xref: /openbmc/linux/drivers/spi/spi-pxa2xx-dma.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  * PXA2xx SPI DMA engine support.
3  *
4  * Copyright (C) 2013, Intel Corporation
5  * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/pxa2xx_ssp.h>
16 #include <linux/scatterlist.h>
17 #include <linux/sizes.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/pxa2xx_spi.h>
20 
21 #include "spi-pxa2xx.h"
22 
23 static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data,
24 					     bool error)
25 {
26 	struct spi_message *msg = drv_data->controller->cur_msg;
27 
28 	/*
29 	 * It is possible that one CPU is handling ROR interrupt and other
30 	 * just gets DMA completion. Calling pump_transfers() twice for the
31 	 * same transfer leads to problems thus we prevent concurrent calls
32 	 * by using ->dma_running.
33 	 */
34 	if (atomic_dec_and_test(&drv_data->dma_running)) {
35 		/*
36 		 * If the other CPU is still handling the ROR interrupt we
37 		 * might not know about the error yet. So we re-check the
38 		 * ROR bit here before we clear the status register.
39 		 */
40 		if (!error) {
41 			u32 status = pxa2xx_spi_read(drv_data, SSSR)
42 				     & drv_data->mask_sr;
43 			error = status & SSSR_ROR;
44 		}
45 
46 		/* Clear status & disable interrupts */
47 		pxa2xx_spi_write(drv_data, SSCR1,
48 				 pxa2xx_spi_read(drv_data, SSCR1)
49 				 & ~drv_data->dma_cr1);
50 		write_SSSR_CS(drv_data, drv_data->clear_sr);
51 		if (!pxa25x_ssp_comp(drv_data))
52 			pxa2xx_spi_write(drv_data, SSTO, 0);
53 
54 		if (error) {
55 			/* In case we got an error we disable the SSP now */
56 			pxa2xx_spi_write(drv_data, SSCR0,
57 					 pxa2xx_spi_read(drv_data, SSCR0)
58 					 & ~SSCR0_SSE);
59 			msg->status = -EIO;
60 		}
61 
62 		spi_finalize_current_transfer(drv_data->controller);
63 	}
64 }
65 
66 static void pxa2xx_spi_dma_callback(void *data)
67 {
68 	pxa2xx_spi_dma_transfer_complete(data, false);
69 }
70 
71 static struct dma_async_tx_descriptor *
72 pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data,
73 			   enum dma_transfer_direction dir,
74 			   struct spi_transfer *xfer)
75 {
76 	struct chip_data *chip =
77 		spi_get_ctldata(drv_data->controller->cur_msg->spi);
78 	enum dma_slave_buswidth width;
79 	struct dma_slave_config cfg;
80 	struct dma_chan *chan;
81 	struct sg_table *sgt;
82 	int ret;
83 
84 	switch (drv_data->n_bytes) {
85 	case 1:
86 		width = DMA_SLAVE_BUSWIDTH_1_BYTE;
87 		break;
88 	case 2:
89 		width = DMA_SLAVE_BUSWIDTH_2_BYTES;
90 		break;
91 	default:
92 		width = DMA_SLAVE_BUSWIDTH_4_BYTES;
93 		break;
94 	}
95 
96 	memset(&cfg, 0, sizeof(cfg));
97 	cfg.direction = dir;
98 
99 	if (dir == DMA_MEM_TO_DEV) {
100 		cfg.dst_addr = drv_data->ssdr_physical;
101 		cfg.dst_addr_width = width;
102 		cfg.dst_maxburst = chip->dma_burst_size;
103 
104 		sgt = &xfer->tx_sg;
105 		chan = drv_data->controller->dma_tx;
106 	} else {
107 		cfg.src_addr = drv_data->ssdr_physical;
108 		cfg.src_addr_width = width;
109 		cfg.src_maxburst = chip->dma_burst_size;
110 
111 		sgt = &xfer->rx_sg;
112 		chan = drv_data->controller->dma_rx;
113 	}
114 
115 	ret = dmaengine_slave_config(chan, &cfg);
116 	if (ret) {
117 		dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n");
118 		return NULL;
119 	}
120 
121 	return dmaengine_prep_slave_sg(chan, sgt->sgl, sgt->nents, dir,
122 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
123 }
124 
125 irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
126 {
127 	u32 status;
128 
129 	status = pxa2xx_spi_read(drv_data, SSSR) & drv_data->mask_sr;
130 	if (status & SSSR_ROR) {
131 		dev_err(&drv_data->pdev->dev, "FIFO overrun\n");
132 
133 		dmaengine_terminate_async(drv_data->controller->dma_rx);
134 		dmaengine_terminate_async(drv_data->controller->dma_tx);
135 
136 		pxa2xx_spi_dma_transfer_complete(drv_data, true);
137 		return IRQ_HANDLED;
138 	}
139 
140 	return IRQ_NONE;
141 }
142 
143 int pxa2xx_spi_dma_prepare(struct driver_data *drv_data,
144 			   struct spi_transfer *xfer)
145 {
146 	struct dma_async_tx_descriptor *tx_desc, *rx_desc;
147 	int err;
148 
149 	tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV, xfer);
150 	if (!tx_desc) {
151 		dev_err(&drv_data->pdev->dev,
152 			"failed to get DMA TX descriptor\n");
153 		err = -EBUSY;
154 		goto err_tx;
155 	}
156 
157 	rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM, xfer);
158 	if (!rx_desc) {
159 		dev_err(&drv_data->pdev->dev,
160 			"failed to get DMA RX descriptor\n");
161 		err = -EBUSY;
162 		goto err_rx;
163 	}
164 
165 	/* We are ready when RX completes */
166 	rx_desc->callback = pxa2xx_spi_dma_callback;
167 	rx_desc->callback_param = drv_data;
168 
169 	dmaengine_submit(rx_desc);
170 	dmaengine_submit(tx_desc);
171 	return 0;
172 
173 err_rx:
174 	dmaengine_terminate_async(drv_data->controller->dma_tx);
175 err_tx:
176 	return err;
177 }
178 
179 void pxa2xx_spi_dma_start(struct driver_data *drv_data)
180 {
181 	dma_async_issue_pending(drv_data->controller->dma_rx);
182 	dma_async_issue_pending(drv_data->controller->dma_tx);
183 
184 	atomic_set(&drv_data->dma_running, 1);
185 }
186 
187 void pxa2xx_spi_dma_stop(struct driver_data *drv_data)
188 {
189 	atomic_set(&drv_data->dma_running, 0);
190 	dmaengine_terminate_sync(drv_data->controller->dma_rx);
191 	dmaengine_terminate_sync(drv_data->controller->dma_tx);
192 }
193 
194 int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
195 {
196 	struct pxa2xx_spi_controller *pdata = drv_data->controller_info;
197 	struct device *dev = &drv_data->pdev->dev;
198 	struct spi_controller *controller = drv_data->controller;
199 	dma_cap_mask_t mask;
200 
201 	dma_cap_zero(mask);
202 	dma_cap_set(DMA_SLAVE, mask);
203 
204 	controller->dma_tx = dma_request_slave_channel_compat(mask,
205 				pdata->dma_filter, pdata->tx_param, dev, "tx");
206 	if (!controller->dma_tx)
207 		return -ENODEV;
208 
209 	controller->dma_rx = dma_request_slave_channel_compat(mask,
210 				pdata->dma_filter, pdata->rx_param, dev, "rx");
211 	if (!controller->dma_rx) {
212 		dma_release_channel(controller->dma_tx);
213 		controller->dma_tx = NULL;
214 		return -ENODEV;
215 	}
216 
217 	return 0;
218 }
219 
220 void pxa2xx_spi_dma_release(struct driver_data *drv_data)
221 {
222 	struct spi_controller *controller = drv_data->controller;
223 
224 	if (controller->dma_rx) {
225 		dmaengine_terminate_sync(controller->dma_rx);
226 		dma_release_channel(controller->dma_rx);
227 		controller->dma_rx = NULL;
228 	}
229 	if (controller->dma_tx) {
230 		dmaengine_terminate_sync(controller->dma_tx);
231 		dma_release_channel(controller->dma_tx);
232 		controller->dma_tx = NULL;
233 	}
234 }
235 
236 int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
237 					   struct spi_device *spi,
238 					   u8 bits_per_word, u32 *burst_code,
239 					   u32 *threshold)
240 {
241 	struct pxa2xx_spi_chip *chip_info = spi->controller_data;
242 
243 	/*
244 	 * If the DMA burst size is given in chip_info we use that,
245 	 * otherwise we use the default. Also we use the default FIFO
246 	 * thresholds for now.
247 	 */
248 	*burst_code = chip_info ? chip_info->dma_burst_size : 1;
249 	*threshold = SSCR1_RxTresh(RX_THRESH_DFLT)
250 		   | SSCR1_TxTresh(TX_THRESH_DFLT);
251 
252 	return 0;
253 }
254