dma_release_channel(controller->dma_tx);
229 		controller->dma_tx = NULL;
230 	}
231 }
232 
233 int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
234 					   struct spi_device *spi,
235 					   u8 bits_per_word, u32 *burst_code,
236 					   u32 *threshold)
237 {
238 	struct pxa2xx_spi_chip *chip_info = spi->controller_data;
239 	struct driver_data *drv_data = spi_controller_get_devdata(spi->controller);
240 	u32 dma_burst_size = drv_data->controller_info->dma_burst_size;
241 
242 	/*
243 	 * If the DMA burst size is given in chip_info we use that,
244 	 * otherwise we use the default. Also we use the default FIFO
245 	 * thresholds for now.
246 	 */
247 	*burst_code = chip_info ? chip_info->dma_burst_size : dma_burst_size;
248 	*threshold = SSCR1_RxTresh(RX_THRESH_DFLT)
249 		   | SSCR1_TxTresh(TX_THRESH_DFLT);
250 
251 	return 0;
252 }
253