xref: /openbmc/linux/drivers/spi/spi-ppc4xx.c (revision 3bf127bc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * SPI_PPC4XX SPI controller driver.
4  *
5  * Copyright (C) 2007 Gary Jennejohn <garyj@denx.de>
6  * Copyright 2008 Stefan Roese <sr@denx.de>, DENX Software Engineering
7  * Copyright 2009 Harris Corporation, Steven A. Falco <sfalco@harris.com>
8  *
9  * Based in part on drivers/spi/spi_s3c24xx.c
10  *
11  * Copyright (c) 2006 Ben Dooks
12  * Copyright (c) 2006 Simtec Electronics
13  *	Ben Dooks <ben@simtec.co.uk>
14  */
15 
16 /*
17  * The PPC4xx SPI controller has no FIFO so each sent/received byte will
18  * generate an interrupt to the CPU. This can cause high CPU utilization.
19  * This driver allows platforms to reduce the interrupt load on the CPU
20  * during SPI transfers by setting max_speed_hz via the device tree.
21  */
22 
23 #include <linux/module.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/errno.h>
27 #include <linux/wait.h>
28 #include <linux/of_address.h>
29 #include <linux/of_platform.h>
30 #include <linux/interrupt.h>
31 #include <linux/delay.h>
32 
33 #include <linux/spi/spi.h>
34 #include <linux/spi/spi_bitbang.h>
35 
36 #include <linux/io.h>
37 #include <asm/dcr.h>
38 #include <asm/dcr-regs.h>
39 
40 /* bits in mode register - bit 0 is MSb */
41 
42 /*
43  * SPI_PPC4XX_MODE_SCP = 0 means "data latched on trailing edge of clock"
44  * SPI_PPC4XX_MODE_SCP = 1 means "data latched on leading edge of clock"
45  * Note: This is the inverse of CPHA.
46  */
47 #define SPI_PPC4XX_MODE_SCP	(0x80 >> 3)
48 
49 /* SPI_PPC4XX_MODE_SPE = 1 means "port enabled" */
50 #define SPI_PPC4XX_MODE_SPE	(0x80 >> 4)
51 
52 /*
53  * SPI_PPC4XX_MODE_RD = 0 means "MSB first" - this is the normal mode
54  * SPI_PPC4XX_MODE_RD = 1 means "LSB first" - this is bit-reversed mode
55  * Note: This is identical to SPI_LSB_FIRST.
56  */
57 #define SPI_PPC4XX_MODE_RD	(0x80 >> 5)
58 
59 /*
60  * SPI_PPC4XX_MODE_CI = 0 means "clock idles low"
61  * SPI_PPC4XX_MODE_CI = 1 means "clock idles high"
62  * Note: This is identical to CPOL.
63  */
64 #define SPI_PPC4XX_MODE_CI	(0x80 >> 6)
65 
66 /*
67  * SPI_PPC4XX_MODE_IL = 0 means "loopback disable"
68  * SPI_PPC4XX_MODE_IL = 1 means "loopback enable"
69  */
70 #define SPI_PPC4XX_MODE_IL	(0x80 >> 7)
71 
72 /* bits in control register */
73 /* starts a transfer when set */
74 #define SPI_PPC4XX_CR_STR	(0x80 >> 7)
75 
76 /* bits in status register */
77 /* port is busy with a transfer */
78 #define SPI_PPC4XX_SR_BSY	(0x80 >> 6)
79 /* RxD ready */
80 #define SPI_PPC4XX_SR_RBR	(0x80 >> 7)
81 
82 /* clock settings (SCP and CI) for various SPI modes */
83 #define SPI_CLK_MODE0	(SPI_PPC4XX_MODE_SCP | 0)
84 #define SPI_CLK_MODE1	(0 | 0)
85 #define SPI_CLK_MODE2	(SPI_PPC4XX_MODE_SCP | SPI_PPC4XX_MODE_CI)
86 #define SPI_CLK_MODE3	(0 | SPI_PPC4XX_MODE_CI)
87 
88 #define DRIVER_NAME	"spi_ppc4xx_of"
89 
90 struct spi_ppc4xx_regs {
91 	u8 mode;
92 	u8 rxd;
93 	u8 txd;
94 	u8 cr;
95 	u8 sr;
96 	u8 dummy;
97 	/*
98 	 * Clock divisor modulus register
99 	 * This uses the following formula:
100 	 *    SCPClkOut = OPBCLK/(4(CDM + 1))
101 	 * or
102 	 *    CDM = (OPBCLK/4*SCPClkOut) - 1
103 	 * bit 0 is the MSb!
104 	 */
105 	u8 cdm;
106 };
107 
108 /* SPI Controller driver's private data. */
109 struct ppc4xx_spi {
110 	/* bitbang has to be first */
111 	struct spi_bitbang bitbang;
112 	struct completion done;
113 
114 	u64 mapbase;
115 	u64 mapsize;
116 	int irqnum;
117 	/* need this to set the SPI clock */
118 	unsigned int opb_freq;
119 
120 	/* for transfers */
121 	int len;
122 	int count;
123 	/* data buffers */
124 	const unsigned char *tx;
125 	unsigned char *rx;
126 
127 	struct spi_ppc4xx_regs __iomem *regs; /* pointer to the registers */
128 	struct spi_controller *host;
129 	struct device *dev;
130 };
131 
132 /* need this so we can set the clock in the chipselect routine */
133 struct spi_ppc4xx_cs {
134 	u8 mode;
135 };
136 
spi_ppc4xx_txrx(struct spi_device * spi,struct spi_transfer * t)137 static int spi_ppc4xx_txrx(struct spi_device *spi, struct spi_transfer *t)
138 {
139 	struct ppc4xx_spi *hw;
140 	u8 data;
141 
142 	dev_dbg(&spi->dev, "txrx: tx %p, rx %p, len %d\n",
143 		t->tx_buf, t->rx_buf, t->len);
144 
145 	hw = spi_controller_get_devdata(spi->controller);
146 
147 	hw->tx = t->tx_buf;
148 	hw->rx = t->rx_buf;
149 	hw->len = t->len;
150 	hw->count = 0;
151 
152 	/* send the first byte */
153 	data = hw->tx ? hw->tx[0] : 0;
154 	out_8(&hw->regs->txd, data);
155 	out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
156 	wait_for_completion(&hw->done);
157 
158 	return hw->count;
159 }
160 
spi_ppc4xx_setupxfer(struct spi_device * spi,struct spi_transfer * t)161 static int spi_ppc4xx_setupxfer(struct spi_device *spi, struct spi_transfer *t)
162 {
163 	struct ppc4xx_spi *hw = spi_controller_get_devdata(spi->controller);
164 	struct spi_ppc4xx_cs *cs = spi->controller_state;
165 	int scr;
166 	u8 cdm = 0;
167 	u32 speed;
168 
169 	/* Start with the generic configuration for this device. */
170 	speed = spi->max_speed_hz;
171 
172 	/*
173 	 * Modify the configuration if the transfer overrides it.  Do not allow
174 	 * the transfer to overwrite the generic configuration with zeros.
175 	 */
176 	if (t) {
177 		if (t->speed_hz)
178 			speed = min(t->speed_hz, spi->max_speed_hz);
179 	}
180 
181 	if (!speed || (speed > spi->max_speed_hz)) {
182 		dev_err(&spi->dev, "invalid speed_hz (%d)\n", speed);
183 		return -EINVAL;
184 	}
185 
186 	/* Write new configuration */
187 	out_8(&hw->regs->mode, cs->mode);
188 
189 	/* Set the clock */
190 	/* opb_freq was already divided by 4 */
191 	scr = (hw->opb_freq / speed) - 1;
192 	if (scr > 0)
193 		cdm = min(scr, 0xff);
194 
195 	dev_dbg(&spi->dev, "setting pre-scaler to %d (hz %d)\n", cdm, speed);
196 
197 	if (in_8(&hw->regs->cdm) != cdm)
198 		out_8(&hw->regs->cdm, cdm);
199 
200 	mutex_lock(&hw->bitbang.lock);
201 	if (!hw->bitbang.busy) {
202 		hw->bitbang.chipselect(spi, BITBANG_CS_INACTIVE);
203 		/* Need to ndelay here? */
204 	}
205 	mutex_unlock(&hw->bitbang.lock);
206 
207 	return 0;
208 }
209 
spi_ppc4xx_setup(struct spi_device * spi)210 static int spi_ppc4xx_setup(struct spi_device *spi)
211 {
212 	struct spi_ppc4xx_cs *cs = spi->controller_state;
213 
214 	if (!spi->max_speed_hz) {
215 		dev_err(&spi->dev, "invalid max_speed_hz (must be non-zero)\n");
216 		return -EINVAL;
217 	}
218 
219 	if (cs == NULL) {
220 		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
221 		if (!cs)
222 			return -ENOMEM;
223 		spi->controller_state = cs;
224 	}
225 
226 	/*
227 	 * We set all bits of the SPI0_MODE register, so,
228 	 * no need to read-modify-write
229 	 */
230 	cs->mode = SPI_PPC4XX_MODE_SPE;
231 
232 	switch (spi->mode & SPI_MODE_X_MASK) {
233 	case SPI_MODE_0:
234 		cs->mode |= SPI_CLK_MODE0;
235 		break;
236 	case SPI_MODE_1:
237 		cs->mode |= SPI_CLK_MODE1;
238 		break;
239 	case SPI_MODE_2:
240 		cs->mode |= SPI_CLK_MODE2;
241 		break;
242 	case SPI_MODE_3:
243 		cs->mode |= SPI_CLK_MODE3;
244 		break;
245 	}
246 
247 	if (spi->mode & SPI_LSB_FIRST)
248 		cs->mode |= SPI_PPC4XX_MODE_RD;
249 
250 	return 0;
251 }
252 
spi_ppc4xx_int(int irq,void * dev_id)253 static irqreturn_t spi_ppc4xx_int(int irq, void *dev_id)
254 {
255 	struct ppc4xx_spi *hw;
256 	u8 status;
257 	u8 data;
258 	unsigned int count;
259 
260 	hw = (struct ppc4xx_spi *)dev_id;
261 
262 	status = in_8(&hw->regs->sr);
263 	if (!status)
264 		return IRQ_NONE;
265 
266 	/*
267 	 * BSY de-asserts one cycle after the transfer is complete.  The
268 	 * interrupt is asserted after the transfer is complete.  The exact
269 	 * relationship is not documented, hence this code.
270 	 */
271 
272 	if (unlikely(status & SPI_PPC4XX_SR_BSY)) {
273 		u8 lstatus;
274 		int cnt = 0;
275 
276 		dev_dbg(hw->dev, "got interrupt but spi still busy?\n");
277 		do {
278 			ndelay(10);
279 			lstatus = in_8(&hw->regs->sr);
280 		} while (++cnt < 100 && lstatus & SPI_PPC4XX_SR_BSY);
281 
282 		if (cnt >= 100) {
283 			dev_err(hw->dev, "busywait: too many loops!\n");
284 			complete(&hw->done);
285 			return IRQ_HANDLED;
286 		} else {
287 			/* status is always 1 (RBR) here */
288 			status = in_8(&hw->regs->sr);
289 			dev_dbg(hw->dev, "loops %d status %x\n", cnt, status);
290 		}
291 	}
292 
293 	count = hw->count;
294 	hw->count++;
295 
296 	/* RBR triggered this interrupt.  Therefore, data must be ready. */
297 	data = in_8(&hw->regs->rxd);
298 	if (hw->rx)
299 		hw->rx[count] = data;
300 
301 	count++;
302 
303 	if (count < hw->len) {
304 		data = hw->tx ? hw->tx[count] : 0;
305 		out_8(&hw->regs->txd, data);
306 		out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
307 	} else {
308 		complete(&hw->done);
309 	}
310 
311 	return IRQ_HANDLED;
312 }
313 
spi_ppc4xx_cleanup(struct spi_device * spi)314 static void spi_ppc4xx_cleanup(struct spi_device *spi)
315 {
316 	kfree(spi->controller_state);
317 }
318 
spi_ppc4xx_enable(struct ppc4xx_spi * hw)319 static void spi_ppc4xx_enable(struct ppc4xx_spi *hw)
320 {
321 	/*
322 	 * On all 4xx PPC's the SPI bus is shared/multiplexed with
323 	 * the 2nd I2C bus. We need to enable the SPI bus before
324 	 * using it.
325 	 */
326 
327 	/* need to clear bit 14 to enable SPC */
328 	dcri_clrset(SDR0, SDR0_PFC1, 0x80000000 >> 14, 0);
329 }
330 
331 /*
332  * platform_device layer stuff...
333  */
spi_ppc4xx_of_probe(struct platform_device * op)334 static int spi_ppc4xx_of_probe(struct platform_device *op)
335 {
336 	struct ppc4xx_spi *hw;
337 	struct spi_controller *host;
338 	struct spi_bitbang *bbp;
339 	struct resource resource;
340 	struct device_node *np = op->dev.of_node;
341 	struct device *dev = &op->dev;
342 	struct device_node *opbnp;
343 	int ret;
344 	const unsigned int *clk;
345 
346 	host = spi_alloc_host(dev, sizeof(*hw));
347 	if (host == NULL)
348 		return -ENOMEM;
349 	host->dev.of_node = np;
350 	platform_set_drvdata(op, host);
351 	hw = spi_controller_get_devdata(host);
352 	hw->host = host;
353 	hw->dev = dev;
354 
355 	init_completion(&hw->done);
356 
357 	/* Setup the state for the bitbang driver */
358 	bbp = &hw->bitbang;
359 	bbp->master = hw->host;
360 	bbp->setup_transfer = spi_ppc4xx_setupxfer;
361 	bbp->txrx_bufs = spi_ppc4xx_txrx;
362 	bbp->use_dma = 0;
363 	bbp->master->setup = spi_ppc4xx_setup;
364 	bbp->master->cleanup = spi_ppc4xx_cleanup;
365 	bbp->master->bits_per_word_mask = SPI_BPW_MASK(8);
366 	bbp->master->use_gpio_descriptors = true;
367 	/*
368 	 * The SPI core will count the number of GPIO descriptors to figure
369 	 * out the number of chip selects available on the platform.
370 	 */
371 	bbp->master->num_chipselect = 0;
372 
373 	/* the spi->mode bits understood by this driver: */
374 	bbp->master->mode_bits =
375 		SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST;
376 
377 	/* Get the clock for the OPB */
378 	opbnp = of_find_compatible_node(NULL, NULL, "ibm,opb");
379 	if (opbnp == NULL) {
380 		dev_err(dev, "OPB: cannot find node\n");
381 		ret = -ENODEV;
382 		goto free_host;
383 	}
384 	/* Get the clock (Hz) for the OPB */
385 	clk = of_get_property(opbnp, "clock-frequency", NULL);
386 	if (clk == NULL) {
387 		dev_err(dev, "OPB: no clock-frequency property set\n");
388 		of_node_put(opbnp);
389 		ret = -ENODEV;
390 		goto free_host;
391 	}
392 	hw->opb_freq = *clk;
393 	hw->opb_freq >>= 2;
394 	of_node_put(opbnp);
395 
396 	ret = of_address_to_resource(np, 0, &resource);
397 	if (ret) {
398 		dev_err(dev, "error while parsing device node resource\n");
399 		goto free_host;
400 	}
401 	hw->mapbase = resource.start;
402 	hw->mapsize = resource_size(&resource);
403 
404 	/* Sanity check */
405 	if (hw->mapsize < sizeof(struct spi_ppc4xx_regs)) {
406 		dev_err(dev, "too small to map registers\n");
407 		ret = -EINVAL;
408 		goto free_host;
409 	}
410 
411 	/* Request IRQ */
412 	ret = platform_get_irq(op, 0);
413 	if (ret < 0)
414 		goto free_host;
415 	hw->irqnum = ret;
416 
417 	ret = request_irq(hw->irqnum, spi_ppc4xx_int,
418 			  0, "spi_ppc4xx_of", (void *)hw);
419 	if (ret) {
420 		dev_err(dev, "unable to allocate interrupt\n");
421 		goto free_host;
422 	}
423 
424 	if (!request_mem_region(hw->mapbase, hw->mapsize, DRIVER_NAME)) {
425 		dev_err(dev, "resource unavailable\n");
426 		ret = -EBUSY;
427 		goto request_mem_error;
428 	}
429 
430 	hw->regs = ioremap(hw->mapbase, sizeof(struct spi_ppc4xx_regs));
431 
432 	if (!hw->regs) {
433 		dev_err(dev, "unable to memory map registers\n");
434 		ret = -ENXIO;
435 		goto map_io_error;
436 	}
437 
438 	spi_ppc4xx_enable(hw);
439 
440 	/* Finally register our spi controller */
441 	dev->dma_mask = 0;
442 	ret = spi_bitbang_start(bbp);
443 	if (ret) {
444 		dev_err(dev, "failed to register SPI host\n");
445 		goto unmap_regs;
446 	}
447 
448 	dev_info(dev, "driver initialized\n");
449 
450 	return 0;
451 
452 unmap_regs:
453 	iounmap(hw->regs);
454 map_io_error:
455 	release_mem_region(hw->mapbase, hw->mapsize);
456 request_mem_error:
457 	free_irq(hw->irqnum, hw);
458 free_host:
459 	spi_controller_put(host);
460 
461 	dev_err(dev, "initialization failed\n");
462 	return ret;
463 }
464 
spi_ppc4xx_of_remove(struct platform_device * op)465 static void spi_ppc4xx_of_remove(struct platform_device *op)
466 {
467 	struct spi_controller *host = platform_get_drvdata(op);
468 	struct ppc4xx_spi *hw = spi_controller_get_devdata(host);
469 
470 	spi_bitbang_stop(&hw->bitbang);
471 	release_mem_region(hw->mapbase, hw->mapsize);
472 	free_irq(hw->irqnum, hw);
473 	iounmap(hw->regs);
474 	spi_controller_put(host);
475 }
476 
477 static const struct of_device_id spi_ppc4xx_of_match[] = {
478 	{ .compatible = "ibm,ppc4xx-spi", },
479 	{},
480 };
481 
482 MODULE_DEVICE_TABLE(of, spi_ppc4xx_of_match);
483 
484 static struct platform_driver spi_ppc4xx_of_driver = {
485 	.probe = spi_ppc4xx_of_probe,
486 	.remove_new = spi_ppc4xx_of_remove,
487 	.driver = {
488 		.name = DRIVER_NAME,
489 		.of_match_table = spi_ppc4xx_of_match,
490 	},
491 };
492 module_platform_driver(spi_ppc4xx_of_driver);
493 
494 MODULE_AUTHOR("Gary Jennejohn & Stefan Roese");
495 MODULE_DESCRIPTION("Simple PPC4xx SPI Driver");
496 MODULE_LICENSE("GPL");
497