xref: /openbmc/linux/drivers/spi/spi-ppc4xx.c (revision d0b73b48)
1 /*
2  * SPI_PPC4XX SPI controller driver.
3  *
4  * Copyright (C) 2007 Gary Jennejohn <garyj@denx.de>
5  * Copyright 2008 Stefan Roese <sr@denx.de>, DENX Software Engineering
6  * Copyright 2009 Harris Corporation, Steven A. Falco <sfalco@harris.com>
7  *
8  * Based in part on drivers/spi/spi_s3c24xx.c
9  *
10  * Copyright (c) 2006 Ben Dooks
11  * Copyright (c) 2006 Simtec Electronics
12  *	Ben Dooks <ben@simtec.co.uk>
13  *
14  * This program is free software; you can redistribute  it and/or modify it
15  * under the terms of the GNU General Public License version 2 as published
16  * by the Free Software Foundation.
17  */
18 
19 /*
20  * The PPC4xx SPI controller has no FIFO so each sent/received byte will
21  * generate an interrupt to the CPU. This can cause high CPU utilization.
22  * This driver allows platforms to reduce the interrupt load on the CPU
23  * during SPI transfers by setting max_speed_hz via the device tree.
24  */
25 
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30 #include <linux/errno.h>
31 #include <linux/wait.h>
32 #include <linux/of_platform.h>
33 #include <linux/of_gpio.h>
34 #include <linux/interrupt.h>
35 #include <linux/delay.h>
36 
37 #include <linux/gpio.h>
38 #include <linux/spi/spi.h>
39 #include <linux/spi/spi_bitbang.h>
40 
41 #include <asm/io.h>
42 #include <asm/dcr.h>
43 #include <asm/dcr-regs.h>
44 
45 /* bits in mode register - bit 0 is MSb */
46 
47 /*
48  * SPI_PPC4XX_MODE_SCP = 0 means "data latched on trailing edge of clock"
49  * SPI_PPC4XX_MODE_SCP = 1 means "data latched on leading edge of clock"
50  * Note: This is the inverse of CPHA.
51  */
52 #define SPI_PPC4XX_MODE_SCP	(0x80 >> 3)
53 
54 /* SPI_PPC4XX_MODE_SPE = 1 means "port enabled" */
55 #define SPI_PPC4XX_MODE_SPE	(0x80 >> 4)
56 
57 /*
58  * SPI_PPC4XX_MODE_RD = 0 means "MSB first" - this is the normal mode
59  * SPI_PPC4XX_MODE_RD = 1 means "LSB first" - this is bit-reversed mode
60  * Note: This is identical to SPI_LSB_FIRST.
61  */
62 #define SPI_PPC4XX_MODE_RD	(0x80 >> 5)
63 
64 /*
65  * SPI_PPC4XX_MODE_CI = 0 means "clock idles low"
66  * SPI_PPC4XX_MODE_CI = 1 means "clock idles high"
67  * Note: This is identical to CPOL.
68  */
69 #define SPI_PPC4XX_MODE_CI	(0x80 >> 6)
70 
71 /*
72  * SPI_PPC4XX_MODE_IL = 0 means "loopback disable"
73  * SPI_PPC4XX_MODE_IL = 1 means "loopback enable"
74  */
75 #define SPI_PPC4XX_MODE_IL	(0x80 >> 7)
76 
77 /* bits in control register */
78 /* starts a transfer when set */
79 #define SPI_PPC4XX_CR_STR	(0x80 >> 7)
80 
81 /* bits in status register */
82 /* port is busy with a transfer */
83 #define SPI_PPC4XX_SR_BSY	(0x80 >> 6)
84 /* RxD ready */
85 #define SPI_PPC4XX_SR_RBR	(0x80 >> 7)
86 
87 /* clock settings (SCP and CI) for various SPI modes */
88 #define SPI_CLK_MODE0	(SPI_PPC4XX_MODE_SCP | 0)
89 #define SPI_CLK_MODE1	(0 | 0)
90 #define SPI_CLK_MODE2	(SPI_PPC4XX_MODE_SCP | SPI_PPC4XX_MODE_CI)
91 #define SPI_CLK_MODE3	(0 | SPI_PPC4XX_MODE_CI)
92 
93 #define DRIVER_NAME	"spi_ppc4xx_of"
94 
95 struct spi_ppc4xx_regs {
96 	u8 mode;
97 	u8 rxd;
98 	u8 txd;
99 	u8 cr;
100 	u8 sr;
101 	u8 dummy;
102 	/*
103 	 * Clock divisor modulus register
104 	 * This uses the following formula:
105 	 *    SCPClkOut = OPBCLK/(4(CDM + 1))
106 	 * or
107 	 *    CDM = (OPBCLK/4*SCPClkOut) - 1
108 	 * bit 0 is the MSb!
109 	 */
110 	u8 cdm;
111 };
112 
113 /* SPI Controller driver's private data. */
114 struct ppc4xx_spi {
115 	/* bitbang has to be first */
116 	struct spi_bitbang bitbang;
117 	struct completion done;
118 
119 	u64 mapbase;
120 	u64 mapsize;
121 	int irqnum;
122 	/* need this to set the SPI clock */
123 	unsigned int opb_freq;
124 
125 	/* for transfers */
126 	int len;
127 	int count;
128 	/* data buffers */
129 	const unsigned char *tx;
130 	unsigned char *rx;
131 
132 	int *gpios;
133 
134 	struct spi_ppc4xx_regs __iomem *regs; /* pointer to the registers */
135 	struct spi_master *master;
136 	struct device *dev;
137 };
138 
139 /* need this so we can set the clock in the chipselect routine */
140 struct spi_ppc4xx_cs {
141 	u8 mode;
142 };
143 
144 static int spi_ppc4xx_txrx(struct spi_device *spi, struct spi_transfer *t)
145 {
146 	struct ppc4xx_spi *hw;
147 	u8 data;
148 
149 	dev_dbg(&spi->dev, "txrx: tx %p, rx %p, len %d\n",
150 		t->tx_buf, t->rx_buf, t->len);
151 
152 	hw = spi_master_get_devdata(spi->master);
153 
154 	hw->tx = t->tx_buf;
155 	hw->rx = t->rx_buf;
156 	hw->len = t->len;
157 	hw->count = 0;
158 
159 	/* send the first byte */
160 	data = hw->tx ? hw->tx[0] : 0;
161 	out_8(&hw->regs->txd, data);
162 	out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
163 	wait_for_completion(&hw->done);
164 
165 	return hw->count;
166 }
167 
168 static int spi_ppc4xx_setupxfer(struct spi_device *spi, struct spi_transfer *t)
169 {
170 	struct ppc4xx_spi *hw = spi_master_get_devdata(spi->master);
171 	struct spi_ppc4xx_cs *cs = spi->controller_state;
172 	int scr;
173 	u8 cdm = 0;
174 	u32 speed;
175 	u8 bits_per_word;
176 
177 	/* Start with the generic configuration for this device. */
178 	bits_per_word = spi->bits_per_word;
179 	speed = spi->max_speed_hz;
180 
181 	/*
182 	 * Modify the configuration if the transfer overrides it.  Do not allow
183 	 * the transfer to overwrite the generic configuration with zeros.
184 	 */
185 	if (t) {
186 		if (t->bits_per_word)
187 			bits_per_word = t->bits_per_word;
188 
189 		if (t->speed_hz)
190 			speed = min(t->speed_hz, spi->max_speed_hz);
191 	}
192 
193 	if (bits_per_word != 8) {
194 		dev_err(&spi->dev, "invalid bits-per-word (%d)\n",
195 				bits_per_word);
196 		return -EINVAL;
197 	}
198 
199 	if (!speed || (speed > spi->max_speed_hz)) {
200 		dev_err(&spi->dev, "invalid speed_hz (%d)\n", speed);
201 		return -EINVAL;
202 	}
203 
204 	/* Write new configuration */
205 	out_8(&hw->regs->mode, cs->mode);
206 
207 	/* Set the clock */
208 	/* opb_freq was already divided by 4 */
209 	scr = (hw->opb_freq / speed) - 1;
210 	if (scr > 0)
211 		cdm = min(scr, 0xff);
212 
213 	dev_dbg(&spi->dev, "setting pre-scaler to %d (hz %d)\n", cdm, speed);
214 
215 	if (in_8(&hw->regs->cdm) != cdm)
216 		out_8(&hw->regs->cdm, cdm);
217 
218 	spin_lock(&hw->bitbang.lock);
219 	if (!hw->bitbang.busy) {
220 		hw->bitbang.chipselect(spi, BITBANG_CS_INACTIVE);
221 		/* Need to ndelay here? */
222 	}
223 	spin_unlock(&hw->bitbang.lock);
224 
225 	return 0;
226 }
227 
228 static int spi_ppc4xx_setup(struct spi_device *spi)
229 {
230 	struct spi_ppc4xx_cs *cs = spi->controller_state;
231 
232 	if (spi->bits_per_word != 8) {
233 		dev_err(&spi->dev, "invalid bits-per-word (%d)\n",
234 			spi->bits_per_word);
235 		return -EINVAL;
236 	}
237 
238 	if (!spi->max_speed_hz) {
239 		dev_err(&spi->dev, "invalid max_speed_hz (must be non-zero)\n");
240 		return -EINVAL;
241 	}
242 
243 	if (cs == NULL) {
244 		cs = kzalloc(sizeof *cs, GFP_KERNEL);
245 		if (!cs)
246 			return -ENOMEM;
247 		spi->controller_state = cs;
248 	}
249 
250 	/*
251 	 * We set all bits of the SPI0_MODE register, so,
252 	 * no need to read-modify-write
253 	 */
254 	cs->mode = SPI_PPC4XX_MODE_SPE;
255 
256 	switch (spi->mode & (SPI_CPHA | SPI_CPOL)) {
257 	case SPI_MODE_0:
258 		cs->mode |= SPI_CLK_MODE0;
259 		break;
260 	case SPI_MODE_1:
261 		cs->mode |= SPI_CLK_MODE1;
262 		break;
263 	case SPI_MODE_2:
264 		cs->mode |= SPI_CLK_MODE2;
265 		break;
266 	case SPI_MODE_3:
267 		cs->mode |= SPI_CLK_MODE3;
268 		break;
269 	}
270 
271 	if (spi->mode & SPI_LSB_FIRST)
272 		cs->mode |= SPI_PPC4XX_MODE_RD;
273 
274 	return 0;
275 }
276 
277 static void spi_ppc4xx_chipsel(struct spi_device *spi, int value)
278 {
279 	struct ppc4xx_spi *hw = spi_master_get_devdata(spi->master);
280 	unsigned int cs = spi->chip_select;
281 	unsigned int cspol;
282 
283 	/*
284 	 * If there are no chip selects at all, or if this is the special
285 	 * case of a non-existent (dummy) chip select, do nothing.
286 	 */
287 
288 	if (!hw->master->num_chipselect || hw->gpios[cs] == -EEXIST)
289 		return;
290 
291 	cspol = spi->mode & SPI_CS_HIGH ? 1 : 0;
292 	if (value == BITBANG_CS_INACTIVE)
293 		cspol = !cspol;
294 
295 	gpio_set_value(hw->gpios[cs], cspol);
296 }
297 
298 static irqreturn_t spi_ppc4xx_int(int irq, void *dev_id)
299 {
300 	struct ppc4xx_spi *hw;
301 	u8 status;
302 	u8 data;
303 	unsigned int count;
304 
305 	hw = (struct ppc4xx_spi *)dev_id;
306 
307 	status = in_8(&hw->regs->sr);
308 	if (!status)
309 		return IRQ_NONE;
310 
311 	/*
312 	 * BSY de-asserts one cycle after the transfer is complete.  The
313 	 * interrupt is asserted after the transfer is complete.  The exact
314 	 * relationship is not documented, hence this code.
315 	 */
316 
317 	if (unlikely(status & SPI_PPC4XX_SR_BSY)) {
318 		u8 lstatus;
319 		int cnt = 0;
320 
321 		dev_dbg(hw->dev, "got interrupt but spi still busy?\n");
322 		do {
323 			ndelay(10);
324 			lstatus = in_8(&hw->regs->sr);
325 		} while (++cnt < 100 && lstatus & SPI_PPC4XX_SR_BSY);
326 
327 		if (cnt >= 100) {
328 			dev_err(hw->dev, "busywait: too many loops!\n");
329 			complete(&hw->done);
330 			return IRQ_HANDLED;
331 		} else {
332 			/* status is always 1 (RBR) here */
333 			status = in_8(&hw->regs->sr);
334 			dev_dbg(hw->dev, "loops %d status %x\n", cnt, status);
335 		}
336 	}
337 
338 	count = hw->count;
339 	hw->count++;
340 
341 	/* RBR triggered this interrupt.  Therefore, data must be ready. */
342 	data = in_8(&hw->regs->rxd);
343 	if (hw->rx)
344 		hw->rx[count] = data;
345 
346 	count++;
347 
348 	if (count < hw->len) {
349 		data = hw->tx ? hw->tx[count] : 0;
350 		out_8(&hw->regs->txd, data);
351 		out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
352 	} else {
353 		complete(&hw->done);
354 	}
355 
356 	return IRQ_HANDLED;
357 }
358 
359 static void spi_ppc4xx_cleanup(struct spi_device *spi)
360 {
361 	kfree(spi->controller_state);
362 }
363 
364 static void spi_ppc4xx_enable(struct ppc4xx_spi *hw)
365 {
366 	/*
367 	 * On all 4xx PPC's the SPI bus is shared/multiplexed with
368 	 * the 2nd I2C bus. We need to enable the the SPI bus before
369 	 * using it.
370 	 */
371 
372 	/* need to clear bit 14 to enable SPC */
373 	dcri_clrset(SDR0, SDR0_PFC1, 0x80000000 >> 14, 0);
374 }
375 
376 static void free_gpios(struct ppc4xx_spi *hw)
377 {
378 	if (hw->master->num_chipselect) {
379 		int i;
380 		for (i = 0; i < hw->master->num_chipselect; i++)
381 			if (gpio_is_valid(hw->gpios[i]))
382 				gpio_free(hw->gpios[i]);
383 
384 		kfree(hw->gpios);
385 		hw->gpios = NULL;
386 	}
387 }
388 
389 /*
390  * platform_device layer stuff...
391  */
392 static int __init spi_ppc4xx_of_probe(struct platform_device *op)
393 {
394 	struct ppc4xx_spi *hw;
395 	struct spi_master *master;
396 	struct spi_bitbang *bbp;
397 	struct resource resource;
398 	struct device_node *np = op->dev.of_node;
399 	struct device *dev = &op->dev;
400 	struct device_node *opbnp;
401 	int ret;
402 	int num_gpios;
403 	const unsigned int *clk;
404 
405 	master = spi_alloc_master(dev, sizeof *hw);
406 	if (master == NULL)
407 		return -ENOMEM;
408 	master->dev.of_node = np;
409 	dev_set_drvdata(dev, master);
410 	hw = spi_master_get_devdata(master);
411 	hw->master = spi_master_get(master);
412 	hw->dev = dev;
413 
414 	init_completion(&hw->done);
415 
416 	/*
417 	 * A count of zero implies a single SPI device without any chip-select.
418 	 * Note that of_gpio_count counts all gpios assigned to this spi master.
419 	 * This includes both "null" gpio's and real ones.
420 	 */
421 	num_gpios = of_gpio_count(np);
422 	if (num_gpios) {
423 		int i;
424 
425 		hw->gpios = kzalloc(sizeof(int) * num_gpios, GFP_KERNEL);
426 		if (!hw->gpios) {
427 			ret = -ENOMEM;
428 			goto free_master;
429 		}
430 
431 		for (i = 0; i < num_gpios; i++) {
432 			int gpio;
433 			enum of_gpio_flags flags;
434 
435 			gpio = of_get_gpio_flags(np, i, &flags);
436 			hw->gpios[i] = gpio;
437 
438 			if (gpio_is_valid(gpio)) {
439 				/* Real CS - set the initial state. */
440 				ret = gpio_request(gpio, np->name);
441 				if (ret < 0) {
442 					dev_err(dev, "can't request gpio "
443 							"#%d: %d\n", i, ret);
444 					goto free_gpios;
445 				}
446 
447 				gpio_direction_output(gpio,
448 						!!(flags & OF_GPIO_ACTIVE_LOW));
449 			} else if (gpio == -EEXIST) {
450 				; /* No CS, but that's OK. */
451 			} else {
452 				dev_err(dev, "invalid gpio #%d: %d\n", i, gpio);
453 				ret = -EINVAL;
454 				goto free_gpios;
455 			}
456 		}
457 	}
458 
459 	/* Setup the state for the bitbang driver */
460 	bbp = &hw->bitbang;
461 	bbp->master = hw->master;
462 	bbp->setup_transfer = spi_ppc4xx_setupxfer;
463 	bbp->chipselect = spi_ppc4xx_chipsel;
464 	bbp->txrx_bufs = spi_ppc4xx_txrx;
465 	bbp->use_dma = 0;
466 	bbp->master->setup = spi_ppc4xx_setup;
467 	bbp->master->cleanup = spi_ppc4xx_cleanup;
468 
469 	/* the spi->mode bits understood by this driver: */
470 	bbp->master->mode_bits =
471 		SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST;
472 
473 	/* this many pins in all GPIO controllers */
474 	bbp->master->num_chipselect = num_gpios;
475 
476 	/* Get the clock for the OPB */
477 	opbnp = of_find_compatible_node(NULL, NULL, "ibm,opb");
478 	if (opbnp == NULL) {
479 		dev_err(dev, "OPB: cannot find node\n");
480 		ret = -ENODEV;
481 		goto free_gpios;
482 	}
483 	/* Get the clock (Hz) for the OPB */
484 	clk = of_get_property(opbnp, "clock-frequency", NULL);
485 	if (clk == NULL) {
486 		dev_err(dev, "OPB: no clock-frequency property set\n");
487 		of_node_put(opbnp);
488 		ret = -ENODEV;
489 		goto free_gpios;
490 	}
491 	hw->opb_freq = *clk;
492 	hw->opb_freq >>= 2;
493 	of_node_put(opbnp);
494 
495 	ret = of_address_to_resource(np, 0, &resource);
496 	if (ret) {
497 		dev_err(dev, "error while parsing device node resource\n");
498 		goto free_gpios;
499 	}
500 	hw->mapbase = resource.start;
501 	hw->mapsize = resource_size(&resource);
502 
503 	/* Sanity check */
504 	if (hw->mapsize < sizeof(struct spi_ppc4xx_regs)) {
505 		dev_err(dev, "too small to map registers\n");
506 		ret = -EINVAL;
507 		goto free_gpios;
508 	}
509 
510 	/* Request IRQ */
511 	hw->irqnum = irq_of_parse_and_map(np, 0);
512 	ret = request_irq(hw->irqnum, spi_ppc4xx_int,
513 			  0, "spi_ppc4xx_of", (void *)hw);
514 	if (ret) {
515 		dev_err(dev, "unable to allocate interrupt\n");
516 		goto free_gpios;
517 	}
518 
519 	if (!request_mem_region(hw->mapbase, hw->mapsize, DRIVER_NAME)) {
520 		dev_err(dev, "resource unavailable\n");
521 		ret = -EBUSY;
522 		goto request_mem_error;
523 	}
524 
525 	hw->regs = ioremap(hw->mapbase, sizeof(struct spi_ppc4xx_regs));
526 
527 	if (!hw->regs) {
528 		dev_err(dev, "unable to memory map registers\n");
529 		ret = -ENXIO;
530 		goto map_io_error;
531 	}
532 
533 	spi_ppc4xx_enable(hw);
534 
535 	/* Finally register our spi controller */
536 	dev->dma_mask = 0;
537 	ret = spi_bitbang_start(bbp);
538 	if (ret) {
539 		dev_err(dev, "failed to register SPI master\n");
540 		goto unmap_regs;
541 	}
542 
543 	dev_info(dev, "driver initialized\n");
544 
545 	return 0;
546 
547 unmap_regs:
548 	iounmap(hw->regs);
549 map_io_error:
550 	release_mem_region(hw->mapbase, hw->mapsize);
551 request_mem_error:
552 	free_irq(hw->irqnum, hw);
553 free_gpios:
554 	free_gpios(hw);
555 free_master:
556 	dev_set_drvdata(dev, NULL);
557 	spi_master_put(master);
558 
559 	dev_err(dev, "initialization failed\n");
560 	return ret;
561 }
562 
563 static int __exit spi_ppc4xx_of_remove(struct platform_device *op)
564 {
565 	struct spi_master *master = dev_get_drvdata(&op->dev);
566 	struct ppc4xx_spi *hw = spi_master_get_devdata(master);
567 
568 	spi_bitbang_stop(&hw->bitbang);
569 	dev_set_drvdata(&op->dev, NULL);
570 	release_mem_region(hw->mapbase, hw->mapsize);
571 	free_irq(hw->irqnum, hw);
572 	iounmap(hw->regs);
573 	free_gpios(hw);
574 	return 0;
575 }
576 
577 static const struct of_device_id spi_ppc4xx_of_match[] = {
578 	{ .compatible = "ibm,ppc4xx-spi", },
579 	{},
580 };
581 
582 MODULE_DEVICE_TABLE(of, spi_ppc4xx_of_match);
583 
584 static struct platform_driver spi_ppc4xx_of_driver = {
585 	.probe = spi_ppc4xx_of_probe,
586 	.remove = __exit_p(spi_ppc4xx_of_remove),
587 	.driver = {
588 		.name = DRIVER_NAME,
589 		.owner = THIS_MODULE,
590 		.of_match_table = spi_ppc4xx_of_match,
591 	},
592 };
593 module_platform_driver(spi_ppc4xx_of_driver);
594 
595 MODULE_AUTHOR("Gary Jennejohn & Stefan Roese");
596 MODULE_DESCRIPTION("Simple PPC4xx SPI Driver");
597 MODULE_LICENSE("GPL");
598