xref: /openbmc/linux/drivers/spi/spi-pl022.c (revision eb798c64)
1 /*
2  * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
3  *
4  * Copyright (C) 2008-2009 ST-Ericsson AB
5  * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
6  *
7  * Author: Linus Walleij <linus.walleij@stericsson.com>
8  *
9  * Initial version inspired by:
10  *	linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
11  * Initial adoption to PL022 by:
12  *      Sachin Verma <sachin.verma@st.com>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License as published by
16  * the Free Software Foundation; either version 2 of the License, or
17  * (at your option) any later version.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  */
24 
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/ioport.h>
29 #include <linux/errno.h>
30 #include <linux/interrupt.h>
31 #include <linux/spi/spi.h>
32 #include <linux/delay.h>
33 #include <linux/clk.h>
34 #include <linux/err.h>
35 #include <linux/amba/bus.h>
36 #include <linux/amba/pl022.h>
37 #include <linux/io.h>
38 #include <linux/slab.h>
39 #include <linux/dmaengine.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/scatterlist.h>
42 #include <linux/pm_runtime.h>
43 
44 /*
45  * This macro is used to define some register default values.
46  * reg is masked with mask, the OR:ed with an (again masked)
47  * val shifted sb steps to the left.
48  */
49 #define SSP_WRITE_BITS(reg, val, mask, sb) \
50  ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
51 
52 /*
53  * This macro is also used to define some default values.
54  * It will just shift val by sb steps to the left and mask
55  * the result with mask.
56  */
57 #define GEN_MASK_BITS(val, mask, sb) \
58  (((val)<<(sb)) & (mask))
59 
60 #define DRIVE_TX		0
61 #define DO_NOT_DRIVE_TX		1
62 
63 #define DO_NOT_QUEUE_DMA	0
64 #define QUEUE_DMA		1
65 
66 #define RX_TRANSFER		1
67 #define TX_TRANSFER		2
68 
69 /*
70  * Macros to access SSP Registers with their offsets
71  */
72 #define SSP_CR0(r)	(r + 0x000)
73 #define SSP_CR1(r)	(r + 0x004)
74 #define SSP_DR(r)	(r + 0x008)
75 #define SSP_SR(r)	(r + 0x00C)
76 #define SSP_CPSR(r)	(r + 0x010)
77 #define SSP_IMSC(r)	(r + 0x014)
78 #define SSP_RIS(r)	(r + 0x018)
79 #define SSP_MIS(r)	(r + 0x01C)
80 #define SSP_ICR(r)	(r + 0x020)
81 #define SSP_DMACR(r)	(r + 0x024)
82 #define SSP_ITCR(r)	(r + 0x080)
83 #define SSP_ITIP(r)	(r + 0x084)
84 #define SSP_ITOP(r)	(r + 0x088)
85 #define SSP_TDR(r)	(r + 0x08C)
86 
87 #define SSP_PID0(r)	(r + 0xFE0)
88 #define SSP_PID1(r)	(r + 0xFE4)
89 #define SSP_PID2(r)	(r + 0xFE8)
90 #define SSP_PID3(r)	(r + 0xFEC)
91 
92 #define SSP_CID0(r)	(r + 0xFF0)
93 #define SSP_CID1(r)	(r + 0xFF4)
94 #define SSP_CID2(r)	(r + 0xFF8)
95 #define SSP_CID3(r)	(r + 0xFFC)
96 
97 /*
98  * SSP Control Register 0  - SSP_CR0
99  */
100 #define SSP_CR0_MASK_DSS	(0x0FUL << 0)
101 #define SSP_CR0_MASK_FRF	(0x3UL << 4)
102 #define SSP_CR0_MASK_SPO	(0x1UL << 6)
103 #define SSP_CR0_MASK_SPH	(0x1UL << 7)
104 #define SSP_CR0_MASK_SCR	(0xFFUL << 8)
105 
106 /*
107  * The ST version of this block moves som bits
108  * in SSP_CR0 and extends it to 32 bits
109  */
110 #define SSP_CR0_MASK_DSS_ST	(0x1FUL << 0)
111 #define SSP_CR0_MASK_HALFDUP_ST	(0x1UL << 5)
112 #define SSP_CR0_MASK_CSS_ST	(0x1FUL << 16)
113 #define SSP_CR0_MASK_FRF_ST	(0x3UL << 21)
114 
115 /*
116  * SSP Control Register 0  - SSP_CR1
117  */
118 #define SSP_CR1_MASK_LBM	(0x1UL << 0)
119 #define SSP_CR1_MASK_SSE	(0x1UL << 1)
120 #define SSP_CR1_MASK_MS		(0x1UL << 2)
121 #define SSP_CR1_MASK_SOD	(0x1UL << 3)
122 
123 /*
124  * The ST version of this block adds some bits
125  * in SSP_CR1
126  */
127 #define SSP_CR1_MASK_RENDN_ST	(0x1UL << 4)
128 #define SSP_CR1_MASK_TENDN_ST	(0x1UL << 5)
129 #define SSP_CR1_MASK_MWAIT_ST	(0x1UL << 6)
130 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
131 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
132 /* This one is only in the PL023 variant */
133 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
134 
135 /*
136  * SSP Status Register - SSP_SR
137  */
138 #define SSP_SR_MASK_TFE		(0x1UL << 0) /* Transmit FIFO empty */
139 #define SSP_SR_MASK_TNF		(0x1UL << 1) /* Transmit FIFO not full */
140 #define SSP_SR_MASK_RNE		(0x1UL << 2) /* Receive FIFO not empty */
141 #define SSP_SR_MASK_RFF		(0x1UL << 3) /* Receive FIFO full */
142 #define SSP_SR_MASK_BSY		(0x1UL << 4) /* Busy Flag */
143 
144 /*
145  * SSP Clock Prescale Register  - SSP_CPSR
146  */
147 #define SSP_CPSR_MASK_CPSDVSR	(0xFFUL << 0)
148 
149 /*
150  * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
151  */
152 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
153 #define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
154 #define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
155 #define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */
156 
157 /*
158  * SSP Raw Interrupt Status Register - SSP_RIS
159  */
160 /* Receive Overrun Raw Interrupt status */
161 #define SSP_RIS_MASK_RORRIS		(0x1UL << 0)
162 /* Receive Timeout Raw Interrupt status */
163 #define SSP_RIS_MASK_RTRIS		(0x1UL << 1)
164 /* Receive FIFO Raw Interrupt status */
165 #define SSP_RIS_MASK_RXRIS		(0x1UL << 2)
166 /* Transmit FIFO Raw Interrupt status */
167 #define SSP_RIS_MASK_TXRIS		(0x1UL << 3)
168 
169 /*
170  * SSP Masked Interrupt Status Register - SSP_MIS
171  */
172 /* Receive Overrun Masked Interrupt status */
173 #define SSP_MIS_MASK_RORMIS		(0x1UL << 0)
174 /* Receive Timeout Masked Interrupt status */
175 #define SSP_MIS_MASK_RTMIS		(0x1UL << 1)
176 /* Receive FIFO Masked Interrupt status */
177 #define SSP_MIS_MASK_RXMIS		(0x1UL << 2)
178 /* Transmit FIFO Masked Interrupt status */
179 #define SSP_MIS_MASK_TXMIS		(0x1UL << 3)
180 
181 /*
182  * SSP Interrupt Clear Register - SSP_ICR
183  */
184 /* Receive Overrun Raw Clear Interrupt bit */
185 #define SSP_ICR_MASK_RORIC		(0x1UL << 0)
186 /* Receive Timeout Clear Interrupt bit */
187 #define SSP_ICR_MASK_RTIC		(0x1UL << 1)
188 
189 /*
190  * SSP DMA Control Register - SSP_DMACR
191  */
192 /* Receive DMA Enable bit */
193 #define SSP_DMACR_MASK_RXDMAE		(0x1UL << 0)
194 /* Transmit DMA Enable bit */
195 #define SSP_DMACR_MASK_TXDMAE		(0x1UL << 1)
196 
197 /*
198  * SSP Integration Test control Register - SSP_ITCR
199  */
200 #define SSP_ITCR_MASK_ITEN		(0x1UL << 0)
201 #define SSP_ITCR_MASK_TESTFIFO		(0x1UL << 1)
202 
203 /*
204  * SSP Integration Test Input Register - SSP_ITIP
205  */
206 #define ITIP_MASK_SSPRXD		 (0x1UL << 0)
207 #define ITIP_MASK_SSPFSSIN		 (0x1UL << 1)
208 #define ITIP_MASK_SSPCLKIN		 (0x1UL << 2)
209 #define ITIP_MASK_RXDMAC		 (0x1UL << 3)
210 #define ITIP_MASK_TXDMAC		 (0x1UL << 4)
211 #define ITIP_MASK_SSPTXDIN		 (0x1UL << 5)
212 
213 /*
214  * SSP Integration Test output Register - SSP_ITOP
215  */
216 #define ITOP_MASK_SSPTXD		 (0x1UL << 0)
217 #define ITOP_MASK_SSPFSSOUT		 (0x1UL << 1)
218 #define ITOP_MASK_SSPCLKOUT		 (0x1UL << 2)
219 #define ITOP_MASK_SSPOEn		 (0x1UL << 3)
220 #define ITOP_MASK_SSPCTLOEn		 (0x1UL << 4)
221 #define ITOP_MASK_RORINTR		 (0x1UL << 5)
222 #define ITOP_MASK_RTINTR		 (0x1UL << 6)
223 #define ITOP_MASK_RXINTR		 (0x1UL << 7)
224 #define ITOP_MASK_TXINTR		 (0x1UL << 8)
225 #define ITOP_MASK_INTR			 (0x1UL << 9)
226 #define ITOP_MASK_RXDMABREQ		 (0x1UL << 10)
227 #define ITOP_MASK_RXDMASREQ		 (0x1UL << 11)
228 #define ITOP_MASK_TXDMABREQ		 (0x1UL << 12)
229 #define ITOP_MASK_TXDMASREQ		 (0x1UL << 13)
230 
231 /*
232  * SSP Test Data Register - SSP_TDR
233  */
234 #define TDR_MASK_TESTDATA		(0xFFFFFFFF)
235 
236 /*
237  * Message State
238  * we use the spi_message.state (void *) pointer to
239  * hold a single state value, that's why all this
240  * (void *) casting is done here.
241  */
242 #define STATE_START			((void *) 0)
243 #define STATE_RUNNING			((void *) 1)
244 #define STATE_DONE			((void *) 2)
245 #define STATE_ERROR			((void *) -1)
246 
247 /*
248  * SSP State - Whether Enabled or Disabled
249  */
250 #define SSP_DISABLED			(0)
251 #define SSP_ENABLED			(1)
252 
253 /*
254  * SSP DMA State - Whether DMA Enabled or Disabled
255  */
256 #define SSP_DMA_DISABLED		(0)
257 #define SSP_DMA_ENABLED			(1)
258 
259 /*
260  * SSP Clock Defaults
261  */
262 #define SSP_DEFAULT_CLKRATE 0x2
263 #define SSP_DEFAULT_PRESCALE 0x40
264 
265 /*
266  * SSP Clock Parameter ranges
267  */
268 #define CPSDVR_MIN 0x02
269 #define CPSDVR_MAX 0xFE
270 #define SCR_MIN 0x00
271 #define SCR_MAX 0xFF
272 
273 /*
274  * SSP Interrupt related Macros
275  */
276 #define DEFAULT_SSP_REG_IMSC  0x0UL
277 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
278 #define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
279 
280 #define CLEAR_ALL_INTERRUPTS  0x3
281 
282 #define SPI_POLLING_TIMEOUT 1000
283 
284 /*
285  * The type of reading going on on this chip
286  */
287 enum ssp_reading {
288 	READING_NULL,
289 	READING_U8,
290 	READING_U16,
291 	READING_U32
292 };
293 
294 /**
295  * The type of writing going on on this chip
296  */
297 enum ssp_writing {
298 	WRITING_NULL,
299 	WRITING_U8,
300 	WRITING_U16,
301 	WRITING_U32
302 };
303 
304 /**
305  * struct vendor_data - vendor-specific config parameters
306  * for PL022 derivates
307  * @fifodepth: depth of FIFOs (both)
308  * @max_bpw: maximum number of bits per word
309  * @unidir: supports unidirection transfers
310  * @extended_cr: 32 bit wide control register 0 with extra
311  * features and extra features in CR1 as found in the ST variants
312  * @pl023: supports a subset of the ST extensions called "PL023"
313  */
314 struct vendor_data {
315 	int fifodepth;
316 	int max_bpw;
317 	bool unidir;
318 	bool extended_cr;
319 	bool pl023;
320 	bool loopback;
321 };
322 
323 /**
324  * struct pl022 - This is the private SSP driver data structure
325  * @adev: AMBA device model hookup
326  * @vendor: vendor data for the IP block
327  * @phybase: the physical memory where the SSP device resides
328  * @virtbase: the virtual memory where the SSP is mapped
329  * @clk: outgoing clock "SPICLK" for the SPI bus
330  * @master: SPI framework hookup
331  * @master_info: controller-specific data from machine setup
332  * @kworker: thread struct for message pump
333  * @kworker_task: pointer to task for message pump kworker thread
334  * @pump_messages: work struct for scheduling work to the message pump
335  * @queue_lock: spinlock to syncronise access to message queue
336  * @queue: message queue
337  * @busy: message pump is busy
338  * @running: message pump is running
339  * @pump_transfers: Tasklet used in Interrupt Transfer mode
340  * @cur_msg: Pointer to current spi_message being processed
341  * @cur_transfer: Pointer to current spi_transfer
342  * @cur_chip: pointer to current clients chip(assigned from controller_state)
343  * @next_msg_cs_active: the next message in the queue has been examined
344  *  and it was found that it uses the same chip select as the previous
345  *  message, so we left it active after the previous transfer, and it's
346  *  active already.
347  * @tx: current position in TX buffer to be read
348  * @tx_end: end position in TX buffer to be read
349  * @rx: current position in RX buffer to be written
350  * @rx_end: end position in RX buffer to be written
351  * @read: the type of read currently going on
352  * @write: the type of write currently going on
353  * @exp_fifo_level: expected FIFO level
354  * @dma_rx_channel: optional channel for RX DMA
355  * @dma_tx_channel: optional channel for TX DMA
356  * @sgt_rx: scattertable for the RX transfer
357  * @sgt_tx: scattertable for the TX transfer
358  * @dummypage: a dummy page used for driving data on the bus with DMA
359  */
360 struct pl022 {
361 	struct amba_device		*adev;
362 	struct vendor_data		*vendor;
363 	resource_size_t			phybase;
364 	void __iomem			*virtbase;
365 	struct clk			*clk;
366 	struct spi_master		*master;
367 	struct pl022_ssp_controller	*master_info;
368 	/* Message per-transfer pump */
369 	struct tasklet_struct		pump_transfers;
370 	struct spi_message		*cur_msg;
371 	struct spi_transfer		*cur_transfer;
372 	struct chip_data		*cur_chip;
373 	bool				next_msg_cs_active;
374 	void				*tx;
375 	void				*tx_end;
376 	void				*rx;
377 	void				*rx_end;
378 	enum ssp_reading		read;
379 	enum ssp_writing		write;
380 	u32				exp_fifo_level;
381 	enum ssp_rx_level_trig		rx_lev_trig;
382 	enum ssp_tx_level_trig		tx_lev_trig;
383 	/* DMA settings */
384 #ifdef CONFIG_DMA_ENGINE
385 	struct dma_chan			*dma_rx_channel;
386 	struct dma_chan			*dma_tx_channel;
387 	struct sg_table			sgt_rx;
388 	struct sg_table			sgt_tx;
389 	char				*dummypage;
390 	bool				dma_running;
391 #endif
392 };
393 
394 /**
395  * struct chip_data - To maintain runtime state of SSP for each client chip
396  * @cr0: Value of control register CR0 of SSP - on later ST variants this
397  *       register is 32 bits wide rather than just 16
398  * @cr1: Value of control register CR1 of SSP
399  * @dmacr: Value of DMA control Register of SSP
400  * @cpsr: Value of Clock prescale register
401  * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
402  * @enable_dma: Whether to enable DMA or not
403  * @read: function ptr to be used to read when doing xfer for this chip
404  * @write: function ptr to be used to write when doing xfer for this chip
405  * @cs_control: chip select callback provided by chip
406  * @xfer_type: polling/interrupt/DMA
407  *
408  * Runtime state of the SSP controller, maintained per chip,
409  * This would be set according to the current message that would be served
410  */
411 struct chip_data {
412 	u32 cr0;
413 	u16 cr1;
414 	u16 dmacr;
415 	u16 cpsr;
416 	u8 n_bytes;
417 	bool enable_dma;
418 	enum ssp_reading read;
419 	enum ssp_writing write;
420 	void (*cs_control) (u32 command);
421 	int xfer_type;
422 };
423 
424 /**
425  * null_cs_control - Dummy chip select function
426  * @command: select/delect the chip
427  *
428  * If no chip select function is provided by client this is used as dummy
429  * chip select
430  */
431 static void null_cs_control(u32 command)
432 {
433 	pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
434 }
435 
436 /**
437  * giveback - current spi_message is over, schedule next message and call
438  * callback of this message. Assumes that caller already
439  * set message->status; dma and pio irqs are blocked
440  * @pl022: SSP driver private data structure
441  */
442 static void giveback(struct pl022 *pl022)
443 {
444 	struct spi_transfer *last_transfer;
445 	pl022->next_msg_cs_active = false;
446 
447 	last_transfer = list_entry(pl022->cur_msg->transfers.prev,
448 					struct spi_transfer,
449 					transfer_list);
450 
451 	/* Delay if requested before any change in chip select */
452 	if (last_transfer->delay_usecs)
453 		/*
454 		 * FIXME: This runs in interrupt context.
455 		 * Is this really smart?
456 		 */
457 		udelay(last_transfer->delay_usecs);
458 
459 	if (!last_transfer->cs_change) {
460 		struct spi_message *next_msg;
461 
462 		/*
463 		 * cs_change was not set. We can keep the chip select
464 		 * enabled if there is message in the queue and it is
465 		 * for the same spi device.
466 		 *
467 		 * We cannot postpone this until pump_messages, because
468 		 * after calling msg->complete (below) the driver that
469 		 * sent the current message could be unloaded, which
470 		 * could invalidate the cs_control() callback...
471 		 */
472 		/* get a pointer to the next message, if any */
473 		next_msg = spi_get_next_queued_message(pl022->master);
474 
475 		/*
476 		 * see if the next and current messages point
477 		 * to the same spi device.
478 		 */
479 		if (next_msg && next_msg->spi != pl022->cur_msg->spi)
480 			next_msg = NULL;
481 		if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
482 			pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
483 		else
484 			pl022->next_msg_cs_active = true;
485 
486 	}
487 
488 	pl022->cur_msg = NULL;
489 	pl022->cur_transfer = NULL;
490 	pl022->cur_chip = NULL;
491 	spi_finalize_current_message(pl022->master);
492 }
493 
494 /**
495  * flush - flush the FIFO to reach a clean state
496  * @pl022: SSP driver private data structure
497  */
498 static int flush(struct pl022 *pl022)
499 {
500 	unsigned long limit = loops_per_jiffy << 1;
501 
502 	dev_dbg(&pl022->adev->dev, "flush\n");
503 	do {
504 		while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
505 			readw(SSP_DR(pl022->virtbase));
506 	} while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
507 
508 	pl022->exp_fifo_level = 0;
509 
510 	return limit;
511 }
512 
513 /**
514  * restore_state - Load configuration of current chip
515  * @pl022: SSP driver private data structure
516  */
517 static void restore_state(struct pl022 *pl022)
518 {
519 	struct chip_data *chip = pl022->cur_chip;
520 
521 	if (pl022->vendor->extended_cr)
522 		writel(chip->cr0, SSP_CR0(pl022->virtbase));
523 	else
524 		writew(chip->cr0, SSP_CR0(pl022->virtbase));
525 	writew(chip->cr1, SSP_CR1(pl022->virtbase));
526 	writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
527 	writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
528 	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
529 	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
530 }
531 
532 /*
533  * Default SSP Register Values
534  */
535 #define DEFAULT_SSP_REG_CR0 ( \
536 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)	| \
537 	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
538 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
539 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
540 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
541 )
542 
543 /* ST versions have slightly different bit layout */
544 #define DEFAULT_SSP_REG_CR0_ST ( \
545 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
546 	GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
547 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
548 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
549 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
550 	GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)	| \
551 	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
552 )
553 
554 /* The PL023 version is slightly different again */
555 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
556 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
557 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
558 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
559 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
560 )
561 
562 #define DEFAULT_SSP_REG_CR1 ( \
563 	GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
564 	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
565 	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
566 	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
567 )
568 
569 /* ST versions extend this register to use all 16 bits */
570 #define DEFAULT_SSP_REG_CR1_ST ( \
571 	DEFAULT_SSP_REG_CR1 | \
572 	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
573 	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
574 	GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
575 	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
576 	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
577 )
578 
579 /*
580  * The PL023 variant has further differences: no loopback mode, no microwire
581  * support, and a new clock feedback delay setting.
582  */
583 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
584 	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
585 	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
586 	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
587 	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
588 	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
589 	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
590 	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
591 	GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
592 )
593 
594 #define DEFAULT_SSP_REG_CPSR ( \
595 	GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
596 )
597 
598 #define DEFAULT_SSP_REG_DMACR (\
599 	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
600 	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
601 )
602 
603 /**
604  * load_ssp_default_config - Load default configuration for SSP
605  * @pl022: SSP driver private data structure
606  */
607 static void load_ssp_default_config(struct pl022 *pl022)
608 {
609 	if (pl022->vendor->pl023) {
610 		writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
611 		writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
612 	} else if (pl022->vendor->extended_cr) {
613 		writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
614 		writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
615 	} else {
616 		writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
617 		writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
618 	}
619 	writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
620 	writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
621 	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
622 	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
623 }
624 
625 /**
626  * This will write to TX and read from RX according to the parameters
627  * set in pl022.
628  */
629 static void readwriter(struct pl022 *pl022)
630 {
631 
632 	/*
633 	 * The FIFO depth is different between primecell variants.
634 	 * I believe filling in too much in the FIFO might cause
635 	 * errons in 8bit wide transfers on ARM variants (just 8 words
636 	 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
637 	 *
638 	 * To prevent this issue, the TX FIFO is only filled to the
639 	 * unused RX FIFO fill length, regardless of what the TX
640 	 * FIFO status flag indicates.
641 	 */
642 	dev_dbg(&pl022->adev->dev,
643 		"%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
644 		__func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
645 
646 	/* Read as much as you can */
647 	while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
648 	       && (pl022->rx < pl022->rx_end)) {
649 		switch (pl022->read) {
650 		case READING_NULL:
651 			readw(SSP_DR(pl022->virtbase));
652 			break;
653 		case READING_U8:
654 			*(u8 *) (pl022->rx) =
655 				readw(SSP_DR(pl022->virtbase)) & 0xFFU;
656 			break;
657 		case READING_U16:
658 			*(u16 *) (pl022->rx) =
659 				(u16) readw(SSP_DR(pl022->virtbase));
660 			break;
661 		case READING_U32:
662 			*(u32 *) (pl022->rx) =
663 				readl(SSP_DR(pl022->virtbase));
664 			break;
665 		}
666 		pl022->rx += (pl022->cur_chip->n_bytes);
667 		pl022->exp_fifo_level--;
668 	}
669 	/*
670 	 * Write as much as possible up to the RX FIFO size
671 	 */
672 	while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
673 	       && (pl022->tx < pl022->tx_end)) {
674 		switch (pl022->write) {
675 		case WRITING_NULL:
676 			writew(0x0, SSP_DR(pl022->virtbase));
677 			break;
678 		case WRITING_U8:
679 			writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
680 			break;
681 		case WRITING_U16:
682 			writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
683 			break;
684 		case WRITING_U32:
685 			writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
686 			break;
687 		}
688 		pl022->tx += (pl022->cur_chip->n_bytes);
689 		pl022->exp_fifo_level++;
690 		/*
691 		 * This inner reader takes care of things appearing in the RX
692 		 * FIFO as we're transmitting. This will happen a lot since the
693 		 * clock starts running when you put things into the TX FIFO,
694 		 * and then things are continuously clocked into the RX FIFO.
695 		 */
696 		while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
697 		       && (pl022->rx < pl022->rx_end)) {
698 			switch (pl022->read) {
699 			case READING_NULL:
700 				readw(SSP_DR(pl022->virtbase));
701 				break;
702 			case READING_U8:
703 				*(u8 *) (pl022->rx) =
704 					readw(SSP_DR(pl022->virtbase)) & 0xFFU;
705 				break;
706 			case READING_U16:
707 				*(u16 *) (pl022->rx) =
708 					(u16) readw(SSP_DR(pl022->virtbase));
709 				break;
710 			case READING_U32:
711 				*(u32 *) (pl022->rx) =
712 					readl(SSP_DR(pl022->virtbase));
713 				break;
714 			}
715 			pl022->rx += (pl022->cur_chip->n_bytes);
716 			pl022->exp_fifo_level--;
717 		}
718 	}
719 	/*
720 	 * When we exit here the TX FIFO should be full and the RX FIFO
721 	 * should be empty
722 	 */
723 }
724 
725 /**
726  * next_transfer - Move to the Next transfer in the current spi message
727  * @pl022: SSP driver private data structure
728  *
729  * This function moves though the linked list of spi transfers in the
730  * current spi message and returns with the state of current spi
731  * message i.e whether its last transfer is done(STATE_DONE) or
732  * Next transfer is ready(STATE_RUNNING)
733  */
734 static void *next_transfer(struct pl022 *pl022)
735 {
736 	struct spi_message *msg = pl022->cur_msg;
737 	struct spi_transfer *trans = pl022->cur_transfer;
738 
739 	/* Move to next transfer */
740 	if (trans->transfer_list.next != &msg->transfers) {
741 		pl022->cur_transfer =
742 		    list_entry(trans->transfer_list.next,
743 			       struct spi_transfer, transfer_list);
744 		return STATE_RUNNING;
745 	}
746 	return STATE_DONE;
747 }
748 
749 /*
750  * This DMA functionality is only compiled in if we have
751  * access to the generic DMA devices/DMA engine.
752  */
753 #ifdef CONFIG_DMA_ENGINE
754 static void unmap_free_dma_scatter(struct pl022 *pl022)
755 {
756 	/* Unmap and free the SG tables */
757 	dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
758 		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
759 	dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
760 		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
761 	sg_free_table(&pl022->sgt_rx);
762 	sg_free_table(&pl022->sgt_tx);
763 }
764 
765 static void dma_callback(void *data)
766 {
767 	struct pl022 *pl022 = data;
768 	struct spi_message *msg = pl022->cur_msg;
769 
770 	BUG_ON(!pl022->sgt_rx.sgl);
771 
772 #ifdef VERBOSE_DEBUG
773 	/*
774 	 * Optionally dump out buffers to inspect contents, this is
775 	 * good if you want to convince yourself that the loopback
776 	 * read/write contents are the same, when adopting to a new
777 	 * DMA engine.
778 	 */
779 	{
780 		struct scatterlist *sg;
781 		unsigned int i;
782 
783 		dma_sync_sg_for_cpu(&pl022->adev->dev,
784 				    pl022->sgt_rx.sgl,
785 				    pl022->sgt_rx.nents,
786 				    DMA_FROM_DEVICE);
787 
788 		for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
789 			dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
790 			print_hex_dump(KERN_ERR, "SPI RX: ",
791 				       DUMP_PREFIX_OFFSET,
792 				       16,
793 				       1,
794 				       sg_virt(sg),
795 				       sg_dma_len(sg),
796 				       1);
797 		}
798 		for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
799 			dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
800 			print_hex_dump(KERN_ERR, "SPI TX: ",
801 				       DUMP_PREFIX_OFFSET,
802 				       16,
803 				       1,
804 				       sg_virt(sg),
805 				       sg_dma_len(sg),
806 				       1);
807 		}
808 	}
809 #endif
810 
811 	unmap_free_dma_scatter(pl022);
812 
813 	/* Update total bytes transferred */
814 	msg->actual_length += pl022->cur_transfer->len;
815 	if (pl022->cur_transfer->cs_change)
816 		pl022->cur_chip->
817 			cs_control(SSP_CHIP_DESELECT);
818 
819 	/* Move to next transfer */
820 	msg->state = next_transfer(pl022);
821 	tasklet_schedule(&pl022->pump_transfers);
822 }
823 
824 static void setup_dma_scatter(struct pl022 *pl022,
825 			      void *buffer,
826 			      unsigned int length,
827 			      struct sg_table *sgtab)
828 {
829 	struct scatterlist *sg;
830 	int bytesleft = length;
831 	void *bufp = buffer;
832 	int mapbytes;
833 	int i;
834 
835 	if (buffer) {
836 		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
837 			/*
838 			 * If there are less bytes left than what fits
839 			 * in the current page (plus page alignment offset)
840 			 * we just feed in this, else we stuff in as much
841 			 * as we can.
842 			 */
843 			if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
844 				mapbytes = bytesleft;
845 			else
846 				mapbytes = PAGE_SIZE - offset_in_page(bufp);
847 			sg_set_page(sg, virt_to_page(bufp),
848 				    mapbytes, offset_in_page(bufp));
849 			bufp += mapbytes;
850 			bytesleft -= mapbytes;
851 			dev_dbg(&pl022->adev->dev,
852 				"set RX/TX target page @ %p, %d bytes, %d left\n",
853 				bufp, mapbytes, bytesleft);
854 		}
855 	} else {
856 		/* Map the dummy buffer on every page */
857 		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
858 			if (bytesleft < PAGE_SIZE)
859 				mapbytes = bytesleft;
860 			else
861 				mapbytes = PAGE_SIZE;
862 			sg_set_page(sg, virt_to_page(pl022->dummypage),
863 				    mapbytes, 0);
864 			bytesleft -= mapbytes;
865 			dev_dbg(&pl022->adev->dev,
866 				"set RX/TX to dummy page %d bytes, %d left\n",
867 				mapbytes, bytesleft);
868 
869 		}
870 	}
871 	BUG_ON(bytesleft);
872 }
873 
874 /**
875  * configure_dma - configures the channels for the next transfer
876  * @pl022: SSP driver's private data structure
877  */
878 static int configure_dma(struct pl022 *pl022)
879 {
880 	struct dma_slave_config rx_conf = {
881 		.src_addr = SSP_DR(pl022->phybase),
882 		.direction = DMA_DEV_TO_MEM,
883 		.device_fc = false,
884 	};
885 	struct dma_slave_config tx_conf = {
886 		.dst_addr = SSP_DR(pl022->phybase),
887 		.direction = DMA_MEM_TO_DEV,
888 		.device_fc = false,
889 	};
890 	unsigned int pages;
891 	int ret;
892 	int rx_sglen, tx_sglen;
893 	struct dma_chan *rxchan = pl022->dma_rx_channel;
894 	struct dma_chan *txchan = pl022->dma_tx_channel;
895 	struct dma_async_tx_descriptor *rxdesc;
896 	struct dma_async_tx_descriptor *txdesc;
897 
898 	/* Check that the channels are available */
899 	if (!rxchan || !txchan)
900 		return -ENODEV;
901 
902 	/*
903 	 * If supplied, the DMA burstsize should equal the FIFO trigger level.
904 	 * Notice that the DMA engine uses one-to-one mapping. Since we can
905 	 * not trigger on 2 elements this needs explicit mapping rather than
906 	 * calculation.
907 	 */
908 	switch (pl022->rx_lev_trig) {
909 	case SSP_RX_1_OR_MORE_ELEM:
910 		rx_conf.src_maxburst = 1;
911 		break;
912 	case SSP_RX_4_OR_MORE_ELEM:
913 		rx_conf.src_maxburst = 4;
914 		break;
915 	case SSP_RX_8_OR_MORE_ELEM:
916 		rx_conf.src_maxburst = 8;
917 		break;
918 	case SSP_RX_16_OR_MORE_ELEM:
919 		rx_conf.src_maxburst = 16;
920 		break;
921 	case SSP_RX_32_OR_MORE_ELEM:
922 		rx_conf.src_maxburst = 32;
923 		break;
924 	default:
925 		rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
926 		break;
927 	}
928 
929 	switch (pl022->tx_lev_trig) {
930 	case SSP_TX_1_OR_MORE_EMPTY_LOC:
931 		tx_conf.dst_maxburst = 1;
932 		break;
933 	case SSP_TX_4_OR_MORE_EMPTY_LOC:
934 		tx_conf.dst_maxburst = 4;
935 		break;
936 	case SSP_TX_8_OR_MORE_EMPTY_LOC:
937 		tx_conf.dst_maxburst = 8;
938 		break;
939 	case SSP_TX_16_OR_MORE_EMPTY_LOC:
940 		tx_conf.dst_maxburst = 16;
941 		break;
942 	case SSP_TX_32_OR_MORE_EMPTY_LOC:
943 		tx_conf.dst_maxburst = 32;
944 		break;
945 	default:
946 		tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
947 		break;
948 	}
949 
950 	switch (pl022->read) {
951 	case READING_NULL:
952 		/* Use the same as for writing */
953 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
954 		break;
955 	case READING_U8:
956 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
957 		break;
958 	case READING_U16:
959 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
960 		break;
961 	case READING_U32:
962 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
963 		break;
964 	}
965 
966 	switch (pl022->write) {
967 	case WRITING_NULL:
968 		/* Use the same as for reading */
969 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
970 		break;
971 	case WRITING_U8:
972 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
973 		break;
974 	case WRITING_U16:
975 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
976 		break;
977 	case WRITING_U32:
978 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
979 		break;
980 	}
981 
982 	/* SPI pecularity: we need to read and write the same width */
983 	if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
984 		rx_conf.src_addr_width = tx_conf.dst_addr_width;
985 	if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
986 		tx_conf.dst_addr_width = rx_conf.src_addr_width;
987 	BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
988 
989 	dmaengine_slave_config(rxchan, &rx_conf);
990 	dmaengine_slave_config(txchan, &tx_conf);
991 
992 	/* Create sglists for the transfers */
993 	pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
994 	dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
995 
996 	ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
997 	if (ret)
998 		goto err_alloc_rx_sg;
999 
1000 	ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1001 	if (ret)
1002 		goto err_alloc_tx_sg;
1003 
1004 	/* Fill in the scatterlists for the RX+TX buffers */
1005 	setup_dma_scatter(pl022, pl022->rx,
1006 			  pl022->cur_transfer->len, &pl022->sgt_rx);
1007 	setup_dma_scatter(pl022, pl022->tx,
1008 			  pl022->cur_transfer->len, &pl022->sgt_tx);
1009 
1010 	/* Map DMA buffers */
1011 	rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1012 			   pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1013 	if (!rx_sglen)
1014 		goto err_rx_sgmap;
1015 
1016 	tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1017 			   pl022->sgt_tx.nents, DMA_TO_DEVICE);
1018 	if (!tx_sglen)
1019 		goto err_tx_sgmap;
1020 
1021 	/* Send both scatterlists */
1022 	rxdesc = dmaengine_prep_slave_sg(rxchan,
1023 				      pl022->sgt_rx.sgl,
1024 				      rx_sglen,
1025 				      DMA_DEV_TO_MEM,
1026 				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1027 	if (!rxdesc)
1028 		goto err_rxdesc;
1029 
1030 	txdesc = dmaengine_prep_slave_sg(txchan,
1031 				      pl022->sgt_tx.sgl,
1032 				      tx_sglen,
1033 				      DMA_MEM_TO_DEV,
1034 				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1035 	if (!txdesc)
1036 		goto err_txdesc;
1037 
1038 	/* Put the callback on the RX transfer only, that should finish last */
1039 	rxdesc->callback = dma_callback;
1040 	rxdesc->callback_param = pl022;
1041 
1042 	/* Submit and fire RX and TX with TX last so we're ready to read! */
1043 	dmaengine_submit(rxdesc);
1044 	dmaengine_submit(txdesc);
1045 	dma_async_issue_pending(rxchan);
1046 	dma_async_issue_pending(txchan);
1047 	pl022->dma_running = true;
1048 
1049 	return 0;
1050 
1051 err_txdesc:
1052 	dmaengine_terminate_all(txchan);
1053 err_rxdesc:
1054 	dmaengine_terminate_all(rxchan);
1055 	dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1056 		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
1057 err_tx_sgmap:
1058 	dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1059 		     pl022->sgt_tx.nents, DMA_FROM_DEVICE);
1060 err_rx_sgmap:
1061 	sg_free_table(&pl022->sgt_tx);
1062 err_alloc_tx_sg:
1063 	sg_free_table(&pl022->sgt_rx);
1064 err_alloc_rx_sg:
1065 	return -ENOMEM;
1066 }
1067 
1068 static int __devinit pl022_dma_probe(struct pl022 *pl022)
1069 {
1070 	dma_cap_mask_t mask;
1071 
1072 	/* Try to acquire a generic DMA engine slave channel */
1073 	dma_cap_zero(mask);
1074 	dma_cap_set(DMA_SLAVE, mask);
1075 	/*
1076 	 * We need both RX and TX channels to do DMA, else do none
1077 	 * of them.
1078 	 */
1079 	pl022->dma_rx_channel = dma_request_channel(mask,
1080 					    pl022->master_info->dma_filter,
1081 					    pl022->master_info->dma_rx_param);
1082 	if (!pl022->dma_rx_channel) {
1083 		dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1084 		goto err_no_rxchan;
1085 	}
1086 
1087 	pl022->dma_tx_channel = dma_request_channel(mask,
1088 					    pl022->master_info->dma_filter,
1089 					    pl022->master_info->dma_tx_param);
1090 	if (!pl022->dma_tx_channel) {
1091 		dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1092 		goto err_no_txchan;
1093 	}
1094 
1095 	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1096 	if (!pl022->dummypage) {
1097 		dev_dbg(&pl022->adev->dev, "no DMA dummypage!\n");
1098 		goto err_no_dummypage;
1099 	}
1100 
1101 	dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1102 		 dma_chan_name(pl022->dma_rx_channel),
1103 		 dma_chan_name(pl022->dma_tx_channel));
1104 
1105 	return 0;
1106 
1107 err_no_dummypage:
1108 	dma_release_channel(pl022->dma_tx_channel);
1109 err_no_txchan:
1110 	dma_release_channel(pl022->dma_rx_channel);
1111 	pl022->dma_rx_channel = NULL;
1112 err_no_rxchan:
1113 	dev_err(&pl022->adev->dev,
1114 			"Failed to work in dma mode, work without dma!\n");
1115 	return -ENODEV;
1116 }
1117 
1118 static void terminate_dma(struct pl022 *pl022)
1119 {
1120 	struct dma_chan *rxchan = pl022->dma_rx_channel;
1121 	struct dma_chan *txchan = pl022->dma_tx_channel;
1122 
1123 	dmaengine_terminate_all(rxchan);
1124 	dmaengine_terminate_all(txchan);
1125 	unmap_free_dma_scatter(pl022);
1126 	pl022->dma_running = false;
1127 }
1128 
1129 static void pl022_dma_remove(struct pl022 *pl022)
1130 {
1131 	if (pl022->dma_running)
1132 		terminate_dma(pl022);
1133 	if (pl022->dma_tx_channel)
1134 		dma_release_channel(pl022->dma_tx_channel);
1135 	if (pl022->dma_rx_channel)
1136 		dma_release_channel(pl022->dma_rx_channel);
1137 	kfree(pl022->dummypage);
1138 }
1139 
1140 #else
1141 static inline int configure_dma(struct pl022 *pl022)
1142 {
1143 	return -ENODEV;
1144 }
1145 
1146 static inline int pl022_dma_probe(struct pl022 *pl022)
1147 {
1148 	return 0;
1149 }
1150 
1151 static inline void pl022_dma_remove(struct pl022 *pl022)
1152 {
1153 }
1154 #endif
1155 
1156 /**
1157  * pl022_interrupt_handler - Interrupt handler for SSP controller
1158  *
1159  * This function handles interrupts generated for an interrupt based transfer.
1160  * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1161  * current message's state as STATE_ERROR and schedule the tasklet
1162  * pump_transfers which will do the postprocessing of the current message by
1163  * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1164  * more data, and writes data in TX FIFO till it is not full. If we complete
1165  * the transfer we move to the next transfer and schedule the tasklet.
1166  */
1167 static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1168 {
1169 	struct pl022 *pl022 = dev_id;
1170 	struct spi_message *msg = pl022->cur_msg;
1171 	u16 irq_status = 0;
1172 	u16 flag = 0;
1173 
1174 	if (unlikely(!msg)) {
1175 		dev_err(&pl022->adev->dev,
1176 			"bad message state in interrupt handler");
1177 		/* Never fail */
1178 		return IRQ_HANDLED;
1179 	}
1180 
1181 	/* Read the Interrupt Status Register */
1182 	irq_status = readw(SSP_MIS(pl022->virtbase));
1183 
1184 	if (unlikely(!irq_status))
1185 		return IRQ_NONE;
1186 
1187 	/*
1188 	 * This handles the FIFO interrupts, the timeout
1189 	 * interrupts are flatly ignored, they cannot be
1190 	 * trusted.
1191 	 */
1192 	if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1193 		/*
1194 		 * Overrun interrupt - bail out since our Data has been
1195 		 * corrupted
1196 		 */
1197 		dev_err(&pl022->adev->dev, "FIFO overrun\n");
1198 		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1199 			dev_err(&pl022->adev->dev,
1200 				"RXFIFO is full\n");
1201 		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
1202 			dev_err(&pl022->adev->dev,
1203 				"TXFIFO is full\n");
1204 
1205 		/*
1206 		 * Disable and clear interrupts, disable SSP,
1207 		 * mark message with bad status so it can be
1208 		 * retried.
1209 		 */
1210 		writew(DISABLE_ALL_INTERRUPTS,
1211 		       SSP_IMSC(pl022->virtbase));
1212 		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1213 		writew((readw(SSP_CR1(pl022->virtbase)) &
1214 			(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1215 		msg->state = STATE_ERROR;
1216 
1217 		/* Schedule message queue handler */
1218 		tasklet_schedule(&pl022->pump_transfers);
1219 		return IRQ_HANDLED;
1220 	}
1221 
1222 	readwriter(pl022);
1223 
1224 	if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
1225 		flag = 1;
1226 		/* Disable Transmit interrupt, enable receive interrupt */
1227 		writew((readw(SSP_IMSC(pl022->virtbase)) &
1228 		       ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1229 		       SSP_IMSC(pl022->virtbase));
1230 	}
1231 
1232 	/*
1233 	 * Since all transactions must write as much as shall be read,
1234 	 * we can conclude the entire transaction once RX is complete.
1235 	 * At this point, all TX will always be finished.
1236 	 */
1237 	if (pl022->rx >= pl022->rx_end) {
1238 		writew(DISABLE_ALL_INTERRUPTS,
1239 		       SSP_IMSC(pl022->virtbase));
1240 		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1241 		if (unlikely(pl022->rx > pl022->rx_end)) {
1242 			dev_warn(&pl022->adev->dev, "read %u surplus "
1243 				 "bytes (did you request an odd "
1244 				 "number of bytes on a 16bit bus?)\n",
1245 				 (u32) (pl022->rx - pl022->rx_end));
1246 		}
1247 		/* Update total bytes transferred */
1248 		msg->actual_length += pl022->cur_transfer->len;
1249 		if (pl022->cur_transfer->cs_change)
1250 			pl022->cur_chip->
1251 				cs_control(SSP_CHIP_DESELECT);
1252 		/* Move to next transfer */
1253 		msg->state = next_transfer(pl022);
1254 		tasklet_schedule(&pl022->pump_transfers);
1255 		return IRQ_HANDLED;
1256 	}
1257 
1258 	return IRQ_HANDLED;
1259 }
1260 
1261 /**
1262  * This sets up the pointers to memory for the next message to
1263  * send out on the SPI bus.
1264  */
1265 static int set_up_next_transfer(struct pl022 *pl022,
1266 				struct spi_transfer *transfer)
1267 {
1268 	int residue;
1269 
1270 	/* Sanity check the message for this bus width */
1271 	residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1272 	if (unlikely(residue != 0)) {
1273 		dev_err(&pl022->adev->dev,
1274 			"message of %u bytes to transmit but the current "
1275 			"chip bus has a data width of %u bytes!\n",
1276 			pl022->cur_transfer->len,
1277 			pl022->cur_chip->n_bytes);
1278 		dev_err(&pl022->adev->dev, "skipping this message\n");
1279 		return -EIO;
1280 	}
1281 	pl022->tx = (void *)transfer->tx_buf;
1282 	pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1283 	pl022->rx = (void *)transfer->rx_buf;
1284 	pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1285 	pl022->write =
1286 	    pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1287 	pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1288 	return 0;
1289 }
1290 
1291 /**
1292  * pump_transfers - Tasklet function which schedules next transfer
1293  * when running in interrupt or DMA transfer mode.
1294  * @data: SSP driver private data structure
1295  *
1296  */
1297 static void pump_transfers(unsigned long data)
1298 {
1299 	struct pl022 *pl022 = (struct pl022 *) data;
1300 	struct spi_message *message = NULL;
1301 	struct spi_transfer *transfer = NULL;
1302 	struct spi_transfer *previous = NULL;
1303 
1304 	/* Get current state information */
1305 	message = pl022->cur_msg;
1306 	transfer = pl022->cur_transfer;
1307 
1308 	/* Handle for abort */
1309 	if (message->state == STATE_ERROR) {
1310 		message->status = -EIO;
1311 		giveback(pl022);
1312 		return;
1313 	}
1314 
1315 	/* Handle end of message */
1316 	if (message->state == STATE_DONE) {
1317 		message->status = 0;
1318 		giveback(pl022);
1319 		return;
1320 	}
1321 
1322 	/* Delay if requested at end of transfer before CS change */
1323 	if (message->state == STATE_RUNNING) {
1324 		previous = list_entry(transfer->transfer_list.prev,
1325 					struct spi_transfer,
1326 					transfer_list);
1327 		if (previous->delay_usecs)
1328 			/*
1329 			 * FIXME: This runs in interrupt context.
1330 			 * Is this really smart?
1331 			 */
1332 			udelay(previous->delay_usecs);
1333 
1334 		/* Reselect chip select only if cs_change was requested */
1335 		if (previous->cs_change)
1336 			pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1337 	} else {
1338 		/* STATE_START */
1339 		message->state = STATE_RUNNING;
1340 	}
1341 
1342 	if (set_up_next_transfer(pl022, transfer)) {
1343 		message->state = STATE_ERROR;
1344 		message->status = -EIO;
1345 		giveback(pl022);
1346 		return;
1347 	}
1348 	/* Flush the FIFOs and let's go! */
1349 	flush(pl022);
1350 
1351 	if (pl022->cur_chip->enable_dma) {
1352 		if (configure_dma(pl022)) {
1353 			dev_dbg(&pl022->adev->dev,
1354 				"configuration of DMA failed, fall back to interrupt mode\n");
1355 			goto err_config_dma;
1356 		}
1357 		return;
1358 	}
1359 
1360 err_config_dma:
1361 	/* enable all interrupts except RX */
1362 	writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1363 }
1364 
1365 static void do_interrupt_dma_transfer(struct pl022 *pl022)
1366 {
1367 	/*
1368 	 * Default is to enable all interrupts except RX -
1369 	 * this will be enabled once TX is complete
1370 	 */
1371 	u32 irqflags = ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM;
1372 
1373 	/* Enable target chip, if not already active */
1374 	if (!pl022->next_msg_cs_active)
1375 		pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1376 
1377 	if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1378 		/* Error path */
1379 		pl022->cur_msg->state = STATE_ERROR;
1380 		pl022->cur_msg->status = -EIO;
1381 		giveback(pl022);
1382 		return;
1383 	}
1384 	/* If we're using DMA, set up DMA here */
1385 	if (pl022->cur_chip->enable_dma) {
1386 		/* Configure DMA transfer */
1387 		if (configure_dma(pl022)) {
1388 			dev_dbg(&pl022->adev->dev,
1389 				"configuration of DMA failed, fall back to interrupt mode\n");
1390 			goto err_config_dma;
1391 		}
1392 		/* Disable interrupts in DMA mode, IRQ from DMA controller */
1393 		irqflags = DISABLE_ALL_INTERRUPTS;
1394 	}
1395 err_config_dma:
1396 	/* Enable SSP, turn on interrupts */
1397 	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1398 	       SSP_CR1(pl022->virtbase));
1399 	writew(irqflags, SSP_IMSC(pl022->virtbase));
1400 }
1401 
1402 static void do_polling_transfer(struct pl022 *pl022)
1403 {
1404 	struct spi_message *message = NULL;
1405 	struct spi_transfer *transfer = NULL;
1406 	struct spi_transfer *previous = NULL;
1407 	struct chip_data *chip;
1408 	unsigned long time, timeout;
1409 
1410 	chip = pl022->cur_chip;
1411 	message = pl022->cur_msg;
1412 
1413 	while (message->state != STATE_DONE) {
1414 		/* Handle for abort */
1415 		if (message->state == STATE_ERROR)
1416 			break;
1417 		transfer = pl022->cur_transfer;
1418 
1419 		/* Delay if requested at end of transfer */
1420 		if (message->state == STATE_RUNNING) {
1421 			previous =
1422 			    list_entry(transfer->transfer_list.prev,
1423 				       struct spi_transfer, transfer_list);
1424 			if (previous->delay_usecs)
1425 				udelay(previous->delay_usecs);
1426 			if (previous->cs_change)
1427 				pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1428 		} else {
1429 			/* STATE_START */
1430 			message->state = STATE_RUNNING;
1431 			if (!pl022->next_msg_cs_active)
1432 				pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1433 		}
1434 
1435 		/* Configuration Changing Per Transfer */
1436 		if (set_up_next_transfer(pl022, transfer)) {
1437 			/* Error path */
1438 			message->state = STATE_ERROR;
1439 			break;
1440 		}
1441 		/* Flush FIFOs and enable SSP */
1442 		flush(pl022);
1443 		writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1444 		       SSP_CR1(pl022->virtbase));
1445 
1446 		dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1447 
1448 		timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1449 		while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1450 			time = jiffies;
1451 			readwriter(pl022);
1452 			if (time_after(time, timeout)) {
1453 				dev_warn(&pl022->adev->dev,
1454 				"%s: timeout!\n", __func__);
1455 				message->state = STATE_ERROR;
1456 				goto out;
1457 			}
1458 			cpu_relax();
1459 		}
1460 
1461 		/* Update total byte transferred */
1462 		message->actual_length += pl022->cur_transfer->len;
1463 		if (pl022->cur_transfer->cs_change)
1464 			pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
1465 		/* Move to next transfer */
1466 		message->state = next_transfer(pl022);
1467 	}
1468 out:
1469 	/* Handle end of message */
1470 	if (message->state == STATE_DONE)
1471 		message->status = 0;
1472 	else
1473 		message->status = -EIO;
1474 
1475 	giveback(pl022);
1476 	return;
1477 }
1478 
1479 static int pl022_transfer_one_message(struct spi_master *master,
1480 				      struct spi_message *msg)
1481 {
1482 	struct pl022 *pl022 = spi_master_get_devdata(master);
1483 
1484 	/* Initial message state */
1485 	pl022->cur_msg = msg;
1486 	msg->state = STATE_START;
1487 
1488 	pl022->cur_transfer = list_entry(msg->transfers.next,
1489 					 struct spi_transfer, transfer_list);
1490 
1491 	/* Setup the SPI using the per chip configuration */
1492 	pl022->cur_chip = spi_get_ctldata(msg->spi);
1493 
1494 	restore_state(pl022);
1495 	flush(pl022);
1496 
1497 	if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1498 		do_polling_transfer(pl022);
1499 	else
1500 		do_interrupt_dma_transfer(pl022);
1501 
1502 	return 0;
1503 }
1504 
1505 static int pl022_prepare_transfer_hardware(struct spi_master *master)
1506 {
1507 	struct pl022 *pl022 = spi_master_get_devdata(master);
1508 
1509 	/*
1510 	 * Just make sure we have all we need to run the transfer by syncing
1511 	 * with the runtime PM framework.
1512 	 */
1513 	pm_runtime_get_sync(&pl022->adev->dev);
1514 	return 0;
1515 }
1516 
1517 static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1518 {
1519 	struct pl022 *pl022 = spi_master_get_devdata(master);
1520 
1521 	/* nothing more to do - disable spi/ssp and power off */
1522 	writew((readw(SSP_CR1(pl022->virtbase)) &
1523 		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1524 
1525 	if (pl022->master_info->autosuspend_delay > 0) {
1526 		pm_runtime_mark_last_busy(&pl022->adev->dev);
1527 		pm_runtime_put_autosuspend(&pl022->adev->dev);
1528 	} else {
1529 		pm_runtime_put(&pl022->adev->dev);
1530 	}
1531 
1532 	return 0;
1533 }
1534 
1535 static int verify_controller_parameters(struct pl022 *pl022,
1536 				struct pl022_config_chip const *chip_info)
1537 {
1538 	if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1539 	    || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1540 		dev_err(&pl022->adev->dev,
1541 			"interface is configured incorrectly\n");
1542 		return -EINVAL;
1543 	}
1544 	if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1545 	    (!pl022->vendor->unidir)) {
1546 		dev_err(&pl022->adev->dev,
1547 			"unidirectional mode not supported in this "
1548 			"hardware version\n");
1549 		return -EINVAL;
1550 	}
1551 	if ((chip_info->hierarchy != SSP_MASTER)
1552 	    && (chip_info->hierarchy != SSP_SLAVE)) {
1553 		dev_err(&pl022->adev->dev,
1554 			"hierarchy is configured incorrectly\n");
1555 		return -EINVAL;
1556 	}
1557 	if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1558 	    && (chip_info->com_mode != DMA_TRANSFER)
1559 	    && (chip_info->com_mode != POLLING_TRANSFER)) {
1560 		dev_err(&pl022->adev->dev,
1561 			"Communication mode is configured incorrectly\n");
1562 		return -EINVAL;
1563 	}
1564 	switch (chip_info->rx_lev_trig) {
1565 	case SSP_RX_1_OR_MORE_ELEM:
1566 	case SSP_RX_4_OR_MORE_ELEM:
1567 	case SSP_RX_8_OR_MORE_ELEM:
1568 		/* These are always OK, all variants can handle this */
1569 		break;
1570 	case SSP_RX_16_OR_MORE_ELEM:
1571 		if (pl022->vendor->fifodepth < 16) {
1572 			dev_err(&pl022->adev->dev,
1573 			"RX FIFO Trigger Level is configured incorrectly\n");
1574 			return -EINVAL;
1575 		}
1576 		break;
1577 	case SSP_RX_32_OR_MORE_ELEM:
1578 		if (pl022->vendor->fifodepth < 32) {
1579 			dev_err(&pl022->adev->dev,
1580 			"RX FIFO Trigger Level is configured incorrectly\n");
1581 			return -EINVAL;
1582 		}
1583 		break;
1584 	default:
1585 		dev_err(&pl022->adev->dev,
1586 			"RX FIFO Trigger Level is configured incorrectly\n");
1587 		return -EINVAL;
1588 		break;
1589 	}
1590 	switch (chip_info->tx_lev_trig) {
1591 	case SSP_TX_1_OR_MORE_EMPTY_LOC:
1592 	case SSP_TX_4_OR_MORE_EMPTY_LOC:
1593 	case SSP_TX_8_OR_MORE_EMPTY_LOC:
1594 		/* These are always OK, all variants can handle this */
1595 		break;
1596 	case SSP_TX_16_OR_MORE_EMPTY_LOC:
1597 		if (pl022->vendor->fifodepth < 16) {
1598 			dev_err(&pl022->adev->dev,
1599 			"TX FIFO Trigger Level is configured incorrectly\n");
1600 			return -EINVAL;
1601 		}
1602 		break;
1603 	case SSP_TX_32_OR_MORE_EMPTY_LOC:
1604 		if (pl022->vendor->fifodepth < 32) {
1605 			dev_err(&pl022->adev->dev,
1606 			"TX FIFO Trigger Level is configured incorrectly\n");
1607 			return -EINVAL;
1608 		}
1609 		break;
1610 	default:
1611 		dev_err(&pl022->adev->dev,
1612 			"TX FIFO Trigger Level is configured incorrectly\n");
1613 		return -EINVAL;
1614 		break;
1615 	}
1616 	if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1617 		if ((chip_info->ctrl_len < SSP_BITS_4)
1618 		    || (chip_info->ctrl_len > SSP_BITS_32)) {
1619 			dev_err(&pl022->adev->dev,
1620 				"CTRL LEN is configured incorrectly\n");
1621 			return -EINVAL;
1622 		}
1623 		if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1624 		    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1625 			dev_err(&pl022->adev->dev,
1626 				"Wait State is configured incorrectly\n");
1627 			return -EINVAL;
1628 		}
1629 		/* Half duplex is only available in the ST Micro version */
1630 		if (pl022->vendor->extended_cr) {
1631 			if ((chip_info->duplex !=
1632 			     SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1633 			    && (chip_info->duplex !=
1634 				SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1635 				dev_err(&pl022->adev->dev,
1636 					"Microwire duplex mode is configured incorrectly\n");
1637 				return -EINVAL;
1638 			}
1639 		} else {
1640 			if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1641 				dev_err(&pl022->adev->dev,
1642 					"Microwire half duplex mode requested,"
1643 					" but this is only available in the"
1644 					" ST version of PL022\n");
1645 			return -EINVAL;
1646 		}
1647 	}
1648 	return 0;
1649 }
1650 
1651 static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1652 {
1653 	return rate / (cpsdvsr * (1 + scr));
1654 }
1655 
1656 static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1657 				    ssp_clock_params * clk_freq)
1658 {
1659 	/* Lets calculate the frequency parameters */
1660 	u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1661 	u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1662 		best_scr = 0, tmp, found = 0;
1663 
1664 	rate = clk_get_rate(pl022->clk);
1665 	/* cpsdvscr = 2 & scr 0 */
1666 	max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1667 	/* cpsdvsr = 254 & scr = 255 */
1668 	min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1669 
1670 	if (!((freq <= max_tclk) && (freq >= min_tclk))) {
1671 		dev_err(&pl022->adev->dev,
1672 			"controller data is incorrect: out of range frequency");
1673 		return -EINVAL;
1674 	}
1675 
1676 	/*
1677 	 * best_freq will give closest possible available rate (<= requested
1678 	 * freq) for all values of scr & cpsdvsr.
1679 	 */
1680 	while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1681 		while (scr <= SCR_MAX) {
1682 			tmp = spi_rate(rate, cpsdvsr, scr);
1683 
1684 			if (tmp > freq)
1685 				scr++;
1686 			/*
1687 			 * If found exact value, update and break.
1688 			 * If found more closer value, update and continue.
1689 			 */
1690 			else if ((tmp == freq) || (tmp > best_freq)) {
1691 				best_freq = tmp;
1692 				best_cpsdvsr = cpsdvsr;
1693 				best_scr = scr;
1694 
1695 				if (tmp == freq)
1696 					break;
1697 			}
1698 			scr++;
1699 		}
1700 		cpsdvsr += 2;
1701 		scr = SCR_MIN;
1702 	}
1703 
1704 	clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1705 	clk_freq->scr = (u8) (best_scr & 0xFF);
1706 	dev_dbg(&pl022->adev->dev,
1707 		"SSP Target Frequency is: %u, Effective Frequency is %u\n",
1708 		freq, best_freq);
1709 	dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1710 		clk_freq->cpsdvsr, clk_freq->scr);
1711 
1712 	return 0;
1713 }
1714 
1715 /*
1716  * A piece of default chip info unless the platform
1717  * supplies it.
1718  */
1719 static const struct pl022_config_chip pl022_default_chip_info = {
1720 	.com_mode = POLLING_TRANSFER,
1721 	.iface = SSP_INTERFACE_MOTOROLA_SPI,
1722 	.hierarchy = SSP_SLAVE,
1723 	.slave_tx_disable = DO_NOT_DRIVE_TX,
1724 	.rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1725 	.tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1726 	.ctrl_len = SSP_BITS_8,
1727 	.wait_state = SSP_MWIRE_WAIT_ZERO,
1728 	.duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1729 	.cs_control = null_cs_control,
1730 };
1731 
1732 /**
1733  * pl022_setup - setup function registered to SPI master framework
1734  * @spi: spi device which is requesting setup
1735  *
1736  * This function is registered to the SPI framework for this SPI master
1737  * controller. If it is the first time when setup is called by this device,
1738  * this function will initialize the runtime state for this chip and save
1739  * the same in the device structure. Else it will update the runtime info
1740  * with the updated chip info. Nothing is really being written to the
1741  * controller hardware here, that is not done until the actual transfer
1742  * commence.
1743  */
1744 static int pl022_setup(struct spi_device *spi)
1745 {
1746 	struct pl022_config_chip const *chip_info;
1747 	struct chip_data *chip;
1748 	struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1749 	int status = 0;
1750 	struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1751 	unsigned int bits = spi->bits_per_word;
1752 	u32 tmp;
1753 
1754 	if (!spi->max_speed_hz)
1755 		return -EINVAL;
1756 
1757 	/* Get controller_state if one is supplied */
1758 	chip = spi_get_ctldata(spi);
1759 
1760 	if (chip == NULL) {
1761 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1762 		if (!chip) {
1763 			dev_err(&spi->dev,
1764 				"cannot allocate controller state\n");
1765 			return -ENOMEM;
1766 		}
1767 		dev_dbg(&spi->dev,
1768 			"allocated memory for controller's runtime state\n");
1769 	}
1770 
1771 	/* Get controller data if one is supplied */
1772 	chip_info = spi->controller_data;
1773 
1774 	if (chip_info == NULL) {
1775 		chip_info = &pl022_default_chip_info;
1776 		/* spi_board_info.controller_data not is supplied */
1777 		dev_dbg(&spi->dev,
1778 			"using default controller_data settings\n");
1779 	} else
1780 		dev_dbg(&spi->dev,
1781 			"using user supplied controller_data settings\n");
1782 
1783 	/*
1784 	 * We can override with custom divisors, else we use the board
1785 	 * frequency setting
1786 	 */
1787 	if ((0 == chip_info->clk_freq.cpsdvsr)
1788 	    && (0 == chip_info->clk_freq.scr)) {
1789 		status = calculate_effective_freq(pl022,
1790 						  spi->max_speed_hz,
1791 						  &clk_freq);
1792 		if (status < 0)
1793 			goto err_config_params;
1794 	} else {
1795 		memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1796 		if ((clk_freq.cpsdvsr % 2) != 0)
1797 			clk_freq.cpsdvsr =
1798 				clk_freq.cpsdvsr - 1;
1799 	}
1800 	if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1801 	    || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1802 		status = -EINVAL;
1803 		dev_err(&spi->dev,
1804 			"cpsdvsr is configured incorrectly\n");
1805 		goto err_config_params;
1806 	}
1807 
1808 	status = verify_controller_parameters(pl022, chip_info);
1809 	if (status) {
1810 		dev_err(&spi->dev, "controller data is incorrect");
1811 		goto err_config_params;
1812 	}
1813 
1814 	pl022->rx_lev_trig = chip_info->rx_lev_trig;
1815 	pl022->tx_lev_trig = chip_info->tx_lev_trig;
1816 
1817 	/* Now set controller state based on controller data */
1818 	chip->xfer_type = chip_info->com_mode;
1819 	if (!chip_info->cs_control) {
1820 		chip->cs_control = null_cs_control;
1821 		dev_warn(&spi->dev,
1822 			 "chip select function is NULL for this chip\n");
1823 	} else
1824 		chip->cs_control = chip_info->cs_control;
1825 
1826 	/* Check bits per word with vendor specific range */
1827 	if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1828 		status = -ENOTSUPP;
1829 		dev_err(&spi->dev, "illegal data size for this controller!\n");
1830 		dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1831 				pl022->vendor->max_bpw);
1832 		goto err_config_params;
1833 	} else if (bits <= 8) {
1834 		dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1835 		chip->n_bytes = 1;
1836 		chip->read = READING_U8;
1837 		chip->write = WRITING_U8;
1838 	} else if (bits <= 16) {
1839 		dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1840 		chip->n_bytes = 2;
1841 		chip->read = READING_U16;
1842 		chip->write = WRITING_U16;
1843 	} else {
1844 		dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1845 		chip->n_bytes = 4;
1846 		chip->read = READING_U32;
1847 		chip->write = WRITING_U32;
1848 	}
1849 
1850 	/* Now Initialize all register settings required for this chip */
1851 	chip->cr0 = 0;
1852 	chip->cr1 = 0;
1853 	chip->dmacr = 0;
1854 	chip->cpsr = 0;
1855 	if ((chip_info->com_mode == DMA_TRANSFER)
1856 	    && ((pl022->master_info)->enable_dma)) {
1857 		chip->enable_dma = true;
1858 		dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1859 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1860 			       SSP_DMACR_MASK_RXDMAE, 0);
1861 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1862 			       SSP_DMACR_MASK_TXDMAE, 1);
1863 	} else {
1864 		chip->enable_dma = false;
1865 		dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1866 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1867 			       SSP_DMACR_MASK_RXDMAE, 0);
1868 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1869 			       SSP_DMACR_MASK_TXDMAE, 1);
1870 	}
1871 
1872 	chip->cpsr = clk_freq.cpsdvsr;
1873 
1874 	/* Special setup for the ST micro extended control registers */
1875 	if (pl022->vendor->extended_cr) {
1876 		u32 etx;
1877 
1878 		if (pl022->vendor->pl023) {
1879 			/* These bits are only in the PL023 */
1880 			SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1881 				       SSP_CR1_MASK_FBCLKDEL_ST, 13);
1882 		} else {
1883 			/* These bits are in the PL022 but not PL023 */
1884 			SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1885 				       SSP_CR0_MASK_HALFDUP_ST, 5);
1886 			SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1887 				       SSP_CR0_MASK_CSS_ST, 16);
1888 			SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1889 				       SSP_CR0_MASK_FRF_ST, 21);
1890 			SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
1891 				       SSP_CR1_MASK_MWAIT_ST, 6);
1892 		}
1893 		SSP_WRITE_BITS(chip->cr0, bits - 1,
1894 			       SSP_CR0_MASK_DSS_ST, 0);
1895 
1896 		if (spi->mode & SPI_LSB_FIRST) {
1897 			tmp = SSP_RX_LSB;
1898 			etx = SSP_TX_LSB;
1899 		} else {
1900 			tmp = SSP_RX_MSB;
1901 			etx = SSP_TX_MSB;
1902 		}
1903 		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
1904 		SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
1905 		SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
1906 			       SSP_CR1_MASK_RXIFLSEL_ST, 7);
1907 		SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
1908 			       SSP_CR1_MASK_TXIFLSEL_ST, 10);
1909 	} else {
1910 		SSP_WRITE_BITS(chip->cr0, bits - 1,
1911 			       SSP_CR0_MASK_DSS, 0);
1912 		SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1913 			       SSP_CR0_MASK_FRF, 4);
1914 	}
1915 
1916 	/* Stuff that is common for all versions */
1917 	if (spi->mode & SPI_CPOL)
1918 		tmp = SSP_CLK_POL_IDLE_HIGH;
1919 	else
1920 		tmp = SSP_CLK_POL_IDLE_LOW;
1921 	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
1922 
1923 	if (spi->mode & SPI_CPHA)
1924 		tmp = SSP_CLK_SECOND_EDGE;
1925 	else
1926 		tmp = SSP_CLK_FIRST_EDGE;
1927 	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
1928 
1929 	SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
1930 	/* Loopback is available on all versions except PL023 */
1931 	if (pl022->vendor->loopback) {
1932 		if (spi->mode & SPI_LOOP)
1933 			tmp = LOOPBACK_ENABLED;
1934 		else
1935 			tmp = LOOPBACK_DISABLED;
1936 		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
1937 	}
1938 	SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
1939 	SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
1940 	SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
1941 		3);
1942 
1943 	/* Save controller_state */
1944 	spi_set_ctldata(spi, chip);
1945 	return status;
1946  err_config_params:
1947 	spi_set_ctldata(spi, NULL);
1948 	kfree(chip);
1949 	return status;
1950 }
1951 
1952 /**
1953  * pl022_cleanup - cleanup function registered to SPI master framework
1954  * @spi: spi device which is requesting cleanup
1955  *
1956  * This function is registered to the SPI framework for this SPI master
1957  * controller. It will free the runtime state of chip.
1958  */
1959 static void pl022_cleanup(struct spi_device *spi)
1960 {
1961 	struct chip_data *chip = spi_get_ctldata(spi);
1962 
1963 	spi_set_ctldata(spi, NULL);
1964 	kfree(chip);
1965 }
1966 
1967 static int __devinit
1968 pl022_probe(struct amba_device *adev, const struct amba_id *id)
1969 {
1970 	struct device *dev = &adev->dev;
1971 	struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
1972 	struct spi_master *master;
1973 	struct pl022 *pl022 = NULL;	/*Data for this driver */
1974 	int status = 0;
1975 
1976 	dev_info(&adev->dev,
1977 		 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
1978 	if (platform_info == NULL) {
1979 		dev_err(&adev->dev, "probe - no platform data supplied\n");
1980 		status = -ENODEV;
1981 		goto err_no_pdata;
1982 	}
1983 
1984 	/* Allocate master with space for data */
1985 	master = spi_alloc_master(dev, sizeof(struct pl022));
1986 	if (master == NULL) {
1987 		dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
1988 		status = -ENOMEM;
1989 		goto err_no_master;
1990 	}
1991 
1992 	pl022 = spi_master_get_devdata(master);
1993 	pl022->master = master;
1994 	pl022->master_info = platform_info;
1995 	pl022->adev = adev;
1996 	pl022->vendor = id->data;
1997 
1998 	/*
1999 	 * Bus Number Which has been Assigned to this SSP controller
2000 	 * on this board
2001 	 */
2002 	master->bus_num = platform_info->bus_id;
2003 	master->num_chipselect = platform_info->num_chipselect;
2004 	master->cleanup = pl022_cleanup;
2005 	master->setup = pl022_setup;
2006 	master->prepare_transfer_hardware = pl022_prepare_transfer_hardware;
2007 	master->transfer_one_message = pl022_transfer_one_message;
2008 	master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2009 	master->rt = platform_info->rt;
2010 
2011 	/*
2012 	 * Supports mode 0-3, loopback, and active low CS. Transfers are
2013 	 * always MS bit first on the original pl022.
2014 	 */
2015 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2016 	if (pl022->vendor->extended_cr)
2017 		master->mode_bits |= SPI_LSB_FIRST;
2018 
2019 	dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2020 
2021 	status = amba_request_regions(adev, NULL);
2022 	if (status)
2023 		goto err_no_ioregion;
2024 
2025 	pl022->phybase = adev->res.start;
2026 	pl022->virtbase = ioremap(adev->res.start, resource_size(&adev->res));
2027 	if (pl022->virtbase == NULL) {
2028 		status = -ENOMEM;
2029 		goto err_no_ioremap;
2030 	}
2031 	printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
2032 	       adev->res.start, pl022->virtbase);
2033 
2034 	pl022->clk = clk_get(&adev->dev, NULL);
2035 	if (IS_ERR(pl022->clk)) {
2036 		status = PTR_ERR(pl022->clk);
2037 		dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2038 		goto err_no_clk;
2039 	}
2040 
2041 	status = clk_prepare(pl022->clk);
2042 	if (status) {
2043 		dev_err(&adev->dev, "could not prepare SSP/SPI bus clock\n");
2044 		goto  err_clk_prep;
2045 	}
2046 
2047 	status = clk_enable(pl022->clk);
2048 	if (status) {
2049 		dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2050 		goto err_no_clk_en;
2051 	}
2052 
2053 	/* Initialize transfer pump */
2054 	tasklet_init(&pl022->pump_transfers, pump_transfers,
2055 		     (unsigned long)pl022);
2056 
2057 	/* Disable SSP */
2058 	writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2059 	       SSP_CR1(pl022->virtbase));
2060 	load_ssp_default_config(pl022);
2061 
2062 	status = request_irq(adev->irq[0], pl022_interrupt_handler, 0, "pl022",
2063 			     pl022);
2064 	if (status < 0) {
2065 		dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2066 		goto err_no_irq;
2067 	}
2068 
2069 	/* Get DMA channels */
2070 	if (platform_info->enable_dma) {
2071 		status = pl022_dma_probe(pl022);
2072 		if (status != 0)
2073 			platform_info->enable_dma = 0;
2074 	}
2075 
2076 	/* Register with the SPI framework */
2077 	amba_set_drvdata(adev, pl022);
2078 	status = spi_register_master(master);
2079 	if (status != 0) {
2080 		dev_err(&adev->dev,
2081 			"probe - problem registering spi master\n");
2082 		goto err_spi_register;
2083 	}
2084 	dev_dbg(dev, "probe succeeded\n");
2085 
2086 	/* let runtime pm put suspend */
2087 	if (platform_info->autosuspend_delay > 0) {
2088 		dev_info(&adev->dev,
2089 			"will use autosuspend for runtime pm, delay %dms\n",
2090 			platform_info->autosuspend_delay);
2091 		pm_runtime_set_autosuspend_delay(dev,
2092 			platform_info->autosuspend_delay);
2093 		pm_runtime_use_autosuspend(dev);
2094 		pm_runtime_put_autosuspend(dev);
2095 	} else {
2096 		pm_runtime_put(dev);
2097 	}
2098 	return 0;
2099 
2100  err_spi_register:
2101 	if (platform_info->enable_dma)
2102 		pl022_dma_remove(pl022);
2103 
2104 	free_irq(adev->irq[0], pl022);
2105  err_no_irq:
2106 	clk_disable(pl022->clk);
2107  err_no_clk_en:
2108 	clk_unprepare(pl022->clk);
2109  err_clk_prep:
2110 	clk_put(pl022->clk);
2111  err_no_clk:
2112 	iounmap(pl022->virtbase);
2113  err_no_ioremap:
2114 	amba_release_regions(adev);
2115  err_no_ioregion:
2116 	spi_master_put(master);
2117  err_no_master:
2118  err_no_pdata:
2119 	return status;
2120 }
2121 
2122 static int __devexit
2123 pl022_remove(struct amba_device *adev)
2124 {
2125 	struct pl022 *pl022 = amba_get_drvdata(adev);
2126 
2127 	if (!pl022)
2128 		return 0;
2129 
2130 	/*
2131 	 * undo pm_runtime_put() in probe.  I assume that we're not
2132 	 * accessing the primecell here.
2133 	 */
2134 	pm_runtime_get_noresume(&adev->dev);
2135 
2136 	load_ssp_default_config(pl022);
2137 	if (pl022->master_info->enable_dma)
2138 		pl022_dma_remove(pl022);
2139 
2140 	free_irq(adev->irq[0], pl022);
2141 	clk_disable(pl022->clk);
2142 	clk_unprepare(pl022->clk);
2143 	clk_put(pl022->clk);
2144 	iounmap(pl022->virtbase);
2145 	amba_release_regions(adev);
2146 	tasklet_disable(&pl022->pump_transfers);
2147 	spi_unregister_master(pl022->master);
2148 	spi_master_put(pl022->master);
2149 	amba_set_drvdata(adev, NULL);
2150 	return 0;
2151 }
2152 
2153 #ifdef CONFIG_SUSPEND
2154 static int pl022_suspend(struct device *dev)
2155 {
2156 	struct pl022 *pl022 = dev_get_drvdata(dev);
2157 	int ret;
2158 
2159 	ret = spi_master_suspend(pl022->master);
2160 	if (ret) {
2161 		dev_warn(dev, "cannot suspend master\n");
2162 		return ret;
2163 	}
2164 
2165 	dev_dbg(dev, "suspended\n");
2166 	return 0;
2167 }
2168 
2169 static int pl022_resume(struct device *dev)
2170 {
2171 	struct pl022 *pl022 = dev_get_drvdata(dev);
2172 	int ret;
2173 
2174 	/* Start the queue running */
2175 	ret = spi_master_resume(pl022->master);
2176 	if (ret)
2177 		dev_err(dev, "problem starting queue (%d)\n", ret);
2178 	else
2179 		dev_dbg(dev, "resumed\n");
2180 
2181 	return ret;
2182 }
2183 #endif	/* CONFIG_PM */
2184 
2185 #ifdef CONFIG_PM_RUNTIME
2186 static int pl022_runtime_suspend(struct device *dev)
2187 {
2188 	struct pl022 *pl022 = dev_get_drvdata(dev);
2189 
2190 	clk_disable(pl022->clk);
2191 
2192 	return 0;
2193 }
2194 
2195 static int pl022_runtime_resume(struct device *dev)
2196 {
2197 	struct pl022 *pl022 = dev_get_drvdata(dev);
2198 
2199 	clk_enable(pl022->clk);
2200 
2201 	return 0;
2202 }
2203 #endif
2204 
2205 static const struct dev_pm_ops pl022_dev_pm_ops = {
2206 	SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2207 	SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2208 };
2209 
2210 static struct vendor_data vendor_arm = {
2211 	.fifodepth = 8,
2212 	.max_bpw = 16,
2213 	.unidir = false,
2214 	.extended_cr = false,
2215 	.pl023 = false,
2216 	.loopback = true,
2217 };
2218 
2219 static struct vendor_data vendor_st = {
2220 	.fifodepth = 32,
2221 	.max_bpw = 32,
2222 	.unidir = false,
2223 	.extended_cr = true,
2224 	.pl023 = false,
2225 	.loopback = true,
2226 };
2227 
2228 static struct vendor_data vendor_st_pl023 = {
2229 	.fifodepth = 32,
2230 	.max_bpw = 32,
2231 	.unidir = false,
2232 	.extended_cr = true,
2233 	.pl023 = true,
2234 	.loopback = false,
2235 };
2236 
2237 static struct vendor_data vendor_db5500_pl023 = {
2238 	.fifodepth = 32,
2239 	.max_bpw = 32,
2240 	.unidir = false,
2241 	.extended_cr = true,
2242 	.pl023 = true,
2243 	.loopback = true,
2244 };
2245 
2246 static struct amba_id pl022_ids[] = {
2247 	{
2248 		/*
2249 		 * ARM PL022 variant, this has a 16bit wide
2250 		 * and 8 locations deep TX/RX FIFO
2251 		 */
2252 		.id	= 0x00041022,
2253 		.mask	= 0x000fffff,
2254 		.data	= &vendor_arm,
2255 	},
2256 	{
2257 		/*
2258 		 * ST Micro derivative, this has 32bit wide
2259 		 * and 32 locations deep TX/RX FIFO
2260 		 */
2261 		.id	= 0x01080022,
2262 		.mask	= 0xffffffff,
2263 		.data	= &vendor_st,
2264 	},
2265 	{
2266 		/*
2267 		 * ST-Ericsson derivative "PL023" (this is not
2268 		 * an official ARM number), this is a PL022 SSP block
2269 		 * stripped to SPI mode only, it has 32bit wide
2270 		 * and 32 locations deep TX/RX FIFO but no extended
2271 		 * CR0/CR1 register
2272 		 */
2273 		.id	= 0x00080023,
2274 		.mask	= 0xffffffff,
2275 		.data	= &vendor_st_pl023,
2276 	},
2277 	{
2278 		.id	= 0x10080023,
2279 		.mask	= 0xffffffff,
2280 		.data	= &vendor_db5500_pl023,
2281 	},
2282 	{ 0, 0 },
2283 };
2284 
2285 MODULE_DEVICE_TABLE(amba, pl022_ids);
2286 
2287 static struct amba_driver pl022_driver = {
2288 	.drv = {
2289 		.name	= "ssp-pl022",
2290 		.pm	= &pl022_dev_pm_ops,
2291 	},
2292 	.id_table	= pl022_ids,
2293 	.probe		= pl022_probe,
2294 	.remove		= __devexit_p(pl022_remove),
2295 };
2296 
2297 static int __init pl022_init(void)
2298 {
2299 	return amba_driver_register(&pl022_driver);
2300 }
2301 subsys_initcall(pl022_init);
2302 
2303 static void __exit pl022_exit(void)
2304 {
2305 	amba_driver_unregister(&pl022_driver);
2306 }
2307 module_exit(pl022_exit);
2308 
2309 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2310 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2311 MODULE_LICENSE("GPL");
2312