xref: /openbmc/linux/drivers/spi/spi-ppc4xx.c (revision bc5aa3a0)
1 /*
2  * SPI_PPC4XX SPI controller driver.
3  *
4  * Copyright (C) 2007 Gary Jennejohn <garyj@denx.de>
5  * Copyright 2008 Stefan Roese <sr@denx.de>, DENX Software Engineering
6  * Copyright 2009 Harris Corporation, Steven A. Falco <sfalco@harris.com>
7  *
8  * Based in part on drivers/spi/spi_s3c24xx.c
9  *
10  * Copyright (c) 2006 Ben Dooks
11  * Copyright (c) 2006 Simtec Electronics
12  *	Ben Dooks <ben@simtec.co.uk>
13  *
14  * This program is free software; you can redistribute  it and/or modify it
15  * under the terms of the GNU General Public License version 2 as published
16  * by the Free Software Foundation.
17  */
18 
19 /*
20  * The PPC4xx SPI controller has no FIFO so each sent/received byte will
21  * generate an interrupt to the CPU. This can cause high CPU utilization.
22  * This driver allows platforms to reduce the interrupt load on the CPU
23  * during SPI transfers by setting max_speed_hz via the device tree.
24  */
25 
26 #include <linux/module.h>
27 #include <linux/sched.h>
28 #include <linux/slab.h>
29 #include <linux/errno.h>
30 #include <linux/wait.h>
31 #include <linux/of_address.h>
32 #include <linux/of_irq.h>
33 #include <linux/of_platform.h>
34 #include <linux/of_gpio.h>
35 #include <linux/interrupt.h>
36 #include <linux/delay.h>
37 
38 #include <linux/gpio.h>
39 #include <linux/spi/spi.h>
40 #include <linux/spi/spi_bitbang.h>
41 
42 #include <asm/io.h>
43 #include <asm/dcr.h>
44 #include <asm/dcr-regs.h>
45 
46 /* bits in mode register - bit 0 is MSb */
47 
48 /*
49  * SPI_PPC4XX_MODE_SCP = 0 means "data latched on trailing edge of clock"
50  * SPI_PPC4XX_MODE_SCP = 1 means "data latched on leading edge of clock"
51  * Note: This is the inverse of CPHA.
52  */
53 #define SPI_PPC4XX_MODE_SCP	(0x80 >> 3)
54 
55 /* SPI_PPC4XX_MODE_SPE = 1 means "port enabled" */
56 #define SPI_PPC4XX_MODE_SPE	(0x80 >> 4)
57 
58 /*
59  * SPI_PPC4XX_MODE_RD = 0 means "MSB first" - this is the normal mode
60  * SPI_PPC4XX_MODE_RD = 1 means "LSB first" - this is bit-reversed mode
61  * Note: This is identical to SPI_LSB_FIRST.
62  */
63 #define SPI_PPC4XX_MODE_RD	(0x80 >> 5)
64 
65 /*
66  * SPI_PPC4XX_MODE_CI = 0 means "clock idles low"
67  * SPI_PPC4XX_MODE_CI = 1 means "clock idles high"
68  * Note: This is identical to CPOL.
69  */
70 #define SPI_PPC4XX_MODE_CI	(0x80 >> 6)
71 
72 /*
73  * SPI_PPC4XX_MODE_IL = 0 means "loopback disable"
74  * SPI_PPC4XX_MODE_IL = 1 means "loopback enable"
75  */
76 #define SPI_PPC4XX_MODE_IL	(0x80 >> 7)
77 
78 /* bits in control register */
79 /* starts a transfer when set */
80 #define SPI_PPC4XX_CR_STR	(0x80 >> 7)
81 
82 /* bits in status register */
83 /* port is busy with a transfer */
84 #define SPI_PPC4XX_SR_BSY	(0x80 >> 6)
85 /* RxD ready */
86 #define SPI_PPC4XX_SR_RBR	(0x80 >> 7)
87 
88 /* clock settings (SCP and CI) for various SPI modes */
89 #define SPI_CLK_MODE0	(SPI_PPC4XX_MODE_SCP | 0)
90 #define SPI_CLK_MODE1	(0 | 0)
91 #define SPI_CLK_MODE2	(SPI_PPC4XX_MODE_SCP | SPI_PPC4XX_MODE_CI)
92 #define SPI_CLK_MODE3	(0 | SPI_PPC4XX_MODE_CI)
93 
94 #define DRIVER_NAME	"spi_ppc4xx_of"
95 
96 struct spi_ppc4xx_regs {
97 	u8 mode;
98 	u8 rxd;
99 	u8 txd;
100 	u8 cr;
101 	u8 sr;
102 	u8 dummy;
103 	/*
104 	 * Clock divisor modulus register
105 	 * This uses the following formula:
106 	 *    SCPClkOut = OPBCLK/(4(CDM + 1))
107 	 * or
108 	 *    CDM = (OPBCLK/4*SCPClkOut) - 1
109 	 * bit 0 is the MSb!
110 	 */
111 	u8 cdm;
112 };
113 
114 /* SPI Controller driver's private data. */
115 struct ppc4xx_spi {
116 	/* bitbang has to be first */
117 	struct spi_bitbang bitbang;
118 	struct completion done;
119 
120 	u64 mapbase;
121 	u64 mapsize;
122 	int irqnum;
123 	/* need this to set the SPI clock */
124 	unsigned int opb_freq;
125 
126 	/* for transfers */
127 	int len;
128 	int count;
129 	/* data buffers */
130 	const unsigned char *tx;
131 	unsigned char *rx;
132 
133 	int *gpios;
134 
135 	struct spi_ppc4xx_regs __iomem *regs; /* pointer to the registers */
136 	struct spi_master *master;
137 	struct device *dev;
138 };
139 
140 /* need this so we can set the clock in the chipselect routine */
141 struct spi_ppc4xx_cs {
142 	u8 mode;
143 };
144 
145 static int spi_ppc4xx_txrx(struct spi_device *spi, struct spi_transfer *t)
146 {
147 	struct ppc4xx_spi *hw;
148 	u8 data;
149 
150 	dev_dbg(&spi->dev, "txrx: tx %p, rx %p, len %d\n",
151 		t->tx_buf, t->rx_buf, t->len);
152 
153 	hw = spi_master_get_devdata(spi->master);
154 
155 	hw->tx = t->tx_buf;
156 	hw->rx = t->rx_buf;
157 	hw->len = t->len;
158 	hw->count = 0;
159 
160 	/* send the first byte */
161 	data = hw->tx ? hw->tx[0] : 0;
162 	out_8(&hw->regs->txd, data);
163 	out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
164 	wait_for_completion(&hw->done);
165 
166 	return hw->count;
167 }
168 
169 static int spi_ppc4xx_setupxfer(struct spi_device *spi, struct spi_transfer *t)
170 {
171 	struct ppc4xx_spi *hw = spi_master_get_devdata(spi->master);
172 	struct spi_ppc4xx_cs *cs = spi->controller_state;
173 	int scr;
174 	u8 cdm = 0;
175 	u32 speed;
176 	u8 bits_per_word;
177 
178 	/* Start with the generic configuration for this device. */
179 	bits_per_word = spi->bits_per_word;
180 	speed = spi->max_speed_hz;
181 
182 	/*
183 	 * Modify the configuration if the transfer overrides it.  Do not allow
184 	 * the transfer to overwrite the generic configuration with zeros.
185 	 */
186 	if (t) {
187 		if (t->bits_per_word)
188 			bits_per_word = t->bits_per_word;
189 
190 		if (t->speed_hz)
191 			speed = min(t->speed_hz, spi->max_speed_hz);
192 	}
193 
194 	if (!speed || (speed > spi->max_speed_hz)) {
195 		dev_err(&spi->dev, "invalid speed_hz (%d)\n", speed);
196 		return -EINVAL;
197 	}
198 
199 	/* Write new configuration */
200 	out_8(&hw->regs->mode, cs->mode);
201 
202 	/* Set the clock */
203 	/* opb_freq was already divided by 4 */
204 	scr = (hw->opb_freq / speed) - 1;
205 	if (scr > 0)
206 		cdm = min(scr, 0xff);
207 
208 	dev_dbg(&spi->dev, "setting pre-scaler to %d (hz %d)\n", cdm, speed);
209 
210 	if (in_8(&hw->regs->cdm) != cdm)
211 		out_8(&hw->regs->cdm, cdm);
212 
213 	mutex_lock(&hw->bitbang.lock);
214 	if (!hw->bitbang.busy) {
215 		hw->bitbang.chipselect(spi, BITBANG_CS_INACTIVE);
216 		/* Need to ndelay here? */
217 	}
218 	mutex_unlock(&hw->bitbang.lock);
219 
220 	return 0;
221 }
222 
223 static int spi_ppc4xx_setup(struct spi_device *spi)
224 {
225 	struct spi_ppc4xx_cs *cs = spi->controller_state;
226 
227 	if (!spi->max_speed_hz) {
228 		dev_err(&spi->dev, "invalid max_speed_hz (must be non-zero)\n");
229 		return -EINVAL;
230 	}
231 
232 	if (cs == NULL) {
233 		cs = kzalloc(sizeof *cs, GFP_KERNEL);
234 		if (!cs)
235 			return -ENOMEM;
236 		spi->controller_state = cs;
237 	}
238 
239 	/*
240 	 * We set all bits of the SPI0_MODE register, so,
241 	 * no need to read-modify-write
242 	 */
243 	cs->mode = SPI_PPC4XX_MODE_SPE;
244 
245 	switch (spi->mode & (SPI_CPHA | SPI_CPOL)) {
246 	case SPI_MODE_0:
247 		cs->mode |= SPI_CLK_MODE0;
248 		break;
249 	case SPI_MODE_1:
250 		cs->mode |= SPI_CLK_MODE1;
251 		break;
252 	case SPI_MODE_2:
253 		cs->mode |= SPI_CLK_MODE2;
254 		break;
255 	case SPI_MODE_3:
256 		cs->mode |= SPI_CLK_MODE3;
257 		break;
258 	}
259 
260 	if (spi->mode & SPI_LSB_FIRST)
261 		cs->mode |= SPI_PPC4XX_MODE_RD;
262 
263 	return 0;
264 }
265 
266 static void spi_ppc4xx_chipsel(struct spi_device *spi, int value)
267 {
268 	struct ppc4xx_spi *hw = spi_master_get_devdata(spi->master);
269 	unsigned int cs = spi->chip_select;
270 	unsigned int cspol;
271 
272 	/*
273 	 * If there are no chip selects at all, or if this is the special
274 	 * case of a non-existent (dummy) chip select, do nothing.
275 	 */
276 
277 	if (!hw->master->num_chipselect || hw->gpios[cs] == -EEXIST)
278 		return;
279 
280 	cspol = spi->mode & SPI_CS_HIGH ? 1 : 0;
281 	if (value == BITBANG_CS_INACTIVE)
282 		cspol = !cspol;
283 
284 	gpio_set_value(hw->gpios[cs], cspol);
285 }
286 
287 static irqreturn_t spi_ppc4xx_int(int irq, void *dev_id)
288 {
289 	struct ppc4xx_spi *hw;
290 	u8 status;
291 	u8 data;
292 	unsigned int count;
293 
294 	hw = (struct ppc4xx_spi *)dev_id;
295 
296 	status = in_8(&hw->regs->sr);
297 	if (!status)
298 		return IRQ_NONE;
299 
300 	/*
301 	 * BSY de-asserts one cycle after the transfer is complete.  The
302 	 * interrupt is asserted after the transfer is complete.  The exact
303 	 * relationship is not documented, hence this code.
304 	 */
305 
306 	if (unlikely(status & SPI_PPC4XX_SR_BSY)) {
307 		u8 lstatus;
308 		int cnt = 0;
309 
310 		dev_dbg(hw->dev, "got interrupt but spi still busy?\n");
311 		do {
312 			ndelay(10);
313 			lstatus = in_8(&hw->regs->sr);
314 		} while (++cnt < 100 && lstatus & SPI_PPC4XX_SR_BSY);
315 
316 		if (cnt >= 100) {
317 			dev_err(hw->dev, "busywait: too many loops!\n");
318 			complete(&hw->done);
319 			return IRQ_HANDLED;
320 		} else {
321 			/* status is always 1 (RBR) here */
322 			status = in_8(&hw->regs->sr);
323 			dev_dbg(hw->dev, "loops %d status %x\n", cnt, status);
324 		}
325 	}
326 
327 	count = hw->count;
328 	hw->count++;
329 
330 	/* RBR triggered this interrupt.  Therefore, data must be ready. */
331 	data = in_8(&hw->regs->rxd);
332 	if (hw->rx)
333 		hw->rx[count] = data;
334 
335 	count++;
336 
337 	if (count < hw->len) {
338 		data = hw->tx ? hw->tx[count] : 0;
339 		out_8(&hw->regs->txd, data);
340 		out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
341 	} else {
342 		complete(&hw->done);
343 	}
344 
345 	return IRQ_HANDLED;
346 }
347 
348 static void spi_ppc4xx_cleanup(struct spi_device *spi)
349 {
350 	kfree(spi->controller_state);
351 }
352 
353 static void spi_ppc4xx_enable(struct ppc4xx_spi *hw)
354 {
355 	/*
356 	 * On all 4xx PPC's the SPI bus is shared/multiplexed with
357 	 * the 2nd I2C bus. We need to enable the the SPI bus before
358 	 * using it.
359 	 */
360 
361 	/* need to clear bit 14 to enable SPC */
362 	dcri_clrset(SDR0, SDR0_PFC1, 0x80000000 >> 14, 0);
363 }
364 
365 static void free_gpios(struct ppc4xx_spi *hw)
366 {
367 	if (hw->master->num_chipselect) {
368 		int i;
369 		for (i = 0; i < hw->master->num_chipselect; i++)
370 			if (gpio_is_valid(hw->gpios[i]))
371 				gpio_free(hw->gpios[i]);
372 
373 		kfree(hw->gpios);
374 		hw->gpios = NULL;
375 	}
376 }
377 
378 /*
379  * platform_device layer stuff...
380  */
381 static int spi_ppc4xx_of_probe(struct platform_device *op)
382 {
383 	struct ppc4xx_spi *hw;
384 	struct spi_master *master;
385 	struct spi_bitbang *bbp;
386 	struct resource resource;
387 	struct device_node *np = op->dev.of_node;
388 	struct device *dev = &op->dev;
389 	struct device_node *opbnp;
390 	int ret;
391 	int num_gpios;
392 	const unsigned int *clk;
393 
394 	master = spi_alloc_master(dev, sizeof *hw);
395 	if (master == NULL)
396 		return -ENOMEM;
397 	master->dev.of_node = np;
398 	platform_set_drvdata(op, master);
399 	hw = spi_master_get_devdata(master);
400 	hw->master = master;
401 	hw->dev = dev;
402 
403 	init_completion(&hw->done);
404 
405 	/*
406 	 * A count of zero implies a single SPI device without any chip-select.
407 	 * Note that of_gpio_count counts all gpios assigned to this spi master.
408 	 * This includes both "null" gpio's and real ones.
409 	 */
410 	num_gpios = of_gpio_count(np);
411 	if (num_gpios > 0) {
412 		int i;
413 
414 		hw->gpios = kzalloc(sizeof(int) * num_gpios, GFP_KERNEL);
415 		if (!hw->gpios) {
416 			ret = -ENOMEM;
417 			goto free_master;
418 		}
419 
420 		for (i = 0; i < num_gpios; i++) {
421 			int gpio;
422 			enum of_gpio_flags flags;
423 
424 			gpio = of_get_gpio_flags(np, i, &flags);
425 			hw->gpios[i] = gpio;
426 
427 			if (gpio_is_valid(gpio)) {
428 				/* Real CS - set the initial state. */
429 				ret = gpio_request(gpio, np->name);
430 				if (ret < 0) {
431 					dev_err(dev, "can't request gpio "
432 							"#%d: %d\n", i, ret);
433 					goto free_gpios;
434 				}
435 
436 				gpio_direction_output(gpio,
437 						!!(flags & OF_GPIO_ACTIVE_LOW));
438 			} else if (gpio == -EEXIST) {
439 				; /* No CS, but that's OK. */
440 			} else {
441 				dev_err(dev, "invalid gpio #%d: %d\n", i, gpio);
442 				ret = -EINVAL;
443 				goto free_gpios;
444 			}
445 		}
446 	}
447 
448 	/* Setup the state for the bitbang driver */
449 	bbp = &hw->bitbang;
450 	bbp->master = hw->master;
451 	bbp->setup_transfer = spi_ppc4xx_setupxfer;
452 	bbp->chipselect = spi_ppc4xx_chipsel;
453 	bbp->txrx_bufs = spi_ppc4xx_txrx;
454 	bbp->use_dma = 0;
455 	bbp->master->setup = spi_ppc4xx_setup;
456 	bbp->master->cleanup = spi_ppc4xx_cleanup;
457 	bbp->master->bits_per_word_mask = SPI_BPW_MASK(8);
458 
459 	/* the spi->mode bits understood by this driver: */
460 	bbp->master->mode_bits =
461 		SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST;
462 
463 	/* this many pins in all GPIO controllers */
464 	bbp->master->num_chipselect = num_gpios > 0 ? num_gpios : 0;
465 
466 	/* Get the clock for the OPB */
467 	opbnp = of_find_compatible_node(NULL, NULL, "ibm,opb");
468 	if (opbnp == NULL) {
469 		dev_err(dev, "OPB: cannot find node\n");
470 		ret = -ENODEV;
471 		goto free_gpios;
472 	}
473 	/* Get the clock (Hz) for the OPB */
474 	clk = of_get_property(opbnp, "clock-frequency", NULL);
475 	if (clk == NULL) {
476 		dev_err(dev, "OPB: no clock-frequency property set\n");
477 		of_node_put(opbnp);
478 		ret = -ENODEV;
479 		goto free_gpios;
480 	}
481 	hw->opb_freq = *clk;
482 	hw->opb_freq >>= 2;
483 	of_node_put(opbnp);
484 
485 	ret = of_address_to_resource(np, 0, &resource);
486 	if (ret) {
487 		dev_err(dev, "error while parsing device node resource\n");
488 		goto free_gpios;
489 	}
490 	hw->mapbase = resource.start;
491 	hw->mapsize = resource_size(&resource);
492 
493 	/* Sanity check */
494 	if (hw->mapsize < sizeof(struct spi_ppc4xx_regs)) {
495 		dev_err(dev, "too small to map registers\n");
496 		ret = -EINVAL;
497 		goto free_gpios;
498 	}
499 
500 	/* Request IRQ */
501 	hw->irqnum = irq_of_parse_and_map(np, 0);
502 	ret = request_irq(hw->irqnum, spi_ppc4xx_int,
503 			  0, "spi_ppc4xx_of", (void *)hw);
504 	if (ret) {
505 		dev_err(dev, "unable to allocate interrupt\n");
506 		goto free_gpios;
507 	}
508 
509 	if (!request_mem_region(hw->mapbase, hw->mapsize, DRIVER_NAME)) {
510 		dev_err(dev, "resource unavailable\n");
511 		ret = -EBUSY;
512 		goto request_mem_error;
513 	}
514 
515 	hw->regs = ioremap(hw->mapbase, sizeof(struct spi_ppc4xx_regs));
516 
517 	if (!hw->regs) {
518 		dev_err(dev, "unable to memory map registers\n");
519 		ret = -ENXIO;
520 		goto map_io_error;
521 	}
522 
523 	spi_ppc4xx_enable(hw);
524 
525 	/* Finally register our spi controller */
526 	dev->dma_mask = 0;
527 	ret = spi_bitbang_start(bbp);
528 	if (ret) {
529 		dev_err(dev, "failed to register SPI master\n");
530 		goto unmap_regs;
531 	}
532 
533 	dev_info(dev, "driver initialized\n");
534 
535 	return 0;
536 
537 unmap_regs:
538 	iounmap(hw->regs);
539 map_io_error:
540 	release_mem_region(hw->mapbase, hw->mapsize);
541 request_mem_error:
542 	free_irq(hw->irqnum, hw);
543 free_gpios:
544 	free_gpios(hw);
545 free_master:
546 	spi_master_put(master);
547 
548 	dev_err(dev, "initialization failed\n");
549 	return ret;
550 }
551 
552 static int spi_ppc4xx_of_remove(struct platform_device *op)
553 {
554 	struct spi_master *master = platform_get_drvdata(op);
555 	struct ppc4xx_spi *hw = spi_master_get_devdata(master);
556 
557 	spi_bitbang_stop(&hw->bitbang);
558 	release_mem_region(hw->mapbase, hw->mapsize);
559 	free_irq(hw->irqnum, hw);
560 	iounmap(hw->regs);
561 	free_gpios(hw);
562 	spi_master_put(master);
563 	return 0;
564 }
565 
566 static const struct of_device_id spi_ppc4xx_of_match[] = {
567 	{ .compatible = "ibm,ppc4xx-spi", },
568 	{},
569 };
570 
571 MODULE_DEVICE_TABLE(of, spi_ppc4xx_of_match);
572 
573 static struct platform_driver spi_ppc4xx_of_driver = {
574 	.probe = spi_ppc4xx_of_probe,
575 	.remove = spi_ppc4xx_of_remove,
576 	.driver = {
577 		.name = DRIVER_NAME,
578 		.of_match_table = spi_ppc4xx_of_match,
579 	},
580 };
581 module_platform_driver(spi_ppc4xx_of_driver);
582 
583 MODULE_AUTHOR("Gary Jennejohn & Stefan Roese");
584 MODULE_DESCRIPTION("Simple PPC4xx SPI Driver");
585 MODULE_LICENSE("GPL");
586