xref: /openbmc/linux/drivers/spi/spi-ppc4xx.c (revision 31b90347)
1 /*
2  * SPI_PPC4XX SPI controller driver.
3  *
4  * Copyright (C) 2007 Gary Jennejohn <garyj@denx.de>
5  * Copyright 2008 Stefan Roese <sr@denx.de>, DENX Software Engineering
6  * Copyright 2009 Harris Corporation, Steven A. Falco <sfalco@harris.com>
7  *
8  * Based in part on drivers/spi/spi_s3c24xx.c
9  *
10  * Copyright (c) 2006 Ben Dooks
11  * Copyright (c) 2006 Simtec Electronics
12  *	Ben Dooks <ben@simtec.co.uk>
13  *
14  * This program is free software; you can redistribute  it and/or modify it
15  * under the terms of the GNU General Public License version 2 as published
16  * by the Free Software Foundation.
17  */
18 
19 /*
20  * The PPC4xx SPI controller has no FIFO so each sent/received byte will
21  * generate an interrupt to the CPU. This can cause high CPU utilization.
22  * This driver allows platforms to reduce the interrupt load on the CPU
23  * during SPI transfers by setting max_speed_hz via the device tree.
24  */
25 
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30 #include <linux/errno.h>
31 #include <linux/wait.h>
32 #include <linux/of_address.h>
33 #include <linux/of_irq.h>
34 #include <linux/of_platform.h>
35 #include <linux/of_gpio.h>
36 #include <linux/interrupt.h>
37 #include <linux/delay.h>
38 
39 #include <linux/gpio.h>
40 #include <linux/spi/spi.h>
41 #include <linux/spi/spi_bitbang.h>
42 
43 #include <asm/io.h>
44 #include <asm/dcr.h>
45 #include <asm/dcr-regs.h>
46 
47 /* bits in mode register - bit 0 is MSb */
48 
49 /*
50  * SPI_PPC4XX_MODE_SCP = 0 means "data latched on trailing edge of clock"
51  * SPI_PPC4XX_MODE_SCP = 1 means "data latched on leading edge of clock"
52  * Note: This is the inverse of CPHA.
53  */
54 #define SPI_PPC4XX_MODE_SCP	(0x80 >> 3)
55 
56 /* SPI_PPC4XX_MODE_SPE = 1 means "port enabled" */
57 #define SPI_PPC4XX_MODE_SPE	(0x80 >> 4)
58 
59 /*
60  * SPI_PPC4XX_MODE_RD = 0 means "MSB first" - this is the normal mode
61  * SPI_PPC4XX_MODE_RD = 1 means "LSB first" - this is bit-reversed mode
62  * Note: This is identical to SPI_LSB_FIRST.
63  */
64 #define SPI_PPC4XX_MODE_RD	(0x80 >> 5)
65 
66 /*
67  * SPI_PPC4XX_MODE_CI = 0 means "clock idles low"
68  * SPI_PPC4XX_MODE_CI = 1 means "clock idles high"
69  * Note: This is identical to CPOL.
70  */
71 #define SPI_PPC4XX_MODE_CI	(0x80 >> 6)
72 
73 /*
74  * SPI_PPC4XX_MODE_IL = 0 means "loopback disable"
75  * SPI_PPC4XX_MODE_IL = 1 means "loopback enable"
76  */
77 #define SPI_PPC4XX_MODE_IL	(0x80 >> 7)
78 
79 /* bits in control register */
80 /* starts a transfer when set */
81 #define SPI_PPC4XX_CR_STR	(0x80 >> 7)
82 
83 /* bits in status register */
84 /* port is busy with a transfer */
85 #define SPI_PPC4XX_SR_BSY	(0x80 >> 6)
86 /* RxD ready */
87 #define SPI_PPC4XX_SR_RBR	(0x80 >> 7)
88 
89 /* clock settings (SCP and CI) for various SPI modes */
90 #define SPI_CLK_MODE0	(SPI_PPC4XX_MODE_SCP | 0)
91 #define SPI_CLK_MODE1	(0 | 0)
92 #define SPI_CLK_MODE2	(SPI_PPC4XX_MODE_SCP | SPI_PPC4XX_MODE_CI)
93 #define SPI_CLK_MODE3	(0 | SPI_PPC4XX_MODE_CI)
94 
95 #define DRIVER_NAME	"spi_ppc4xx_of"
96 
97 struct spi_ppc4xx_regs {
98 	u8 mode;
99 	u8 rxd;
100 	u8 txd;
101 	u8 cr;
102 	u8 sr;
103 	u8 dummy;
104 	/*
105 	 * Clock divisor modulus register
106 	 * This uses the following formula:
107 	 *    SCPClkOut = OPBCLK/(4(CDM + 1))
108 	 * or
109 	 *    CDM = (OPBCLK/4*SCPClkOut) - 1
110 	 * bit 0 is the MSb!
111 	 */
112 	u8 cdm;
113 };
114 
115 /* SPI Controller driver's private data. */
116 struct ppc4xx_spi {
117 	/* bitbang has to be first */
118 	struct spi_bitbang bitbang;
119 	struct completion done;
120 
121 	u64 mapbase;
122 	u64 mapsize;
123 	int irqnum;
124 	/* need this to set the SPI clock */
125 	unsigned int opb_freq;
126 
127 	/* for transfers */
128 	int len;
129 	int count;
130 	/* data buffers */
131 	const unsigned char *tx;
132 	unsigned char *rx;
133 
134 	int *gpios;
135 
136 	struct spi_ppc4xx_regs __iomem *regs; /* pointer to the registers */
137 	struct spi_master *master;
138 	struct device *dev;
139 };
140 
141 /* need this so we can set the clock in the chipselect routine */
142 struct spi_ppc4xx_cs {
143 	u8 mode;
144 };
145 
146 static int spi_ppc4xx_txrx(struct spi_device *spi, struct spi_transfer *t)
147 {
148 	struct ppc4xx_spi *hw;
149 	u8 data;
150 
151 	dev_dbg(&spi->dev, "txrx: tx %p, rx %p, len %d\n",
152 		t->tx_buf, t->rx_buf, t->len);
153 
154 	hw = spi_master_get_devdata(spi->master);
155 
156 	hw->tx = t->tx_buf;
157 	hw->rx = t->rx_buf;
158 	hw->len = t->len;
159 	hw->count = 0;
160 
161 	/* send the first byte */
162 	data = hw->tx ? hw->tx[0] : 0;
163 	out_8(&hw->regs->txd, data);
164 	out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
165 	wait_for_completion(&hw->done);
166 
167 	return hw->count;
168 }
169 
170 static int spi_ppc4xx_setupxfer(struct spi_device *spi, struct spi_transfer *t)
171 {
172 	struct ppc4xx_spi *hw = spi_master_get_devdata(spi->master);
173 	struct spi_ppc4xx_cs *cs = spi->controller_state;
174 	int scr;
175 	u8 cdm = 0;
176 	u32 speed;
177 	u8 bits_per_word;
178 
179 	/* Start with the generic configuration for this device. */
180 	bits_per_word = spi->bits_per_word;
181 	speed = spi->max_speed_hz;
182 
183 	/*
184 	 * Modify the configuration if the transfer overrides it.  Do not allow
185 	 * the transfer to overwrite the generic configuration with zeros.
186 	 */
187 	if (t) {
188 		if (t->bits_per_word)
189 			bits_per_word = t->bits_per_word;
190 
191 		if (t->speed_hz)
192 			speed = min(t->speed_hz, spi->max_speed_hz);
193 	}
194 
195 	if (!speed || (speed > spi->max_speed_hz)) {
196 		dev_err(&spi->dev, "invalid speed_hz (%d)\n", speed);
197 		return -EINVAL;
198 	}
199 
200 	/* Write new configuration */
201 	out_8(&hw->regs->mode, cs->mode);
202 
203 	/* Set the clock */
204 	/* opb_freq was already divided by 4 */
205 	scr = (hw->opb_freq / speed) - 1;
206 	if (scr > 0)
207 		cdm = min(scr, 0xff);
208 
209 	dev_dbg(&spi->dev, "setting pre-scaler to %d (hz %d)\n", cdm, speed);
210 
211 	if (in_8(&hw->regs->cdm) != cdm)
212 		out_8(&hw->regs->cdm, cdm);
213 
214 	spin_lock(&hw->bitbang.lock);
215 	if (!hw->bitbang.busy) {
216 		hw->bitbang.chipselect(spi, BITBANG_CS_INACTIVE);
217 		/* Need to ndelay here? */
218 	}
219 	spin_unlock(&hw->bitbang.lock);
220 
221 	return 0;
222 }
223 
224 static int spi_ppc4xx_setup(struct spi_device *spi)
225 {
226 	struct spi_ppc4xx_cs *cs = spi->controller_state;
227 
228 	if (!spi->max_speed_hz) {
229 		dev_err(&spi->dev, "invalid max_speed_hz (must be non-zero)\n");
230 		return -EINVAL;
231 	}
232 
233 	if (cs == NULL) {
234 		cs = kzalloc(sizeof *cs, GFP_KERNEL);
235 		if (!cs)
236 			return -ENOMEM;
237 		spi->controller_state = cs;
238 	}
239 
240 	/*
241 	 * We set all bits of the SPI0_MODE register, so,
242 	 * no need to read-modify-write
243 	 */
244 	cs->mode = SPI_PPC4XX_MODE_SPE;
245 
246 	switch (spi->mode & (SPI_CPHA | SPI_CPOL)) {
247 	case SPI_MODE_0:
248 		cs->mode |= SPI_CLK_MODE0;
249 		break;
250 	case SPI_MODE_1:
251 		cs->mode |= SPI_CLK_MODE1;
252 		break;
253 	case SPI_MODE_2:
254 		cs->mode |= SPI_CLK_MODE2;
255 		break;
256 	case SPI_MODE_3:
257 		cs->mode |= SPI_CLK_MODE3;
258 		break;
259 	}
260 
261 	if (spi->mode & SPI_LSB_FIRST)
262 		cs->mode |= SPI_PPC4XX_MODE_RD;
263 
264 	return 0;
265 }
266 
267 static void spi_ppc4xx_chipsel(struct spi_device *spi, int value)
268 {
269 	struct ppc4xx_spi *hw = spi_master_get_devdata(spi->master);
270 	unsigned int cs = spi->chip_select;
271 	unsigned int cspol;
272 
273 	/*
274 	 * If there are no chip selects at all, or if this is the special
275 	 * case of a non-existent (dummy) chip select, do nothing.
276 	 */
277 
278 	if (!hw->master->num_chipselect || hw->gpios[cs] == -EEXIST)
279 		return;
280 
281 	cspol = spi->mode & SPI_CS_HIGH ? 1 : 0;
282 	if (value == BITBANG_CS_INACTIVE)
283 		cspol = !cspol;
284 
285 	gpio_set_value(hw->gpios[cs], cspol);
286 }
287 
288 static irqreturn_t spi_ppc4xx_int(int irq, void *dev_id)
289 {
290 	struct ppc4xx_spi *hw;
291 	u8 status;
292 	u8 data;
293 	unsigned int count;
294 
295 	hw = (struct ppc4xx_spi *)dev_id;
296 
297 	status = in_8(&hw->regs->sr);
298 	if (!status)
299 		return IRQ_NONE;
300 
301 	/*
302 	 * BSY de-asserts one cycle after the transfer is complete.  The
303 	 * interrupt is asserted after the transfer is complete.  The exact
304 	 * relationship is not documented, hence this code.
305 	 */
306 
307 	if (unlikely(status & SPI_PPC4XX_SR_BSY)) {
308 		u8 lstatus;
309 		int cnt = 0;
310 
311 		dev_dbg(hw->dev, "got interrupt but spi still busy?\n");
312 		do {
313 			ndelay(10);
314 			lstatus = in_8(&hw->regs->sr);
315 		} while (++cnt < 100 && lstatus & SPI_PPC4XX_SR_BSY);
316 
317 		if (cnt >= 100) {
318 			dev_err(hw->dev, "busywait: too many loops!\n");
319 			complete(&hw->done);
320 			return IRQ_HANDLED;
321 		} else {
322 			/* status is always 1 (RBR) here */
323 			status = in_8(&hw->regs->sr);
324 			dev_dbg(hw->dev, "loops %d status %x\n", cnt, status);
325 		}
326 	}
327 
328 	count = hw->count;
329 	hw->count++;
330 
331 	/* RBR triggered this interrupt.  Therefore, data must be ready. */
332 	data = in_8(&hw->regs->rxd);
333 	if (hw->rx)
334 		hw->rx[count] = data;
335 
336 	count++;
337 
338 	if (count < hw->len) {
339 		data = hw->tx ? hw->tx[count] : 0;
340 		out_8(&hw->regs->txd, data);
341 		out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
342 	} else {
343 		complete(&hw->done);
344 	}
345 
346 	return IRQ_HANDLED;
347 }
348 
349 static void spi_ppc4xx_cleanup(struct spi_device *spi)
350 {
351 	kfree(spi->controller_state);
352 }
353 
354 static void spi_ppc4xx_enable(struct ppc4xx_spi *hw)
355 {
356 	/*
357 	 * On all 4xx PPC's the SPI bus is shared/multiplexed with
358 	 * the 2nd I2C bus. We need to enable the the SPI bus before
359 	 * using it.
360 	 */
361 
362 	/* need to clear bit 14 to enable SPC */
363 	dcri_clrset(SDR0, SDR0_PFC1, 0x80000000 >> 14, 0);
364 }
365 
366 static void free_gpios(struct ppc4xx_spi *hw)
367 {
368 	if (hw->master->num_chipselect) {
369 		int i;
370 		for (i = 0; i < hw->master->num_chipselect; i++)
371 			if (gpio_is_valid(hw->gpios[i]))
372 				gpio_free(hw->gpios[i]);
373 
374 		kfree(hw->gpios);
375 		hw->gpios = NULL;
376 	}
377 }
378 
379 /*
380  * platform_device layer stuff...
381  */
382 static int spi_ppc4xx_of_probe(struct platform_device *op)
383 {
384 	struct ppc4xx_spi *hw;
385 	struct spi_master *master;
386 	struct spi_bitbang *bbp;
387 	struct resource resource;
388 	struct device_node *np = op->dev.of_node;
389 	struct device *dev = &op->dev;
390 	struct device_node *opbnp;
391 	int ret;
392 	int num_gpios;
393 	const unsigned int *clk;
394 
395 	master = spi_alloc_master(dev, sizeof *hw);
396 	if (master == NULL)
397 		return -ENOMEM;
398 	master->dev.of_node = np;
399 	platform_set_drvdata(op, master);
400 	hw = spi_master_get_devdata(master);
401 	hw->master = master;
402 	hw->dev = dev;
403 
404 	init_completion(&hw->done);
405 
406 	/*
407 	 * A count of zero implies a single SPI device without any chip-select.
408 	 * Note that of_gpio_count counts all gpios assigned to this spi master.
409 	 * This includes both "null" gpio's and real ones.
410 	 */
411 	num_gpios = of_gpio_count(np);
412 	if (num_gpios > 0) {
413 		int i;
414 
415 		hw->gpios = kzalloc(sizeof(int) * num_gpios, GFP_KERNEL);
416 		if (!hw->gpios) {
417 			ret = -ENOMEM;
418 			goto free_master;
419 		}
420 
421 		for (i = 0; i < num_gpios; i++) {
422 			int gpio;
423 			enum of_gpio_flags flags;
424 
425 			gpio = of_get_gpio_flags(np, i, &flags);
426 			hw->gpios[i] = gpio;
427 
428 			if (gpio_is_valid(gpio)) {
429 				/* Real CS - set the initial state. */
430 				ret = gpio_request(gpio, np->name);
431 				if (ret < 0) {
432 					dev_err(dev, "can't request gpio "
433 							"#%d: %d\n", i, ret);
434 					goto free_gpios;
435 				}
436 
437 				gpio_direction_output(gpio,
438 						!!(flags & OF_GPIO_ACTIVE_LOW));
439 			} else if (gpio == -EEXIST) {
440 				; /* No CS, but that's OK. */
441 			} else {
442 				dev_err(dev, "invalid gpio #%d: %d\n", i, gpio);
443 				ret = -EINVAL;
444 				goto free_gpios;
445 			}
446 		}
447 	}
448 
449 	/* Setup the state for the bitbang driver */
450 	bbp = &hw->bitbang;
451 	bbp->master = hw->master;
452 	bbp->setup_transfer = spi_ppc4xx_setupxfer;
453 	bbp->chipselect = spi_ppc4xx_chipsel;
454 	bbp->txrx_bufs = spi_ppc4xx_txrx;
455 	bbp->use_dma = 0;
456 	bbp->master->setup = spi_ppc4xx_setup;
457 	bbp->master->cleanup = spi_ppc4xx_cleanup;
458 	bbp->master->bits_per_word_mask = SPI_BPW_MASK(8);
459 
460 	/* the spi->mode bits understood by this driver: */
461 	bbp->master->mode_bits =
462 		SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST;
463 
464 	/* this many pins in all GPIO controllers */
465 	bbp->master->num_chipselect = num_gpios > 0 ? num_gpios : 0;
466 
467 	/* Get the clock for the OPB */
468 	opbnp = of_find_compatible_node(NULL, NULL, "ibm,opb");
469 	if (opbnp == NULL) {
470 		dev_err(dev, "OPB: cannot find node\n");
471 		ret = -ENODEV;
472 		goto free_gpios;
473 	}
474 	/* Get the clock (Hz) for the OPB */
475 	clk = of_get_property(opbnp, "clock-frequency", NULL);
476 	if (clk == NULL) {
477 		dev_err(dev, "OPB: no clock-frequency property set\n");
478 		of_node_put(opbnp);
479 		ret = -ENODEV;
480 		goto free_gpios;
481 	}
482 	hw->opb_freq = *clk;
483 	hw->opb_freq >>= 2;
484 	of_node_put(opbnp);
485 
486 	ret = of_address_to_resource(np, 0, &resource);
487 	if (ret) {
488 		dev_err(dev, "error while parsing device node resource\n");
489 		goto free_gpios;
490 	}
491 	hw->mapbase = resource.start;
492 	hw->mapsize = resource_size(&resource);
493 
494 	/* Sanity check */
495 	if (hw->mapsize < sizeof(struct spi_ppc4xx_regs)) {
496 		dev_err(dev, "too small to map registers\n");
497 		ret = -EINVAL;
498 		goto free_gpios;
499 	}
500 
501 	/* Request IRQ */
502 	hw->irqnum = irq_of_parse_and_map(np, 0);
503 	ret = request_irq(hw->irqnum, spi_ppc4xx_int,
504 			  0, "spi_ppc4xx_of", (void *)hw);
505 	if (ret) {
506 		dev_err(dev, "unable to allocate interrupt\n");
507 		goto free_gpios;
508 	}
509 
510 	if (!request_mem_region(hw->mapbase, hw->mapsize, DRIVER_NAME)) {
511 		dev_err(dev, "resource unavailable\n");
512 		ret = -EBUSY;
513 		goto request_mem_error;
514 	}
515 
516 	hw->regs = ioremap(hw->mapbase, sizeof(struct spi_ppc4xx_regs));
517 
518 	if (!hw->regs) {
519 		dev_err(dev, "unable to memory map registers\n");
520 		ret = -ENXIO;
521 		goto map_io_error;
522 	}
523 
524 	spi_ppc4xx_enable(hw);
525 
526 	/* Finally register our spi controller */
527 	dev->dma_mask = 0;
528 	ret = spi_bitbang_start(bbp);
529 	if (ret) {
530 		dev_err(dev, "failed to register SPI master\n");
531 		goto unmap_regs;
532 	}
533 
534 	dev_info(dev, "driver initialized\n");
535 
536 	return 0;
537 
538 unmap_regs:
539 	iounmap(hw->regs);
540 map_io_error:
541 	release_mem_region(hw->mapbase, hw->mapsize);
542 request_mem_error:
543 	free_irq(hw->irqnum, hw);
544 free_gpios:
545 	free_gpios(hw);
546 free_master:
547 	spi_master_put(master);
548 
549 	dev_err(dev, "initialization failed\n");
550 	return ret;
551 }
552 
553 static int spi_ppc4xx_of_remove(struct platform_device *op)
554 {
555 	struct spi_master *master = platform_get_drvdata(op);
556 	struct ppc4xx_spi *hw = spi_master_get_devdata(master);
557 
558 	spi_bitbang_stop(&hw->bitbang);
559 	release_mem_region(hw->mapbase, hw->mapsize);
560 	free_irq(hw->irqnum, hw);
561 	iounmap(hw->regs);
562 	free_gpios(hw);
563 	spi_master_put(master);
564 	return 0;
565 }
566 
567 static const struct of_device_id spi_ppc4xx_of_match[] = {
568 	{ .compatible = "ibm,ppc4xx-spi", },
569 	{},
570 };
571 
572 MODULE_DEVICE_TABLE(of, spi_ppc4xx_of_match);
573 
574 static struct platform_driver spi_ppc4xx_of_driver = {
575 	.probe = spi_ppc4xx_of_probe,
576 	.remove = spi_ppc4xx_of_remove,
577 	.driver = {
578 		.name = DRIVER_NAME,
579 		.owner = THIS_MODULE,
580 		.of_match_table = spi_ppc4xx_of_match,
581 	},
582 };
583 module_platform_driver(spi_ppc4xx_of_driver);
584 
585 MODULE_AUTHOR("Gary Jennejohn & Stefan Roese");
586 MODULE_DESCRIPTION("Simple PPC4xx SPI Driver");
587 MODULE_LICENSE("GPL");
588